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Abstract

We report the discovery of GJ1252b, a planet with a radius of 1.193±0.074 ÅR and an orbital period of
0.52days around an M3-type star (0.381±0.019 M , 0.391±0.020 R ) located 20.385±0.019 pc away. We
use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia
astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate
from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal
as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass
measurement of 2.09±0.56M⊕. The host star proximity, brightness (V=12.19 mag, K=7.92 mag), low stellar
activity, and the system’s short orbital period make this planet an attractive target for detailed characterization,
including precise mass measurement, looking for other objects in the system, and planet atmosphere
characterization.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); M dwarf stars (982); Exoplanets (498)

1. Introduction

The field of exoplanets has come a long way since the first
discoveries at the end of the 20th century (Latham et al. 1989;
Wolszczan & Frail 1992; Mayor & Queloz 1995). One of the
current frontiers in the study of exoplanets is that of small
planets, smaller than Neptune and Uranus. The Kepler mission

led to the discovery of thousands of small planets (e.g., Borucki
et al. 2011; Thompson et al. 2018). This in turn led to the
measurement of the planet radius distribution, showing that
within 1 au of Sun-like stars, small planets are more frequent
than large (gas giant) planets (e.g., Borucki et al. 2011;
Thompson et al. 2018) and that there is a deficit (or local
minimum) of planets with 1.5–2.0 ÅR (Fulton et al. 2017).
However, the number of small planets with a well measured
mass is still small, especially for planets with a radius smaller
than 2 ÅR . In addition, only for a few small planets has it been
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possible to characterize the atmosphere (e.g., Benneke et al.
2019) or measure the stellar obliquity (e.g., Hirano et al. 2012;
Sanchis-Ojeda et al. 2012, 2015; Albrecht et al. 2013).

The study of small planets is hampered by the lack of small
planets orbiting stars that are bright enough for detailed follow-
up investigations. The TESS mission (Ricker et al. 2014, 2015)
is designed to overcome this problem by detecting transiting
planet candidates orbiting bright stars positioned across almost
the entire sky. Among those, planet candidates orbiting nearby
M-dwarf stars, at a distance of a few tens of parsecs, present a
special opportunity, as their typical high proper motion and
small size make it easier to rule out false-positive scenarios
(e.g., Crossfield et al. 2019; Vanderspek et al. 2019). This
quickly clears the way for follow-up studies including mass
measurement and atmospheric characterization. In addition, for
nearby M-dwarfs, astrometric data from the Gaia mission will
be sensitive to stellar and substellar companions within 1 au
(Perryman et al. 2014; Sozzetti et al. 2014).

Here we present the discovery of GJ1252b, a small planet
orbiting an M3-type star. The planet was initially discovered as
a transiting planet candidate using TESS data. Based on the
TESS data and additional follow-up data we are able to reject
all false-positive scenarios, showing it is a real planet. In
addition, we were able to obtain a marginal mass measurement.
Observations and data analysis of TESS data and ground-based
photometry, spectroscopy, and high angular resolution imaging
are described in Section 2. Host star characterization is
described in Section 3, and in Section 4 we go through all
false-positive scenarios showing that they are all rejected. In
Section 5 we investigate the radial velocity (RV) time series
and search for an orbital RV signal. We discuss the newly
discovered star–planet system in Section 6 and conclude with a
brief summary in Section 7.

2. Observations and Data Analysis

2.1. TESS Data

GJ1252 was observed by Camera 2 of the TESS spacecraft
during the Sector 13 campaign, from 2019 June 19 to 2019 July
17. Listed in the TESS input catalog (TIC; Stassun et al. 2018)
as TIC 370133522 it was observed with a 2 minute cadence
using an 11×11 pixel subarray centered on the target.33 The
photometric data were processed through the Science Proces-
sing Operations Center (SPOC) pipeline (Jenkins et al. 2016),
largely based on the predecessor Kepler mission pipeline
(Jenkins et al. 2017).

The SPOC analysis had identified a transit-like signal in the
target’s light curve with a brief decrease in brightness of about
850 ppm every 0.518 days. Upon further inspection at the TESS
Science Office it was added to the list of TESS objects of
interest (TOIs) as TOI 1078.01. We list astrometric and
photometric information about the target in Table 1.

We downloaded the TESS light curve from MAST34 and
removed all flux measurements where the quality flag was set.
This step removed 897 measurements out of the total of 20,479,
or 4.4% of the data. We then proceeded with fitting the
Presearch Data Conditioning (PDC) light curve (Smith et al.
2012; Stumpe et al. 2014). PDC light curves are corrected for
contamination from nearby stars and instrumental systematics

originating from, for example, pointing drifts, focus changes,
and thermal transients. The instrumental trends are identified in
a carefully selected sample of quiet stars located on the same
CCD as the target and showing high correlation between each
other (Smith et al. 2012). We note that for GJ1252 the
uncertainty of individual 2 minute flux measurements is 16.4%
larger in the PDC light curves than in the raw photometry. This
increased uncertainty accounts for potentially injected noise
during the PDC process.
We used Allesfitter35 (Günther & Daylan 2019) for fitting a

transit model. The Allesfitter code uses ellc (Maxted 2016) for
the transit light-curve model, emcee (Foreman-Mackey et al.
2013) for sampling the multi-dimensional parameter space and
producing a posteriori distributions of fitted parameters, and a
Gaussian process (GP; Foreman-Mackey et al. 2017) for
modeling the correlated noise.
For the GP kernel we adopted the Matérn-3/2 covariance36

following Rasmussen & Williams (2006) and Foreman-
Mackey et al. (2017). This covariance function has two
parameters: a characteristic amplitude σ and timescale ρ, which
we fitted while using a log-uniform prior. Before fitting the in-
transit data we used the out-of-transit flux measurements to fit
only the two noise model parameters. We then used the fitted
values for those parameters as Gaussian priors when fitting a
transit model to the in-transit data. This approach is designed to
control the GP and prevent it from fitting also the astrophysical
signal in addition to the noise. We confirmed that the fitted
kernel timescale parameter (ρ) corresponds to a timescale that
is much longer than the 2 minute cadence of the data, by about
two orders of magnitude. The latter check is done to make sure
the GP kernel does not over fit the data by attempting to fit the
white noise.
We fitted a transit light-curve model while assuming a

circular orbit and fitting seven free parameters with uniform

Table 1
Target Information

Parameter Value Source

TIC 370133522 TIC V8a

R.A. 20:27:42.081 Gaia DR2b

Decl. −56:27:25.16 Gaia DR2b

μRA (mas yr−1) 424.414±0.074 Gaia DR2b

μdecl. (mas yr−1) −1230.623±0.073 Gaia DR2b

Parallax (mas) 49.056±0.046 Gaia DR2b

Distance (pc) 20.385±0.019 Gaia DR2b

Epoch 2015.5 Gaia DR2b

B (mag) 13.655±0.029 AAVSO DR9c

V (mag) 12.193±0.056 AAVSO DR9c

Gaia (mag) 11.2364±0.0008 Gaia DR2b

TESS (mag) 10.1165±0.0073 TIC V8a

J (mag) 8.697±0.019 2MASSd

H (mag) 8.161±0.034 2MASSd

K (mag) 7.915±0.023 2MASSd

Notes.
a Stassun et al. (2018).
b Gaia Collaboration et al. (2018).
c Henden et al. (2016).
d Cutri et al. (2003).

33 This target is part of Guest Investigator program 11180, PI: Courtney
Dressing.
34 https://mast.stsci.edu/

35 https://allesfitter.readthedocs.io
36 The covariance between two measurements with a time difference t
is ( ) ( )s r r+ -t t1 3 exp 32 .
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priors: orbital period P, specific mid-transit time T0 (which was
chosen to be in the middle of the TESS time coverage, to
minimize the covariance with P), planet-to-star radii ratio
Rp/Rs, sum of star and planet radii divided by the orbital
semimajor axis (Rs+Rp)/a, cosine of the orbital inclination

icos , and two transformed quadratic limb-darkening law
coefficients q1 and q2 (following Kipping 2013). We used a
Markov Chain Monte Carlo fitting procedure with 100 walkers
with 10,000 steps each, and disregard the first 2000 (20%) of
the steps. The number of steps was 30–50 times longer than the
autocorrelation length of each of the fitted parameter chains.
The fitted parameters are listed in Table 2 along with several
parameters derived from the fitted parameters, and the transit
light curve with the fitted model is plotted in Figure 1. The
derived parameters listed in Table 2 are based on the fitted
parametersʼ posterior distribution and the stellar parametersʼ
value and uncertainty (derived in Section 3).

In our analysis we assumed the contribution from other stars
to the total flux in the photometric aperture was 2.2% of the
flux of GJ1252, as reported in the TIC. While we did not
assume an uncertainty on that parameter, it is three times
smaller than the uncertainty on the measured transit depth.
We tested our results for the fitted parameters by applying

several variants of our model fitting, including:

1. Fixing the limb-darkening parameters to theoretical
values of q1=0.36 and q2=0.15, based on
Claret (2017).

2. Using Gaussian priors on q1 and q2 centered on the values
above and with 0.1 standard deviation. This approach is
used as an intermediate approach between fixing the
limb-darkening coefficients to theoretical values and
allowing them to vary freely with a uniform prior. The
value of 0.1 for the standard deviation was chosen
somewhat arbitrarily.

3. Fixing q1 to 0.36 and allowing q2 to vary freely with a
uniform prior.

4. Repeating the analysis without GP, including the variants
above.

All variants of the original analysis resulted in fully consistent
results for the fitted parameters at the s0.2 level.
In a subsequent analysis we refined the ephemeris by

simultaneously fitting TESS and ground-based light curves
(described below in Section 2.2). This was done while fitting
only for P and T0 and using Gaussian priors on the rest of the
parameters following their fitted values as derived when fitting
only the TESS data. Those refined P and T0 values are listed in
Table 2.

2.2. Ground-based Photometry

2.2.1. Las Cumbres Observatory (LCO)

Five full transits of GJ1252 were observed using 1 m
telescopes of the Las Cumbres Observatory (LCO37; formerly
named LCOGT) network (Brown et al. 2013).
Two transits were observed with the Pan-STARSS z filter

(which is 1040Å wide centered at 8700Å), on the nights of UT
2019 August 24 and UT 2019 August 25 from the South
African Astronomical Observatory (SAAO) and Siding Spring
Observatory (SSO), respectively. Both observations used 35 s
exposure times and a defocus of 1.0 mm, resulting in images
with typical FWHM of ≈3″. Three transits were observed with
the SDSS-g filter, on the nights of UT 2019 September 19, UT
2019 September 20, and UT 2019 October 9. The two
observations in September were done from SAAO, and the
third observation, in October, was done from the Cerro Tololo
Inter-American Observatory (CTIO). These three observations
used 70 s exposure times and a defocus of 0.3 mm, resulting in
images with typical FWHMs of ≈2 5. We used the TESS
Transit Finder, which is a customized version of the
Tapir software package (Jensen 2013), to schedule our transit
observations. The telescopes are equipped with 4096×4096
LCO Sinistro cameras having a pixel scale of 0 389 pixel−1

resulting in a 26 5×26 5 field of view.
The images were calibrated by the standard LCO BANZAI

pipeline, and the photometric data were extracted using the
AstroImageJ (AIJ) software package (Collins et al. 2017).

Table 2
Fitted and Derived Parameters

Parameter Value Uncertainty

Host Star Parameters
Ms ( M ) 0.381 0.019
Rs ( R ) 0.391 0.020
Ls ( L ) 0.0196 -

+
0.0023
0.0026

Teff (K) 3458 -
+

133
140

[Fe/H] 0.1 0.1
Light-curve Fitted Parametersa

Rp/Rs 0.02802 -
+

0.00097
0.00090

(Rs+Rp)/a 0.203 -
+

0.011
0.015

icos 0.086 -
+

0.036
0.031

T0 (BJD-2458,000) 668.09739 -
+

0.00029
0.00032

P (days) 0.5182349 -
+

0.0000050
0.0000063

q TESS1, 0.23 -
+

0.16
0.31

q TESS2, 0.36 -
+

0.25
0.38

sln b −9.12 0.13
rln b −1.81 -

+
1.03
0.88

RV Orbit Fitted Parametersa

K ( -m s 1) 3.17 0.85
γ ( -m s 1) 7483.56 0.70
g ( - -m s days1 1) −1.13 0.24
σRV ( -m s 1) 0.93 -

+
0.58
0.77

Derived Parameters
i (°) 85.0 -

+
1.8
2.1

a (au) 0.00916 0.00076
b 0.44 -

+
0.17
0.12

Ttot
c (hr) 0.734 -

+
0.014
0.018

Tfull
d (hr) 0.683 -

+
0.016
0.021

Mp ( ÅM ) 2.09 0.56
Rp ( ÅR ) 1.193 0.074
Teq

e (K) 1089 69

Notes.
a Assuming a circular orbit and adopting BJD of 2,458,751 as the reference
epoch for the RV slope.
b Noise model parameter of the Matérn-3/2 GP kernel. Fitted using the out-of-
transit data.
c From first to last (fourth) contacts.
d From second to third contacts.
e Assuming zero albedo and complete heat circulation between the day and
night hemispheres.

37 http://lco.global
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Circular apertures with a radius of 16 pixels (6 2) were used to
extract differential photometry from the Pan-STARSS z-band
images. Circular apertures with a radius of 9 pixels (3 5) were
used to extract differential photometry from the SDSS-g
images. The nearest star in the Gaia DR2 and TIC v8 catalogs
is 16″ to the south of GJ1252 at the epoch of the follow-up
observations, so the photometric apertures are not contaminated
with significant flux from known nearby stars. All five LCO
light curves are plotted together in Figure 2.

In addition to extracting the target light curve we have also
extracted and carefully examined the light curves of all nearby

stars within 2 5 of the target. On none of the nearby stars did
we detect variability that could explain the observed signal in
the TESS data if some of the light from a nearby variable
(eclipsing binary) star were entering the target’s aperture.

2.2.2. MEarth

We used the MEarth array of seven 0.4 m telescopes
(Nutzman & Charbonneau 2008; Irwin et al. 2009), located
at CTIO, to observe GJ1252 on UT 2019 August 29 for 4.5 hr
centered on the predicted transit time. MEarth uses the RG715
filter, with a wavelength range that is encompassed by the TESS

Figure 1. Phase-folded and binned TESS light curve (red). The fitted transit model is overplotted by a solid black line. The residuals (data minus model) are shown at
the bottom of the panel (in black), where a horizontal dashed black line is plotted for reference.

Figure 2. Ground-based light curves of the target during predicted transit time. Two LCO 1 m/Sinistro light curves obtained in the Pan-STARRSz band are shown in
red, three LCO 1 m/Sinistro light curves obtained in the SDSS-g band are shown in blue, and an MEarth light curve is shown in gray. The legend lists the dates the
light curves were obtained on. Binning all light curves results in the black points, and a horizontal dashed black line is marked at unit relative flux for reference. The
binned light curve shows a transit light curve consistent with that seen in the TESS data. While the light-curve shape is in principle sensitive to wavelength due to the
stellar limb-darkening wavelength dependency, the quality of the ground-based data is not sufficient for it to be sensitive to the small variations in shape between
different bands.
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band wavelength range. We used all seven telescopes to
observe the target simultaneously with an exposure time of
60 s, while applying a defocus that brings the half flux diameter
to 12 pixels. Figure 2 shows the combined light curve from all
seven MEarth telescopes.

As with the LCO data, we examined the MEarth light curves
of all nearby stars within 2 5 of the target. None of the nearby
stars showed variability amplitude (or eclipse depth) that can
explain the observed signal in the TESS data.

All ground-based light curves used here are available on the
exoplanet follow-up observing program for TESS (ExoFOP-
TESS38). The combined ground-based data, from both LCO
and MEarth, plotted in Figure 2, show a shallow transit signal
with a low signal-to-noise ratio (S/N). Although noisy, the
observed signal is consistent with the transit seen in the TESS
data. Therefore, as mentioned above, we used it to refine the
transit ephemeris by simultaneously fitting TESS and ground-
based light curves with P and T0 as the only free parameters.
The fitted values for those parameters are listed in Table 2. In
this fitting we have adopted Gaussian priors on Rp/Rs,
(Rp+Rs)/a, icos , and the two limb-darkening parameters in
the TESS band, following their fitted values as derived when
fitting only the TESS data. We adopted Gaussian priors also for
the limb-darkening coefficients of the ground-based light
curves, centered on theoretical values from Claret et al.
(2012) and a s1 value of 0.10. In a separate fit we allowed
the limb-darkening coefficients of the ground-based light curve
to vary freely, resulting in identical values for P and T0.

2.3. High-resolution Spectroscopy

To monitor the target’s RV and measure the spectroscopic
orbit we used the High Accuracy Radial velocity Planet
Searcher (HARPS; Mayor et al. 2003). Our strategy was to
acquire two consecutive RV points per night of 1200 s each.
We ended with a time series of 20 RV points spanning 11 days,
between 2019 September 19 and September 30. To derive RVs
we followed Astudillo-Defru et al. (2017): RVs from HARPS
Data Reduction Software were used to shift reduced spectra
(Lovis & Pepe 2007) to a common reference frame. A median
spectrum was computed and shifted in several RV steps. From
each step we derived the likelihood, whose maximum resulted
in the RV used hereafter. The spectra S/N varies between 9 and
14 at 600 nm, equivalent to an RV precision of 5.0–1.8 -m s 1,
with an average of 2.9 -m s 1. The RV dispersion is 4.7 -m s 1.

The HARPS RVs are listed in Table 3. We also list in
Table 3 five HARPS RVs derived from archival HARPS
spectra that were available to us through the European Southern
Observatory (ESO) online archive.39 Those spectra were
obtained during 2008 (two spectra) and 2011 (three spectra).

2.4. High Angular Resolution Imaging

The constant light from unresolved stars within the TESS
photometric aperture can reduce the amplitude of the transit
signal, thus reducing the inferred planet radius. They can even
be the source of false positives if the companion itself is an
eclipsing binary (EB; Ciardi et al. 2015). We used adaptive
optics (AO) imaging at VLT/NaCo to search for such visual
companions. A total of nine images were collected, each with

8 s exposure, in the Brγ band centered at 2.166 μm. The
telescope was dithered between each exposure, to allow a sky
background to be constructed from the science frames. We
used a custom set of IDL codes to process the data following a
standard process: bad pixels were removed, images were flat
fielded and a sky background subtracted, the stellar position
was aligned between frames, and the images were coadded.
Our contrast sensitivity is calculated by inserting fake
companions, and scaling their brightness until they are detected
at 5σ. No companions are detected in the field of view. The
image and the sensitivity curve are shown in Figure 3.

3. Stellar Parameters

We estimated the stellar parameters using the empirical
relations of Mann et al. (2015). We first derived the absolute
magnitude in the K band using the observed magnitude and
Gaia parallax (while accounting for the systematic offset
described by Stassun & Torres 2018), resulting in
MK=6.372±0.023 mag.
Next we used the empirical relation between stellar mass and

MK with the coefficients listed in Mann et al. (2019, see their
Table 6 and Equation (2)). Assuming a conservative uncer-
tainty of 5% this results in = M M0.381 0.019s . For
comparison, we calculated the stellar mass with the empirical
relation of Mann et al. (2015, see their Table 1 and Equation
(10)), and Benedict et al. (2016, see their Table 13 and
Equation (11)), resulting in  M0.405 0.020 and

 M0.424 0.022 , respectively. The latter two estimates are
within 10% or s2 from the above estimates.
We estimated the stellar radius using the empirical relation

between radius and MK derived by Mann et al. (2015, see their
Table 1), resulting in = R R0.391 0.020s , assuming a
conservative uncertainty of 5%. For comparison, we estimated
the stellar radius using the radius–mass empirical relation
derived by Boyajian et al. (2012, their Equation (10)), resulting
in  R0.368 0.018 , which is 6% or s1.1 from the estimate
above.
To estimate the stellar effective temperature we first

calculated the bolometric correction BCK to MK. We do that
using the empirical relations between BCK and the V−J color
given by Mann et al. (2015, Table 3). We found
BCK=2.64±0.13 mag and in turn a bolometric magnitude
of Mbol=9.01±0.13 mag, which is equivalent to a bolo-
metric luminosity of Ls = -

+0.0196 0.0023
0.0026

L . Finally, using the
Stefan–Boltzmann law we got Teff = -

+3458 133
140 K. The stellar

parameters derived here correspond to a spectral type of M2.5
(Pecaut & Mamajek 2013).40

We note that our derived stellar mass, radius, and
temperature are within s1.5 of the values reported by Muirhead
et al. (2018) and TIC V8 (Stassun et al. 2018).
We estimated the stellar metallicity using the method

described by Dittmann et al. (2016). We identified stars in
the Dittmann et al. (2016) sample with similar color and MK to
GJ1252, and calculated a weighted mean of the metallicity of
those stars where the weights are the distance from the target
position in the color–magnitude diagram. This resulted in a
metallicity of [Fe/H]=0.1±0.1.
Inspection of the HARPS spectra showed absorption in the

Hα line. According to Walkowicz & Hawley (2009), M3-type

38 https://exofop.ipac.caltech.edu/tess/
39 http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form

40 http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_
colors_Teff.txt
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stars showing absorption in Hα are either moderately active or
inactive, but not strongly active. This is consistent with the
Astudillo-Defru et al. (2017) measurement of

¢ = - Rlog 5.356 0.357HK based on the archival HARPS
spectra, which according to their study of the correlation

between ¢Rlog HK and stellar rotation corresponds to a rotation
period of 72 days.
We attempted to measure the stellar rotation period using

multi-season time-series photometry from WASP-South (see
Pollacco et al. 2006), taken between 2008 and 2011. The period
analysis of each observing season is shown in Figure 4, along
with the analysis of all seasons combined (top panel). The
strongest period component in the combined analysis is at
64±4 days, taking into account that the modulation may not
be coherent over the full WASP data set. This is close to the
prediction above based on ¢Rlog HK .

4. Rejecting False-positive Scenarios

In the subsections below we consider the various false-
positive scenarios that might lead to a transit-like signal in the
TESS data and show that they are rejected based on the data we
have accumulated.

4.1. The Target is an EB

The transit-like signal might be a grazing eclipse signal due
to a stellar eclipsing companion. However, such a massive
companion would make the target show a large RV variation,
which is not observed. We have a total of 25 HARPS RVs, 5
from archival spectra and 20 from spectra obtained as part of
this work, listed in Table 3. Those RVs were taken over 11 yr
(2008–2019) and span less than 20 -m s 1 with individual RV

Table 3
Radial Velocitiesa

BJD RV σRV Sb σS FWHMc Contrastd BISe S/Nf

( -m s 1) ( -m s 1) ( -km s 1) ( -m s 1)

2454658.826649 7488.57 2.87 0.599 0.092 4.05 28.3 −9.11 15.2
2454660.877783 7489.37 2.19 1.116 0.190 4.08 28.5 −31.26 9.3
2455673.895142 7492.19 3.27 0.340 0.130 4.06 28.2 −13.57 14.6
2455801.570066 7485.14 2.11 0.239 0.218 4.07 28.4 −6.96 10.3
2455826.613565 7484.39 2.54 0.199 0.125 4.04 28.2 −29.60 17.5
2458745.658699 7488.57 2.87 0.556 0.175 4.10 27.9 8.23 19.1
2458746.486546 7489.37 2.19 0.463 0.099 4.10 28.2 4.40 23.6
2458746.712953 7492.19 3.27 0.551 0.205 4.08 27.9 6.17 17.0
2458747.485652 7485.14 2.11 0.471 0.091 4.09 28.2 6.32 24.4
2458747.500374 7484.39 2.54 0.371 0.123 4.11 28.2 −0.07 20.9
2458747.720416 7490.68 2.90 0.560 0.197 4.10 27.8 −9.22 19.1
2458747.735276 7490.77 2.80 0.564 0.191 4.10 27.7 13.03 19.7
2458748.521492 7481.36 2.21 0.540 0.103 4.10 28.2 2.46 23.6
2458748.715540 7488.54 2.62 0.451 0.183 4.09 27.7 5.22 21.1
2458748.730424 7485.24 2.75 0.537 0.194 4.08 27.7 0.37 20.2
2458750.599928 7481.88 1.81 0.454 0.087 4.09 28.0 8.77 28.2
2458750.614788 7481.04 2.00 0.489 0.108 4.10 28.0 −1.94 26.0
2458752.704922 7476.67 2.40 0.522 0.178 4.09 27.8 −3.64 22.8
2458752.718624 7475.12 2.37 0.329 0.169 4.07 27.7 10.34 23.0
2458754.574260 7483.96 3.25 0.692 0.176 4.12 28.1 3.93 17.1
2458754.582512 7478.89 3.50 0.478 0.194 4.09 28.0 9.00 16.2
2458755.570157 7482.90 2.91 0.595 0.191 4.09 27.9 6.85 19.0
2458755.577934 7483.93 2.81 0.390 0.194 4.10 27.9 6.63 19.6
2458756.592463 7481.27 4.84 0.797 0.356 4.09 27.7 8.39 12.5
2458756.600575 7480.20 4.95 0.652 0.326 4.09 27.6 −7.36 12.3

Notes.
a The Gaia DR2 RV is 7.34±0.33 -km s 1 (Gaia Collaboration et al. 2018).
b Activity S-index, calculated following Astudillo-Defru et al. (2017).
c Spectral cross correlation function (CCF) FWHM.
d CCF Contrast.
e Bisector span.
f Signal-to-noise ratio at HARPS order 60, at 612 nm.

Figure 3. VLT/NaCo adaptive optics image in the Brγ band (inset) and the
derived contrast curve (solid black line). The inset also shows contours (in
black lines) outlining the observed point-spread function.
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uncertainties of 2–5 -m s 1. We note that the replacement of the
HARPS fiber in 2015 is expected to induce an RV zero-point
offset of only a few -m s 1 for early-type M dwarfs (Lo Curto
et al. 2015), so it should not affect the HARPS RV span
significantly. In addition, the Gaia DR2 RV is

 -7.34 0.33 km s 1, with an RV uncertainty typical of single
stars (Katz et al. 2019), and consistent with the HARPS RVs
(see Table 3). This rules out a stellar companion since a 0.1 M
binary companion at the transit period would induce an RV
semi-amplitude of the target of 43 -km s 1. Moreover, a 1 MJup

companion would induce an RV semi-amplitude of 0.47 -km s 1

that the observed RVs also reject.
Yet another way to rule out the transit companion being a

massive object (massive planet or more massive object) is
through orbital phase modulations in the TESS light curve. A
massive orbiting companion is expected to induce detectable
phase modulations along the orbit, as recently detected in the
TESS light curve of a few star–planet systems (WASP-18,
Shporer et al. 2019; KELT-9, Wong et al. 2019; WASP-121,
Daylan et al. 2019; for a review see Shporer 2017). A 10 MJup
companion orbiting GJ1252 at the transit period is expected to

induce modulations with a semi-amplitude of ≈250 ppm. We
have tested the detectability of such a signal through injection
and recovery. We injected a phase-curve modulation signal
expected to be induced by a 10 MJup companion into the light
curve after removing the transit signal. A periodogram of that
light curve showed a peak at the expected period that was 10
times higher than any other peak that is not a harmonic of the
orbital period. We concluded that massive planets, or more
massive objects, at the transit period would have induced a
clear orbital phase modulation, which is not observed in the
TESS data.

4.2. Nearby EB and Background EB

The transit signal in the TESS data can originate from an
eclipsing binary that is not associated with the target but whose
light is blended with the target in the TESS PSF, which is
roughly an arcminute wide (see Figure 5).
To test that scenario we observed the target using ground-

based seeing-limited facilities (see Section 2.2). Those
observations show that nearby stars that are resolved in our
ground-based observations do not show variability, and the
photometric precision for each of the stars is sufficient to rule
out an eclipse deep enough to induce the observed transit on
the target in the TESS data, given the brightness difference in
TESS magnitude. Moreover, we have identified in Figure 2 a
transit-like feature in the target light curve in data obtained by
two different ground-based facilities.
It is also possible that there is an EB in the target’s

background that is blended with the target in the ground-based
seeing-limited data. That scenario is ruled out with the help of
the star’s high proper motion. Archival images from 1975 and
1990 offer an unobstructed view toward the current position of
GJ1252. Those images (see Figure 5) rule out any background
stars brighter than R≈19.1 mag, which is good enough to
exclude any eclipsing binaries capable of producing a transit-
like signal in the TESS data with the observed amplitude.

4.3. A Gravitationally Bound EB

The transit-like feature might originate from another star that
is gravitationally bound to the target, such that it has the same
proper motion and is not resolved in ground-based observa-
tions, and if that other star is itself an eclipsing binary or a
transiting star–planet system.
Visual examination of the transit light-curve shape (see

Figure 1) shows that it has a short ingress and egress and most
of the transit is spent in the so-called “flat bottom” part (second
to third contacts). This is expressed quantitatively by the
measured flat bottom duration (see Table 2) to be
93.4%±3.6% of the total transit duration. Therefore, the
relative duration of the ingress and egress is <9% ( s3 ). An
ingress and egress duration of 9% of the total transit duration is
also rejected by the data, as the residuals of such a model show
significantly increased scatter (by 5%) and systematic features
during ingress and egress. The reduced χ2 increased by 6%,
which is significant given the number of degrees of freedom.
The upper limit on the ingress and egress duration is also an

upper limit on the possible radii ratio that can produce the
observed light curve, whether it is on the target star or
originating from a fully blended gravitationally bound star that
is itself an EB or star–planet system. Therefore the transiting or
eclipsing object must be smaller than 0.34 RJup, which is close

Figure 4. Period analysis of WASP times-series photometry. The bottom four
rows show the periodograms of four seasonal data sets (left panels) and the
phase-folded and binned light curve using the strongest periodogram
component (right panel). The top panels show the periodogram of all four
seasons combined. The strongest peak, at 64.2 days, is marked in red, along
with its first harmonic of that period at 32.1 days. The horizontal dashed blue
line is the 1% false-alarm level estimated using the method of Maxted
et al. (2011).
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to the radius of Neptune. Hence, the transiting object cannot be
a star, a brown dwarf, or a gas giant planet.

4.4. A Gravitationally Bound Transiting Star–Planet System

We are left with the possibility that a gravitationally bound
star has a transiting planet. From the above the planet-to-star
radii ratio must be below 9%, making the transit depth no more
than 0.8%. In order to produce the observed transit depth in the
TESS data of 0.09% the gravitationally bound star must
contribute at least 9% to the total light in the TESS band. Given
the contrast curve measured by AO imaging (see Section 2.4
and Figure 3) this means the bound star must be not fainter than
2.6 mag below the target and thus within 0 1 from the target,
since the AO imaging was done in the Br γ band, where the
brightness difference between the target and a smaller M-dwarf
companion will be smaller than in the optical (TESS band).

The stellar mean density based on the characteristics of the
transit signal is 9.74±0.65 g cm−3 (assuming the transiting
object is a planet, with a negligible mass compared to the host
star). This is consistent with the mean density given the
estimates of the stellar radius and mass of 9.00±1.45 g cm−3.
However, smaller stars have larger mean density. A 0.3 M
main-sequence star has a mean density of about 15 g cm−3,
which is inconsistent with the transit observation. While this
rules out a transit on a bound star with mass below 0.3 M , a
star more massive than 0.3 M and still of lower mass than the
target (of 0.38 M ) should have been bright enough to be
detected in the HARPS spectra, which show only lines from the
target (i.e., it is single lined). Therefore, we can rule out the
transit signal in the TESS data as originating from a planet
transiting a bound star.

Another argument against this scenario is the following. An
angular distance of 0 1 corresponds to a sky-projected physical
distance of 2.0 au. Since the 11 yr coverage of the HARPS RVs
(2008–2019) shows constant RV to well within 100 -m s 1 we
can rule out low-mass companions at that distance down to a
planet mass. For example, a 0.1 M object in a circular orbit
with a radius of 2 au would result in a RV semi-amplitude of
3.0 -km s 1 (with a period of 4.0 yr), and a 10 MJup object would
result in a RV semi-amplitude of 310 -m s 1 (with a period of
4.5 yr). While this can be used to rule out the existence of a
stellar companion within 0 1 of the target, we note that these
RV semi-amplitudes assume an edge-on orbit (orbital inclina-
tion of 90°). A face-on orbit can in principle be undetected by
the HARPS RVs. Gaia time-series astrometry expected to be

published within the next few years should be sensitive to
massive companions regardless of orbital orientation.

5. Investigating the Orbital RV Signal

We investigated the HARPS RVs to see if they reveal the
host star’s orbital motion. We have done that in two ways. We
first looked for a periodic signal in the RV data set (see
Figure 6), and in a second analysis we fitted a circular orbit
while fixing the period and phase to be consistent with the
transit ephemeris (see Figure 7). In both analyses we used from
Table 3 the 20 RVs obtained during 2019 while ignoring the 5
RVs from the HARPS archival RVs. The reason for doing so is
that the RV zero-point offset following the 2015 HARPS fiber
replacement is at the level of a few -m s 1 (Lo Curto et al.
2015), comparable to the expected RV semi-amplitude. And,
the five RVs obtained before 2015 are insufficient for a reliable
determination of the pre-2015 RV zero-point.
Our first analysis was aimed at looking for a periodic signal

in the HARPS RVs. As the RVs show a linear trend (see
Figure 7), we first fitted and removed a linear trend. The fitted
slope was −0.950±0.036 - -m s days1 1. We then performed a
Lomb–Scargle period analysis (Lomb 1976; Scargle 1982) of
the detrended RVs, shown in Figure 6. The periodogram shows
a strong peak at the transit frequency, while showing a few
other strong peaks. Those other peaks are due to aliasing, since
the periodogram of a pure sinusoidal signal at the orbital period
injected at the RV time stamps shows a highly similar structure.
The periodogram of that injected signal is also shown in

Figure 5. The three left panels show the target’s field of view in Digital Sky Survey images taken in 1975 (leftmost panel) and 1990 (second panel from the left), and
in an LCO 2 m Faulkes Telescope South image taken in 2019 (second panel from the right). The motion of the target on the sky between the images is clearly seen.
The rightmost panel shows the target in one of the TESS full-frame images (FFIs) during Sector 13 (also taken during 2019). In all four panels north is up and east is to
the left, and they show a 5×5′ field of view centered on the target’s position at epoch 2015.5.

Figure 6. Lomb–Scargle power spectrum density (PSD) of the HARPS RVs
after subtracting a linear trend, shown by a red line. In gray is the PSD of a pure
sinusoidal signal with the transit period injected at the data time stamps, scaled
to the same level as the original PSD to allow visual comparison. The vertical
blue line marks the transit period.
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Figure 6 in gray, scaled to the original periodogram for
visibility. The two periodograms show similar peaks, and
specifically the three strongest peaks, including the one at the
transit period, are almost identical. We conclude that the RVs
show a periodic sinusoidal variability at the transit period.

In our second analysis we used radvel (Fulton et al. 2018)
to fit for a circular orbit with a linear trend. We adopted the RV
slope reference epoch at BJD of 2458,751, at the center of the
time period covered by RVs. We fitted for the orbital semi-
amplitude K, the RV zero-point γ, a linear trend g , and RV
jitter σRV. We used a Gaussian prior on the period and transit
time following the results of the light-curve fit (Table 2). The
fitted parameters are listed in Table 2, and the fitted model is
plotted in Figure 7. The fitted RV trend is
−1.13±0.24 - -m s days1 1, consistent with the trend fitted
above in our first analysis. The fitted RV semi-amplitude was
K=3.17±0.85 -m s 1, representing a detection close to s4
significance. We tested our analysis by rerunning it while
setting the jitter term equal to zero. That analysis resulted in
identical fitted parameters. We also attempted to fit an eccentric
orbit (with and without an RV jitter term), but the resulting

eccentricity was so poorly constrained that we opted to fit only
for a circular orbit, which is expected for this short orbital
period system.
Using the measured RV semi-amplitude

(3.17±0.85 -m s 1), the host star mass (0.381±0.019 M ),
and the orbital period we estimated the planet mass to be
Mp=2.09±0.56 ÅM . We acknowledge that this mass
measurement has a relatively low statistical significance
( s»4 ), and deriving it includes fitting a linear RV trend whose
nature is currently not known. Therefore, we caution that the
true uncertainty in the mass may be larger than 0.56 ÅM .

6. Discussion

GJ1252b joins a small but growing group of small planets
orbiting nearby M-dwarf stars (e.g., Charbonneau et al. 2009;
Gillon et al. 2016; Günther et al. 2019; Kostov et al. 2019; Gan
et al. 2020; Vanderspek et al. 2019). It also joins the group of
small planets orbiting at very short periods, commonly called
ultra-short periods (USPs; e.g., Léger et al. 2009; Batalha et al.
2011; Sanchis-Ojeda et al. 2014; Adams et al. 2016; Winn et al.

Figure 7. Top: HARPS RVs as a function of time (black), overplotted with the fitted orbit model in red. The model includes a linear trend and a circular orbit. Bottom:
phase-folded RVs (black) after subtracting the linear trend and the RV zero-point, overplotted by the fitted circular orbit (red). The binned RV curve is marked in light
blue, and a dashed horizontal black line is plotted at zero RV for reference. The analysis presented in this figure includes only the 20 HARPS RVs obtained in 2019.
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2018). USPs orbital period ranges from about one day down to
less than 10 hr (e.g., Howard et al. 2013; Dai et al. 2017), and
even as short as ≈4 hr, especially around M dwarfs (Ofir &
Dreizler 2013; Rappaport et al. 2013; Smith et al. 2018).
Planets in this group tend to be smaller than 2 ÅR (Winn et al.
2018), and are believed to have undergone photoevaporation
that removed their atmosphere (Lundkvist et al. 2016; Owen &
Wu 2017). With a radius of 1.193±0.074 ÅR and an
equilibrium temperature of 1089±69 K, it is likely that
GJ1252b have also went through that process.

As shown in Figure 8 GJ1252 is one of the closest planet
host stars to the Sun to host a planet with a measured radius.
This proximity allows probing the system for massive planets
at wide orbits with Gaia astrometric data that will be published
in the next few years. Given GJ1252’s distance and mass, the
astrometric signal of an orbiting planet is

( )( )M M a123 aup Jup μas (e.g., Perryman et al. 2014; Sozzetti
et al. 2014), compared to an expected astrometric precision41 of
≈10 μas for an M-type star as bright as GJ1252. Therefore,
while the Gaia astrometric data will not be sensitive to
GJ1252b it will complement and extend the ongoing RV
monitoring in identifying additional companions. For example,
the full HARPS RV time series, including archival RVs,
suggests GJ1252 is a single star. The Gaia astrometric data
will allow confirming that independently of orbital inclination.

What is the origin of the long-term trend seen in the HARPS
RV data? One possibility is that it is induced by another planet
in the system, with an orbital period a few times longer than the
12 day time span of the RV data. This is supported by the fact
that many USPs reside in multi-planet systems (Winn et al.
2018). Another possibility is that the trend is caused by stellar
activity. To check that possibility we examined the 20 HARPS
spectra cross correlation function (CCF), derived by cross

correlating the spectra with a synthetic M-dwarf template
spectrum. We calculated the correlation between the RVs (CCF
center) and the CCF FWHM, contrast, and bisector span, listed
in Table 3. We also calculated the correlation between the RVs
and the activity index S derived from the HARPS spectra. In all
cases the correlation was below 0.20 in absolute value. In
comparison, the width (standard deviation) of a distribution of
105 cross correlation values of the RVs with randomly
permuted vector of the parameters listed above is 0.23,
indicating that the correlations are not statistically significant.
This is consistent with our findings in Section 3 that the star is
expected to show only low stellar activity. Future RVs will
result in an improved dynamical estimate of the planet’s mass,
and will also allow for a better investigation of the nature of the
RV trend.
While our mass measurement is marginal, it is interesting to

examine the position of GJ1252b in the radius–mass diagram,
plotted in Figure 9. The plot shows that GJ1252b is among
the smallest planets with an estimated mass. Its period and
radius place it below the gap in the distribution of close-in
planetary radii around M dwarfs (Cloutier & Menou 2019), a
gap that is at a slightly smaller radius range than for planets
orbiting Sun-like stars (Fulton et al. 2017; Cloutier &
Menou 2019). It was shown by several authors that the
majority of small planets, below the radius gap, with measured
radii and masses have terrestrial bulk compositions (Dai et al.
2019; Jontof-Hutter 2019; Otegi et al. 2019). This prediction is
consistent with GJ1252b’s measured bulk density, of
6.8±2.2 g cm−3, and its position between theoretical radius–
mass relations assuming pure iron and pure rock compositions
(Zeng et al. 2016).
GJ1252’s brightness (V=12.19 mag, K=7.92 mag) and

the short orbital period (0.518 days, or 12.4 hr) make it a
potential target for transmission and emission spectroscopy,
which can reveal whether or not the planet has an atmosphere.
Following Kempton et al. (2018) the system’s transmission

Figure 8. Planet radius as a function of host star distance for planets with known radius. GJ1252b is marked in red. The plot does not include planets with a poor
radius measurement where radius is smaller than 1.5 times the radius uncertainty. We note that unlike Figure 9 this plot includes planets without a mass measurement.
Data taken from the NASA Exoplanet Archive on 2019 October 16.

41 https://www.cosmos.esa.int/web/gaia/science-performance
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spectroscopy metric (TSM) is 20.0±7.0, and its emission
spectroscopy metric (ESM) is 16.4±3.5. Therefore, while
both metrics have significant uncertainties, the prospects for
transmission spectroscopy are not promising, although the
prospects for emission spectroscopy are. For example, at
10mm the expected secondary eclipse depth is about 150 ppm.
Therefore, GJ1252b is a potential target for IR secondary
eclipse and phase-curve measurements, which in turn can probe
the planet’s atmosphere, or its absence (Kreidberg et al. 2019).
Additional RVs and TESS photometry will lead to improved
planet mass and radius measurements, in turn leading to more
precise TSM and ESM. Additional RVs are currently being
gathered, and additional TESS photometry is scheduled to be
obtained during the first sector of the TESS extended mission,
Sector 27, in 2020 July.

7. Summary

GJ1252b joins the short but growing list of small planets
orbiting bright and nearby stars discovered by TESS that are
amenable to detailed characterization.

We took advantage of the star’s properties, specifically its
small size and high proper motion, to validate the transit signal
detected in TESS data as originating from a star–planet system.
We also obtained a marginal planet mass measurement, and
ongoing RV monitoring will allow an improved mass estimate.
If successful it will lead to a precise planet mass measurement
below the radius gap (Fulton et al. 2017; Cloutier &
Menou 2019). Long-term RV monitoring will also allow
looking for other planets in the system, as will future TESS
photometry to be obtained during the TESS extended mission.

The host star proximity and brightness and the short orbital
period make this star–planet system an attractive target for
detailed characterization. These investigations include studying
the planet’s atmosphere (Kempton et al. 2018), and using
future Gaia astrometric data, combined with long-term RV

monitoring, to look for any currently unknown star, brown
dwarf, or massive planet orbiting the host star.
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Figure 9. Planet radius vs.planet mass with GJ1252b marked in red. GJ1252b is marked in red, and models of pure iron (Fe) and pure rock (MgSiO3)
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than 1.5 times the uncertainty. Solar system planets are marked in blue. Data taken from the NASA Exoplanet Archive on 2019 October 16.
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