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Abstract

The propagation of long waves along pre-stressed compressible elastic

laminates is considered, focusing on anti-plane shear type waves. Within

this thesis we investigate the mechanical response of this type of motion for a

class of compressible pre-stressed elastic materials in which the strain energy

function depends only on the invariants of the strain tensor. The particular

emphasis is on small-amplitude motions superimposed on the equilibrium

caused by finite deformations. A number of strain-energy functions, including

neo-Hookean, Mooney-Rivlin and Varga material models are examined in

numerical analysis. The associated dispersion relations are derived by means

of the propagator matrix technique, allowing explicit dispersion relations for

the considered multi-layer structures, with perfect bonding assumed on the

interfaces. The obtained dispersion relations are investigated numerically for

three types of possible boundary conditions, including, free faces, fixed faces,

and fixed-free faces.

This thesis aims at performing a comprehensive long wave asymptotic

analysis for the low- and high-frequency regimes in multi-layered structures.

The anti-plane assumption allows simple explicit asymptotic results for phase

velocity and frequency in terms of elementary functions of the wave number.
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The derived long wave low- and high-frequency approximations are shown

to be in excellent agreement with the exact solution obtained numerically.

First, a single pre-stressed layer is examined, subject to all three types of

boundary conditions. Then, the consideration is extended for two- and three-

layered structures. The associated dispersion relations are analysed, with the

corresponding asymptotic approximations constructed. Finally, a specific

type of a symmetric 3-layer laminate is considered for all three types of

boundary conditions. In view of the symmetry of the laminate, symmetric

and anti-symmetric motions are separated for free and fixed face boundary

conditions. At the same time, in the fixed-free case, it is not possible to

use symmetry about the mid-plane, hence, the results are more algebraically

cumbersome.
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Chapter 1

Introduction

In recent years, a variety of major developments in the area of engineering

structures and modern technology exist in which elastic composite materi-

als are employed. These developments, using composite material technology,

often involve multi-layered structures. Such technology is in high demand

for aerospace industries. Multi-layered structures are becoming increasingly

necessary by their widespread use in mechanical design. It is now common to

find wing and tail sections, propellers and rotor blades made from advanced

layered materials, along with much of the internal structure and fittings. The

airframes of some smaller aircraft are made entirely from composites, as are

the wing, tail and body panels of large commercial aircraft. Composite mate-

rials, including laminated and fibre-reinforced systems, play significant roles

in many scientific and engineering realms, primarily due to their enhanced
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physical and mechanical response characteristics, such as specific strength,

fracture toughness and wear resistance. Epoxy based and rubber-like matrix

materials have found extensive use in the aerospace industry, see Daniel et al.

(1994) and Kelly (1999). In addition to the aerospace industry, there are also

numerous applications in bio-mechanics, geo-mechanics and other branches

of modern engineering, see e.g. Torr (1966), Noor(1973), Sheridan et al.

(1992), Hauert (2003), Argatov and Mishuris (2018) and references therein.

Some of the important practical applications of layered structures with high

contrast in material and geometric properties can also be found in laminated

glass, see Ivanov (2006), Viverge et al. (2016), photovoltaic panels Aßmus

et al. (2017) and energy-scavenging devices, see Qin et al. (2008).

In view of the importance of layered structures, a substantial volume of re-

search has been published over the last half-century elucidating the mechan-

ical and dynamic properties of layers and focusing on the properties of their

material constituents. The early studies were mostly within the framework of

linear isotropic elasticity. Then, the idea of developing these theoretical stud-

ies to describe the mechanical response of elastic material subjected to large

primary deformation (i.e. materials able to undergo significant deformation

prior to failure), were of interest for a number of researchers. This interest is

motivated by advanced material technology, see e.g. Mooney (1940), Treloar

(1944), Treloar (1975) and Rivlin and Saunders (1951), and Ogden (1997).
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Their experiments revealed a full understanding of the physical behaviour of

such materials though an incompressibility assumption. For the compressible

counterpart, we may cite the first work carried out by Blatz and Ko (1962).

Studies then have been extended to investigate a variety of problems in

pre-stressed isotropic material, envisaged to be either some inherent mate-

rial property, perhaps brought about in design, or be the result of external

forces. Indeed, analysis of the mechanical behaviour when adding pre-stress

to isotropic material, changing the mechanical properties of the elastic ma-

terials, gives rise to significant features which do not exist in the unstrained

case, see e.g. Rogerson and Sandiford (1997) and Rogerson and Sandiford

(2002), and Horgan (2015). The influence of pre-stress, which can make the

analysis of wave propagation extremely complicated, has been studied by a

high number of researchers. Among them we may cite first the work done

by Hayes and Rivlin (1961) who examined surface wave propagation in both

compressible and incompressible pre-stressed isotropic half spaces. Then,

Flavin (1963) used two specific strain energy functions associated with neo-

Hookean and Mooney-Rivlin materials to derive explicit expressions for the

surface wave speed. In addition, biaxial deformations and uniaxially stressed

configurations have been discussed in a series of papers by Willson (1973),

(1974).

On the subject of surface wave, we may also cite the contribution by Chad-
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wick and Jarvis (1979), who examined infinitesimal surface waves in a pre-

stressed compressible elastic half space. More contributions include the work

by Dowaikh and Ogden (1990), who derived the surface wave speed equation

for an incompressible elastic half space subject to an initial primary defor-

mation, and also examined the pre-stressed configuration which give rise to

a unique surface wave, also having important applications for spectra of edge

vibrations in Kaplunov et al. (2004). Another work by Dowaikh and Ogden

(1991) focused on the propagation of surface waves in a pre-stressed com-

pressible isotropic half space subject to normal surface stress. Surface wave

propagation in an incompressible, transversely isotropic, pre-stressed elas-

tic half-space in respect of a general in-plane fibre direction was investigated

both numerically and analytically by Prikazchikov and Rogerson (2004). Re-

cently, substantial progress for modelling surface waves has been achieved us-

ing the reciprocity theorem, see e.g. Phan et al. (2013), and also Phan et al.

(2019). Another significant direction is related of the so-called "hyperbolic-

elliptic" asymptotic models, see Kaplunov and Prikazchikov (2017) and refer-

ences therein, and also recent extensions of the methodology to moving loads,

anisotropy and pre-stress, see Erbaş et al. (2017), Nobili and Prikazchikov

(2018), Khajiyeva et al. (2018), and Fu et al. (2020). Further developments

include composite asymptotic models for an elastic layer Erbaş et al. (2018)

and Erbaş et al. (2019). Similar asymptotic formulations have been derived

4



for dispersive localised waves, including Love waves and bending edge waves,

see Ahmad et al. (2011), Kaplunov et al. (2016).

A common approach to layered problems is to determine the dispersion

relation. The implicit relationship between wave speed and wave number,

termed the dispersion relation, is one of the main features of wave propaga-

tion in layered elastic solids. This can be obtained by satisfying the equa-

tions of motion and boundary conditions. Such relations are usually complex

transcendental equations, providing an infinite number of eigenmodes. The

branches having a finite phase wave speed in the low wave number limit are

typically referred to as fundamental modes, with all other branches, having

infinite long wave speed limits, are termed harmonics. In fact, dispersion oc-

curs when plane waves at the different wavelength have different velocities. It

should be noted that the first studies regarding surface wave propagation in

elastic half space by Rayleigh (1885) observed no dispersion, whereas the first

developments in analysis of wave propagation in a layer of finite thickness

by Rayleigh (1888) and Lamb (1889), involved dispersion. In these studies,

they derived the dispersion relation, which is nowadays usually called the

Rayleigh-Lamb dispersion relation.

In general, a complete understanding of the dispersion relation can be

obtained through a combination of numerical and asymptotic analysis, with

the approximations obtained relating phase speed (and frequency) and wave
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number explicitly. These approximations have been established to determine

qualitative features of the dispersion relation, see e.g. an early attempt by

Achenbach (1969) who analysed the vibration of an elastic layer using the

direct asymptotic integration. Often, asymptotic solutions are helpful for

interpreting the finite element results Kaplunov et al. (2005). Originally,

asymptotic methods were mostly arising within statics or low-frequency dy-

namics, see e.g. Friedrichs and Dressler (1961), Biot (1965), Goldenweiser

(1961), Reiss and Locke (1961), Aksentian and Vorovich (1963), Golden-

veizer et al. (1993), and Green et al. (1997) and references therein. More

recent results include applications of direct asymptotic integration to contact

problems Erbaş et al. (2011) and Borodich et al. (2019), nonlocal elasticity

Chebakov et al. (2017), bending edge waves on a stiffened plate governed

by a biharmonic operator Alzaidi et al. (2019), derivation of higher-order

asymptotic theories for elastic beams Nolde et al. (2018), as well as treat-

ment of non-classical boundary conditions Erbaş et al. (2018) and Kaplunov

et al. (2019).

A full classification of asymptotic approximations of the Rayleigh-Lamb

dispersion relation for an elastic layer and its developments for thin elastic

shells can be found in Kaplunov et al. (1998), separating long-wave low-

frequency, long-wave high-frequency, short-wave low-frequency and short-

wave high-frequency asymptotic limits. It is emphasized that the low-frequency
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approximations are focused on polynomial variation across thickness of the

elastic layer, whereas high-frequency approximations are associated with the

sinusoidal variation along the thickness. We also note that in the short-wave

limit, a typical wavelength is of the order of the thickness of the layer, whereas

in the long-wave approximation the wavelength is considered to be much

greater than the thickness. High-frequency long-wave modes, emerging in the

vicinity of the thickness resonant frequencies, were investigated in various for-

mulations of linear elasticity, including interactions with fluid, various types

of boundary conditions, the effect of incompressibility, see e.g. Kaplunov and

Markushevich (1993) Kaplunov (1995), Kaplunov et al. (2000a), Kaplunov

et al. (2000b), Kaplunov and Nolde (2002), Kaplunov et al. (2005). Asymp-

totic techniques are much less developed for initial value problems in elas-

ticity, with a few exceptions including Kaplunov et al. (2006) and Nolde

(2007).

The asymptotic theories associated with the appropriate limiting be-

haviour of the dispersion relation have also been constructed for pre-stressed

solids. On this subject, we may cite the discussion of asymptotic analysis

of the dispersion relation carried out by Kaplunov et al. (2006), Rogerson

and Fu (1995) for a pre-stressed plate formed of a restricted class of in-

compressible material while the work by Rogerson (1997) was for general

incompressible materials. Asymptotic theories for a pre-stressed incompress-
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ible elastic layer have been developed in Kaplunov et al. (2000b), Kaplunov

et al. (2002), Kaplunov et al. (2002), Pichugin and Rogerson (2001), Pichugin

and Rogerson (2002), and Pichugin and Rogerson (2002), see also Pichugin

(2001). In the case of a compressible pre-stressed elastic layer the asymptotic

behaviour tends to be more sophisticated due to a presence of a longitudinal

wave. The approximations of the associated dispersion relation were consid-

ered in Ogden and Roxburgh (1993), Nolde et al. (2004), and Prikazchikova

et al. (2006), with the follow-up asymptotic theories derived in Rogerson

et al. (2007), Rogerson and Prikazchikova (2009) and Lashhab et al. (2015).

Significant efforts have been devoted to the analysis of dispersion of elas-

tic waves in layered structures, starting from early contributions of Mindlin

(1959), Ustinov (1976) and Lee and Chang (1979).

The results have been extended to various problems, see e.g. textbooks

by Wang et al. (2000), Qatu (2004), and Reddy (2004), and review papers of

Carrera and Brischetto (2009), Kreja (2011) and Sayyad and Ghugal (2017),

addressing mechanics of layered elastic media, including sandwich structures.

We also note important contributions of Bigoni et al. (2008), Berdichevsky

(2010), Ryazantseva and Antonov (2012), Belyankova and Kalinchuk (2014),

Kaplunov et al. (2018), Kaplunov et al. (2019) , studying various aspects of

the mechanics of layered media, including effects of thin coating layers on

filtering and band gaps, approximate structural models for sandwich plates
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and Green functions of a layered elastic half-space.

Another recent important research area is related to mechanics of layered

and composite structures with high contrast in parameters of the layers, see

e.g. Aşık and Tezcan (2005), Schulze et al. (2012), Kaplunov et al. (2016),

Kudaibergenov et al. (2016) and Kaplunov et al. (2019). A contribution

Martin et al. (2012) proposes a related meta-material which could contribute

to high-tech industrial applications. We also mention the possibility of a

two-mode low-frequency plate theories, discussed in Kaplunov et al. (2017)

within the framework of related long-wave low-frequency approximations of

the exact dispersion relation. An important industrial application of these

theories is related to the modelling of laminated glass, see Viverge et al.

(2016) and also Kaplunov et al. (2017). In addition, we note another recent

paper by Prikazchikova et al. (2018) developing the models for anti-plane

problems of elasticity for two contrast scenarios.

A substantial number of contributions were devoted to analysis of wave

propagation in pre-stressed layered media. We cite, for example Rogerson

and Sandiford (2000), who examined the effects of pre-stress on small ampli-

tude waves in multi-layered media and obtained a general asymptotic analy-

sis for both the long and short waves in plane strain and also the papers by

Rogerson and Sandiford (1997) and Lutianov and Rogerson (2010). We also

mention Kayestha et al. (2010) investigating time-harmonic waves propagat-
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ing in a pre-stressed compressible bi-material elastic laminate, and Lashhab

et al. (2015), analysing dispersion of elastic waves in pre-stressed symmetric

three-layered structures.

Various types of boundary conditions will be discussed in this thesis.

Traction-free boundary conditions on the upper and lower surface of the

laminate structures is one of our concern, which were used in the early stud-

ies for isotropic elastic layers see e.g. Mindlin (1960), Rayleigh (1888) and

Lamb (1889). In the context of a plain strain problem for a single layer

plate, the effects of pre-stress on stability and vibration of pre-stressed plate,

have previously been investigated for traction-free boundary condition, see

for examples the two papers by Ogden and Roxburgh (1993) and Roxburgh

and Ogden (1994). For an incompressible pre-stressed elastic plate, the two

papers by Kaplunov et al. (2002) and Kaplunov et al. (2002), added further

insights into asymptotic analysis of the long- and short-wave regimes, re-

spectively. Some aspects of wave propagation in an incompressible as well as

nearly incompressible elastic layer subject to fixed face boundary conditions

were studied in Nolde and Rogerson (2002) and Kaplunov and Nolde (2002).

We also mention the study by Pichugin and Rogerson (2002) elucidating the

important features of wave propagation in pre-stressed incompressible elas-

tic layers with either free or fixed faces boundary conditions. A complete

asymptotic analysis for long- and short-wave behaviours in a pre-stressed

10



compressible elastic layer was carried out by Nolde et al. (2004).

Another type of boundary conditions, which might be of engineering in-

terest in modelling, say, coated structures, is the so-called fixed-free faces

boundary conditions, i.e. one fixed and one free face. The main difference

in this type of boundary is that in (4-play) there is no symmetry about the

mid-plane of the inner core. Furthermore, the numerical analysis in this case

shows the lack of fundamental mode i.e. high frequencies are the only modes

investigated in the long wave regimes, see the recent contribution by Lashhab

et al. (2015).

The propagator matrix technique is one of the popular methods to derive

the dispersion relation in layered media. Such a relation for even relatively

simple layered structures is often rather algebraically sophisticated and leads

to high order determinants. In order to resolve these difficulties, we use a

propagator matrix technique in this thesis. The method was first introduced

in the context of seismological studies, see Thomson (1950), Haskell (1953),

and Gilbert and Backus (1966). The term ’Propagator matrix’ was intro-

duced for the transfer operator for stress and displacement. Such a method

was used to facilitate the derivation of the dispersion relations of the lami-

nates, see e.g. Rao et al. (2004).

Our specific aim in this thesis is to investigate small amplitude long wave

motion in the form of anti-plane shear waves. Studying this type of wave
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propagating in multi-layered laminates is carried out in respect of the most

general appropriate constitutive framework. As pointed out in Horgan (1995)

anti-plane shear deformations are one of the simplest classes of deformations

that solids can undergo, thus anti-plane shear, with just a single axial dis-

placement field, may be viewed as complementary to the more complicated

plane strain deformation, with its two in-plane displacements.

In the last few decades, considerable attention has been paid to the anal-

ysis of anti-plane deformations within the context of various constitutive the-

ories (linear and non-linear) of solid mechanics, see for example, Horgan and

Miller (1994), Jiang and Beatty (1995) and Polignone and Horgan (1992).

These studies in nonlinear were largely motivated by the promise of rela-

tive analytic simplicity compared with plane problems since the governing

equations are a single second-order linear or quasi-linear partial differential

equation rather than higher-order or coupled systems of partial differential

equations. Thus, the anti-plane shear problem plays a useful role as a pilot

problem, within which various aspects of solution in solid mechanics may be

examined in a particularly simple setting.

Recently, modern developments have been presented concerning the anti-

plane shear model and its applications, for example, the influence of non-

linearity on deformation fields near crack tips. For non-linear studies, these

were largely motivated by the promise of relative analytic simplicity com-
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pared with plane problems, see Knowles (1976) and Knowles (1977) for

incompressible and compressible isotropic materials. In these work results

for non-linear elasticity homogeneous isotropic materials were summarized.

Also, the work by Jiang and Knowles (1991) for the classes of incompress-

ible or compressible materials which sustain non trivial equilibrium states of

anti-plane shear. They proved that the governing partial differential equa-

tion is a second-order quasi-linear equation and under certain constitutive

restrictions, this equation is elliptic. More contributions, for the linear the-

ory and the anti-plane shear deformations, may be seen in the article review

by Horgan and Miller (1994) for references of earlier works and Horgan and

Saccomandi (2001).

Further description of long wave motion in anti-plane shear is still not

rich enough and more effort is needed to address the aspects of such prob-

lems. Moreover, in view of the fact that there was a lot of studies of three-

dimensional and plane-strain problems resulting in a rather algebraically

cumbersome dispersion relations, understanding of the underlying physics

may have been overlooked. Therefore, the consideration of dispersion of

elastic waves in a pre-stressed layered media within the anti-plane mode is

of importance, since it allows simpler explicit results, which could be easier

for analysis, which provides an additional motivation for our research.

The thesis consists of five chapters, concluding remarks and bibliogra-
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phy. Chapter 2 presents the main problem preliminaries and the basic equa-

tions which used across this thesis. Also, the chapter contains the basic

equations of infinitesimal time-harmonic wave propagation in a compressible

pre-stressed elastic layer, and also long wave motion formulated through ex-

pressing the incremental boundary value problems based on the theory of

incremental elastic deformations. For the layer, a Cartesian system of coor-

dinates is selected, with one coordinate axes normal to the layer. A travelling

harmonic wave is used to represent these problem’s solutions. The solutions

obtained from secular equations could then be employed for the purposes

of representing the overall wave solutions as the linearly independent com-

ponent’s superposition. The substitution of these representations into the

boundary conditions results in a system of linear homogeneous equations.

To the one layer setup, the propagator matrix method is presented, relating

the tractions and displacement on the faces. This method will be further im-

plemented for multi-layered structures in the following chapters. This leads

to the derivations of the associated dispersions in anti-plane shear within pre-

stressed and linear isotropic elastic materials. For a single layer, three types

of boundary conditions are taken into consideration: free faces, fixed faces,

and fixed-free faces. Among these three, the first one could be seen as the

classical Neumann-type boundary condition. For the purposes of identifying

their main characteristics and determining the difference between different
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asymptotic regimes of wave propagation, numerical analysis of the dispersion

associations done. Numerical analysis providing phase speed (and frequency)

as functions of wave number and material parameters is presented for each

case of boundary conditions in this chapter. First, the obtained results for

various material parameters are presented with regards to overall pre-stressed

materials. Later the results are presented for linear isotropic materials. The

graphs presented in this chapter indicate that low frequency dose not exist

for all types of boundary conditions in the long wave region.

In Chapter 3, long wave motion in anti-plane shear for a 2-layered lam-

inated structure is considered. Matrix form is used for expressing the so-

lutions for tractions and displacements. To obtain the dispersion relations,

three types of boundary conditions are applied. This is followed by a nu-

merical investigation of these associations for the three specific strain energy

functions: those related to neo-Hookean, Mooney-Rivlin and Varga materi-

als. With regards to pre-stressed elastic materials, the linear isotropic elastic

materials are also investigated as an special case. Numerical analysis for each

case of boundary conditions in this chapter is provided. Results for certain

material parameters are firstly presented for pre-stressed materials by using

three strain energy functions associated with neo-Hookean, Mooney-Rivlin

and Varga materials. This is followed by a presentation of the results ob-

tained for linear isotropic elastic materials. Good insights into the behaviour
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of harmonics can be obtained from the graphs. These graphs show that in

the long wave limit, the fundamental mode exists for one type of boundary

conditions (free faces) with no mode retaining finite wave speed limit for

other boundary condition types.

Then asymptotic analysis of the long wave for low- and high-frequency

approximations is provided. We derive asymptotic approximations for long

wave high frequency motion (i.e. motion within the vicinity of thickness

shear and stretch resonance frequencies) through through an expansion of

the secular equation’s roots and employment of the scaled frequency’s ex-

pansion. These are then inserted into the dispersion relations, a process that

leads to obtaining the expansion, which include the first and second orders

of scaled frequency. It is noted that in the long wave high frequency limits,

the limits for the all harmonics are non-zero. In this case, the frequencies

are not obtainable in explicit form, with the cut-off frequencies of harmonics

satisfying the transcendental equations obtained. Various graphs are then

employed for presenting the agreement between the asymptotic and numeri-

cal results. Such graphs are plotted for both pre-stressed and linear isotropic

elastic materials.

In Chapter 4, we provide a discussion of long wave motion in 3-layered

structure subject to the three types of boundary conditions. Derivation of the

resulting dispersion relation for both pre-stressed and linear elastic materials
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cases is carried out using the propagator matrix. For pre-stressed materi-

als, numerical results are obtained through the employment of the presented

three strain energy functions. Such results start with the one associated to

the neo-Hookean in the free-faces case. The results that follow are those for

the Mooney-Rivlin materials for the fixed-free boundary value problem. The

establishment of the third boundary value problem, fixed faces, is done using

Varga materials. First, the low- and high-frequency asymptotic approxima-

tions are carried out for the pre-stressed case. This shows good agreement

between the asymptotic expansions and numerical results for both high and

low frequency in the long wave system. Then, these approximations are made

for linear isotropic materials.

Chapter 5 is concerned with the propagation of long waves in an anti-

plane shear in a symmetric 3 layers (4-ply) with the three types of boundary

conditions considered. The laminate is composed of an inner core of thickness

2h and perfectly bonded to two outer layers each of thickness h. Therefore,

it can be noted that the thickness of this structure is finite while in other

directions, it is infinite lateral. As a result of the asymmetry about the

mid-plane, the structure is generally termed asymmetric 4-ply laminate. In

most cases, these types of structures are made from bonding together 2-

ply laminated plates. Nonetheless, the underlying symmetry of the problem

allows this system to be separated into two systems of 3 equations, which
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match what is called symmetric and anti-symmetric solutions.

In general, the dispersion relations associated with a symmetric 3-layer

(4-ply) laminate would be obtained from the condition that a system of six

homogeneous equations in six unknowns has non-trivial solutions. In view

of symmetry, this problem may be reduced to two systems of three equa-

tions in three unknowns, one analogous to the symmetric wave problem, one

with the anti-symmetric problem. The dispersion relations associated with

symmetric and anti-symmetric waves are derived via propagator matrices.

This leads to a form of the symmetric dispersion relations which is specif-

ically appropriate to the numerical investigations in Chapter 3. However,

this chapter conducts an analysis of the anti-symmetric dispersion relations.

Numerical and asymptotic analysis of the anti-symmetric dispersion relation

is then performed first for a specific strain energy function, namely this as-

sociated with Mooney-Rivlin materials and investigate for the three types

of boundary conditions. Then, an analysis is carried out for linear isotropic

elastic materials. For every numerical case presented, it has been concluded

that the limiting behaviour of the long-wavelength is the same, based on the

realisation that in the long wave regime, there is no existence of fundamental

mode. In the long wave low frequency regime for free and fixed boundary

conditions we found that the fundamental mode of anti-symmetric motion is

infinite, while the corresponding symmetric limit is finite.
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This chapter is also concerned with the long wave motion in anti-plane

shear of a pre-stressed 4-ply laminate with fixed-free boundary conditions.

The main difference in this case is that there is no symmetry about the

mid-plane of the inner core. Hence, we cannot divide this problem into two

sub-cases. The associated dispersion relation is, in this case, derived from a

system of six homogeneous equations in six unknowns, and is again derived by

using the propagator matrix. The dispersion relations are then investigated

numerically in case of Mooney-Rivlin material parameters with same material

parameters used in Chapter 3 and followed by linear isotropic materials. The

numerical investigation reveals an interesting characteristic of the dispersion

curves in fixed free faces case, namely the global low frequency. Long wave

high frequency approximations are established and shown to provide excellent

approximations to the numerical solution at the end of this chapter.
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Chapter 2

Preliminaries and governing

equations for single layer

2.1 Material configuration

Figure 2.1: Configuration of a pre-stressed body.
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The main feature in investigating long wave propagation is that of disper-

sion, meaning that wave phase speeds depend not just on material properties

and direction of propagation, but also on wave number. For pre-stressed elas-

tic solids, body waves, which propagate in an unbounded medium, are typ-

ically non-dispersive, as are surface and interfacial waves propagating along

the free surface of an elastic half-space, see Chadwick and Jarvis (1979),

Dowaikh and Ogden (1990), (1991). In the case of layered media, waves are

generally dispersive. Thus, in this chapter we present the governing equa-

tions of pre-stressed solids and examine dispersion of elastic waves in a single

pre-stressed, compressible layer with various boundary conditions, including

free faces, fixed faces and fixed-free faces. The specific problem to be inves-

tigated is that of anti-plane shear waves. In respect of anti-plane shear, the

only non-zero displacement component, u3 say, is independent of x3.

Before we concentrate on the long wave analysis, we will review the un-

derlying aspects of continuum mechanics which we need in our research. We

consider a body B composed of homogeneous elastic material which pos-

sesses a natural isotropic unstressed state B0. A fundamental assumption of

the underlying continuum theory is that the body B is formed as a set of

material points, the points denoted by position vector X in the unstressed

configuration B0. A purely homogeneous static deformation is imposed upon

B0, resulting in a finitely stressed equilibrium state, termed as a reference
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configuration Be. A small time-dependent motion is then superimposed upon

Be, in which the material point X occupies the point with position vector x

according to

x = χ(X), X ∈ B0, (2.1)

where χ is a one-to-one mapping, defined as χ : B0 → Be, see Rogerson and

Prikazchikova (2009).

We have the final configuration, termed the current configuration and

denoted by Bt. The position vectors of a representative particle are denoted

by XA, xi(xA) and x̃i(xA, t) in B0, Be and Bt, respectively, see Figure 2.1.

The position vector x̃i(XA, t) may therefore be expressed as

x̃i(XA, t) = xi(XA) + ui(XA, t), (2.2)

where u(X, t) is defined as a small time-dependent motion associated with

the secondary deformation Be → Bt. This motion is termed small in the

sense that all second and higher order terms in the displacement gradient

may be neglected in Taylor series expansions of the governing equations.

The deformation gradients F and F̄, associated with the overall deforma-

tion B0 → Bt and the primary static deformation B0 → Be, respectively, are
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given in component form by

FiA = ∂x̃i
∂XA

, F̄iA = ∂xi
∂XA

. (2.3)

On making use of equation (2.2), and the definitions given in equation (2.3),

it may be shown that the two deformation gradients are related by

FiA = (δij + ui,j)F̄jA, (2.4)

where a comma indicates differentiation with respect to the implied spatial

coordinate component in Be and delta is the Kronecker delta. The sum-

mation convention over repeated suffices is applied here and in all further

chapters unless stated otherwise.

2.1.1 Equations of motion

For unconstrained materials, W is the strain-energy function and this func-

tion may be regarded as depending on F only through the principal stretches

λ1, λ2, λ3 and being a symmetric function of them. The associated nominal

and Cauchy stress tensors, denoted by π and σ, can be expressed in the
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component form by

πiA = ∂W

∂FiA
, σij = J−1FiA

∂W

∂FjA
, J = detF̄. (2.5)

According to the polar decomposition theorem, see Chadwick (2012) and

Spencer (2004), we are able to express an arbitrary invertible tensor F in the

form F = R U = VR; where R is a proper orthogonal tensor, so RRT =

RTR = I, where the superscript T denotes the transpose of a tensor and

I is the identity tensor. U and V are positive definite symmetric tensors

and each of these tensors can be written in the spectral representations. For

example, we have

U =
∑

λr(pr
⊗

pr), (2.6)

where λr are the eigenvalues of U, or the principal stretches, and pr the

eigenvector of U. Furthermore, U and V are named as the right and left

stretch tensors, respectively. We introduce now two tensors B and C, as

C = F̄T F̄ = U2, B = F̄F̄T = V2, (2.7)

where B and C are left and right Cauchy-Green strain tensors.

Alternatively, we may be regarded W as an isotropic function of three

independent invariants, I1, I2 and I3. Within axes coincident with the prin-
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cipal axes of deformation, these may be defined and related to λ1, λ2 and λ3

through

I1 = trB = λ2
1 + λ2

2 + λ2
3,

I2 = 1
2
{

(trB)2 − trB2
}

= λ2
2λ

2
3 + λ2

3λ
2
1 + λ2

1λ
2
2,

I3 = detB = λ2
1λ

2
2λ

2
3, (2.8)

J = λ1λ2λ3,

where tr denotes the trace of the tensor. Let ρ0 and ρe denote the mass

densities in the natural and reference configurations, respectively. Then the

conservation of mass equation may presented as

ρ0 = ρeJ. (2.9)

By considering an incremental time-independent motion superimposed upon

Be, resulting in the current configuration Bt, the linearised equations for

small-amplitude motion superimposed upon the pre-stressed equilibrium state

Be may be derived.

In the absence of body forces, the equations of motion may be written as

πiA,jF̄jA = ρüi, (2.10)
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where ρ is the mass density in the current configuration, ui is the incremental

displacement and a superimposed dot here and after indicates differentiation

with respect to time, see for example Ogden (1997). Expanding πiA as a

Taylor series around the static state Be (F = F̄), yields

πiA = π̄iA + (Flk − F̄lk)
∂πiA
∂Flk

∣∣∣∣∣
Be

+ .... (2.11)

with an over-bar denoting evaluation in Be. Within the linearisation, we

retain only the leading order and thus ignore higher order terms in (2.11), see

Ogden (1997). The formal requirement for small amplitude motion around

Be is

|Flk − F̄lk| = |ul,jF̄jk |� 1. (2.12)

On making use of relation (2.12), equation (2.11) may be express within this

small amplitude approximation as

πiA = π̄iA + ul,cF̄ck
∂πiA
∂Flk

∣∣∣∣∣
F̄=F

, (2.13)

within which
∂πiA
∂Flk

= ∂2W

∂FiA∂Flk
. (2.14)
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Using the above relation, and substituting expansion (2.13) into (2.11), we

obtain the linearised equation of motion

Ckiclul,kc = ρüi, (2.15)

where Ckicl denote the components of the fourth order elasticity tensor, which

are defined by

Ckicl = J−1F̄kAF̄cP
∂2W

∂FiA∂FlP

∣∣∣∣∣
Be

. (2.16)

The elasticity tensor components, expressed in terms of the principal invari-

ants defined in (2.8), take the form

JCkicl =

2W1δliBkc + 2W2(2BclBki −BklBic + δilHkc −BkcBil + 2W3I2(2δkiδcl

− δklδci) + (4W11BkiBcl) + 4W12(BkiHcl +BclHki) + 4W13I2(Bkiδcl+

Bclδki) + 4W22HkiHcl + 4W23I2(δlcHki + δkiHcl) + 4I2
2W33(δkiδcl),

(2.17)

with

Hkl = I1Bkl −BkpBlp, k, l ∈ {1, 2, 3} ,

where Bkl are the components of B = diag(λ2
1, λ

2
2, λ

2
3), Wi = ∂W/∂λi and
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Wij = ∂W/∂λiλj. The only non-zero components of the elasticity tensor have

the form Ciijj, Cijji or Cijij, i, j ∈ {1, 2, 3}, see Ogden (1997). Corresponding

to classical linear isotropic elasticity theory equations (2.17) reduce to

Ciiii = λ+ 2µ, Ciijj = λ, Cijij = Cijji = µ, i 6= j, (2.18)

where λ and µ are the so-called Lame constants. The non-zero components

of the elasticity tensor may also be represented in terms of the principal

stretches of the underlying deformation, taking the form

JCiijj = λiλjWij,

JCijij =


(λiWi − λjWj)λ2

i

λ2
i − λ2

j

. i 6= j, λj 6= λi

1
2 (JCiiii − JCiijj + λiWi) i 6= j, λj = λi

JCijji = JCjiij = JCijij − λiWi, i 6= j, (2.19)

for i, j = 1, 2, 3, all other components being zero.

To conclude this section, we provide the linearised equations of motion

for a pre-stressed compressible isotropic elastic body, derived by making use
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of (2.15) with (2.5), as

C1111u1,11 + (C1122 + C2112)u2,12 + (C1133 + C3113)u3,13+

C2121u1,22 + C3131u1,33 = ρü1, (2.20)

(C2211 + C1221)u1,12 + C2222u2,22 + (C2233 + C3223)u3,23+

C1212u2,11 + C3232u2,33 = ρü2, (2.21)

(C3311 + C1331)u1,13 + (C3322 + C2332)u2,23 + C3333u3,33+

C1313u3,11 + C2323u3,22 = ρü3. (2.22)

2.1.2 Incremental surface traction

In this section, we proceed to derive the increment traction vector. Therefore,

we will first consider dS an element of area with the outward normal to a

material surface given by N in the natural unstressed state B0. Consider

next two corresponding elements of material surface ds̄ and ds in Be and

Bt, respectively. If we denote the two associated outward unit normals in

the reference and current configurations Be and Bt by n̄ and n, respectively,
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then through Nanson’s formula, and for the deformation B0 → Be, we have

n̄ds̄ = J(F̄−1)TNdS, (2.23)

and for the deformation B0 → Bt we have

nds = J(F−1)TNdS, (2.24)

see Ogden (1997). Using these two equations we deduce that

nds = (F̄F−1)T n̄ds̄. (2.25)

Now we consider the increment of contact force ∆f , associated with the

secondary deformation Be → Bt in the form

∆f = σTnds− σ̄T n̄ds̄, (2.26)

where σ̄T n̄ds̄ is the contact force on the surface in Be and σTnds is the

contact force acting on this element in Bt.

On substituting equation (2.25) into equation (2.26), we obtain

∆f = τn̄ds̄, (2.27)
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where τn̄ is an incremental surface traction associated with the deformation

Be → Bt. A measure of incremental surface traction is found by making use

of equations (2.5) in the form

τn̄ = J−1(πiA − π̄iA)F̄T n̄, (2.28)

where π̄iA = πiA(F̄). To conclude and represent a linearised measure of in-

cremental surface traction in component form, we use the expansion (2.11),

thus

τn̄i
= Ckijlul,jn̄k. (2.29)

2.1.3 Formulation of anti-plane dynamic problems

A specific type of incremental motion will be considered in this thesis, so-

called anti-plane shear. In the case of anti-plane shear, we specifically assume

that the displacement is independent of x3 and that u3, the only non-zero

displacement, is a function of x1, x2 and t. Thus (u1, u2, u3) = (0, 0, u3)

and u3 = u(x1, x2, t). In this chapter, we will consider anti-plane shear

waves propagating in a pre-stressed compressible single-layer elastic plate

of thickness h, orientated such that 0 ≤ x2 ≤ h, and infinite in the other

two spatial directions. The origin, O, lies at the lower surface and Ox2 is
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orthogonal to the layer, see Figure 2.2.

Figure 2.2: Single layer structure.

2.2 Some specific material models

Characterising the elastic properties of any body, B, may be done within the

strain energy function W (F). This then helps provide the so-called consti-

tutive equations. All of the derivations in this thesis will be performed for

the most general hyperelastic material models whose the stress-strain rela-

tionships derive from W , however, we will need to specialise to specific forms

of W in the numerical calculations and comparing these with asymptotic

solutions. Some specific strain energy functions are considered below.

2.2.1 Neo-Hookean material

The neo-Hookean strain energy function, with only one material constant,

considers as one of the simplest forms for the strain energy function for elastic
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materials. Within the framework of Gaussian molecular statistical theory,

this function was derived and a compressible form of it may be represented

as

W = µ

2 (I1 − 3− 2lnJ) + κ′

2 (J− 1)2 , (2.30)

within which κ′ = κ− 2
3µ, κ is the bulk modulus of the material, µ and (κ′ =

λ) are Lame moduli in the ground state and I1 is the invariant defined in

(2.8), see Roxburgh and Ogden (1994) and Treloar (1944). Furthermore, the

two elasticity tensor components in this case can be represented as

C1313 = µλ1

λ2λ3
, C2323 = µλ2

λ1λ3
. (2.31)

2.2.2 Mooney-Rivlin material

A general form of the strain energy function for which the shear is propor-

tional to the shearing stress was given by Mooney (1940)

W = µ1

2 (I1 − 3) + µ2

2 (I2 − 3), (2.32)

in which µ1 and µ2 are empirically determined material constants. The

Mooney-Rivlin strain energy function expressed by (2.32) which is a linear
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combination of the two invariants of left and right Cauchy-Green deforma-

tion tensor, sometimes provides serious simplifications within analysis, see,

Boulanger and Hayes (1992) who revealed that the propagation of finite am-

plitude elastic waves in a pre-stressed Mooney-Rivlin material is in fact gov-

erned by a linear equation. The experiments of Rivlin and Saunders (1951)

indicated that the range of applicability of (2.32) is similar to that of the

neo-Hookean function (2.30). In order to model a several rubber-like materi-

als, the Mooney-Rivlin strain energy function has been used successfully, see

Boulanger and Hayes (1992). Furthermore, the Mooney-Rivlin strain energy

function used with local values of the strains and added a limitation on the

possible material parameters values, see e.g. Fu and Rogerson (1994) and

Rogerson and Sandiford (1996). Meanwhile, it did not describe the full range

of material response. For this reason the Varga strain energy function was

also used.

The associated components of the elasticity tensor for a Mooney-Rivlin

34



material may be represented by using (2.19), yielding

JCiiii = (µ1 + µ2(λ2
j + λ2

k))λ2
i ,

JCiijj = 2µ2λ
2
iλ

2
j ,

JCijji = −µ2λ
2
iλ

2
j ,

JCijij = (µ1 + µ2λ
2
k)λ2

i ,

i 6= j 6= k, i, j, k ∈ {1, 2, 3} .

(2.33)

When the case of anti-plane strain considered, corresponding to a compress-

ible pre-stressed elastic materials, from (2.33), we only need two components

which may be introduced explicitly as

C1313 = λ1 (µ1 + µ2λ
2
2)

λ2λ3
, C2323 = λ2 (µ1 + µ2λ

2
1)

λ1λ3
. (2.34)

2.2.3 Varga material

In respect of incompressible and nearly incompressible, the Varga strain en-

ergy functions is, perhaps, the most simple form which describes the full

range of material response, see Rogerson (1997) and Rogerson and Sandiford

(2002). The strain energy function which was first introduced as a com-

pressible generalisation of the incompressible model by Varga (1966), has
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the form

W = µ(λ1 + λ2 + λ3 − 3− lnJ), (2.35)

where µ is a shear modulus. Notwithstanding its simplistic representation

in terms of the stretches, the dynamic response of a Varga material is richer

than that of a neo-Hookean or Mooney-Rivlin material. The reason for this is

that full range of material response can be obtained by using a Varga strain

energy function whilst using a neo-Hookean or Mooney-Rivlin material are

restricted to possible values of material parameters, see for example Rogerson

and Fu (1995) and Rogerson and Sandiford (1997). The components of the

elasticity tensor corresponding to the Varga material may be given by

Ciiii = 0, Ciijj = 0, Cijij = µλ2
i

J(λi + λj)
, Cijji = µλiλj

J(λi + λj)
,

i 6= j, i, j ∈ {1, 2, 3} , (2.36)

with no summation over repeated suffices. A feature of Varga material for

all deformations given µ > 0 is that this material is strongly elliptic. Ogden

(1972) found that Varga material with µ = 8.0kg/cm2, in particular com-

prise the strong ellipticity of this material. This is provided in order to suite

the data of Treloar (1944). We will use this material in our numerical com-
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putations. Although the range of applicability of the Varga model is similar

to that of a neo-Hookean or a Mooney-Rivlin material (only relatively small

deformations are allowed), it is principally different from both of them since

the strain energy function (2.35) does not possess a (simple) representation

in terms of the invariants of the deformation (2.8). This indicates that in

general, the strain energy function is not a simple function of the invariants.

In the case of anti-plane shear, the only two components of the elasticity

tensor needed are expressible in terms of the principal stretches as

C1313 = µλ1

(λ1 + λ3)λ2λ3
, C2323 = µλ2

(λ2 + λ3)λ1λ3
. (2.37)

2.3 Propagator matrix for a finite layer and

anti-plane shear

A convenient method for treating multi-layered media is the propagator ma-

trix which is used to facilitate this study in later chapters. The govern-

ing equations for a pre-stressed, compressible elastic layer are now derived

in terms of the propagator matrix. Such matrices have found application

within the study of wave motion in layered media and were first introduced

in seismological studies by Gilbert and Backus (1966). With use of the
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components of the elasticity tensor C shown in equations (2.19), the single

equation of motion in respect of anti-plane shear, with (u1, u2, u3) = (0, 0, u3)

and u3 = u(x1, x2, t), for a pre-stressed, compressible elastic material, may

be express as

C1313u3,11 + C2323u3,22 = ρü3. (2.38)

Now we will seek solutions of the equation of motion as a travelling wave

solution

u3(x1, x2, t) = Uekqx2eik(x1−υt), (2.39)

where k is the wave number, U is an arbitrary constant, υ is the phase

speed and q is to be determined. After substituting the above solution into

(2.38), we obtain a homogeneous equation, this equation possesses a non-

trivial solution if and only if

C2323q
2 − C1313 + ρυ2 = 0, (2.40)
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providing

q2 = C1313 − ρυ2

C2323
. (2.41)

The solution for u3 may be represented as a linear combination of the two

independent solutions associated with the roots of (2.41). This solution may

then be recast in the form

u3 = Aekqx2 +Be−kqx2 . (2.42)

We now note that the incremental surface traction is given by

τ̂ = τ3

k
= C2323

(
Aqekqx2 −Bqe−kqx2

)
. (2.43)

A displacement-traction vector may now be written in the matrix form as

 u3

τ̂

 =

 ekqx2 e−kqx2

q C2323e
kqx2 −q C2323e

−kqx2


 A

B

 . (2.44)

In later multi-layered problems, composed of perfectly bonded layers, this

vector is assumed continuous across each interface.

We now consider a layer, with the upper surface located at x2 = xu,
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with u3 = uu3 and τ̂ = τ̂u at this location. Thus, the relation (2.44) may be

introduced for the upper surface in the form

 uu3

τ̂u

 =

 ekqxu e−kqxu

q C2323e
kqxu −q C2323e

−kqxu


 A

B

 . (2.45)

At the lower interface, the analogue of the above yields

 ul3

τ̂ l

 =

 ekqxl e−kqxl

q C2323e
kqxl −q C2323e

−kqxl


 A

B

 . (2.46)

From (2.45) we have

 A

B

 =
(

1
2q C2323

) −qC2323e
−kqxu −e−kqxu

−qC2323e
kqxu ekqxu


 uu3

τ̂u

 . (2.47)

By now inserting equation (2.47) into (2.46), we obtain

 ul3

τ̂ l

 =


ekqxl

2q C2323

e−kqxl

2q C2323

1
2e
kqxl −1

2e
−kqxl


 −qC2323e

−kqxu −e−kqxu

−qC2323e
kqxu ekqxu


 uu3

τ̂u

 .
(2.48)

It is easy to deduce that the above relationship may be written in the fol-
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lowing form

Y(xl) = Q Y(xu), (2.49)

in which Y(xl) and Y(xu) are the appropriate column vector of the displace-

ments and tractions for lower and upper surface defined by (ul3, τ̂ l)T and

(uu3 , τ̂u)
T , respectively. The Q matrix may be directly expressed as

Q =


cosh(kq(xl − xu))

1
q C2323

sinh(kq(xl − xu))

q C2323 sinh(kq(xl − xu)) cosh(kq(xl − xu))

 . (2.50)

On the other hand, equation (2.49) can be formulated as

Y(xu) = P Y(xl), (2.51)

with, P = Q−1.

The propagator matrix formula for a single layer plate will be given as

 uu3

τ̂u

 =

 p11 p12

p21 p22


 ul3

τ̂ l

 . (2.52)

By considering a single layer plate of thickness h, thus xu − xl = h, we can

introduce the elements p11, p12, p21 and p22 as
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p11 = p22 = cosh(kqh)

p12 = 1
q C2323

sinh(kqh),

p21 = q C2323 sinh(kqh).

(2.53)

2.4 Analysis of the dispersion relation for sin-

gle layer

We shall now derive and investigate the dispersion relation associated with

anti-plane shear waves propagating in a single layer plate. Such a relation

provides a relationship between wave speed (or frequency) and wave number.

These are obtained by satisfying boundary conditions at the upper and lower

surfaces of the layer. This will be carried out in respect of three different sets

of boundary conditions. The first is the so-called free case, in which traction

vanishes on each free surface, the second type of boundary condition, which

we term fixed-free, is one in which the traction vanishes on one surface with

the displacement vanishing on the other. The third, so-called fixed, assumes

the vanishing of displacement.

42



2.4.1 Pre-stressed elastic materials

To present the analysis of long wave motion for pre-stressed materials in a

fairly transparent manner, we first consider the numerical analysis of the

dispersion relation associated with three different boundary value problems

to demonstrate the range of materials response, as follows.

Free-faces case

The first investigated boundary value problem of the pre-stressed elastic layer

is the free-faces problem, i.e. the incremental surface tractions vanish at

upper and lower surfaces, providing

τ̂u3 = τ̂ l3 = 0 at x2 = 0 and x2 = h. (2.54)

Employing the above boundary conditions into the solution (2.51), yields

0 = p21u
l
3. (2.55)

Hence, p21 = 0, which gives the dispersion relation for a single layer plate in

the form

sinh(kqh) = 0. (2.56)
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The dispersion relation (2.56) gives relationship between the wave number

kh and the scaled phase speed ρυ = ῡ (or scaled frequency Ω̄ = ῡ(kh)) for a

given state of the pre-stress.

In this case ῡ → ∞ in the long wave region, accordingly the associated

dispersion relation (2.56) will be represented as sin kq̂h = 0, with q = iq̂

which dictates that kq̂h = nπ. For a single layer, both scaled wave speed

and frequency can be expressed explicitly in analytical form, from which we

will present the squared phase wave speed and scaled frequency as functions

of kh in the following form

ῡ2 = C1313 + C2323

(
nπ

kh

)2
, (2.57)

and

Ω̄2 = C2323 (nπ)2 + C1313(kh)2. (2.58)

In this section, some values of the two parameters C1313 and C2323 relating to

material models considered are used to generate the figures presented. Plots

of scaled phase speed and scaled frequency against scaled wave number are

presented for some branches of the dispersion relations (2.56), in Figures 2.3

and 2.4, respectively.
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Figure 2.3: Scaled wave speed against scaled wave number for the free-faces
dispersion relation (2.56); C1313 = 1, C2323 = 1.414.
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Figure 2.4: Scaled frequency against scaled wave number for the free-faces
dispersion relation (2.56); C1313 = 1, C2323 = 1.414.
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It is noted that, for small wave number, no mode except for the funda-

mental one retains finite wave speed, and all harmonics have an associated

large wave speed. Also, we note here, that each corresponding frequency

harmonics have non-zero limits. Moreover, the phase speed is scaled by the

square root of the material parameter C1313.

Fixed-free case

Now we will investigate a single layer with a traction free upper boundary

and no displacement on its lower boundary, a problem which we will refer

to as the fixed-free faces problem. The appropriate expression of boundary

conditions are provided by

τ̂ l = 0 at x2 = 0 and uu3 = 0 at x2 = h. (2.59)

After applying the above boundary conditions, into (2.49), we arrive at

0 = p11u
l
3, (2.60)

therefore, p11 = 0, which implies the dispersion relation in the form

cosh (kqh) = 0. (2.61)
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Figure 2.5 shows scaled wave speed against scaled wave number for the first

thirteen curves of the dispersion relation (2.61). Clearly, there is no finite

phase speed limits and ῡ → ∞ in the long wave region. Thus, the scaled

phase speed and frequency for this case may be introduced as follows

ῡ2 = C1313 + C2323

(kh)2

(
(2n+ 1)π

2

)2

, (2.62)

and

Ω̄2 = C2323

(
(2n+ 1)π

2

)2

+ C1313(kh)2. (2.63)

The associated scaled frequencies are presented in Figure 2.6. In all these

respect figures, it is remarked that the non-zero frequency limits, termed the

cut-off frequencies, are not too small, for all dispersion curves. An important

feature is that, no fundamental mode observed as kh → 0, and the lowest

cut-off frequency given by, Ω̄ ≈ 3.7 in free-faces case and Ω̄ ≈ 1.82 in fixed

free faces.
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Figure 2.5: Scaled wave speed against scaled wave number for the fixed-free
faces dispersion relation (2.61); C1313 = 1, C2323 = 1.414.
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Figure 2.6: Scaled frequency against scaled wave number for the fixed-free
faces dispersion relation (2.61); C1313 = 1, C2323 = 1.414.
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Fixed-faces case

Consider now a layer with fixed faces, the so-called fixed problem. The

associated boundary conditions of zero displacement on the upper and lower

faces of the single layer are specified by

uu3 = ul3 = 0, at x2 = 0 and x2 = h. (2.64)

After inserting the above conditions into (2.49), we arrive at

p12τ̂
l = 0, (2.65)

leading to p12 = 0, this gives the same dispersion relation as the free faces

boundary value problem (2.56) in the form

sinh (kqh) = 0. (2.66)

From the numerical analysis made for a pre-stressed layer it may be ob-

served that no mode has a finite wave speed limit at kh = 0 except for the

fundamental mode in case of free faces, and all harmonics possess speeds of

O((kh)−1).
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2.4.2 Linear isotropic materials

Here we establish the special case of pre-stressed materials which is linear

isotropic for the anti-plane shear problem. In this case, C1313 = C2323 = µ

and accordingly the only parameter describing material response is the shear

modulus µ. It is worth to mention that (2.41) may be expressed in terms of

µ as

q2 = 1− ρυ2

µ
. (2.67)

Free-faces case

In this case, we assume a free face problem with the lower and upper layer lo-

cated at x2 = 0 and x2 = h, respectively. The boundary conditions therefore

are similar as (2.54) in the pre-stressed case. Upon using (2.52) and (2.54),

the associated dispersion relation is shown to be

sinh(kqh) = 0. (2.68)

To gain some insight into the character of the dispersion relations, we present

the cases through some graphs within µ = 0.5 for all figures presented. At

this stage, this value is taken just to illustrate general material response,

rather than model any specific material. In Figure 2.7 a plot of scaled phase
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speed ῡ, where ῡ2 = ρυ2, against scaled wave number kh is presented for

the first sixteen branches for a dispersion relation associated with a layer

with free faces. We remark that, in the long wave limit (low wave number)

there is no fundamental mode and the wave speeds all tend to infinity. In

Figure 2.8, a plot of scaled frequency Ω̄ = ῡ(kh) against scaled wave number

is presented. In this figure we first note that the long wave limit of each

harmonic is non-zero. Usually we refer to these limits as cut-off frequencies.

Another feature of this graph is that, the lowest cut-off frequency is located

at Ω̄ ≈ 2.12.
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Figure 2.7: Scaled wave speed against scaled wave number for the free-faces
dispersion relation (2.68); µ = 0.5.
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Figure 2.8: Scaled frequency against scaled wave number for the free-faces
dispersion relation (2.68); µ = 0.5

Fixed-free faces case

We now consider a layer subject to a traction free upper boundary and no

displacement on its lower boundary, which may be expressed as follows

τ̂u = 0 at x2 = h, ul3 = 0 at x2 = 0. (2.69)

After employing these boundary conditions in (2.51), we arrive at the

dispersion relation for fixed-free faces problem, giving by

cosh(kqh) = 0. (2.70)
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Motivated by issues previously discussed for free-faces boundary condition,

together with the dispersion relation in this case, we will reintroduce (2.70) as

cos kq̂h = 0, which dictates kq̂h = (2n+ 1)π
2 , n is integer. Then the squared

phase wave speed and scaled frequency may be presented as functions of kh

in the following form

ῡ2 = µ+ µ

(kh)2

(
(2n+ 1)π

2

)2

, (2.71)

Ω̄2 = µ

(
(2n+ 1)π

2

)2

+ µ(kh)2. (2.72)

Figures 2.9 and 2.10 show scaled phase speed and frequency against the

scaled wave number for the dispersion relation (2.70), respectively. Numerical

analysis in figures 2.9 and 2.10 reveals that for a layer with fixed-free faces,

there is no low frequency motion in the low wave number (long wave) region

(kh→ 0). We also note that, each harmonic has a non-zero finite value and

for all branches, it is the case that as (kh→ 0), (ῡ →∞).

Fixed-faces case

This case of boundary as with the pre-stressed case, so we have the same

dispersion relation (2.68).
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Figure 2.9: Scaled wave speed against scaled wave number for the fixed-free
faces dispersion relation (2.70); µ = 0.5.
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Figure 2.10: Scaled frequency against scaled wave number for the fixed-free
faces dispersion relation (2.70); µ = 0.5.
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Chapter 3

Long wave motion in a

2-layered laminate structure

The propagation of travelling waves in a compressible pre-stressed, 2-layered

laminate will be considered in this chapter. Having, in Chapter 2 obtained

the equations governing the propagation of small amplitude waves in pre-

stressed compressible elastic media for a single layer, we will now derive the

governing equations for similar waves propagating along a common principal

direction in a pre-stressed, compressible 2-layered laminate structure.
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3.1 Governing equations

The laminate under consideration in this chapter is formed by layer 1 and

layer 2 of the same thickness h (which is often the case in industrial applica-

tions), with again Ox2 orthogonal to the laminate. The structure is finite in

the Ox2 direction and infinite in both other directions. The layer 1 of thick-

ness h is defined from 0 ≤ x2 ≤ h and layer 2 is defined from h ≤ x2 ≤ 2h, see

Figure 3.1. Furthermore, it is also assumed that the interface between layer

1 and layer 2 is perfectly bonded, ensuring continuity of both traction and

displacement at the interface. We adopt a state of anti-plane shear for this

two layer problem. Thus the displacement is independent of Ox3 and of the

form (u1, u2, u3) = (0, 0, u3) and the linearised equations of motion, (2.38)

in Chapter 2, may now establish for each layer of the 2-layered structure as

follows

C
(n)
1313u

(n)
3,11 + C

(n)
2323u

(n)
3,22 = ρü

(n)
3 . (3.1)

In a similar way to previously mentioned in Chapter 2, the solution of

the equations of motion is sought as a travelling wave in the form

u
(n)
3 (x1, x2, t) = Uekqnx2eik(x1−υt), n = 1, 2, (3.2)
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Figure 3.1: Two layers structure.

where k is the wave number, U is an arbitrary constant, ρ is the common

density for both layers, υ is the phase wave speed. Also in (3.2) the sub-

script (n) denotes the layer number, n = 1, 2 and qn is to be determined.

After substituting the above solution into (3.1), and following the analysis

of Chapter 2, we obtain a linearised equation, which possesses a non-trivial

solution provided

C
(n)
2323q

2
n − C

(n)
1313 + ρυ2 = 0, (3.3)

and the displacement can be written as

u
(n)
3 = Ane

kqnx2 +Bne
−kqnx2 . (3.4)

In addition, the non-zero incremental traction may be written in component
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form by

τ̂ (n) = τ
(n)
3
k

= C
(n)
2323

(
Anqne

kqnx2 −Bnqne
−kqnx2

)
, (3.5)

in which,

q2
1 = C

(1)
1313 − ῡ2

C
(1)
2323

, q2
2 = C

(2)
1313 − ῡ2

C
(2)
2323

, (3.6)

where ῡ2 = ρυ2.

Propagator matrix for a two-layered laminate structure

The solutions of displacements and tractions are represented by the propa-

gator matrix form shown in (2.51) in Chapter 2, as

Y(xu) = P Y(xl), (3.7)

where, u and l denote to the upper and lower surfaces of the appropriate layer,

respectively. The appropriate material parameters for layer 1 are denoted by

C
(1)
2323 and C(1)

1313. Accordingly, appropriate matrix form of (3.4) and (3.5) are

given, similar to equations (2.45) and (2.46) in Chapter2, by

 u
(1)
3

τ̂ (1)

 =

 ekq1h e−kq1h

q1C
(1)
2323e

kq1h −q1C
(1)
2323e

−kq1h


 A1

B1

 , (3.8)
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and for layer 2, by

 u
(2)
3

τ̂ (2)

 =

 ekq2h e−kq2h

q2C
(2)
2323e

kq2h −q2C
(2)
2323e

−kq2h


 A2

B2

 . (3.9)

By using (3.7) we may write the relationship between the upper boundary

x2 = h and the lower boundary x2 = 0 in the following matrix form

 u
(1)
3 |x2=h

τ̂ (1) |x2=h

 =


cosh(kq1h) sinh(kq1h)

C
(1)
2323q1

C
(1)
2323q1 sinh(kq1h) cosh(kq1h)


 u

(1)
3 |x2=0

τ̂ (1) |x2=0

 ,
(3.10)

which also can be expressed in the form

Y(h) = P(1) Y(0). (3.11)

Following the analysis for layer 1, we can write the similar relation (3.10) for

layer 2 as

 u
(2)
3 |x2=2h

τ̂ (2) |x2=2h

 =


cosh(kq2h) sinh(kq2h)

C
(2)
2323q2

C
(2)
2323q2 sinh(kq2h) cosh(kq2h)


 u

(2)
3 |x2=h

τ̂ (2) |x2=h

 ,
(3.12)
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which is can be readily presented as

Y(2h) = P(2) Y(h). (3.13)

Inserting equation (3.11) into (3.13), yielding

Y(2h) = P(2) P(1) Y(0), (3.14)

where,

P(1) =


cosh(kq1h) 1

C
(1)
2323q1

sinh(kq1h)

C
(1)
2323q1 sinh(kq1h) cosh(kq1h)

 , (3.15)

P(2) =


cosh(kq2h) 1

C
(2)
2323q2

sinh(kq2h)

C
(2)
2323q2 sinh(kq2h) cosh(kq2h)

 . (3.16)

The previous solution (3.14) may be introduced in the following form

Y(2h) = P Y(0), (3.17)
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which also can be introduced as

 u
(2)
3 |x2=2h

τ̂ (2) |x2=2h

 =

 p11 p12

p21 p22


 u

(1)
3 |x2=0

τ̂ (1) |x2=0

 , (3.18)

in which,

P = P(2) P(1) =

 p11 p12

p21 p22

 . (3.19)

The components of the propagator matrix P are given explicitly in the fol-

lowing forms as

p11 = cosh(kq2h) cosh(kq1h) + C
(1)
2323q1

C
(2)
2323q2

sinh(kq2h) sinh(kq1h),

p12 = 1
C

(2)
2323q2

sinh(kq2h) cosh(kq1h) + 1
C

(1)
2323q1

cosh(kq2h) sinh(kq1h),

p21 = C
(1)
2323q1 cosh(kq2h) sinh(kq1h) + C

(2)
2323q2 sinh(kq2h) cosh(kq1h),

p22 = cosh(kq2h) cosh(kq1h) + C
(2)
2323q2

C
(1)
2323q1

sinh(kq2h) sinh(kq1h).

3.2 Derivation of the dispersion relation of

two layers

We will derive the dispersion relation for three problems by applying each

boundary condition of each case on the solution (3.17) in this section. In
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what follows the three boundary conditions problems considered in Chapter

2, will be studied in turn.

Free-faces case

By applying the boundary conditions of zero traction at the upper and lower

surface of the two-layered structure, which has the form

τ̂ (1) = 0 on x2 = 0, τ̂ (2) = 0 on x2 = 2h, (3.20)

and the condition of continuity across the perfectly bonded interface along

x2 = h, given by

τ̂ (1) = τ̂ (2), u
(1)
3 = u

(2)
3 , (3.21)

into (3.17), the dispersion relation for the free-faces case is obtained and my

be written in the form

C
(1)
2323q1 sinh(kq1h) cosh(kq2h) + C

(2)
2323q2 sinh(kq2h) cosh(kq1h) = 0. (3.22)

Fixed-free-faces case

The boundary conditions in this case are

u
(2)
3 = 0 at x2 = 2h, and τ̂ (1) = 0 at x2 = 0. (3.23)
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Following the usual procedure, we arrive at the dispersion relation for fixed-

free boundary value problem in the form

C
(2)
2323q2 cosh(kq2h) cosh(kq1h) + C

(1)
2323q1 sinh(kq2h) sinh(kq1h) = 0. (3.24)

Fixed-faces case

To obtain the dispersion relation for the third type of boundary conditions,

namely the fixed-faces conditions, we will impose these conditions

u
(1)
3 = 0 at x2 = 0, and u

(2)
3 = 0 at x2 = 2h, (3.25)

with the continuity conditions (3.21) into (3.17), allows us to arrive at the

dispersion relation associated with this case in the form

C
(1)
2323q1 sinh(kq2h) cosh(kq1h) + C

(2)
2323q2 cosh(kq2h) sinh(kq1h) = 0. (3.26)

In the case of linear isotropy, it may be deduced from Chapter 2 that the

two material parameters will be

C
(n)
2323 = C

(n)
1313 = µn, n = 1, 2. (3.27)

Using now the traction-free boundary conditions (3.20) with continuity
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conditions assumed in (3.17), the dispersion relation for the free-faces case is

given by

µ1q1 sinh(kq1h) cosh(kq2h) + µ2q2 sinh(kq2h) cosh(kq1h) = 0. (3.28)

For the fixed-free faces we obtain the dispersion relation in the form

µ1q1 cosh(kq1h) cosh(kq2h) + µ2q2 sinh(kq2h) sinh(kq1h) = 0, (3.29)

whereas in case of fixed faces we result in

µ1q1 sinh(kq2h) cosh(kq1h) + µ2q2 cosh(kq2h) sinh(kq1h) = 0. (3.30)

3.3 Numerical results

Throughout this section numerical results will be presented for various ma-

terial parameters which elucidate the character of the dispersion relation.

The resulting dispersion relations are first investigated numerically for pre-

stressed materials by using three strain energy functions associated with the

neo-Hookean, Mooney-Rivlin and Varga materials. This numerical inves-

tigations are then used to guide establishment of asymptotic of the wave

speed as a function of wave number and pre-stress in the low wave number
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regime. The particular parameters are chosen to demonstrate the range of

material response which might be anticipated, rather than model any specific

material. To demonstrate different types of behaviour of a compressible pre-

stressed elastic materials in anti-plane shear for 2 layers, we will investigate

in turn some particular strain-energy function associated with neo-Hookean,

Mooney-Rivlin and Varga materials.

3.3.1 Neo-Hookean material

We will now establish some graphs, with the corresponding constitutive part

of the strain-energy function presented in (2.30) in Chapter 2. A neo-Hookean

material modelled by a strain-energy function depends on the first invariant of

the strain tensor. Accordingly, we can introduce the two material parameters

associated with the strain-energy function by

C
(n)
1313 = µ(n)λ

(n)
1

λ
(n)
2 λ

(n)
3
, C

(n)
2323 = µ(n)λ

(n)
2

λ
(n)
1 λ

(n)
3
, n = 1, 2. (3.31)

Table 3.1: Neo-Hookean material used in numerical results

Materials µ(n) λ
(n)
1 λ

(n)
2 λ

(n)
3 C

(n)
1313 C

(n)
2323

Layer 1 0.6 1 1.5 0.5 0.8 1.80
Layer 2 2.2 2.5 1.5 2 1.83 0.660
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In Figure 3.2, a plot of scaled phase speed ῡ against scaled wave number

K is presented for the first thirteen branches in respect of the dispersion

relations for the neo-Hookean material subject to free faces boundary con-

ditions. A significant difference from the previous work on a single layer is

that there is one mode remains finite in the long wave limit, i.e. this mode

has a distinct finite phase speed limit as K → 0, therefore, the limiting wave

speed being dependent on material parameters. We also note that in the

low wave number (long wave region), all other harmonics have infinite phase

speed limits and from which it can be observed that ῡ →∞ as K → 0.

In Figure 3.3, corresponding plots of scaled frequency against scaled wave

number are presented. We remark that the limit of the fundamental mode is

zero and the harmonics limits are non-zero in the long wave region. Figure

3.4 and Figure 3.6 present a plot of scaled phase speed against scaled wave

number for the dispersion relation (3.24) and (3.26), respectively. These

figures show that ῡ →∞ as K → 0. Also, these dispersion relations do not

support the fundamental mode with zero cut-off frequency.
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Figure 3.2: Scaled wave speed against scaled wave number for neo-Hookean
materials 1 and 2 from Table 3.1 in layer 1 and layer 2, respectively, for the
free-faces dispersion relation (3.22).
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Figure 3.3: Scaled frequency against scaled wave number for a neo-Hookean
materials 1 and 2 from Table 3.1 in layer 1 and layer 2, respectively, for the
free-faces dispersion relation (3.22)
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Figure 3.4: Scaled wave speed against scaled wave number for a neo-Hookean
materials 1 and 2 from Table 3.1 in layer 1 and layer 2, respectively, for the
fixed-free faces dispersion relation (3.24).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  2  4  6  8  10

K

Ω̄

Figure 3.5: Scaled frequency against scaled wave number for a neo-Hookean
materials 1 and 2 from Table 3.1 in layer 1 and layer 2, respectively, for the
fixed-free faces dispersion relation (3.24).
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Figure 3.6: Scaled wave speed against scaled wave number for a neo-Hookean
materials 1 and 2 from Table 3.1 in layer 1 and layer 2, respectively, for the
fixed-faces dispersion relation (3.26).
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Figure 3.7: Scaled frequency against scaled wave number for a neo-Hookean
materials 1 and 2 from Table 3.1 in layer 1 and layer 2, respectively, for the
fixed-faces dispersion relation (3.26)
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Figure 3.5 and Figure 3.7 show scaled frequency against scaled wave num-

ber in the case of the compressible neo-Hookean material in Table 3.1, for

the dispersion relations (3.24) and (3.26), respectively. We remark that the

long wave limit of each harmonic is non-zero. In doing so, the fundamental

mode dose not exist in these types of boundary conditions.

3.3.2 Mooney-Rivlin material

Dispersion curves, subjected to the three types of boundary conditions, will

be presented using material parameters for the two layers generated from

the Mooney-Rivlin strain energy function provided in (2.32), with the two

parameters taking the form

C
(n)
1313 =

λ
(n)
1

(
µ

(n)
1 + µ

(n)
2 (λ(n)

2 )2
)

λ
(n)
2 λ

(n)
3

, C
(n)
2323 =

λ
(n)
2

(
µ

(n)
1 + µ

(n)
2 (λ(n)

1 )2
)

λ
(n)
1 λ

(n)
3

, n = 1, 2.

(3.32)

Table 3.2: Mooney-Rivlin materials (MRM) used in numerical results

Materials µ
(n)
1 µ

(n)
2 λ

(n)
1 λ

(n)
2 λ

(n)
3 C

(n)
1313 C

(n)
2323

Layer 1 1.2 0.3 1 1.1 1 1.42 1.65
Layer 2 1 1.1 2 2 10 0.64 0.54

We will now present some graphs, demonstrating the behaviour of Mooney-

Rivlin materials listed in Table 3.2.
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Figure 3.8: Scaled wave speed against scaled wave number for Mooney-Rivlin
materials from Table 3.2 in layer 1 and layer 2, respectively, for the free-faces
dispersion relation (3.22).
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Figure 3.9: Scaled frequency against scaled wave number for Mooney-Rivlin
materials from Table 3.2 in layer 1 and layer 2, respectively, for the free-faces
dispersion relation (3.22).
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Figure 3.10: Scaled wave speed against scaled wave number for Mooney-
Rivlin materials 1 and 2 from Table 3.2 in layer 1 and layer 2, respectively,
for the fixed-free faces dispersion relation (3.24).
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Figure 3.11: Scaled frequency against scaled wave number for Mooney-Rivlin
materials 1 and 2 from Table 3.2 in layer 1 and layer 2, respectively, for the
fixed-free faces dispersion relation (3.24).
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Figure 3.12: Scaled wave speed against scaled wave number for Mooney-
Rivlin materials 1 and 2 from Table 3.2 in layer 1 and layer 2, respectively,
for the fixed-faces dispersion relation (3.26).
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Figure 3.13: Scaled frequency against scaled wave number for Mooney-Rivlin
materials 1 and 2 from Table 3.2 in layer 1 and layer 2, respectively, for the
fixed-faces dispersion relation (3.26).
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For the plots presented in Figure 3.8, we again note that in free-faces case

the only branch with a finite long wave limit is the fundamental mode and

all associated harmonics having infinite phase speed in the long wave region.

Also, the first harmonic in Figure 3.9 is the only branch has zero limit with

all other harmonics termed cut-off frequencies have non-zero limits.

Numerical solutions of dispersion relations (3.24) and (3.26) are given

in Figure 3.10 and Figure 3.12, respectively. As well as, these figures show

corresponding plot of scaled wave speed ῡ against scaled wave number K.

As might be expected, the fundamental mode is not observed as K → 0.

Also, ῡ → ∞ in the long wave regime. As can be seen in Figures 3.11

and 3.13, all high-frequency branches for both the fixed-free and fixed-face

boundary conditions have non-zero limits in the regime within which K → 0,

confirming the absence of the fundamental mode for both cases.
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3.3.3 Varga material

In using the Varga strain-energy function presented in (2.35), we investi-

gate the dispersion relation for two values of the material parameters of the

following form

C
(n)
1313 = µ(n)λ

(n)
1

(λ(n)
1 + λ

(n)
3 )λ(n)

2 λ
(n)
3
, C

(n)
2323 = µ(n)λ

(n)
2

(λ(n)
2 + λ

(n)
3 )λ(n)

1 λ
(n)
3
. (3.33)

To model this specific material, we introduce the following table with

some values of the parameters considered.

Table 3.3: Varga materials used in numerical results

Materials µ(n) λ
(n)
1 λ

(n)
2 λ

(n)
3 C

(n)
1313 C

(n)
2323

Layer 1 4.5 1.5 1 2 0.964 0.5
Layer 2 2 2 1.8 0.5 1.950 1.72

We will conclude the pre-stressed subsection with some numerical results

in case of Varga materials subject to the three types of boundary conditions

considered in this chapter. Three sets of two graphs will be presented here

using material parameters summarised in Table 3.3 and generated from the

Varga strain energy function. All the next figures display the scaled wave

speed ῡ and the scaled frequency Ω̄ against the scaled wave number K.
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Figure 3.14: Scaled wave speed against scaled wave number for Varga ma-
terials 1 and 2 from Table 3.3 in layer 1 and layer 2, respectively, for the
free-faces dispersion relation (3.22).
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Figure 3.15: Scaled frequency against scaled wave number for Varga materials
1 and 2 from Table 3.3 in layer 1 and layer 2, respectively, for the free-faces
dispersion relation (3.22).
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Figure 3.16: Scaled wave speed against scaled wave number for Varga ma-
terials 1 and 2 from Table 3.3 in layer 1 and layer 2, respectively, for the
fixed-free faces dispersion relation (3.24).
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Figure 3.17: Scaled frequency against scaled wave number for Varga materials
1 and 2 from Table 3.3 in layer 1 and layer 2, respectively, for the fixed-free
face dispersion relation (3.24).
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Figure 3.18: Scaled wave speed against scaled wave number for Varga ma-
terials 1 and 2 from Table 3.3 in layer 1 and layer 2, respectively, for the
fixed-faces dispersion relation (3.26).
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Figure 3.19: Scaled frequency against scaled wave number for Varga materials
1 and 2 from Table 3.3 in layer 1 and layer 2, respectively, for the fixed-faces
dispersion relation (3.26).
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In Figure 3.14 and Figure 3.15, it is worth noting that in the long wave

region (K → 0), only the fundamental mode remains finite wave speed, with

all harmonics having an associated large wave speed. Also, for this case, slight

oscillations can be seen in the dispersion curves. In the two other cases of

boundaries and with the same parameters provided in Table 3.3, plots of

the dispersion relations associated with both fixed and fixed-free cases, are

presented in Figure 3.16 and Figure 3.18, respectively. In these figures scaled

wave speed ῡ against scaled wave number K for the first thirteen harmonics

is presented. From these figures it is noted that no mode has distinct finite

phase speed with infinite phase speed limits for all modes as K → 0. Also,

for the scaled frequency Ω̄ against scaled wave number K, Figure 3.17 and

Figure 3.19 show that as K → 0, no long wave low frequency for both fixed

and fixed-free cases. From the seven harmonics in these figures, we note that

no mode has zero limit with each associated harmonic has a non- zero limit.

3.4 Long wave approximations

In this section we will proceed to the derivation of some long wave approxima-

tions of the dispersion relations. The numerical behaviour of the dispersion

relation we have just discussed will guide us. This discussion will be con-

sidered for both low frequency and high frequency. First we remark that
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K = kh is a small geometric parameter and may be thought physically as

the ratio of plate thickness to the wavelength l, with k the wave number.

The thickness of the 2-layered laminate structure is 2h, so that each layer

is of h thickness. It is worth to mention that in the long wave limit there

are no fundamental modes for both the fixed and fixed-free cases. We begin

our derivation of long wave motion with an investigation of the dispersion

relation of two layers with pre-stressed materials and then for linear isotropic

materials.

3.4.1 Long-wave low-frequency limit for free faces

It is well known that long wave low frequency motion is characterised by

allowing K → 0 and ῡ is not large as wave number is small. Thus, all the

hyperbolic functions obtained in the dispersion relation associated with the

free-faces case will be expanded by Taylor series as

cosh(qnK) = 1 + q2
nK

2

2 +O(K4). (3.34)

and

sinh(qnK) = qnK + q3
nK

3

6 +O(K5), n = 1, 2. (3.35)
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Thus, we first will express relation (3.22) as

C
(1)
2323q1 tanh(Kq1) + C

(2)
2323q2 tanh(Kq2) = 0. (3.36)

Then we will present the squared scaled phase wave speed as a function of

powers of K in the form

ῡ2 = υ0 + υ2K
2 +O(K4) + ... (3.37)

To obtain the asymptotic expansion of the dispersion relation (3.36), we will

make use of (3.34) and (3.35), to arrive at the following approximation

β1K
2 + β2 + β3K

2ῡ2 + β4ῡ
2 + ... ≈ 0, (3.38)

where Ω̄ = ῡK and the coefficients βi are given by

β1 = C
(1)
2323

3C(1)
1313

(
C

(1)
2323 + 3C(1)

2323

)
+ C

(2)
2323

3C(2)
1313

(
1 + 3C(1)

2323

)
,

β2 = C
(1)
1313 + C

(2)
1313,

β3 = −1
2

C(1)
2323

(
1

C
(1)
1313

+ 1
C

(2)
1313

)
+ C

(2)
2323
3

(
1

C
(1)
1313

+ 1
C

(2)
1313

) ,
β4 = −2. (3.39)

81



The leading order term of the dispersion relation (3.36) as K → 0 is readily

established by using the solutions (3.6) together with the expansion (3.37),

yielding

υ0 = C
(1)
1313 + C

(2)
1313

2 . (3.40)

The next order of (3.37), gives

υ2 = − 1
24 C(1)

1313C
(2)
1313

(
C

(1)
1313 + C

(2)
1313

) (
C

(1)
2323 − C

(2)
2323

)2
. (3.41)

The relations (3.40) and (3.41) may be now inserted into (3.37), establishing

the wave speed expansion associated with this case as

ῡ2 = υ0 −
1
24

((
1

C
(2)
1313

+ 1
C

(1)
1313

)(
C

(1)
2323 − C

(2)
2323

)2
)
K2 +O(K4). (3.42)

At low frequencies, the corresponding scaled frequency expansion takes the

form Ω̄2 = Ω2K
2 +... . We will now provide two figures showing a comparison

between the asymptotic approximations and the numerical solutions in the

low wave number regime for free faces case. In Figure 3.20 the asymptotic

expansions given in equation (3.42) are superimposed on numerical solution

obtained for the material parameters used in Figure 3.2. In this figure the

fundamental mode of the dispersion relation are presented which indicates

excellent agreement between the asymptotic approximation and the numer-
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ical curves. Also, in Figure 3.21 better agreement with the numerical result

for the fundamental mode of the dispersion relation (3.22) in Figure 3.3, is

obtained for the scaled frequency against scaled wave number.

 1
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ῡ

Figure 3.20: Fundamental mode from numerical solution of the free-faces
dispersion relation (3.22) and asymptotic expansion (3.42) for scaled wave
speed against scaled wave number in neo-Hookean material in Table 3.3.
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Figure 3.21: Fundamental mode from numerical solution of the free-faces dis-
persion relation (3.22) and asymptotic expansion (3.42) for scaled frequency
against scaled wave number in neo-Hookean material in Table 3.3.
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3.4.2 Long wave high frequency limits

In this section, we consider the long wave high frequency regime of the disper-

sion curves, i.e. the so-called harmonics within the low wave number regime.

In this type of motion ῡ2 � 1. We remark that, q2
1 and q2

2 are negative as

K → 0, i.e. q1 = iq̂1 and q2 = iq̂2. Using the previous knowledge, we arrive

at

q̂2
1 = ῡ2 − C(1)

1313

C
(1)
2323

, q̂2
1 = ῡ2 − C(2)

1313

C
(2)
2323

, (3.43)

with q̂1, q̂2 →∞ within the long wave high frequency regime. In this case of

high frequency we will note

Kq̂1 =
K2ῡ2 − C(1)

1313K
2

C
(1)
2323

 1
2

=
Ω̄2 − C(1)

1313K
2

C
(1)
2323

 1
2

, (3.44)

Kq̂2 =
K2ῡ2 − C(2)

1313K
2

C
(2)
2323

 1
2

=
Ω̄2 − C(2)

1313K
2

C
(2)
2323

 1
2

. (3.45)

(3.44) and (3.45) can be expanding as follows

Kq̂1 = Ω̄√
C

(1)
2323

1− C
(1)
1313K

2

2Ω̄2
+ ...

 , (3.46)
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Kq̂2 = Ω̄√
C

(2)
2323

1− C
(2)
1313K

2

2Ω̄2
+ ...

 . (3.47)

Within the long wave high frequency region we assume ῡ2 ∼ O(K−2). In

addition, we assume Ω̄2 has the following expansion

Ω̄2 = Ω0 + Ω2K
2 +O(K4). (3.48)

Free-faces case

On making use of relations previously mentioned, q1 = iq̂1 and q2 = iq̂2, the

dispersion (3.22) may be expressed in the form

C
(1)
2323q̂1 tan(Kq̂1) + C

(2)
2323q̂2 tan(Kq̂2) = 0, (3.49)

which then can be represented as

√
C

(1)
2323

1− C
(1)
1313K

2

2Ω̄2

 tan
 Ω̄√

C
(1)
2323

1− C
(1)
1313K

2

2Ω̄2

+

√
C

(2)
2323

1− C
(2)
1313K

2

2Ω̄2

 tan
 Ω̄√

C
(2)
2323

1− C
(2)
1313K

2

2Ω̄2

 = 0. (3.50)

We now consider Taylor series approximation for the trigonometric functions

in the above equations, thus on inserting the expansion (3.48) into (3.50), we
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get

Ω0

(√
C

(1)
2323F1(Ω0) +

√
C

(2)
2323F2(Ω0)

)
+ (Ψ3(Ω0) + Ψ4(Ω0)Ω2)K2

+O(K4) ≈ 0, (3.51)

where

F1(Ω0) = tan
√√√√ Ω0

C
(1)
2323

, F2(Ω0) = tan
√√√√ Ω0

C
(2)
2323

 ,

Ψ3(Ω0) =
√
C

(1)
2323F1(Ω0) +

√
C

(2)
2323F2(Ω0) +

√
Ω0
(
F 2

1 (Ω0) + 1
)

+
√

Ω0
(
F 2

2 (Ω0) + 1
)
,

Ψ4(Ω0) = −1
2

(
C

(1)
1313

(
1 + F 2

1 (Ω0)
)√

Ω0+ C
(2)
1313

(
1 + F 2

2 (Ω0)
)√

Ω0

+
√
C

(1)
2323F1(Ω0)C(1)

1313 +
√
C

(2)
2323F2(Ω0) C(2)

1313

)
.

Therefore, it can be easily seen that the leading order is given by

√
C

(1)
2323 tan

√√√√ Ω0

C
(1)
2323

+
√
C

(2)
2323 tan

√√√√ Ω0

C
(2)
2323

= 0, (3.52)

where Ω0 is a solution of equation (3.52), defines the cut-off frequencies. Also,

it can be shown numerically to provide an implicit conditions for the cut-off
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frequencies.

The next order terms of the expansion (3.51) provides Ω2 in the following

formula

Ω2 = Ψ3(Ω0)/Ψ4(Ω0). (3.53)

The scaled frequency may therefore be written in the form

Ω̄2 = Ω0 + Ψ3(Ω0)
Ψ4(Ω0)K

2 +O(K4). (3.54)

A neo-Hookean material is chosen to be an example of pre-stress materials

for the free-faces case. For this material we provide Figure 3.22 showing good

agreement for numerical and asymptotic solutions.

It is interesting to investigate behaviour of a coefficient Ω2 defined by

(3.53), depending on the ratio of shear moduli µ = µ2/µ1. The coefficient is

expected to remain of order unity within the appropriate range of ratio µ ∼ 1.

In Figure 3.23 below the value µ1 = 0.6 is fixed, while µ2 is changing from

0.12 up to 3.0, with stretches λi taken as in Figure 3.22. A regular behaviour

of Ω2 is observed, seemingly excluding possibilities of degenerate behaviour

reported previously in Kaplunov and Markushevich (1993), Kaplunov et al.

(1998).
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Figure 3.22: Numerical solutions corresponding to the free-faces dispersion
relation (3.22) (solid line) and asymptotic expansion (3.54) (dashed line) for
scaled frequency against scaled wave number in a neo-Hookean material.

µ

Ω2

Figure 3.23: Dependence of coefficient Ω2 (3.53) on the ratio of shear moduli
µ for a neo-Hookean material.
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Fixed-free faces case

In fixed-free case, the dispersion relation may be presented in the form

C
(2)
2323q̂2 − C(1)

2323q̂1 tan(Kq̂1) tan(Kq̂2) = 0. (3.55)

Performing a similar analysis to that precisely used for free-faces case, we

arrive at the leading order term in the form

√
C

(2)
2323 −

√
C

(1)
2323 tan

√√√√ Ω0

C
(1)
2323

 tan
√√√√ Ω0

C
(2)
2323

 = 0. (3.56)

The next order term provides Ω2 in the following formula

Ω2 = Ψ̄3(Ω0)/Ψ̄4(Ω0), (3.57)

where

Ψ̄3(Ω0) =
√

Ω0

(
C

(1)
1313F1(Ω0)F2(Ω0)

√
C

(1)
2323C

(2)
2323 − C

(2)
1313C

(2)
2323

)
+

Ω0

(√
C

(2)
2323F

2
1 (Ω0)F2(Ω0)C(1)

1313 +
√
C

(1)
2323F1(Ω0)F 2

2 (Ω0)C(2)
1313

)

+
(
C

(2)
1313

√
C

(1)
2323F1(Ω0) + C

(1)
1313

√
C

(2)
2323F2(Ω0)

)
Ω0,
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Ψ̄4(Ω0) =
√

Ω0

(
2F1(Ω0)F2(Ω0)

√
C

(1)
2323C

(2)
2323 − 2C(1)

2323

)
+
(
F1(Ω0)

√
C

(1)
2323

+ F 2
1 (Ω0)F2(Ω0)

√
C

(2)
2323 +

√
C

(2)
2323F2(Ω0) +

√
C

(1)
2323F1(Ω0)F 2

2 (Ω0)C(2)
1313

)
Ω0.

The scaled frequency may therefore be written in the form

Ω̄2 = Ω0 + Ψ̄3(Ω0)
Ψ̄4(Ω0)

K2 +O(K4), (3.58)

where Ω0 is a solution of (3.56).

We consider now a Mooney-Rivlin material as an example of pre-stress

materials in the fixed-free faces case. For this material we provide a compari-

son between numerical solutions and asymptotic expansions (3.58) for scaled

frequency against scaled wave number with the same material parameters

from Table 3.2 in Mooney-Rivlin material with fixed-free faces dispersion re-

lation (3.55). Figure 3.24 shows good agreement for numerical results and

asymptotic expansions for the high wave limits.

Fixed-faces case

The dispersion relation (3.26) can be expressed in the form

C
(2)
2323q̂2 tan(Kq̂1) + C

(1)
2323q̂1 tan(Kq̂2) = 0. (3.59)
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Figure 3.24: Numerical solutions corresponding to the fixed-free faces disper-
sion relation (3.24) (solid line) and asymptotic expansion (3.58) (dashed line)
for scaled frequency against scaled wave number in case of Mooney-Rivlin
material.

Following the previously outlined procedures to get the expansion of (3.59),

yielding

1√
C

(1)
2323

1− C
(2)
1313K

2

2Ω̄2

 tan
 Ω̄
C

(1)
2323

1− C
(1)
1313K

2

2Ω̄2

+

1√
C

(2)
2323

1− C
(1)
1313K

2

2Ω̄2

 tan
 Ω̄
C

(2)
2323

1− C
(2)
1313K

2

2Ω̄2

 = 0. (3.60)
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After inserting (3.48) into the above expansion, as previously, the leading

order may introduce the following form

√
C

(2)
2323 tan

√√√√ Ω0

C
(1)
2323

+
√
C

(1)
2323 tan

√√√√ Ω0

C
(2)
2323

= 0. (3.61)

The next order term of the expansion (3.60) provides Ω2 in the following

formula

Ω2 = Ψ̃3(Ω0)/Ψ̃4(Ω0), (3.62)

where

Ψ̃3(Ω0) = −
√
C

(2)
2323

√
C

(1)
2323

(√
C

(2)
1313F2(Ω0) +

√
C

(1)
1313F1(Ω0)

)
+
√

Ω0(
C

(2)
2323F

2
1 (Ω0)

√
C

(1)
1313 + C

(1)
2323F

2
2 (Ω0)

√
C

(2)
1313 + C

(1)
2323

√
C

(2)
1313 + C

(2)
2323

√
C

(1)
1313

)
,

Ψ̃4(Ω0) =
[
C

(1)
2323C

(2)
2323F

2
2 (Ω0)F1(Ω0) + C

(1)
2323C

(2)
2323

]√
Ω0

−
(
C

(2)
2323

√
C

(1)
2323F1(Ω0) + C

(1)
2323

√
C

(2)
2323 F2(Ω0)

)
.

The asymptotic approximation in this case is expressed Ω̄2 in the following

formula

Ω̄2 = Ω0 + Ψ̃3(Ω0)
Ψ̃4(Ω0)

K2 +O(K4), (3.63)
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where Ω0 is a solution of (3.61).
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Figure 3.25: A comparison of numerical solution corresponding to (3.26)
(solid line) and asymptotic expansion (dashed line) (3.63) for scaled fre-
quency against scaled wave number in case of Varga material with fixed
faces.

A comparison of numerical solution and asymptotic expansion for scaled

frequency against scaled wave number using Varga material is presented for

the high wave limit in Figure 3.25. The same material parameters from Table

3.3 are used.
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Chapter 4

Long wave motion in a

3-layered laminate structure

In this chapter the problem of long wave propagation in a 3-layered laminate,

the layers of which are assumed to be composed of compressible pre-stressed

materials, will be considered.

4.1 Governing equations

The 3-layered structure is built by adding one layer of thickness h, namely

layer 3, to the 2-layered structure in Chapter 3. This added layer occupies

the region 2h ≤ x2 ≤ 3h, see Figure 4.1. Furthermore, this problem is again

considered within anti-plane setup, with non-zero displacement components
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u3 being independent of x3 variable. As previously, the interfaces between

the inner core and the two outer layers are perfectly bonded.

Figure 4.1: Three layers structure.

Therefore, the equation of motion in this case can be expressed as

C
(n)
1313u

(n)
3,11 + C

(n)
2323u

(n)
3,22 = ρü

(n)
3 , (4.1)

with the same travelling wave solution (3.2), n = 1, 2, 3. The material param-

eters of the layers are denoted by C(n)
1313, C

(n)
2323 and the related displacement

is formed as

u
(n)
3 = Ane

kqnx2 +Bne
−kqnx2 , (4.2)

and the non-zero incremental traction takes the component form

τ̂ (n) = τ
(n)
3 /k = C

(n)
2323

(
Anqne

kqnx2 −Bnqne
−kqnx2

)
, (4.3)
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Accordingly, (4.2) and (4.3) may be expressed in the matrix form as

 u
(n)
3

τ̂ (n)

 =

 ekqnx2 e−kqnx2

qnC
(n)
2323e

kqnx2 −qnC(n)
2323e

−kqnx2


 An

Bn

 , (4.4)

where

qn = C
(n)
1313 − ρυ2

C
(n)
2323

, n = 1, 2, 3. (4.5)

However, the appropriate solution for u(n)
3 and τ̂ (n) has previously been pro-

vided in the matrix form (2.51) and it can be again expressed for each layer

as

Y(xu) = P(n)Y(xl). (4.6)

The propagator matrix for layer 1 and layer 2 are obtained in the previous

chapters (3.15), (3.16), namely by P(1) and P(2), respectively.

Now we will first express the solution (4.6) for layer 3 in the form

Y(3h) = P(3)Y(2h), (4.7)
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where P(3) is the propagator matrix of the distance 3h− 2h = h, given by

P(3) =


cosh(kq3h) 1

q3C
(3)
2323

sinh(kq3h)

q3C
(3)
2323 sinh(kq3h) cosh(kq3h)

 (4.8)

The relationship between the upper surface x2 = 3h and the interface x2 = 2h

may be introduced as

 u
(3)
3 |x2=3h

τ̂ (3) |x2=3h

 =


cosh(kq3h) 1

q3C
(3)
2323

sinh(kq3h)

q3C
(3)
2323 sinh(kq3h) cosh(kq3h)


 u

(2)
3 |x2=2h

τ̂ (2) |x2=2h

 .
(4.9)

The continuity conditions along the interface x2 = 2h are given by

τ̂ (2) = τ̂ (3), u
(1)
2 = u

(3)
3 . (4.10)

Making use of the propagator matrix (4.8) and substituting P from (3.19) in

Chapter 3 in conjunction with the continuity condition (4.10), yielding the

solution for the 3-layered laminate in the form

Y(3h) = PY(0), (4.11)

where P = P(3)P(2)P(1) is the overall propagator matrix for the whole struc-

98



ture

P =

 p11 p12

p21 p22

 , (4.12)

within which

p11 =
(
C

(1)
2323q1 cosh(kq1h) cosh(kq2h) + C

(2)
2323q2 sinh(kq1h) sinh(kq2h)

)
× cosh(kq3h)

C
(2)
2323q2

+
(
C

(1)
2323q1 sinh(kq1h) cosh(kq2h)

+C(2)
2323q2 sinh(kq2h) cosh(kq1h)

) sinh(kq3h)
C

(3)
2323q3

,

p12 =
(
C

(2)
2323q2 sinh(kq1h) cosh(kq2h) + C

(1)
2323q1 cosh(kq1h) sinh(kq2h)

)
× cosh(kq2h)
C

(1)
2323q1C

(2)
2323q2

+ C
(2)
2323q2

(
C

(1)
2323q1 cosh(kq1h) cosh(kq2h)

+C(2)
2323q2 sinh(kq1h) sinh(kq2h)

) sinh(kq3h)
C

(1)
2323q1C

(3)
2323q3

,

p21 =
(
C

(1)
2323q1 sinh(kq1h) cosh(kq2h) + C

(2)
2323q2 cosh(kq1h) sinh(kq2h)

)
× cosh(kq3h) + C

(3)
2323q3

(
C

(1)
2323q1 sinh(kq1h) sinh(kq2h)

+C(2)
2323q2 cosh(kq1h) cosh(kq2h)

) sinh(kq3h)
C

(2)
2323q2

,

p22 =
(
C

(2)
2323q2 cosh(kq1h) cosh(kq2h) + C

(1)
2323q1 sinh(kq1h) sinh(kq2h)

)
× cosh(kq3h)

C
(2)
2323q2

+ C
(2)
2323q2

(
C

(1)
2323q1 sinh(kq1h) cosh(kq2h)

+ sinh(kq2h) cosh(kq1h)
)sinh(kq3h)

C
(3)
2323q3

. (4.13)
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4.2 Derivation of the dispersion relation

Free faces case

A similar derivation may be performed for this case by applying the so-called

free faces boundary conditions on the upper and lower surface of the laminate

τ̂ (3) = 0, x2 = 3h and τ̂ (1) = 0, x2 = 0, (4.14)

which then provide the following dispersion relation

(
C

(1)
2323q1 sinh(kq1h) cosh(kq2h) + C

(2)
2323q2 cosh(kq1h) sinh(kq2h)

)
× cosh(kq3h)C(2)

2323q2 + C
(3)
2323q3

(
C

(1)
2323q1 sinh(kq1h) sinh(kq2h) +

C
(2)
2323q2 cosh(kq1h) cosh(kq2h)

)
sinh(kq3h) = 0. (4.15)

Fixed-free faces case

If we apply the mixture boundary conditions wit zero displacement on the

upper surface and zero traction on the lower surface of the 3-layered laminate,

which may be specified by

u
(3)
3 = 0, x2 = 3h and τ̂ (1) = 0, x2 = 0, (4.16)

100



into the relation (4.11), we will arrive at the dispersion relation for fixed-free

faces problem in the form

(
C

(2)
2323q2 cosh(kq1h) cosh(kq2h) + C

(1)
2323q1 sinh(kq1h) sinh(kq2h)

)
×

cosh(kq3h)C(3)
2323q3 + C

(2)
2323q2 sinh(kq3h)

(
C

(1)
2323q1 sinh(kq1h) cosh(kq2h) +

C
(2)
2323q2 sinh(kq2h) cosh(kq1h)

)
= 0. (4.17)

Fixed faces case

We will now apply zero displacement on the upper and lower surfaces of the

laminate, given by

u
(3)
3 = 0, x2 = 3h and u

(1)
3 = 0, x2 = 0. (4.18)

The dispersion relation for this case can be derived after inserting the above

boundary conditions in (4.11), and given in the following form

(
C

(2)
2323q2 sinh(kq1h) cosh(kq2h) + C

(1)
2323q1 cosh(kq1h) sinh(kq2h)

)
×

cosh(kq3h)C(3)
2323q3 + C

(2)
2323q2

(
C

(1)
2323q1 cosh(kq1h) cosh(kq2h) +

C
(2)
2323q2 sinh(kq1h) sinh(kq2h)

)
sinh(kq3h) = 0. (4.19)
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4.3 Numerical results

In this section we will present numerical results of the exact dispersion re-

lation corresponding to anti-plane shear waves propagating in a pre-stressed

and linear isotropic 3-layered elastic laminate. In what follows, the notations

ρυ2 = ῡ2 and kh = K will be used. The numerical analysis will be carried

out for three specified types of boundary conditions.

Let us now introduce a Varga material model as an example of pre-

stressed materials. Thus, numerical results for all boundary conditions cases

will depend on Varga material parameters in the following table.

Table 4.1: Varga material used in numerical results

Materials µ(n) λ
(n)
1 λ

(n)
2 λ

(n)
3 C

(n)
1313 C

(n)
2323

Layer 1 4.5 1.5 1 2 0.964 0.5
Layer 2 2 2 1.8 0.5 1.950 1.72
Layer 3 2.3 2.2 1.7 1.1 0.8199 0.577

Free-faces case

We will investigate this case for the material parameters in Table 4.1. In

Figure 4.2 dispersion curves for a 3-layered laminate structure with free faces

are demonstrated, showing scaled phase speed against scaled wave number

for the first seventeen branches in respect to Varga strain-energy function.

This figure shows a possibility of wave speed formed in a variety of ways. We

102



also notice from this figure, there are monotonic convergence for each two

harmonics. We first note that in the long wave regionK → 0 the fundamental

mode exist for the dispersion relation (4.15). Also, as K → 0, the long wave

limit of each harmonic is infinite.
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K

ῡ

Figure 4.2: Scaled wave speed against scaled wave number for the free-faces
dispersion relation (4.15) for Varga material parameters in Table 4.1.
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Figure 4.3: Scaled frequency against scaled wave number for the free-faces
dispersion relation (4.15) for Varga material parameters in Table 4.1.

We present Figure 4.3, showing scaled frequency Ω̄ against scaled wave

number K. From this figure, it can be seen that the only branch has finite

long wave limit is the fundamental mode with other branches termed as

cut-off frequencies, have non zero limits.

Fixed-free faces case

The absence of fundamental mode of the relation (3.24) in this case indicates

that the numerical analysis will be only provided for long wave high frequency

limit. In Figure 4.4, it can be shown that the scaled phase speed ῡ propagate

in pairs against scaled wave number K and all harmonics have infinite limits

in the long wave region (K → 0). In Figure 4.5, a plot of scaled frequency Ω̄
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Figure 4.4: Scaled wave speed against scaled wave number for the fixed-free
faces dispersion relation (4.17) for Varga material parameters in Table 4.1.
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Figure 4.5: Scaled frequency against scaled wave number for the fixed-free
faces dispersion relation (4.17) for Varga material parameters in Table 4.1.
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against scaled wave number K is presented, showing all harmonics curves in

this case with non zero limits.

Fixed-faces case

Figure 4.6 presents a plot of scaled wave speed against scaled wave number

of the dispersion relation (4.19) with fixed faces. We first remark that, the

fundamental mode does not exist. Also, the other harmonics, which have

non-zero long-wave limits, are close to harmonics in Figure 4.2. In Figure

4.7, corresponding plots of scaled frequency Ω̄ against scaled wave number

K are presented. From the numerical analysis shown for fixed faces, we can

notice that the long wave limits are not zero.
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Figure 4.6: Scaled wave speed against scaled wave number for the fixed-faces
dispersion relation (4.19) for Varga material parameters in Table 4.1.

106



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8

K

Ω̄

Figure 4.7: Scaled frequency against scaled wave number for the fixed-faces
dispersion relation (4.19) for Varga material parameters in Table 4.1.
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4.4 Long wave approximations

In this section we consider the long wave low frequency limit of the funda-

mental mode and long wave high frequency for both pre-stressed and linear

isotropic elastic materials.

4.4.1 Long-wave low-frequency limit for free faces

It is well known that for this type of motion ῡ is generally not very large

as K → 0. Thus, all the hyperbolic functions obtained in the dispersion

relation (4.15) will be expanded by Taylor series, see (3.34) and (3.35) with

n = 1, 2, 3.

cosh qnK = 1 + q2
nK

2

2 +O(K4), sinh qnK = qnK +O(K3), n = 1, 2, 3.

(4.20)

We begin our derivation of long wave motions with an investigation of the

dispersion relation of three layers with free faces for a pre-stressed case, thus

we first will represent relation (4.15) in the form

C
(2)
2323q2

(
C

(1)
2323q1 tanh(Kq1) + C

(2)
2323q2 tanh(Kq2)

)
+

C
(3)
2323q3

(
C

(1)
2323q1 tanh(Kq1) tanh(Kq2) + C

(2)
2323q2

)
tanh(Kq3) = 0. (4.21)
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Inserting expansion (4.20) into the dispersion relation (4.21) and making use

of the solutions q1, q2 and q3 (4.5), providing the following expansion

β1K
2 + β2 + β3ῡ

2K2 + β4ῡ
2 + ... ≈ 0. (4.22)

where ῡ = Ω̄
K

in the above expansion with βi coefficients in the following

form

β1 = C
(1)
2323C

(2)
2323

C
(2)
1313

− 1
3

C(1)
1313

C
(1)
2323

+ C
(2)
1313

C
(2)
2323

+ C
(3)
1313

C
(3)
2323

 ,
β2 = C

(1)
1313 + C

(2)
1313 + C

(3)
1313,

β3 = − 1
C

(2)
2323

(
C

(1)
1313 + C

(2)
1313

)
+ 2

3

C(1)
1313

C
(1)
2323

+ C
(2)
1313

C
(2)
2323

+ C
(3)
1313

C
(3)
2323

 ,
β4 = −3. (4.23)

The squared scaled wave speed can be written as

ῡ2 = υ0 + υ2K
2 +O(K4) + .... (4.24)

The leading order term of the dispersion relation (4.21) as K → 0 is readily

established by using the solutions (4.5) together with the expansion (4.24)
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and equating the like powers in (4.22)

υ0 = C
(1)
1313 + C

(2)
1313 + C

(3)
1313

3 , (4.25)

and the next order term in the expansion (4.24), gives

υ2 = −1
9

[(
1

C
(1)
2323
− 2
C

(2)
2323

+ 1
C

(3)
2323

)
υ0 + 3

C(1)
1313 + C

(3)
1313

C
(2)
2323


− 2

C(1)
1313

C
(1)
2323

+ C
(2)
1313

C
(2)
2323

+ C
(3)
1313

C
(3)
2323

 −3C
(1)
1313C

(3)
1313

C
(2)
2323

 . (4.26)

The relations (4.25) and (4.26) may be now inserted into (4.24), establishing

the scaled wave speed expansion associated to this case of boundary as

ῡ2 = υ0 −
1
9

[(
1

C
(1)
2323
− 2
C

(2)
2323

+ 1
C

(3)
2323

)
υ0 − 2

C(1)
1313

C
(1)
2323

+ C
(2)
1313

C
(2)
2323

+ C
(3)
1313

C
(3)
2323


+ 3

C(1)
1313 + C

(3)
1313

C
(2)
2323

 −3C
(1)
1313C

(3)
1313

C
(2)
2323

K2 +O(K4). (4.27)

Accordingly, Ω0 = 0 as K = 0 and the corresponding scaled frequency may

be written as

Ω̄2 = υ0K
2 + υ2K

4 + .... (4.28)
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Figure 4.8 shows good agreement for the fundamental mode of numerical

solution of (4.15) and asymptotic approximation (4.27). Figure 4.9 compares

numerical solution obtained with the asymptotic expansion (4.28) taken to

the leading order. The plot has been generated using the material parameters

from Figure 4.3 and shows good agreement.
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Figure 4.8: A comparison of fundamental mode from numerical solution of
(4.15) and asymptotic expansion (4.27) for scaled wave speed against scaled
wave number in Varga material with the free faces. The same material pa-
rameters from Figure 4.2 are used.
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Figure 4.9: A comparison of fundamental mode from numerical solution of
(4.15) and asymptotic expansion (4.28) for scaled wave speed against scaled
wave number in Varga material with the free faces case. The same parameters
from Figure 4.3 are used.

4.4.2 Long wave high-frequency limits

From the numerical results presented in this chapter, the so-called long wave

high frequency motion, will be investigated in low wave number region. The

cut-off frequencies of the harmonics for the three types of boundary value

problems will be also obtained. We have previously mentioned that, in the

long wave region ῡ is not too small as K → 0 and the solutions q1, q2 and

q3 are imaginary, then, it is convenient to put qn = iq̂n. Also, motivated by

previously established results for the two layers problem, we will present the
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squared scaled frequency as a function of powers of K2 as

Ω̄2 = Ω0 + Ω2K
2 +O(K4) + .... (4.29)

Free-faces case

The long wave high frequency regime of the dispersion relation with free faces

(4.15) will be examined. We start our derivation of long wave high-frequency

motion by introducing the dispersion relation (4.15) in the following form

(
C

(1)
2323q̂1 tan(Kq̂1) tan(Kq̂2)− C2(2)

2323q̂
2
2

)
C

(3)
2323q̂3 tan(Kq̂3)−

C
(2)
2323q̂2

(
C

(1)
2323q̂1 tan(Kq̂1) + C

(2)
2323q̂2 tan(Kq̂2)

)
= 0. (4.30)

By expanding q̂n we may introduce the following expansion

Kq̂n = Ω̄
C

(n)
2323

1− C
(n)
1313K

2

2Ω̄2
+ ...

 .

Inserting then the above expansion into (4.30) and making use of (4.29), we

obtain the leading order in the following expression

√
C

(1)
2323 C

(3)
2323F1(Ω0)F2(Ω0)F3(Ω0)− C(2)

2323F2(Ω0)−√
C

(1)
2323 C

(2)
2323F1(Ω0)−

√
C

(2)
2323 C

(3)
2323F3(Ω0) = 0, (4.31)
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where

Fn(Ω0) = tan
√√√√ Ω0

C
(n)
2323

 , n = 1, 2, 3.

The next order frequency approximation Ω2 is given by

Ω2 = Λ1(Ω0)/Λ2(Ω0), (4.32)

where

Λ1(Ω0) =
[√

Ω0

(√
C

(2)
2323 F2(Ω0)(C(3)

1313 + C
(1)
1313) − Ω0C

(2)
2323(F 2

1 (Ω0)C(1)
1313

+F 2
2 (Ω0)C(2)

1313 + F 2
3 (Ω0)C(3)

1313 + C
(1)
1313 + C

(2)
1313 + C

(3)
1313

)
− C(2)

1313

√
Ω0

F2(Ω0)(C(2)
2323)3/2 +

√
Ω0

(
F 2

2 (Ω0) + 1
)
)
]
F3(Ω0)

√
C

(3)
2323 − (C(1)

1313 + C
(2)
1313)

√
Ω0C

(2)
2323 + C

(3)
1313

√
C

(2)
2323F2(Ω0)(F 2

3 (Ω0) + 1))F1(Ω0)
√
C

(1)
2323 +

(
−C(2)

2323√
Ω0(C(3)

1313 + C
(2)
1313) + F2(Ω0)C(1)

1313(F 2
1 (Ω0) + 1)Ω0

√
C

(2)
2323

)
F3(Ω0)

√
C

(3)
2323,

and

Λ2(Ω0) = −2F2(Ω0)(C(2)
2323)3/2

√
Ω0 +

[(
2
√

Ω0

√
C

(2)
2323F2(Ω0) + Ω0(1+

F 2
2 (Ω0))

)
F3(Ω0)

√
C

(3)
2323 − 2

√
Ω0C

(2)
2323 + Ω0

√
C

(2)
2323F2(Ω0)(1 + F 2

3 (Ω0))
]

× F1(Ω0)
√
C

(1)
2323 +

(√
C

(2)
2323F2(Ω0)Ω0(F 2

1 (Ω0) + 1)− 2
√

Ω0C
(2)
2323

)√
C

(3)
2323

× F3(Ω0)− Ω0C
(2)
2323

(
F 2

1 (Ω0) + F 2
2 (Ω0) + F 2

3 (Ω0) + 3
)
.
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Hence, we can conclude the following

Ω̄2 = Ω0 + Λ1(Ω0)
Λ2(Ω0) Ω2K

2 +O(K4). (4.33)

Also, as we mentioned previously that, the cut-off frequencies are not obtain-

able in explicit form. Thus, the first and the second order term in the scaled

frequency form (4.33) may be obtained numerically.
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Figure 4.10: A comparison of numerical solution and asymptotic expansion
for scaled frequency against scaled wave number for the free-faces dispersion
relation (4.15) for Varga material parameters in Table 4.1. The same material
parameters from Figure 4.3 are used.

In Figure 4.10 numerical analysis of dispersion curves with free faces

(4.15) and asymptotic expansion (4.33) are presented for the first three har-

monics. It is remarkable that this comparison showing excellent agreement
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between numerical solution and asymptotic expansion and the cut-off fre-

quency Ω0 takes the values Ω0 ≈ 0.989 at the first harmonic, Ω0 ≈ 1.6371 at

the second harmonic and Ω0 ≈ 2.848 at the third harmonic.

Fixed-free faces case

The dispersion relation (4.17) may be rewritten as

(
C

(1)
2323q̂1 tan(Kq̂1) + C

(2)
2323q̂2 tan(Kq̂2)

)
C

(2)
2323q̂2+

tan(Kq̂3)
C(1)

2323q̂1

C
(3)
2323q̂3

tan(Kq̂1) tan(Kq̂2)− 1
 = 0. (4.34)

A similar analysis to that just carried out in respect of the free-faces case

can be performed for the fixed-free one, resulting in the leading order term

of (4.34) in the following form

√
C

(1)
2323 C

(3)
2323F1(Ω0)F2(Ω0) + C

(2)
2323F2(Ω0)F3(Ω0)+√

C
(1)
2323 C

(2)
2323F1(Ω0)F3(Ω0)−

√
C

(2)
2323 C

(3)
2323 = 0, (4.35)

and the next order term is in the form

Ω2 = Λ̄1(Ω0)/Λ̄2(Ω0), (4.36)
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with

Λ̄1(Ω0) =
(
C

(3)
1313

(
F 2

3 (Ω0) + 1
)√

Ω0 +
√
C

(3)
2323F3(Ω0)

(
C

(2)
1313 − C

(3)
1313

))

F2(Ω0)(C(2)
2323)3/2 +

√
Ω0
[
F1(Ω0)

(
F 2

2 (Ω0)C(2)
1313 C

(3)
2323 + F 2

3 (Ω0)C(2)
2323C

(3)
1313

+ C
(2)
1313C

(3)
2323 + C

(2)
2323 C

(3)
1313

)√
C

(1)
2323 + F3(Ω0)C(2)

2323

√
C

(3)
2323

(
F 2

1 (Ω0) C(1)
1313

+ F 2
2 (Ω0)C(2)

1313 + C
(1)
1313 + C

(2)
1313

)
+ C

(3)
2323

√
C

(2)
2323F2(Ω0)C(1)

1313(
F 2

1 (Ω0) + 1
)]

+ F1(Ω0)
(
F3(Ω0)C(2)

2323

(
C

(1)
1313 − C

(3)
1313

)√
C

(3)
2323

+ C
(3)
2323

√
C

(2)
2323F2(Ω0)

(
C

(1)
1313 −C

(2)
1313

))√
C

(1)
2323,

Λ̄2(Ω0) =
(√

Ω0
(
F 2

3 (Ω0) + 1
)

+
√
C

(3)
2323F3(Ω0)

)
F2(Ω0)(C(2)

2323)3/2+

[
F1(Ω0)

(
F 2

2 (Ω0) C(3)
2323 + F 2

3 (Ω0)C(2)
2323 + C

(3)
2323 + C

(2)
2323

)√
C

(1)
2323 + C

(2)
2323

F3(Ω0)
(
F 2

1 (Ω0) + F 2
2 (Ω0) + 2

)√
C

(3)
2323 + C

(3)
2323

√
C

(2)
2323F2(Ω0)

(
F 2

1 (Ω0) + 1
)]

√
Ω0 + F1(Ω0)

(
F3(Ω0)C(2)

2323

√
C

(3)
2323 + C

(3)
2323

√
C

(2)
2323F2(Ω0)

)√
C

(1)
2323

− C(2)
2323C3(3)

2323.

Now, we can provide the scaled frequency for this case in the form

Ω̄2 = Ω0 + Λ̄1(Ω0)
Λ̄2(Ω0)

K2 +O(K4). (4.37)
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Figure 4.11 is presented to compare numerical and asymptotic solutions

(4.37) with respect of Varga material parameter, for fixed-free faces problem.

In this figure the first three harmonics with the three cut-off frequencies

values at 0.446, 1.307 and 2.287, respectively are presented, showing good

agreement over the long wave region.

 0.5

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

K

Ω̄

Figure 4.11: A comparison of numerical solution and asymptotic expansion
(4.37) for scaled frequency against scaled wave number for the fixed-free faces
dispersion relation (4.17) in the case of Varga material parameters in Table
4.1. The same material parameters from Figure 4.5 are used.
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Fixed-faces case

For this case of boundaries we will first rewrite the dispersion relation (4.19)

in the form

C
(2)
2323q̂2

(
C

(1)
2323q̂1 − C(2)

2323q̂2 tan(q̂1) tan(q̂2)
)

tan(q̂3)+

C
(3)
2323q̂3

(
C

(2)
2323q̂2 tan(q̂1) + C

(1)
2323q̂1 tan(q̂2)

)
= 0. (4.38)

Then, we follow previous procedures to provide the leading order and the

next order of (4.38). The leading order term can be obtained numerically

from

F1(Ω0)F2(Ω0)F3(Ω0)C(2)
2323 − F1(Ω0)

√
C

(2)
2323C

(3)
2323−

F2(Ω0)
√
C

(1)
2323C

(3)
2323 − F3(Ω0)

√
C

(1)
2323C

(2)
2323 = 0, (4.39)

then the next order may be written as

Ω2 = Λ̃1(Ω0)/Λ̃2(Ω0), (4.40)
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with

Λ̃1(Ω0) = (F2(Ω0)(F1(Ω0)C(3)
1313

(
F 2

3 (Ω0) + 1
)√

C
(1)
2323 + (C(2)

2323)3/2F3(Ω0)

C
(1)
1313(F 2

1 (Ω0) + 1))
√
C

(3)
2323 + F1(Ω0)

√
C

(3)
2323F3(Ω0)C(2)

2323C
(2)
1313(F 2

2 (Ω0) + 1)√
C

(1)
2323 − F 2

1 (Ω0)C(2)
2323C

(3)
2323C

(1)
1313 − C

(1)
2323C

(3)
2323C

(2)
1313F

2
2 (Ω0)− C(1)

2323C
(2)
2323

C
(3)
1313F

2
3 (Ω0)− (C(1)

2323C
(3)
1313 + C

(3)
2323C

(1)
1313)C(2)

2323 − C
(1)
2323C

(3)
2323C

(2)
1313)Ω(5/2)

0 −

(F1(Ω0)
√
C

(1)
2323

√
C

(3)
2323F2(Ω0)F3(Ω0)

(
C

(1)
1313 − C

(2)
1313 + C

(3)
1313

)
(C(2)

2323)3/2

− F1(Ω0)
√
C

(1)
2323C

(2)
2323C

(3)
2323C

(1)
1313 − C

(1)
2323(C(3)

1313

√
C

(3)
2323F3(Ω0)C(2)

2323

+
√
C

(2)
2323F2(Ω0)C(3)

2323C
(2)
1313))Ω2

0,

Λ̃2(Ω0) =
( (

F1(Ω0)(F 2
3 (Ω0) + 1)

√
C

(1)
2323 +

√
C

(3)
2323F3(Ω0)(F 2

1 (Ω0) + 1)
)

F2(Ω0)(C(2)
2323)3/2 + F1(Ω0)

√
C

(3)
2323F3(Ω0)C(2)

2323(F2(Ω0)2 + 1)
√
C

(1)
2323−

F 2
1 (Ω0)C(2)

2323C
(3)
2323 − F 2

2 (Ω0)C(1)
2323C

(3)
2323 − F 2

3 (Ω0)C(1)
2323C

(2)
2323 + C

(1)
2323C

(3)
2323

− (C(1)
2323 + C

(3)
2323) C(2)

2323

)
Ω

5
2
0 − Ω2

0

(
F1(Ω0)(C(2)

2323)3/2
√
C

(3)
2323F2(Ω0)F3(Ω0)

− C(2)
2323C

(3)
2323)

√
C

(1)
2323 − C

(1)
2323

(√
C

(2)
2323F2(Ω0)C(3)

2323 +
√
C

(3)
2323 F3(Ω0)C(2)

2323

))
.

Hence, the scaled frequency for this case can be written in the following form

Ω̄2 = Ω0 + Λ̃1(Ω0)
Λ̃2(Ω0)

K2 +O(K4). (4.41)
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Figure 4.12: A comparison of numerical solution and asymptotic expansion
(4.41) for scaled frequency against scaled wave number for the fixed-faces
dispersion relation (4.19) in the case of the Varga material parameters in
Table 4.1. The same material parameters from Figure 4.7 are used.

Figure 4.12 is presented to compare the asymptotic expansion (4.41) with

the numerical solution (4.19) in case of Varga material, in the vicinity of cut-

off frequencies for the first three harmonics, showing excellent agreement.

The corresponding cut-off frequency Ω0 takes the values, 0.783, 1.949 and

2.569 at the first, second and third harmonics, respectively.

121



Chapter 5

Long wave motion in a

symmetric 3-layered laminate

structure

In this chapter, the propagation of long wave anti-plane shear modes in a

symmetrical 3-layered laminate (4-ply) will be investigated.

5.1 Governing equations

We consider a 3-layered sandwiched plate which is formed of a pre-stressed

compressible elastic material. This laminate structure has identical outer

layers of thickness h and an inner core of 2h thickness, which occupies the
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region −h < x2 < h, see Figure 5.1. Due to the symmetry about the mid-

Figure 5.1: Three layered symmetric structure.

plane, the problem under consideration may be decomposed into symmetric

(2-ply) and anti-symmetric (2-ply) solutions, allowing algebraic simplifica-

tion. In Cartesian coordinates xi, i = 1, 2, 3, we can write the equations of

motion (3.1) in the form

C
(l)
1313u

(l)
3,11 + C

(l)
2323u

(l)
3,22 = ρü

(l)
3 , l = s, r, (5.1)

where in what follows, the indices s and r correspond to outer layers and

inner core, respectively. After inserting the travelling wave solution (3.2)

into (5.1), we obtain the linearised equations of motion as provided in (3.3).

From which we deduce that the two solutions (3.6) of (3.3), which are denoted
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in this chapter by ql, l = r, s, take the form

qs = C
(s)
1313 − ῡ2

C
(s)
2323

, qr = C
(r)
1313 − ῡ2

C
(r)
2323

. (5.2)

We are now able to provide the displacements in terms of only two constants

Ai, Bi in the form

u
(i)
3 = Ai sinh(kqlx2) +Bi cosh(kqlx2), i = 1, 2. (5.3)

After substitution of the above solutions into the surface traction compo-

nents, we obtain the associated traction components, which are given by

τ̂ (i) = C
(l)
2323ql (Ai cosh(kqlx2) +Bi sinh(kqlx2)) . (5.4)

5.2 Derivation of the dispersion relations

5.2.1 Free-faces case

We shall now apply zero tractions on the upper and lower surface

C
(s)
2323qs (A3 cosh(2kqlh) +B3 sinh(2kqsh)) = 0, x2 = 2h, (5.5)
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C
(s)
2323qs (A1 cosh(2kqsh)−B1 sinh(2kqsh)) = 0, x2 = −2h, (5.6)

with a set of two continuity conditions at each interface. Thus, the first set

of the continuity conditions will be introduced at the interface x2 = h as

u
(2)
3 = u

(3)
3 and τ̂ (2) = τ̂ (3), which may be expressed in the following forms

A3 sinh(kqsh) +B3 cosh(kqsh)− A2 sinh(kqrh)−B2 cosh(kqrh) = 0, (5.7)

C
(s)
2323qs(A3 cosh(kqsh)−B3 sinh(kqsh))−

C
(r)
2323qr(A2 cosh(kqrh)−B2 sinh(kqrh) = 0. (5.8)

Then, at the interface x2 = −h, the next set of continuity conditions are

given by u(2)
3 = u

(1)
3 and τ̂ (2) = τ̂ (1), which can be provided as

−A1 sinh(kqsh) +B1 cosh(kqsh) +A2 sinh(kqrh)−B2 cosh(kqrh) = 0, (5.9)

C
(s)
2323qs(A1 cosh(kqsh) +B1 sinh(kqsh))−

C
(r)
2323qr(A2 cosh(kqrh) +B2 sinh(kqrh)) = 0. (5.10)
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Due to the symmetry of the problem, this system may also be separated

into two homogeneous linear systems of three equations in three unknowns.

The condition that the system of six equations in six unknowns (5.5)-(5.10)

admits non-trivial solutions provides the associated dispersion relation of the

structure under consideration.

Symmetric case

If we start subtracting equation (5.5) from (5.6), we get

(A3 − A1) cosh(2kqsh) + (B3 +B1) sinh(2kqsh) = 0, (5.11)

then subtracting equation (5.8) from (5.10)

(A3 − A1)C(s)
2323qs cosh(2kqsh) + (B3 +B1)C(s)

2323qs sinh(kqsh)

− 2B2C
(r)
2323qr sinh(kqrh) = 0, (5.12)

and adding equation (5.7) to (5.9)

(A3 −A1) sinh(kqsh) + (B1 +B3) cosh(2kqsh)− 2B2 cosh(kqrh) = 0. (5.13)

The first (symmetric) system may be obtained from equations (5.11), (5.12)

and (5.13). This system of three equations, which has a non-trivial solution,
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may be represented in the following determinant of its coefficients is equal

to zero

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C
(s)
2323qs cosh(2kqsh) C

(s)
2323qs sinh(2kqsh) 0

C
(s)
2323qs cosh(kqsh) C

(s)
2323qs sinh(kqsh) −2C(r)

2323qr sinh(kqrh)

sinh(kqsh) cosh(kqsh) −2 cosh(kqrh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(5.14)

After making use of sinh(2kqsh) = 2 sinh(kqsh) cosh(kqsh), cosh(2kqsh) =

2 cosh2(kqsh)− 1 and a little algebraic manipulation, the symmetric disper-

sion relation with free faces can be written in the form

C
(r)
2323qr sinh(kqrh) cosh(kqsh) + C

(s)
2323qs sinh(kqsh) cosh(kqrh) = 0. (5.15)

Anti-symmetric case

By adding the two tractions free conditions (5.5) to (5.6), we obtain

(A3 + A1) cosh(2kqsh) + (B3 −B1) sinh(2kqsh) = 0, (5.16)
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then, adding equation (5.8) to (5.10)

(A3 + A1)C(s)
2323qs cosh(2kqsh) + (B3 −B1)C(s)

2323qs sinh(kqsh)

− 2A2C
(r)
2323qr cosh(kqrh) = 0, (5.17)

and subtracting equation (5.7) from (5.9)

(A3 + A1) sinh(kqsh) + (B1 −B3) cosh(2kqsh)− 2A2 sinh(kqrh) = 0. (5.18)

We now arrive at the second (anti-symmetric) system 3 × 3, which has a

non-trivial solution provided the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C
(s)
2323qs cosh(2kqsh) C

(s)
2323qs sinh(2kqsh) 0

C
(s)
2323qs cosh(kqsh) C

(s)
2323qs sinh(kqsh) −2C(r)

2323qr cosh(kqrh)

sinh(kqsh) cosh(kqsh) −2 sinh(kqrh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(5.19)

Similar to the symmetric case, we may provide the anti-symmetric dispersion

relation in the form

C
(r)
2323qr cosh(kqrh) cosh(kqsh) + C

(s)
2323qs sinh(kqrh) sinh(kqsh) = 0. (5.20)
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5.2.2 Fixed-faces case

To derive the dispersion relation in this case we will apply first the fixed

boundary conditions, u(1)
3 = 0 and u(3)

3 = 0 on x2 = ±2h

A3 sinh(2kqsh) +B3 cosh(2kqsh) = 0, (5.21)

A1 sinh(2kqsh)−B1 cosh(2kqsh) = 0. (5.22)

Then, we will make use of the continuity requirements at each perfectly

bounded interfaces (5.7)-(5.10) to establish the homogeneous system of six

equations in six unknowns which will be decomposed into the two following

systems.

Symmetric case

By adding (5.10) to (5.21), (5.7) to (5.9) and subtracting (5.8) from (5.10),

the non-trivial solution of the following determinant will provide the sym-

metric dispersion relation for fixed faces boundary conditions

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 cosh(2kqsh) sinh(2kqsh)

−2C(r)
2323qr cosh(kqrh) C

(s)
2323qs sinh(kqsh) C

(s)
2323qs sinh(kqsh)

−2 sinh(kqrh) sinh(kqsh) cosh(kqsh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

(5.23)
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which takes the form

C
(r)
2323qr sinh(kqrh) cosh(kqsh) + C

(s)
2323qs sinh(kqsh) cosh(kqrh) = 0. (5.24)

Anti-symmetric case

In this case, the 3×3 determinant can be obtained by replacing the hyperbolic

functions of the inner core sinh(kqrh) by cosh(kqrh) in the determinant (5.23)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 cosh(2kqsh) sinh(2kqsh)

−2C(r)
2323qr sinh(kqrh) C

(s)
2323qs sinh(kqsh) C

(s)
2323qs sinh(kqsh)

−2 cosh(kqrh) sinh(kqsh) cosh(kqsh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(5.25)

The anti-symmetric dispersion relation for this case may be written as

C
(s)
2323qs cosh(kqrh) cosh(kqsh) + C

(r)
2323qr sinh(kqrh) sinh(kqsh) = 0. (5.26)

5.2.3 Fixed-free case

Now we will consider the fixed-free faces problem. Therefore, zero displace-

ment on the lower surface x2 = −2h and zero traction on the upper surface

x2 = 2h, will be imposed in conjunction with the four continuity conditions
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(5.7)-(5.10) to establish a system of six equations in six unknowns

C
(s)
2323qs(A3 sinh(2kqsh) +B3 cosh(2kqsh)) = 0, (5.27)

A1 sinh(2kqsh)−B1 cosh(2kqsh) = 0. (5.28)

This system have a non-trivial solution provided the following determinants

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cs −Ss −2C(r)
2323qr

C
(s)
2323qs

Cr 0 Cs Ss

Cs Ss 0 2C(r)
2323qr

C
(s)
2323qs

Cr 0 0

Ss −Cs 0 2Cr −Ss −Cs

Ss −Cs −2Sr 0 Ss Cs

−S2s C2s 0 0 C
(s)
2323qsC2s C

(s)
2323qsC2s

S2s −C2s 0 0 C
(s)
2323qsC2s C

(s)
2323qsS2s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(5.29)

(5.29) provides the dispersion relation for fixed-free faces which may be rep-

resented in the explicit form

C
(r)
2323qrC

(s)
2323qsC

2
sC

2
r + 2

(
C

2(s)
2323q

2
s + (qr C(r)

2323)2
)
CrSrCsSsC

(r)
2323qr(qsC

(s)
2323)2C2

s−

2C(r)
2323qrq

2
s(C

(s)
2323)2

(
C2
s + C2

r

)
+ C

(r)
2323qrC

(s)
2323qs = 0,

(5.30)
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where C2s = cosh(2kqsh), S2s = sinh(2kqsh) and Cl = cosh(kqlh), Sl =

sinh(kqlh), l = r, s. In this case, we would mention that this system can not

be separated into two systems of 3 equations in 3 unknowns because of the

lack of symmetry about the mid-plane.

5.2.4 Reduction to linear isotropic case

We now consider linear isotropic material and derive the dispersion relations

for the three types of boundary conditions. Also, we note here that C(l)
1313 =

C
(l)
2323 = µ(l), thus, the two roots (5.2) may be written as

qs = 1− ῡ2

µs
, qr = 1− ῡ2

µr
. (5.31)

For free faces symmetric dispersion relation (5.15) for the pre-stressed

materials can be rewritten for linear isotropic materials as follows

µrqr sinh(kqrh) cosh(kqsh) + µsqs sinh(kqsh) cosh(kqrh) = 0, (5.32)

while for anti-symmetric motion (5.20) reduces to

µrqr cosh(kqrh) cosh(kqsh) + µsqs sinh(kqrh) sinh(kqsh) = 0. (5.33)
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Equation (5.33) coincides with that for the anti-symmetric dispersion relation

for the anti-plane problem in linear isotropic material, which has been looked

by Prikazchikova et al. (2018).

For fixed faces, equations (5.24) and (5.26) will be reduced to

µrqr sinh(kqrh) cosh(kqsh) + µsqs sinh(kqsh) cosh(kqrh) = 0, (5.34)

and

µsqs cosh(kqrh) cosh(kqsh) + µrqr sinh(kqrh) sinh(kqsh) = 0, (5.35)

for symmetric and anti-symmetric cases, respectively.

In case of fixed-free boundary conditions equation (5.30) may be reduced

to

µrqrµsqsC
2
sC

2
r + 2

(
µ2
rq

2
s + µ2

rq
2
r

)
CrSrCsSsµrqrµ

2
sq

2
sC

2
s−

2µrqrµ2
sq

2
s

(
C2
s + C2

r

)
+ µrqrµsqs = 0. (5.36)

5.3 Numerical results

We now restrict our concern to the behaviour of the antisymmetric disper-

sion relations associated to a pre-stressed 3-layered laminate structure. The
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three layers chosen are the 4-ply considered as two unit cells. The numerical

results for the symmetric case (upper cell) have been obtained in Chapter 3

and a similar numerical analysis, to that carried out in respect of the 2-ply

structure, may perform next for the antisymmetric case (lower cell). These

dispersion relations are then investigated numerically for pre-stressed disper-

sion relations in case of Mooney-Rivlin material. In this subsection, we show

the numerical results chosen to reveal the character of the anti-symmetric

dispersion relation for three types of boundaries considered. Two sets of ma-

terial parameters are used in various configurations for the outer layers and

inner core to generate the figures presented in this section, see Table 5.1.

Table 5.1: Mooney-Rivlin material (MRM) used in numerical results

Materials µ
(l)
1 µ

(l)
2 λ

(l)
1 λ

(l)
2 λ

(l)
3 C

(l)
1313 C

(l)
2323

Inner core 1.2 0.3 1 1.1 1 1.42 1.65
Outer layers 1 1.1 2 2 10 0.64 0.54

The following set of six figures are presented using material parameters

generated from the Mooney-Rivlin strain energy function. Moreover, the

numerical results have been derived for anti-symmetric dispersion relation

of both free and fixed boundary conditions. The dispersion curves for free-

faces case are presented in Figure 5.2 for the material parameters presented

in Table 5.1. It is clear that there is no fundamental mode in the long

wave region, however its symmetric counterpart has a a finite wave speed
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limit value . We also present Figure 5.3 showing scaled frequency Ω̄ against

scaled wave number K. In this figure we can see that only non-zero cut-of

frequencies values are possible for this boundary condition and the lowest

value is Ω0 ≈ 0.84.

 1

 2

 3

 4

 5

 0  5  10  15  20

K

ῡ

Figure 5.2: Scaled wave speed against scaled wave number for anti-symmetric
Mooney-Rivlin dispersion relation (5.20) with free faces for the material pa-
rameters in Table 5.1.
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Figure 5.3: Scaled frequency against scaled wave number for anti-symmetric
dispersion relation (5.20) with free faces in the case of Mooney-Rivlin mate-
rial parameters in Table 5.1.

In Figure 5.4 a plot of scaled phase speed ῡ against scaled wave number

K is presented for the first seven branches in respect of the anti-symmetric

dispersion relation associated with fixed faces. We first remark that the long

wave limit of each harmonic is non-zero in anti-symmetric case. In Figure 5.5,

corresponding plots of scaled frequency Ω̄ against scaled wave number are

presented. We note from this figure that in the low wave number (long wave)

region (K → 0) the anti-symmetric limit of the fundamental mode is not-zero

and the lowest cut-off frequency value is observed at Ω0 ≈
√

0.3767 ≈ 0.608.

At the end of this subsection, fixed-free faces case has been investigated

numerically. Thus, Figure 5.6 showed no dispersion curves have a finite wave
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Figure 5.4: Scaled wave speed against scaled wave number for anti-symmetric
Mooney-Rivlin dispersion relation (5.26) with fixed faces for the material
parameters in Table 5.1.

speed and ῡ → ∞ as K → 0. Then, in Figure 5.7 it is observed that in the

vicinity of the long wave all harmonics have non-zero limits. It is remarkable

that the first harmonic in this case of boundaries has a lower cut-off frequency

limit value than other cases.

5.4 Long wave limit approximations

In this section, asymptotic approximations of anti-symmetric dispersion re-

lation will be carried out for the pre-stressed 3-layered sandwiched laminate.

These approximations provide phase speed, and frequency, as an explicit
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Figure 5.5: Scaled frequency against scaled wave number for anti-symmetric
Mooney-Rivlin dispersion relation (5.26) with fixed faces for the material
parameters in Table 5.1.

function of wave number for each mode. As previously mentioned in (chap-

ters 3 and 4) for this type of motion ῡ is generally very much larger than

the associated body wave speeds in the long wave regime. The asymptotic

analysis, however, is clearly form the numerical analysis that there are no

fundamental modes in anti-symmetric motion. Thus, the long wave approx-

imations will be limited to case of high frequency approximations for which

the material parameters in each layer are of similar order.
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Figure 5.6: Scaled wave speed against scaled wave number for Mooney-Rivlin
dispersion relation (5.30) with fixed-free faces for the material parameters in
Table 5.1.

5.4.1 Pre-stressed elastic materials

Free-faces case

In this case, the scaled frequency will be introduced in the following form

Ω̄2 = Ω0 + Ω2K
2 +O(K4),

and the anti-symmetric dispersion relation (5.20) will be written as

C
(s)
2323qs tan(Kqs) tan(Kqr)− C(r)

2323qr = 0. (5.37)
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Figure 5.7: Scaled frequency against scaled wave number for dispersion re-
lation (5.30) with fixed-free faces in the case of Mooney-Rivlin material pa-
rameters in Table 5.1.

By using expansions (3.48), the leading order term may be expressed explic-

itly by the following relation

√
C

(s)
2323F1(Ω0)F2(Ω0)−

√
C

(r)
2323 = 0, (5.38)

where Ω0 can be found by solving equation (5.38) numerically. The second

term in this case can be introduced as

Ω2 = Φ̄1(Ω0)/Φ̄2(Ω0), (5.39)

with
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Φ̄1(Ω0) =
√
C

(r)
2323 C

(s)
2323F1(Ω0)F2(Ω0)C(s)

1313 − C
(r)
1313C

(r)
2323

+
(√

C
(r)
2323F1(Ω0)F 2

2 (Ω0)C(s)
1313 +

√
C

(s)
2323F

2
1 (Ω0)F2(Ω0)C(r)

1313

+
√
C

(r)
2323F1(Ω0)C(s)

1313 +
√
C

(s)
2323F2(Ω0)C(r)

1313

)√
Ω0,

and

Φ̄2(Ω0) = −C(r)
2323 +

(√
C

(r)
2323F1(Ω0)F 2

2 (Ω0) +
√
C

(s)
2323F

2
1 (Ω0)F2(Ω0)

+
√
C

(r)
2323F1(Ω0)C(s)

1313 +
√
C

(s)
2323F2(Ω0) )

√
Ω0

+
√
C

(r)
2323C

(s)
2323F1(Ω0)F2(Ω0).

We can now express Ω̄2 in the following form

Ω̄2 = Ω0 + Φ1(Ω0)
Φ2(Ω0) K2 +O(K4). (5.40)

In Figure 5.8, Ω̄ is shown as a function of K and the asymptotic approxima-

tion (5.40) of dispersion relation has been shown to be in good agreement

with the exact dispersion relation (5.20).
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Figure 5.8: Comparison of numerical solution of (5.33) with asymptotic ex-
pansion (5.40) established for the anti-symmetric free faces case. The same
material parameters from Figure 5.3 are used.

Fixed-faces case

For fixed faces case, we may consider dispersion relation (5.26) in the follow-

ing form

C
(r)
2323qr tan(Kqr) tan(Kqs)− C(s)

2323qs = 0. (5.41)

The leading order term can be expressed explicitly from the numerical solu-

tion of the following relation

√
C

(2)
2323F1(Ω0)F2(Ω0)−

√
C

(1)
2323 = 0, (5.42)
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and the second term can be introduced as

Ω2 = Φ̃1(Ω0)/Φ̃2(Ω0), (5.43)

with

Φ̃1(Ω0) =
√
C

(r)
2323 C

(s)
2323F1(Ω0)F2(Ω0)C(s)

1313 +
(√

C
(s)
2323F2(Ω0)C(r)

1313

+
√
C

(s)
2323F

2
1 (Ω0) F2(Ω0)C(r)

1313 +
√
C

(r)
2323F1(Ω0)C(s)

1313

+
√
C

(r)
2323F1(Ω0)F 2

2 (Ω0)C(s)
1313

)√
Ω0 − C(r)

1313C
(r)
2323,

and

Φ̃2(Ω0) = −C(r)
2323 +

(√
C

(r)
2323F1(Ω0)F 2

2 (Ω0) +
√
C

(s)
2323F

2
1 (Ω0)F2(Ω0)

+
√
C

(r)
2323F1(Ω0)C(s)

1313 +
√
C

(s)
2323F2(Ω0)

)√
Ω0

+
√
C

(r)
2323 C

(s)
2323F1(Ω0)F2(Ω0).

In this case, the scaled frequency by

Ω̄2 = Ω0 + Φ̃1(Ω0)
Φ̃2(Ω0)

K2 +O(K4). (5.44)

The above relation is used with the exact dispersion relation (5.35) to provide

excellent agreement in Figure 5.9. Also, the numerical solution and both the

leading and second order approximations are presented in respect of the first
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three harmonics associated with a Mooney-Rivlin material.
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Figure 5.9: Comparison of numerical solution of (5.35) with asymptotic ex-
pansion (5.44) established for the anti-symmetric fixed faces case. The same
material parameters from Figure 5.5 are used.
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Fixed-free faces case

We begin our investigation of long wave high frequency in this case by ex-

pressing the dispersion relation (5.30) in the form

C
(r)
2323C

(s)
2323 q̂r q̂s

(
4 cos2 (Kq̂s) cos2 (Kq̂r)− 2 cos2 (Kq̂r)− 2 cos2 (Kq̂s)− 1

)
+ 2 cos (Kq̂s) sin (Kq̂s) cos (Kq̂r) sin (Kq̂r)

(
(C(s)

2323)2q̂2
s + (C(r)

2323)2q̂2
r

)
= 0.

(5.45)

Then, providing the leading order term as

4C2
spC

2
rp

√
C

(r)
2323

√
C

(s)
2323 − 2Csp SspCrp SrpC(r)

2323 − 2Csp SspCrp SrpC(s)
2323−

2C2
sp

√
C

(r)
2323

√
C

(s)
2323 − 2C2

sp

√
C

(r)
2323

√
C

(s)
2323 +

√
C

(r)
2323

√
C

(s)
2323 = 0,

(5.46)

where Clp = cos
√√√√ Ω0

C
(l)
2323

 , Slp = sin
√√√√ Ω0

C
(l)
2323

 , l = r, s. Then, the next

order term can be written as

Ω2 = Φ1/Φ2, (5.47)
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with

Φ1 =
(

4
√

Ω0C
(s)
2323Csp SspC

(r)
1313 + 2Ω0C

(s)
1313 (Csp − Ssp) (Csp + Ssp)

)

× Crp Srp (C(r)
2323)3/2 + Csp ( 2C(r)

1313 Ω0 (Crp − Srp) (Crp + Srp) +

4Crp

√
Ω0C

(r)
2323Srp C

(s)
1313 )Ssp (C(s)

2323)3/2 − 4
(
Crp

2 − 1/2
)
×

(
C

(r)
1313 + C

(s)
1313

) (
C2
sp − 1/2

)
C

(r)
2323C

(s)
2323

√
Ω0 + 2 Ω0 (

(
4C(s)

2323(
C

(r)
1313 + C

(s)
13134

)
C2
sp − Ssp

2C
(s)
1313 − 2C(r)

1313 )CrpSrp

√
C

(r)
2323+

((
C

(r)
1313 + 4C(s)

1313

)
C2
rp − S2

rpC
(r)
1313 − 2C(s)

1313

)√
C

(s)
2323CspC

(r)
2323Ssp ) ,

Φ2 =4
(√

C
(s)
2323Csp Ssp

√
Ω0 + 1/2C2

spΩ0 − 1/2S2
spΩ0

)
(C(r)

2323)3/2

× Crp Srp + 4
(√

C
(r)
2323Crp Srp

√
Ω0 + 1/2C2

rpΩ0 − 1/2S2
rpΩ0

)

× CspSsp
(
C

(s)
2323

)3/2
+ C

(s)
2323Srp Ω0Crp

(
10C2

sp − 2S2
sp − 4

)
×
√
C

(r)
2323 + (Csp Ssp Ω0

(
10C2

rp − 2S2
rp − 4

)√
C

(s)
2323

−8C(s)
2323

(
C2
rp − 1/2

) (
C2
sp − 1/2

)√
Ω0

)
C

(r)
2323.

Hence, the scaled frequency in this case can be written in the form

Ω̄2 = Ω0 + Φ1(Ω0)
Φ2(Ω0) K

2 +O(K4). (5.48)
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Figure 5.10: Comparison of numerical solution of (5.30) with asymptotic
expansion (5.48) established for the anti-symmetric fixed free faces case. The
same material parameters from Figure 5.7 are used.

Figure 5.10 provides excellent agreement between the numerical solution

of (5.30) and asymptotic expansion (5.48).

We remark that case of antisymmetric of 4-ply with fixed-free faces might

look similar to global low-frequency regimes, see Kaplunov et al. (2016). At

the same time, there is a difference since the next cut-off frequency is still

small, not of order unity.

Expanding the leading order in the low-frequency limit, we will get the
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cut-off frequencies Ω0

√
C

(r)
2323

√
C

(s)
2323Ω0 + 4

(
1

C
(r)
2323
− 1
C

(s)
2323

)√
C

(r)
2323

√
C

(s)
2323Ω2

0 +O(Ω0)3 ≈ 0,

(5.49)

with

Ω0 = 1
4

 C
(r)
2323C

(s)
2323

C
(s)
2323 + C

(r)
2323

 . (5.50)

One of the possible physical interpretations of this small cut-off frequencies

values as Ω0 � 1 is related to quasi-static behaviour of both inner and outer

layers of the 4-ply laminate.
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Figure 5.11: Comparison of numerical solution of (5.30) with asymptotic ex-
pansion (5.44) obtained for the anti-symmetric fixed-free faces case; C(r)

2323 =
C

(r)
1313 = 0.2, C(s)

2323 = C
(s)
1313 = 0.1.

Figure 5.11 comparing numerical solution with asymptotic approxima-

tion in the case of fixed-free faces and showing good agreement. Three

modes in this figure show low frequency limits. These limits correspond-

ing to
√

0.204 ≈ 0.14 at the first harmonic curve,
√

0.192 ≈ 0.438 at the

second curve and
√

0.5283 ≈ 0.727 at the third one.
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5.4.2 Reduction to linear isotropic case

Free-faces case

To investigate the long wave limits in this case, we will first express the

dispersion relation (5.33) as

µsq̂s tan(Kqr) tan(Kqs)− µrq̂r = 0. (5.51)

Following similar procedures in the pre-stressed case, the leading order term

may be written as

T1(Ω0)T2(Ω0)√µs −
√
µr = 0. (5.52)

The next order term in the expansion (3.48) can be presented in the form

Ω2
2 = G1/G2, (5.53)

with

G1 = T1(Ω0)T1(Ω0)µ3/2
s

√
µr + (T1(Ω0)µs(T 2

2 (Ω0) + 1)√µr+

T2(Ω0)µr
√
µs(T 2

1 (Ω0) + 1))
√

Ω0 − µ2
r,

and
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G2 = T1(Ω0)(T 2
2 (Ω0) + 1)√µr + T2(Ω0)√µs(T 2

1 (Ω0) + 1))
√

Ω0+

T1(Ω0)T2(Ω0)√µr
√
µs − µr.

Now, we can express the scaled frequency expansion (3.48) by substituting

(5.52) and (5.53) as follows

Ω̄2 = Ω0 + G1

G2
K2 +O(K4). (5.54)
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Figure 5.12: Comparison of numerical solution for anti-symmetric free-faces
dispersion relation (5.33) and approximation (5.54) in the case of the linear
isotropic material, corresponding to µs = 0.7 and µr = 1.75.

In Figure 5.12, a comparison of the asymptotic expansion (5.54) with nu-

merical solution (5.33) is made for first three harmonics, showing excellent

151



agreement over the long wave region. It is worth to mention that in sym-

metric case with the same material parameters the lowest cut-off frequency

limit reached Ω0 =
√

2.3645 ≈ 1.53 whereas in this case the lowest one is

Ω0 =
√

0.35729 ≈ 0.597.

Fixed-faces case

Similarly to the previous case, we will express the dispersion relation (5.35)

as

µrq̂r tan(Kqr) tan(Kqs)− µsq̂s = 0. (5.55)

Then, the scaled frequency in this case will be introduced in the form

Ω̄2 = Ω0 + Ḡ1

Ḡ2
K2 +O(K4). (5.56)

where The leading order term Ω0 of the dispersion relation (5.55) can be

obtained by solving the following relation numerically

T1(Ω0)T2(Ω0)√µr +√µs = 0. (5.57)

Then, after a little algebraic manipulation an expression for the next approx-

imation may be established,
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Ω2 = Ḡ1/Ḡ2, (5.58)

with

Ḡ1 = T 2
1 (Ω0)T2(Ω0)µr

√
µs
√

Ω0 + T1(Ω0)T 2
2 (Ω0)µs

√
Ω0
√
µr+

T1(Ω0)µs
√

Ω0
√
µr + T1(Ω0)T2(Ω0)µ3/2

r

√
µs + T2(Ω0)µr

√
µs
√

Ω0 − µ2
s,

and

Ḡ2 = T 2
1 (Ω0)T2(Ω0)√µs

√
Ω0 + T1(Ω0)T 2

2 (Ω0)
√

Ω0
√
µr+

T1(Ω0)T2(Ω0)√µr
√
µs + T1(Ω0)

√
Ω0
√
µr + T2(Ω0)√µs

√
Ω0 − µs.

Another comparison has been done in Figure 5.13 for fixed boundary value

problem, which clearly shown good agreement for the first three branches.

From this figure we noted that the lowest cut-off frequency limit in this case

of anti-symmetric is Ω0 =
√

0.8319 ≈ 0.912, which is less than the value in its

symmetric counterpart for the same material parameters at Ω0 =
√

2.8506 ≈

1.688.
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Figure 5.13: Comparison of numerical solution for anti-symmetric fixed-faces
dispersion relation (5.35) and approximation (5.56) in the case of the linear
isotropic material, corresponding to µ(s) = 0.7 and µ(r) = 1.75.

Fixed-free faces case

In this case we will express the dispersion relation (5.36) in the form

µr µs q̂r q̂s
(
4 cos2 (Kq̂2) cos2 (Kq̂r)− 2 cos2 (Kq̂s)− 2 cos2 (Kq̂s)− 1

)
+ 2 cos (Kq̂s) sin (Kq̂s) cos (Kq̂r) sin (Kq̂r)

(
µ2
r q̂

2
r + µ2

s q̂
2
s

)
= 0. (5.59)

The leading order term can be obtained from (5.59)

√
µr
√
µs
(
4C2

s0C
2
r0 − 2C2

r0 − 2C2
s0 + 1

)
− 2Cs0Cr0Ss0Sr0 (µr + µs) = 0,

(5.60)
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where Cl0 = cos
(√

Ω0

µl

)
, Sl0 = sin

(√
Ω0

µl

)
, l = r, s. Then, the next

order term can be expressed as

Ω2 = G̃1/G̃2, (5.61)

with

G̃1 = 3 Ω0 Sr0 Cr0 µr

(
C2
s0 −

1
2

)
µ3/2
r + 3Ω0 Ss0

(
C2
r0 −

1
2

)
µrCs0 µ

3/2
s +

Cs0 Cr0 Ss0 Sr0

√
Ω0
(
µ5/2
r

√
µs + µ5/2

s

√
µr
)
− µs

(
C2
r0 −

1
2

)
µr

(
C2
s0 −

1
2

)

(µr + µs)
√

Ω0 + Ω0

(
Cr0Sr0µ

2
s

(
C2
s0 −

1
2

)√
µr +√µsCs0Ss0µ

2
r

(
C2
r0 −

1
2

))
,

G̃2 = 3 Ω0

(
Cr0 Sr0 µs

(
C2
s0 −

1
2

)√
µr +√µsCs0 Ss µr

(
C2
r0 −

1
2

))
+

(
Cs0

√
µs
√

Ω0Ss0 + Ω0

(
C2
s0 −

1
2

))
Sr0 Cr0 µ

3/2
r + Ss0

(
Cr0

√
µr Ω0Sr0

+ Ω0

(
C2
r0 −

1
2

)
)Cs0 µ

3/2
s − 2µs

(
C2
r0 −

1
2

)
µr

(
C2
s0 −

1
2

)√
Ω0.

From the above knowledge, we can write the appropriate expansion for the

scaled frequency in the form

Ω̄2 = Ω0 + G̃1

G̃2
K2 +O(K4). (5.62)
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Figure 5.14: Comparison of numerical solution for anti-symmetric fixed free
faces dispersion relation (5.36) and approximation (5.62) in the case of the
linear isotropic material, corresponding to µ(s) = 0.7 and µ(r) = 1.75.
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Chapter 6

Conclusion

Small-amplitude anti-plane wave motion in a pre-stressed compressible lay-

ered elastic structure subject to three different types of boundary conditions,

namely free-face, fixed-free face and fixed-face, have been investigated in this

thesis. The assumption of anti-plane motion allows significant simplifica-

tion of generally complicated algebraic expressions expected in pre-stressed

layered structures. First, the dispersion relation is derived and solved numer-

ically. The derivations for layered structures rely on the propagator matrix

technique. Predictably, the long-wave low-frequency behaviour is only pos-

sible for the free face boundary conditions, whereas for the other two types

(fixed faces and fixed-free case) there is no fundamental mode. Then, explicit

approximations for the phase velocity and frequency are obtained for two-

and three-layered asymmetric laminates, as well as for a symmetric four-
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ply layered structure, contributing to elucidating essential features of the

dispersion phenomena. The efficiency of the derived long-wave asymptotic

approximations is illustrated numerically, for several strain-energy functions,

such as neo-Hookean, Mooney-Rivlin and Varga models. Both low- and high-

frequency limits have been addressed. In particular, the expressions for the

cut-off frequencies have been derived.

First, in Chapter 2 an introductory studies of dispersive wave phenom-

ena in a single pre-stressed, elastic layer have been performed, along with a

description of the propagator matrix technique. Then, in Chapter 3 a two-

layered laminate is considered with perfect bonding on the interface. The

dispersion relations have been derived for all three types of face boundary

conditions. The numerical solutions of these relations are presented and

compared with those for linearly isotropic elastic material, elucidating some

specific features caused by the presence of a pre-stress. The long-wave ap-

proximations of the dispersion relations are constructed, including both low-

and high-frequency domains. Explicit approximate dependencies of phase

velocity and frequency on the wave number are obtained. In Chapter 4,

the previously obtained results are generalised to a three-layered asymmetric

laminate.

Finally, a particular type of a symmetric structure, namely, a four-ply

laminate is studied. The presence of symmetry allows separate treatment of
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symmetric and anti-symmetric motion for free-face or fixed-face boundary

conditions. The analysis in fixed-free case remains relatively less straightfor-

ward, since the symmetry cannot be employed. It is demonstrated that in

case of anti-symmetric motion of a symmetric structure subject to free-face

boundary conditions, the solution matches results obtained in Prikazchikova

et al. (2018). Other types of motion/boundary conditions are thoughtfully

studied. It is demonstrated that in the long wave limit, depending on the

pre-stress, at most one finite limiting phase speed may exist in the symmetric,

free-face scenario, whereas, for all other examined boundary value problems

such a mode does not exist.

Some possible further generalisations of the approach include, in partic-

ular, consideration of higher number of layers, including a more challenging

case of n-layered structure, where propagator matrix technique will be espe-

cially useful, as well as taking into account effects of curvature, inhomogene-

ity, viscosity, etc. Moreover, the achieved results provide the basis for deriva-

tion of asymptotically consistent lower dimensional models for anti-plane

motion of layered pre-stressed structures. Finally, we mention prospective

development of multiparametric asymptotic analysis for strongly inhomoge-

neous high-contrast structures, bringing further the results in Prikazchikova

et al. (2018).
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