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Abstract We first characterize strain solitary waves propagating in a fluid-filled membrane tube when the
fluid is stationary prior to wave propagation and the tube is also subjected to a finite stretch. We consider
the parameter regime where all traveling waves admitted by the linearized governing equations have nonzero
speed. Solitary waves are viewed as waves of finite amplitude that bifurcate from the quiescent state of the
system with the wave speed playing the role of the bifurcation parameter. Evolution of the bifurcation diagram
with respect to the pre-stretch is clarified. We then study the stability of solitary waves for a representative
case that is likely of most interest in applications, the case in which solitary waves exist with speed c lying in
the interval [0, c1) where c1 is the bifurcation value of c, and the wave amplitude is a decreasing function of
speed. It is shown that there exists an intermediate value c0 in the above interval such that solitary waves are
spectrally stable if their speed is greater than c0 and unstable otherwise.

1 Introduction

Understanding pulsewave propagation and reflection in distensible fluid-filled tubes has a range of applications
such as the detection of the site of obstruction and diagnosis of the health status of arteries [1]. A complete
study would need to take into account the fact that blood is non-Newtonian, and the arterial wall is dissipative,
dispersive and nonlinear. However, very often only some of these features are considered depending on the
particular emphasis of the study. For instance, most of the early literature is based on a linear, long wavelength
(non-dispersive) theory, first put forward in [2] and refined in [3]. A linear theory taking into account the
leading-order dispersive effect was derived in [4] and was used in [5] to explain the dispersive effect observed
in [6]. Weakly nonlinear solitary waves based on various approximate models have been studied in [7–13].

The development of nonlinear elasticity theory makes it possible to describe the constitutive behavior of
distensible tubes such as arteries in a more precise manner [14]. Under this theory, the dispersion relation can
be derived for a general material model and a finite deformation prior to wave propagation may be taken into
account. Figure 1 shows a typical dispersion curve for the Ogden material model when the tube is stretched by
20% prior to wave propagation and the inertia of fluid is neglected. The character of the two branches can be
understood by noting that in the limit k → ∞ the ρc2 associated with the upper and lower branches tend to,
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Fig. 1 Dispersion curve when the tube is stretched by 20% prior to wave propagation. Left: the two branches with positive c;
right: blow-up of the upper branch showing that it is actually monotonically decreasing

respectively, the extensional modulus and tension in the axial direction. In other words, waves associated with
the upper branch behave like longitudinal waves in a rod, whereas waves associated with the lower branch
are like transverse waves in a stretched string. The classical long wavelength theory corresponds to the lower
branch near k = 0. For instance, the Moens–Korteweg formula for the pulse wave speed would correspond to
the speed at k = 0, which we denote by c1. It will be shown later that the lower branch is also the branch of
most interest as far as solitary waves are concerned.

It is expected that the nonlinear evolution of longwavelength traveling waves is governed by the Korteweg–
de Vries (KdV) equation and so there exist two families of solitary waves. Our current study is concerned
with the characterization and stability of these traveling wave solutions. It is also observed that the lower
branch is very sensitive to pre-stress such as the internal pressure and axial stretch, whereas the upper branch
is not and neither does it vary significantly over the entire wave number regime. The speed c1 decreases
with increasing internal pressure. When c1 vanishes, the associated solitary wave becomes a standing wave,
corresponding to a static bulged configuration. Characterization of these bulging (aneurysm) solutions is the
object of a series of recent studies. For instance, spectral stability of the aneurysm solutions in the absence
of fluid inside the tube (pressure-controlled case) is given in [15]. A bifurcation parameter was the inflation
pressure, and the authors found that the entire family of the aneurysm solutions is spectrally unstable (i. e., a
localized perturbation would grow exponentially with time). The authors of [16] studied the stability of the
whole branch of aneurysm solutions in the presence of a fluid with zero mean flow. It was found that the
aneurysm solutions are still unstable, but the presence of fluid has a strong stabilizing effect. In [17] a stability
analysis of the aneurysm solutions in the presence of a mean flow was undertaken and it was found that if the
speed of the mean flow is large enough, then the aneurysm solutions may be spectrally stable. It was found in
[18] that for membrane tubes with localized wall thinning there exist two families of bulging solitary waves,
and the lower family with amplitudes increasing with the inflation pressure is spectrally stable. In the latter
case, we can speak about the standing wave (not orbital) stability, because the problem has no translational
invariance any more.

In the present paper, we examine the problem of stability of solitary waves, propagating with a nonzero
velocity in a fluid-filled axisymmetric membrane tube. In this case, the bifurcation parameter is the solitary
wave speed.

The paper is organized as follows. In Sect. 2 we give the formulation of the problem. Section 3 is devoted
to the description and computation of solitary wave solutions and their variation with respect to the pre-stretch.
In Sect. 4 we perform the spectral stability analysis for solitary waves corresponding to a representative case.
The paper is concluded in Sect. 5 with a summary and additional discussion.

2 Formulation of the problem

We model the tube as an incompressible, isotropic, hyperelastic, cylindrical membrane with constant unde-
formed radius R, thickness H and density ρ. The tube is assumed to be infinitely long, and end conditions are
imposed at infinity. We use cylindrical polar coordinates; for the undeformed configuration, the longitudinal
direction corresponds to the coordinate Z .

We assume that the axisymmetry remains throughout the entire deformation; the deformed configuration
is expressed using cylindrical polar coordinates r, z, where r = r(Z , t), z = z(Z , t), and t denotes time.
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Since the deformation is axially symmetric, the principal directions of stretch correspond to the lines of
latitude (the 1-direction), themeridian (the 2-direction) and the normal to the deformed surface (the 3-direction),
and the principal stretches are given by[14]

λ1 = r

R
, λ2 = (r ′2 + z′2)

1
2 , λ3 = h

H
, (1)

where a prime represents differentiation with respect to Z and h denotes the deformed thickness.
The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration for an incompressible material are

given by

σi = λi Ŵi − p̂, i = 1, 2, 3 (no summation),

where Ŵ = Ŵ (λ1, λ2, λ3) is the strain–energy function, Ŵi = ∂Ŵ/∂λi and p̂ is a Lagrange multiplier
associated with the constraint of incompressibility. Utilizing the incompressibility constraint λ1λ2λ3 = 1 and
the membrane assumption of no stress through the thickness direction σ3 = 0, we find

σi = λiWi , i = 1, 2,

where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc.
For our numerical calculations, we shall use the Ogden material model [19] for which Ŵ is given by

Ŵ = μ

3∑

r=1

μr (λ
αr
1 + λ

αr
2 + λ

αr
3 − 3)/αr , (2)

with α1 = 1.3, α2 = 5.0, α3 = −2.0, μ1 = 1.491, μ2 = 0.003, μ3 = −0.023, and μ = 4.225 kg cm−2. The
parameter μ is the ground-state shear modulus.

We assume that the fluid filling the tube is inviscid and incompressible with constant density ρf . It is
initially at rest, and during wave propagation its axial velocity is denoted by vf and the pressure in the fluid
is P . The equations of motion for the tube can be derived using the linear momentum balance applied to an
infinitesimal volume element of the tube wall [14] . We shall non-dimensionalize the governing equations
using the following scales: R for Z , z and r , μ for the Cauchy stresses σ1, σ2, and the energy function W ,
μH/R for P ,

√
μ/ρ for vf , and R

√
ρ/μ for the time. Using the same notation for the scaled dimensionless

variables, we have [14,17]
[
σ2

z′

λ22

]′
− Prr ′ = z̈,

[
σ2

r ′

λ22

]′
− σ1

λ1
+ Prz′ = r̈ , (3)

where the dot denotes differentiation with respect to time.
Expressed in terms of the Lagrangian coordinate Z and the time t , the dimensionless equations of motion

for the fluid inside the tube read [14]

ṙ z′ − r ′ ż + vfr
′ + 1

2
rv′

f = 0, bf
[
v̇f z

′ − v′
f ż + vfv

′
f

] + P ′ = 0, (4)

where bf is defined by

bf = ρf R

ρH
.

The governing equations (3) and (4) admit the uniform solution

r = r∞ = λ1∞, z′ = λ2∞, vf = 0, P = P∞ ≡ W∞
1

r∞λ2∞
, (5)

whereW1 = ∂W/∂λ1 and this notion of using a subscript to signify differentiationwith respect to the associated
stretch will be followed throughout this paper. We also use the superscript∞ to signify evaluation at λ1 = r∞,
λ2 = λ2∞.
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Before characterizing fully nonlinear solitary wave solutions, we first consider small-amplitude traveling
waves superposed on the above uniform state.Assuming that the small-amplitude perturbations are proportional
to

exp

(
i
λ2∞
r∞

k(Z − ĉt)

)
,

then the scaled wavenumber k and wave speed c = ĉλ2∞ satisfy the dispersion relation [17], [20]
(
k2m + 2

)
c4 − (

mα0k
2 + mγ1k

2 − mβ0 + mβ1 + 2γ1
)
c2

+mγ1(k
2α0 + β1 − β0) − m(α1 − β0)

2 = 0, (6)

where

m = 1/(bfr
2∞λ2∞), α0 = λ2∞W∞

2 , α1 = r∞λ2∞W∞
12 ,

β0 = r∞W∞
1 , β1 = r2∞W∞

11 , γ1 = λ22∞W∞
22 .

In the limit k → 0, the two roots of the above quadratic for c2 are given by

4c2 = B ±
√
B2 − 8mΩ = B ±

√
[2γ1 − m(β1 − β0)]2 + 8m(α1 − β0)2, (7)

where

B = 2γ1 + m(β1 − β0), Ω = γ1(β1 − β0) − (α1 − β0)
2.

If the membrane tube was stress-free prior to wave propagation (r∞ = 1, λ2∞ = 1), β0 would be zero
since it is equal to the radial pre-stress. To derive in this case the conditions that (7) defines four real values of
the velocity c, we assume that the tube material is strongly elliptic, i. e.,

β1 > 0, γ1 > 0, β1γ1 − α2
1 > 0.

The last inequality ensures that for the stress-free membrane from (7) we have that four values of the speed
c are real (two of them are minus the other two). These characteristic speeds correspond to four branches
of long waves bifurcating from the quiescent state: two of them propagate to the right, and the other two
propagate symmetrically to the left. As the internal pressure or axial stretch is increased, the four wave speeds
remain real until Ω = 0 at which two of the speeds vanish. It was shown in [21] that this is the condition
for a localized bulging solution to bifurcate from the uniformly inflated state. Our current study is concerned
with the parameter regime where Ω remains positive. In our subsequent analysis, the two positive values of c
defined by (7) are denoted by c1 and c2 (> c1), respectively.

It can be easily shown [14] that the fluid Eq. (4) in this case can be integrated to yield

P = P∞ + vf0

(
1 − r4∞

r4

)
, vf = c − c r2∞

r2
, (8)

where the constant vf0 is defined by

vf0 = 1

2
bfc

2.

It is also known [14,17] that the equations in (3) together with (8) have two integrals. They can be obtained by
integrating the first equation in (3), and z′ times the first equation in (3) added to r ′ times the second equation
in (3), respectively. They are given by

W2z′

λ2
− 1

2
P∗r2 − ĉ2z′ = C1,

W − λ2W2 + 1

2
ĉ2λ22 = C2, (9)
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Table 1 Velocities and pressures in the tube for the Ogden strain–energy function, λ2∞ = 1 and different radial strains r∞

r∞ P p = μPH/R, Pa c1 c2
√

μ/ρc1 ms−1 √
μ/ρc2 ms−1

3.0 0.755 3.13 · 104 − 1.293 − 24.1
2.0 0.81 3.35 · 104 − 1.430 − 26.67
1.6831 0.8 3.31 · 104 0.020 1.532 0.37 28.57
1.5 0.76 3.15 · 104 0.161 1.615 3 30.1
1.4 0.71 2.94 · 104 0.210 1.670 3.9 31.15
1.3 0.63 2.61 · 104 0.247 1.735 4.6 32.36

where a prime denotes differentiation with respect to the traveling variable ξ = Z − ĉt ,

P∗ = P∞ + vf0

(
1 + λ41∞

r4

)
,

and the constants C1 and C2 can be determined by evaluating the corresponding left hands at the uniform state
(5). These two equations are used in the next section to determine the values of λ1(0) and λ2(0) for each pair
of r∞ and λ2∞ specified.

3 Characterization and computation of solitary waves

Differentiating Eqs. (9) with respect to ξ , we obtain a system of first-order ordinary differential equations
[21,22]:

λ′
1 = λ2 sin φ,

λ′
2 = W1 − λ2W12(

W22 − ĉ2
) sin φ,

φ′ = W1

W2 − ĉ2λ2
cosφ − Pλ1λ2

W2 − ĉ2λ2
,

(10)

where the prime again denotes differentiation with respect to ξ = Z − ĉt , φ is the angle between the meridian
and the z-axis (so that tan φ = dr/dz = r ′/z′). Without loss of generality, we may assume that the center of
the symmetric localized traveling wave is located at ξ = 0 so that φ(0) = 0. Then, if λ1(0) and λ2(0) are
also known, the solitary wave solution can be determined by integrating the above system as an initial value
problem.

For each set of fixed values of r∞, λ2∞, we may determine the bifurcation values of the speed cwith the aid
of (7), and as c is reduced or increased from each bifurcation value compute numerically a family of solitary
wave solutions (recall that c = ĉλ2∞). Each family begins with c = c1 or c2 and ends with some finite value
of c.

We recall that we non-dimensionalized the pressure using the scale μH/R, so if we use the corresponding
typical values of the density for rubber ρ = 1190 kgm−3 and of the shear modulus specified just below (2),
and R = 5 cm and H = 0.5 cm for the radius and wall thickness, respectively, then the non-dimensionalized
pressure P = 1 corresponds to the dimensional pressure p = 0.414 · 105 Nm−2.

We present our calculations for the Ogden strain–energy function (2) for a tube in the absence of axial
stretch (λ2∞ = 1) andwith different values of r∞ as shown inTable 1. The resulting values of the corresponding
dimensionless and dimensional parameters are given in this table. According to [21], a standing solitary wave
with c = 0 can bifurcate sub-critically from the uniform state when r∞ = 1.687. The bulging amplitude grows
as r∞ decreases and approaches its maximum at r∞ = 1.127. This means that such a standing solitary wave
exists for each value of r∞ in the interval (1.127, 1.687) and will feature in our subsequent calculations.

Since c enters in (9) through c2, we consider only the case c ≥ 0 when we compute the wave amplitude
Δ ≡ λ1(0) − r∞. The dependence of λ1(0) on c is shown in Fig. 2a for r∞ = 1.5. This value of r∞ lies in the
above-mentioned interval, and so a solitary wave with c = 0 exists. This solution corresponds to point A.

Points B (c = c1) and D (c = c2) are bifurcation points. Figure 2b gives a blow-up of a neighborhood
of the point D, which is not visible in Fig. 2a. The point on the branch EG where Δ = λ1(0) − r∞ = 0 is
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(a) (b)

Fig. 2 a Dependence of λ1(0) on c for r∞ = 1.5, λ2∞ = 1. The horizontal line λ1(0) = 1.5 corresponds to the trivial solution
and B and D are the bifurcation points. Solitary waves exist only on branches AB (solitary waves of elevation) and FP (solitary
waves of depression). b Neighborhood of the bifurcation point D [not visible in the scale of (a)]. Solitary waves exist only on
branch DI . The point J lies on the branch DE in (a)

Fig. 3 Dependence of λ1(0) on c for r∞ = 1.5, λ2∞ = 1. B—the bifurcation point. Solitary waves exist only on branches AB
and FP (cB = cF ). Only non-solitary wave solutions can be found on segments BF and CP

not a bifurcation point, because λ2(0) is non-trivial there, namely λ2(0) 	= λ2∞. The point J belongs to the
segment DE. However, solitary waves exist only on AB, FP and DI. Figure 2b shows that solitary waves on
the branch DI have very small amplitudes.

Figure 3 repeats the bifurcation curve shown in Fig. 2a on a larger scale. In Fig. 4 we plot the phase portraits
of some solutions, corresponding to a selection of points in Fig. 3.

Profiles of different solutions corresponding to the phase portraits in Fig. 4 are given in Figs. 5, 6, 7 and
8. In Fig. 5 we present plots of λ1(0) − λ1(∞) (line 1) and λ2(0) − λ2(∞) (line 2) against ξ corresponding
to the solitary wave of elevation with c = 0. The phase portrait of this bulging solitary wave is shown by line
1 in Fig. 4. In Fig. 6 we plot the form of λ1(0) − λ1(∞) and λ2(0) − λ2(∞) against ξ corresponding to the
non-solitary wave solution with c = 1.1 c1 (branch BF in Figs. 2, 3). The phase portrait of this solution is
shown by line 5 in Fig. 4. Figure 7 shows plots of λ1(0)−λ1(∞) and λ2(0)−λ2(∞) against ξ corresponding
to the solitary wave of depression with c = c1. The phase portrait of this solitary wave is shown by line 3 in
Fig. 4. In Fig. 8 we show the profiles of non-solitary wave solutions belonging to the segment CP in Fig. 3.

For the branch AB in Fig. 2a, the amplitude Δ increases to the maximal value when c = 0; for the branch
DI in Fig. 2b, the family of solitary waves ends at the point I where the solitary wave attains its maximum
amplitude. Numerical evidence shows that when the critical point I is approached the solitary wave amplitude
reaches its maximum value and the value of curvature of the λ2-wave of depression at the maximal point of
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Fig. 4 Phase portraits of typical solitary waves of depression on branch FP , solitary waves of elevation on branch AB and
non-solitary wave solutions corresponding to the segment BF ; 1 - c = 0, 2 - c = 0.75 c1, 3 - c = c1, 4 - c = 1.05 c1, 5 -
c = 1.1 c1, for r∞ = 1.5, λ2∞ = 1

Fig. 5 Plots of λ1 − λ1(∞) (line 1) and λ2(0) − λ2(∞) (line 2) against ξ corresponding to the solitary wave of elevation with
c = 0. The phase portrait of this solitary wave is shown by line 1 in Fig. 4

the wave tends to infinity (similar to the Stokes solitary wave of maximal amplitude on a water surface; see
Fig. 9).

As r∞ is reduced from 1.5, the bifurcation curve in Fig. 3 evolves as follows. The point F moves toward
the bifurcation point B, and the point P tends to the pointC . At r∞ = λ1∞ ≈ 1.3 the points F and B coalesce.
The corresponding bifurcation curve is presented in Fig. 10. In this case, solitary waves of either elevation or
depression exist in the vicinity of the point B. An example of their form is given in Fig. 11.

When r∞ reaches the critical value rcr∞ ≈ 1.127 the bulging solitary waves with velocity c = 0 are replaced
by a kink wave for which the profile of λ1(ξ) near ξ = 0 becomes very flat: both λ′

1(0) and λ′′
1(0) are now

zero. Figure 12 shows the family of standing solitary waves for different r∞.
As r∞ is reduced even further below rcr∞, the standing kink wave is replaced by a kink wave having a

nonzero velocity. Figure 13 shows the form of one such running kink wave for r∞ = 1.125.
The bifurcation curve for r∞ = 1.1 is presented in Fig. 14. It can be seen that when r∞ passes through

λ10 ≈ 1.3 there now exists a point H above the bifurcation point B on the bifurcation curve such that no
solitary waves exist on the segment BH.

The phase portraits of the solutions corresponding to a selection of points on the bifurcation curve in Fig. 14
are given in Fig. 15.

Profiles of some of these solutions are presented in Figs. 16 and 17. As r∞ is further reduced toward 1
(corresponding to the stress-free initial state), the bifurcation curve evolves as follows. At r∞ ≈ 1.07, two new
points L and F appear on the bifurcation curve such that solitary waves now exist for c > c1 (corresponding
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Fig. 6 Plots of λ1 − λ1(∞) and λ2(0) − λ2(∞) against ξ corresponding to the non-solitary wave solution with c = 1.1 c1. The
phase portrait of this solution is shown by line 5 in Fig. 4

Fig. 7 Plots of λ1 − λ1(∞) and λ2(0) − λ2(∞) against ξ corresponding to the solitary wave of depression with c = c1. The
phase portrait of this solitary wave is shown by line 3 in Fig. 4

Fig. 8 Plots of λ1(0) − λ1(∞) and λ2(0) − λ2(∞) against ξ corresponding to the solution with c = 0.055
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Fig. 9 Solitary wave solutions for λ1(ξ) (left) and λ2(ξ) (right) corresponding to the branch DI when r∞ = 1.5, λ2∞ = 1 for
which c2 = 1.615. The curves correspond to (bottom-up) c = 1.61514, 1.61519, 1.61525, 1.61530, respectively

Fig. 10 Dependence of λ1(0) on c for r∞ ≈ 1.3, λ2∞ = 1. B – the bifurcation point. Solitary waves exist on branches AB and
BP

Fig. 11 Solitary waves of elevation (upper curve) and depression (lower curve) at c = 0.2466
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Fig. 12 Profiles of standing solitary waves corresponding to r∞ = 1.126753, 1.13, 1.2, 1.3, 1.4, 1.5. Larger amplitudes of
λ1(ξ) correspond to smaller values of r∞

Fig. 13 Profile of the running kink wave corresponding to r∞ = 1.125

Fig. 14 Dependence of λ1(0) on c for r∞ = 1.1, λ2∞ = 1. B—the bifurcation point. Solitary waves exist only on branches HK
and BC (cB = cH ) with point K corresponding to a kink wave solution. Only non-solitary wave solutions can be found on the
segment BH
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Fig. 15 The phase portraits of typical solitary waves of depression on the segmentCB, solitary waves of elevation on the segment
HK and non-solitary wave solutions corresponding to the segment BH . 1 - c = 0.1129, 2 - c = 0.75 c1, 3 - c = c1, 4 -
c = 1.01 c1, 5 - c = 1.035 c1, for r∞ = 1.1, λ2∞ = 1

Fig. 16 Plots of λ1(0) − λ1(∞) and λ2(0) − λ2(∞) against ξ corresponding to the solitary wave with c = 0.1129. The phase
portrait of this soliton is shown by line 1 in Fig. 15

Fig. 17 Plots of λ1(0) − λ1(∞) (upper curve) and λ2(0) − λ2(∞) (lower curve) against ξ corresponding to the solitary wave of
elevation with c = c1. The phase portrait of this solitary wave is shown by line 3 in Fig. 15
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Fig. 18 Dependence of λ1(0) on c for r∞ = 1.05, λ2∞ = 1. Point B is the bifurcation point. Solitary waves exist on branches
CF , BL and HK . Only non-solitary (periodic) wave solutions can be found on segments FB and LH

to points on the segment BL), which was not the case before. As r∞ is reduced even further, the points L and
F both move away from the bifurcation point B (Fig. 18).

When the point L appears, point H starts moving to the left toward point K . With further reduction in r∞,
first at r∞ ≈ 1.04, point H merges with point K . Then, at λ1∞ ≈ 1 from above, point F merges with point
C . After that, only solitary waves on the segment BL remain.

We note that the parameter P actually denotes the dimensionless difference between internal and external
pressures, so if the external pressure is the atmospheric one (= 105 Pa), the internal pressure corresponding to
λ1∞ = 1.5, for example, is 1.315 · 105 Pa.

4 Spectral stability

We now proceed to the stability study of the solitary waves corresponding to the branch AB in Fig. 2a; the
family on DI has very low amplitude and is not of interest for applications. Denote such fully nonlinear solitary
wave solutions of (10) by r = r̄(ξ), z = z̄(ξ), P = P̄(ξ), vf = v̄ f (ξ), where ξ = Z − ĉt and ĉ is now
the velocity of the corresponding solitary wave and c = ĉλ2∞. To study the stability of these solutions, we
consider axisymmetric perturbations and write

r(ξ, t) = r̄(ξ) + Ψ (ξ)eηt , z(ξ, t) = z̄(ξ) + Φ(ξ)eηt ,

P(ξ, t) = P̄(ξ) + Π(ξ)eηt , vf(ξ, t) = v̄ f (ξ) + V (ξ)eηt ,

where the mode functions Ψ (ξ), Φ(ξ), Π(ξ), V (ξ) and the growth rate η are to be determined.
On substituting these expressions into (3) and (4) and linearizing, we obtain

[
1

λ̄2
W̄2Φ

′ + z̄′

λ̄32

(
λ̄2W̄22 − W̄2

)(
r̄ ′Ψ ′ + z̄′Φ ′) + z̄′

λ̄2
W̄12Ψ

]′

−P̄(r̄Ψ ′ + Ψ r̄ ′) − r̄ r̄ ′Π = η2Φ − 2ĉηΦ ′ + ĉ2Φ ′′,
[
1

λ̄2
W̄2Ψ

′ + r̄ ′

λ̄32

(
λ̄2W̄22 − W̄2

)(
r̄ ′Ψ ′ + z̄′Φ ′) + r̄ ′

λ̄2
W̄12Ψ

]′

− 1

λ̄2
W̄12(r̄

′Ψ ′ + z̄′Φ ′) − Ψ W̄11 + P̄(r̄Φ ′ + Ψ z̄′) + r̄ z̄′Π = η2Ψ − 2ĉηΨ ′ + ĉ2Ψ ′′,

η(z̄′Ψ − r̄ ′Φ) − c1Ψ
′ + v̄ f Ψ

′ + V r̄ ′ + 1

2
r̄ V ′ + 1

2
Ψ v̄′

f = 0,

bfη(z̄′V − v̄′
f Φ) − bfc1V

′ + bf(v̄ f V
′ + v̄′

f V ) + Π ′ = 0,
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where a prime denotes differentiation with respect to ξ .
The equations for the perturbations can be written in the form

y′ = My, (11)

where y = (Φ,Φ ′, Ψ, Ψ ′, Π, V )T and M is a 6 × 6 matrix whose components are (numerically) known
functions of ξ and η. This system of equations is to be solved subject to the decay conditions y → 0 as
Z → ±∞. Denoting by M∞ the limit of M as ξ → ±∞ and substituting a trivial solution of the form

y = ek̂ξ r into y′ = M∞y, we obtain the eigenvalue problem

(M∞ − k̂ I )r = 0, (12)

where I is the 6 × 6 identity matrix. The equation det(M∞ − k̂ I ) = 0 would recover the dispersion relation
(6) under the substitutions

k̂ = i k
λ2∞
r∞

, η = −i ĉk̂ = −i k
c

r∞
.

Recalling the properties of the dispersion relation (6) established in Sect. 3, we may immediately deduce
that k̂ can be imaginary only if η is imaginary. This implies that if η is confined to vary in the right half of
the complex plane (further denoted as Ω+), k̂ can never be purely imaginary, which means that for η ∈ Ω+
there are exactly three k̂ in the right half of the complex plane and the same is true for the left half of the
complex plane. Denote by k̂1, k̂2, k̂3 the three eigenvalues of (12) with negative real parts, and by r1, r2, r3
the associated right eigenvectors. There then exist solutions yi (ξ) of (11) such that

lim
ξ→∞ e−k̂i ξ yi (ξ) = ri , i = 1, 2, 3.

Alternatively, we may consider the exterior system [23]

y∧′ = M∧y∧ (13)

and its adjoint system

x∧′ = −x∧(M∧), (14)

where the components of the vector function y∧ consist of all the 3×3 minors of the 6×3 matrix (y1, y2, y3),
and the components of the 20 × 20 matrix M∧ in terms of those of M have previously been derived in [16].

To construct the Evans function, we need to solve (13) and (14) subject to the conditions at both infinities

lim
ξ→∞ e−k∧ξ y∧(ξ) = r∧,

lim
ξ→−∞ ek

∧ξ x∧(ξ) = l∧, (15)

where k∧ = k̂1 + k̂2 + k̂3, r∧ and l∧ are right and left eigenvectors ofM∧∞ associated with the eigenvalue k∧,
correspondingly. The Evans function is then defined by

D(η) = x∧(η, ξ) · y∧(η, ξ), (16)

and it can be shown that the condition of existence of an unstable eigenvalue η0 is equivalent to D(η0) = 0
[23].

With the aid of the software packageMathematica [24], we find that for each fixed value of bf there exists
at least one unstable eigenvalue on the real η-axis for c less than a threshold value c0 = c0(bf , r∞, λ2∞). At
the value c0, this eigenvalue ceases to exist and there are no unstable eigenvalues on the real η-axis for c > c0.
Figure 19 illustrates these facts for the cases when r∞ = 1.5, λ2∞ = 1 and λ2∞ = 1.25, and the material is
modeled by the Ogden model.

The problem of finding the unstable discrete spectrum η (eigenvalues located in the right half of the
complex η-plane Ω+ ) out of the real axis is analogous to determining the zeroes of the Evans function D(η)
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Fig. 19 The dependence of the real eigenvalue η on the velocity of the solitary wave c at which the function Evans function
becomes zero. The upper and lower curves correspond to λ2∞ = 1 and λ2∞ = 1.25, respectively, and in both cases r∞ = 1.5;
R = 5 cm, H = 0.5 cm; ρf = ρ = 1000kgm−3

(a) (b)

Fig. 20 a The contour γ on the complex η-plane; b the scaled image of γ on (Re D(η)/K , Im D(η)/K )-plane, where K =
|D(η)|0.95 + 2

lying in Ω+ \ R
+. The number of zeroes of D(η) can be computed with the help of the argument principle

[25]

n+ + 1

2
= 1

2π i

∫

γ

D′(z)
D(z)

dz, (17)

where n+ is the number of zeroes of D(·) inside a closed contour γ ∈ Ω+ traversed in the counterclockwise
direction. Since [D(η)]∗ = D(η∗) we choose the contour γ as shown in Fig. 20a. The number of zeroes due
to (17) can be expressed in terms of the change in the argument ϕ (with the minus sign) of D(η), η(t) ∈ γ as
the parameter t ∈ (0, t0) varies from the beginning to the end of the closed contour γ ;

n+ = 1

2π

[
arg D(0) − arg D(t0)

] − 1

2
.

The number of zeroes of D(η) in Ω+ is determined by the number of rotations of the image of the
contour γ under the mapping D(·) around the origin. Therefore, we need to construct the function D(η) on γ ,
i.e., numerically solve the ordinary linear equations (13), (14) under the conditions (15) with η running in a
considerably large segment AB of the positive imaginary axis, the closing circle BC and a segment CA of the
real axis (Fig.20a).
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Fig. 21 The dependence of the rotation angle ϕ of the vector connecting the current point on the contour D(γ ) and the origin
from the length of the contour line between the point A and the current point on γ (the essential parameter t)

It was shown numerically that for c > c0 the image of our contour γ under the mapping D(·) does not
wrap around the origin. In Fig. 20b the scaled image of the contour γ is shown. Figure 21 gives the change of
the argument of D(γ ) as the parameter t runs around the contour γ .

Therefore, there are no unstable eigenvalues inΩ+ and solitary waves for c > c0 are spectrally stable. This
corresponds to the nonlinear orbital stability result of solitary waves of small amplitude [26], i. e., “beginners”
of the respective family of solitary waves.

5 Conclusion

The present paper is devoted to the stability analysis of solitary waves in fluid-filled membrane tubes. The
tube itself is modeled as a hyperelastic membrane, and the governing equations for the tube are written on the
basis of the balance of forces acting on the surface element of the shell. The fluid is considered to be ideal
and incompressible, and we treat the quasi-one-dimensional flow of it. The governing equations describe fluid
flow in compliant (for example, rubber) pipes.

It is shown that provided the velocity of the solitary wave is greater than the threshold value c0 > 0, it is
spectrally stable. Previously it has been shown that standing solitary waves are unstable in form [16] and only
a nonzero mean flow can stabilize it, but a standing wave would propagate as soon as a perturbation is applied,
so we can speak only about the stability in form, which is typical for translationally invariant systems.

We consider the spectral stability with respect to axisymmetric perturbations of solitary waves with the
help of the construction of the Evans function (16) and counting its zeros (coinciding with unstable eigenvalues
of the linearization of governing equations about the solitary wave solution) in the right complex half-plane
of the spectral parameter η, where it is analytic.

The bulging wave family bifurcating from the smallest positive root of (7) is considered. The amplitude
of the solitary wave is greater the closer to zero its velocity c. We proceed as follows. First, we find that
for velocities c < c0, where c0 is some small critical value, there exists at least one unstable mode with the
associated eigenvalue η+ located at the positive real η-axisR+

η . It is possible that a smaller eigenvalue η− 
 η+
in R+

η also exists, but it is so small that we cannot detect it with our numerical method. Therefore, the bulging
wave for c < c0 is exponentially unstable. When c increases through c0, the unstable eigenvalue escapes from
R

+
η . This happens either as a result of merging the roots η+ and η− for c = c0, or as a result of η+ going to

zero (Fig. 19). Second, for c > c0 when there are no unstable eigenvalues on R+
η , we adopt the formulation of

[25] and evaluate the Evans function on the contour (Fig. 20a) with sufficiently large radius. We cannot use the
whole imaginary η-axis, because in our case the Evans function D(η) is unbounded when |η| → ∞. We then
use the argument principle to count the number of the zeroes of the Evans function (coinciding with unstable
eigenvalues) inside our contour (in the large domain of the right half of the complex η-plane Ω+ bounded by
the imaginary η-axis) and found that there are no zeroes there. This concludes the proof that bulging solitary
waves for c > c0 are spectrally stable.
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We have only considered the case of zero mean flow (vf∞ = 0). It was found in [17] that a mean flow
has a stabilizing effect on the standing solitary waves considered. We can expect that a mean flow will have a
similarly stabilizing effect on the traveling solitary waves treated here.
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