Routinely measured hematological markers can help to predict AIS scores following spinal cord injury

Gabriel Mateus Bernardo Harrington, BSc^{1,}, Paul Cool, MD^{2,1,}, Charlotte Hulme, PhD^{1,2,}, Aheed Osman, MBChB^{2,}, Joy Roy Chowdhury, MBBS^{2,}, Naveen Kumar, MBBS^{2,}, Srinivasa Budithi, MD^{2,}, and Karina Wright, PhD^{1,2,}

2020-06-03 13:05:34

¹ Keele University, Staffordshire, United Kingdom, ST5 5BG,

² Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom, SY10 7AG

<u>Gabriel Mateus Bernardo Harrington, BSc < g.m.bernardo.harrington@keele.ac.uk>;</u> Tel: 01691 404265

Paul Cool, MD <paul.cool@nhs.net>; Tel: 01691 404000

Charlotte Hulme, PhD < charlotte.hulme@nhs.net>; Tel: 01691 404022

Aheed Osman, MBChB <aheed.osman@nhs.net>; Tel: 01691 404000

Joy Roy Chowdhury, MBBS < joy.chowdhury@nhs.net>; Tel: 01691 404000

Naveen Kumar, MBBS <n.kumar1@nhs.net>; Tel: 01691 404000

Srinivasa Budithi, MD <sbudithi@nhs.net>, Tel: 01691 404000

Corresponding Author: Karina Wright, PhD <karina.wright1@nhs.net>; Tel: 01691 404022

Abstract

Neurological outcomes following spinal cord injury (SCI) are currently difficult to predict. Whilst the initial American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade can give an estimate of outcome, the high remaining degree of uncertainty has stoked recent interest in biomarkers for SCI. This study aimed to assess the prognostic value of routinely measured blood biomarkers by developing prognostic models of AIS scores at discharge and 12-months post-injury. Routine blood and clinical data were collected from SCI patients (n=417) and blood measures that had been assessed in less than 50% of patients were excluded. Outcome neurology was obtained from AIS and Spinal cord independence measure III (SCIM-III) scores at discharge and 12-months post-injury, with motor (AIS) and sensory (AIS, touch and prick) abilities being assessed individually. Linear regression models with and without elastic net penalization were created for all outcome measures. Blood measures associated with liver function such as alanine transaminase were found to add value to predictions of SCIM-III at discharge and 12-months post-injury. Furthermore, components of a total blood count including hemoglobin were found to add value to predictions of AIS motor and sensory scores at discharge and 12-month postinjury. These findings corroborate the results of our previous preliminary study and thus provide further evidence that routine blood measures can add prognostic value in SCI, and that markers of liver function are of particular interest.

Keywords: Spinal cord injury; blood; biomarker; neurology; modelling

Introduction

Spinal cord injury (SCI) is damage to the spinal cord due to trauma, degeneration or disease that results in a temporary or permanent change to its neurological function. The global age-standardized incidence of SCI has been estimated to be 13 per 100,000, whereas the age-standardized prevalence was estimated to be 368 per 100,000.¹ With respect to the United Kingdom, it has been estimated that over 1000 new SCIs occur each year, and that 40,000 people are living with SCI.² The majority of SCIs have historically been traumatic in nature, most commonly as a result of vehicular accidents, falls, violence and sports, but more recently non-traumatic SCI, usually as a result of infection or cancer, has been increasing in prevalence.^{3.4}

The lifetime cost of SCI in the UK is estimated to be £1.12 million (mean value) per case, with the total cost of SCI in 2016 in the UK being £1.43 billion.⁵ SCI can lead to secondary conditions that increase morbidity and mortality, including respiratory complications, deep vein thrombosis, muscle spasms, urinary tract infections, osteoporosis, pressure ulcers, risk of fracture, and chronic pain. Furthermore, patients with SCI are often rendered dependent on caregivers and show markedly higher rates of mental illness relative to the general population.⁶

There is a challenge in the development of novel therapeutic interventions for SCI, with only four large-scale clinical trials having been tested in acute SCI, three of which evaluated methylprednisolone and one evaluated GM-1 ganglioside.⁷⁻¹⁰ This is due to the SCI population being inherently heterogeneous and experiencing a highly variable degree of "natural" recovery.¹¹ Currently, the best predictor of neurological outcome is the initial measure of neurologic impairment, as assessed with the International Standards for Neurological Classification of SCI (ISNCSCI) examination.¹² However, the ISNCSCI exam was not intended to be predictive of functional recovery, and it has been found that changes in American Spinal Injury Association Impairment scale (AIS) grade do not necessarily indicate meaningful changes to daily living for patients.¹³ Robust SCI biomarkers could help stratify patients such that their baseline functional recovery could be predicted, allowing any potential novel therapies to be properly assessed, thus accelerating research and clinical trials in particular via covariate adjustment.¹⁴ A reliable prognostic model of SCI would also

Page 4 of 40

allow healthcare providers to better plan patient care, relieve patients of potentially damaging psychological uncertainty, and could highlight new avenues of research.¹⁵ Whilst relatively few studies have sought to identify prognostic biomarkers for SCI, recent years have seen some early/discovery phase publications.^{16–19} These preliminary studies have largely focused on biomarkers in cerebral spinal fluid during the acute phase of injury, with little information regarding the chronic or recovery phase. Even among these studies however, there has been little investigation as to the value of blood biomarkers in SCI at any injury phase, despite success in other fields, including cancer, traumatic brain injury, and Alzheimer's disease.^{20–22}

We previously published a preliminary study that highlighted the value of routinely measured blood analytes in prognostic models of SCI, and demonstrated that some blood measures, particularly markers of liver function, added modest, but statistically significant, value to predictions of 3- and 12-month ISNSCI AIS motor and sensory scores.²³ In this study, we have validated our findings in another, independent and larger SCI cohort. We have further developed alternative more robust methods of modelling and have demonstrated that similar markers, including alanine transaminase (ALT) and gamma-glutamyl transferase (GGT) add value not only when predicting AIS scores at discharge and 12-months, but also with regards to SCIM outcomes.

Method

Patient and model feature summary

We retrospectively studied the electronic health records of 500 patients who had been admitted to the Midlands Centre for Spinal Injuries (MCSI) in the last 10 years (Table 1). Access to these records was ethically approved by the National Research Ethics Service [NRES] Committee North West Liverpool East [11/NW/0876] and NRES Committee West Midlands, Staffordshire [13/WM/0158]. Following the exclusion of patients that had been admitted over 6 months post-injury, 73 individuals were removed from further analysis.

The remaining 417 patients had their initial blood sample taken at a mean of 31 ± 30 (standard deviation) days post-injury. Blood measures that had been assessed in less than

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Routinely measured haematological markers can help to predict AIS scores following spinal cord injury (DOI: 10.1089/neu.2020.7144)

Journal of Neurotrauma

50% of the patient cohort were excluded. The remaining blood measures included adjusted calcium estimate, alkaline phosphatase, C-reactive protein (CRP), hematocrit, hemoglobin, mean cell hemoglobin, mean cell volume, mononucleocytes, platelets, potassium, red blood count, red blood distance width and white blood count (WBC). Routine blood analyses were conducted in the Hematology and Biochemistry department located at the Robert Jones and Agnes Hunt Orthopedic Hospital. Hematology analyses were performed on either a Beckman Coulter LH-500 (Beckman Coulter, High Wycombe) or a Sysmex XN-1000 (Sysmex America, IL). Biochemical analyses used VITROS slides (dry multi-layered chemistry slides) in conjunction with the VITROS 5,1 FS Chemistry System (Ortho Clinical Diagnostics, New Jersey, USA) to measure albumin, ALT, calcium, creatinine, GGT, potassium, magnesium, sodium, total bilirubin, total protein, and urea.

In addition to AIS overall grade, AIS motor, sensory touch and sensory pin prick scores were recorded at admission, discharge (mean 136 days post-injury \pm 72) and approximately 12 months post-injury (mean 424 days post-injury \pm 147). Spinal cord independence measure III (SCIM-III) assessments were also recorded at these same time points.²⁴ The SCIM assessment is a disability scale developed to quantify the ability of SCI patients to perform basic activities of independent daily living, including self-care (feeding, bathing and dressing), respiration and sphincter management, and mobility (Figure 1).^{25,26}

Additional information that may impact neurological recovery and/or the assessed blood measures were included. The incidence of diabetes (types I and II), smoker and alcohol drinking status were recorded as binary. The neurological level of the injury was recorded as being cervical, thoracic, lumbar or sacral. Details were recorded as to whether the injury was traumatic, and whether there were any fractures at the injury site. Age at injury in years, gender and the time between injury and the first blood tests in days were also included. Medications that patients were prescribed were also collected, however after filtering to drugs at least 50% of patients were given, the remaining drugs were either painkillers or anti-spasm medication. As the inclusion of this drug data would have added a large number of variables to the model, and they correlated strongly with initial injury severity, this data was not included in the modelling process.

Model building

Data analyses were performed with the statistical programming language R version 3.6.3 (2020-02-29).²⁷⁻⁴⁰ Missing blood measures were median imputed, then scaled and centered. Less than 21% of the initial and discharge AIS/SCIM scores were missing, whereas 50-60% of the 12-month scores were missing (Table S1). These missing AIS grades or scores were imputed with either last observation carried forwards (LOCF) or next observation carried backwards (NOCB) where relevant. LOCF and NOCB were used as it is unusual for AIS or SCIM scores to have decreased over time in SCI patients. These scores typically only either remain largely unchanged, or improve with time.⁴¹ Therefore, the use of this imputation effectively assumes that in cases of missing score data, the patients' score did not change. This assumption can only worsen model performance, as opposed to giving rise to the overly optimistic models that could be generated by more complex multiple imputation techniques. Additionally, we have been advised that most cases where neurological assessment was missing at admission or discharge is due to a transition from Frankel scoring to AIS. In the case of missing 12-month assessments, this is most commonly due to a given patient not attending their appointment or having received follow up from a different hospital (Table S1).

As the number of model features was relatively high compared to the number of observations (45 features and 417 observations), linear regression with elastic net penalization was performed in addition to linear regression without any penalization. Elastic net penalization is a hybrid of ridge regression, whereby the penalty term shrinks predictor effect equally and never to 0, and least absolute shrinkage & selection operator (LASSO), whereby the penalty term shrinks each predictor differently and allows variables to be removed entirely by shrinking coefficients to $0.^{42.43}$ Put simply, elastic net reduces the impact of less important model features and can effectively eliminate features entirely, thus performing variable selection during the model building process, as opposed to other methods such as backward variable selection, which are conducted before model building and eliminate features based on co-linearity. Elastic net penalization has been previously found to perform well in models with numerous predictors and in the presence of correlated predictors.⁴⁴

Eight independent models were generated, with and without elastic net penalization, to determine if the features could predict four outcome measures: AIS motor, AIS sensor touch, AIS sensor prick and SCIM, at two time points: discharge and 12-months post-injury. The data was randomly split 80-20%, whereupon 80% was used for training the model and the remaining 20% was used to test the models performance. To reduce model optimism, internal validation was performed by 10-fold cross validation.⁴⁵

Results

Multiple regression models of the AIS motor and sensory scores, and of SCIM, at discharge (mean 136 ± 72 days post-injury) and approximately 12 months post injury (mean 424 ± 147 days post-injury) were built (Tables S2, S3 & S4). In addition to standard linear regression models (LRM), generalized linear models (GLM) with elastic net penalization were also performed. The modelling techniques performed similarly (GLM R^2 range 0.56 – 0.79 and RMSE range 11 – 18, LRM R^2 range 0.53-0.76 and RMSE range 12-19) (Figures 1 & 2)

Model features

With respect to model features, AIS measures of initial neurological function were the most consistently conserved features and the most powerful predictors of outcome measures for the generalized models. Initial SCIM was also included for all the models of outcome, except those relating to discharge sensory prick, touch and 12-month sensory touch. The blood markers, ALT, albumin, alkaline phosphatase, CRP, creatinine, GGT, hematocrit, hemoglobin, mean cell hemoglobin, mean cell volume, monocytes, platelets, potassium, total bilirubin, total protein, urea and WBCwere significant (P-Value < 0.05)/included in one or more models (Table 2).

For the linear regression models, the AIS grade on admission was the only feature that was statistically significant (P-Value < 0.05) in all models except 12-month SCIM. The initial measure of the model target, so the initial AIS motor score for the models of discharge and 12 month AIS motor for example, was also significant in all models. Other significant features that were not blood measures included diabetes and smoker status, age at injury,

time until first blood test from injury, the neurological level of injury, gender, and the presence of fracture at the injury site. Regarding blood measures, urea, monocytes, mean cell hemoglobin, mean cell volume, hematocrit and hemoglobin were all significant in one or more of the models (Table 2).

Model performance

With respect to model predictions, both modelling techniques performed similarly when predicting against the test data (Figures 3 & S1-8).

Discussion

Penalized GLM was compared to linear regression in the study due to the sample size. Whilst there has long been a dogma that 10 events per variable (EPV) is sufficient, more recent studies have argued that there is no rational for this.^{46,47} As there were 417 patients and 45 variables, we also investigated the impact of modelling with and without variable selection in the form of elastic net penalization.

In this study, a standard linear regression model with no variable selection performed very similarly to GLM with elastic net penalization with respect to R^2 and RMSE, though the R^2 of GLM was slightly higher and RMSE slightly lower for all model targets (Figures 1 & 2). This suggests that elastic net penalization does not provide a substantial boost to overall model performance at this sample size relative to linear regression. However, there was a difference in the variables each model utilized.

Regarding blood measures in the linear regression models, urea, total bilirubin and creatinine were significant predictors for one or more outcomes. Creatinine was predictive of discharge SCIM and sensor touch. Total bilirubin was predictive motor, sensor prick and sensor touch at month-12, suggesting it is predictive of longer term outcomes. Urea, which is typically used as an indicator of kidney function, but may also be altered due to hydration status, was predictive of discharge SCIM in the standard linear regression model, but was predictive of month-12 sensor touch in the penalized models.

Journal of Neurotrauma

With the exception of time to first blood test from injury, all of the same features were included in the penalized models and the linear regression models, but other related bloods were also included, such as mean cell hemoglobin, mean cell volume, hematocrit, hemoglobin, platelets and WBC, which are the components of a complete blood count. The complete blood count is likely related to the initial injury severity via blood loss due to bony soft tissue or visceral injury, gastrointestinal bleeding, and/or surgery.⁴⁸ Monocytes were included in all GLM models at both time points except month-12 SCIM. Similar to the components of the complete blood count, monocytes levels may be indicative of anemia (if low), but have also been associated with hepatitis and inflammatory diseases (if high).^{49,50} Estimated serum creatinine, based on glomerular filtration rates, are typically used in the evaluation of renal function.^{51,52} SCI patients have also been found to have an increased risk of renal deterioration and are recommended to receive lifelong, regular renal and upper urinary tract examinations after injury.^{53,54} SCI has been found to lead to systemic inflammation which can in turn cause secondary organ complications, including in the liver, kidneys and lungs, which may explain why these blood measures are useful in predicting outcome. 55-58

Some studies have found SCI to induce hepatic lipid deposition and inflammation, within 3 months of injury in rats, which is symptomatic of non-alcoholic steatohepatitis (NASH), the hepatic presentation of metabolic syndrome.^{59,60} Importantly, the blood measures associated with liver function (alanine transaminase, alkaline phosphatase, CRP, GGT and total bilirubin) highlighted in this study were also found to be significantly predictive of AIS scores in our preliminary study. Two factors "liver function", consisting of alanine transaminase, alkaline phosphatase and GGT and "liver function and inflammation" consisting of CRP and total bilirubin added statistically significant value to models of AIS touch and pain scores at 3-months post injury, and AIS motor and pain scores at 12-months.^{23,61,62} Total bilirubin in particular was included in 5 out of 8 penalized models and was significant in 3 of the non-penalized models. This provides further evidence that liver function is relevant to neurological recovery in SCI.

Interestingly, alanine transaminase, alkaline phosphatase, GGT and albumin were only retained in the models of SCIM. This could be because these markers indicate liver status,

10

which in turn typically reflects general metabolic health. Therefore, aberrant ALT and GGT values may be a proxy measure of poor metabolic health or systemic inflammation. Diabetes status was also significant in 6 of the 16 models built in this study, which may also reflect the relevance of general metabolic health in recovery. Metabolic syndrome is also more common in SCI patients than the general population and, SCI patients consequently have an increased risk of diabetes, stroke and heart disease. ^{60,63–65}

Serum albumin has also been previously found to be significantly predictive of AIS grade improvement up to 52 weeks.⁶⁶ Platelets and gender were also only retained in models of SCIM. Previous studies contradict this result and have suggested that gender does not significantly correlate with functional neurology or independence.^{67,68} However, it may be that some elements of the SCIM questionnaire are easier for males, such as self-catheterization, and so they are able to obtain slightly higher scores than females, even at a similar level of neurological function (as determined by AIS scores). Interestingly, surgery was only found to be a significant predictor of SCIM at both time points in the GLM models. This suggests surgery does not have a substantial influence on AIS outcomes. It should be stressed that this hospital favors a conservative approach to care of SCI patients, only choosing to operate in the most extreme cases and so both the rate and type of surgery given to this cohort likely differ from other spinal centers.⁶⁹ Therefore, external validation with data from centers with the more common surgical approach to SCI care is needed to more fully establish the role of surgery in predicting outcomes.^{70,71}

Whether the injury was traumatic or not was not retained in any model. Despite the very distinct pathophysiology of non-traumatic injuries, this data suggests trauma status is not a strong predictor of AIS motor or sensor score outcomes.⁷² Prior studies have also observed similar functional outcomes between traumatic and non-traumatic injuries.⁷³ Further research is needed to establish the role of the liver in SCI, particularly whether the liver is causally implicated in functional recovery, or if it is merely a proxy indicator of systemic inflammation inhibiting healing. Once this association is established, clinicians could consider monitoring the liver function of SCI patients more closely, perhaps attempting to restore/maintain healthy parameters in the interim by minimizing the use of hepatotoxic drugs where possible.

An important limitation of this study is the volume and completeness of the data used in model building. A larger sample size will always lead to a more robust and widely applicable model, and whilst there was enough to build linear regression models, a larger dataset (>5000) could allow for robust logistic regression models to predict a change in AIS grade. Furthermore, the data used here contained missing values, and whilst these were imputed to have minimal effect on model performance, it is still preferable to have a complete dataset. Models of 12-month outcomes were built using discharge and admission scores with the same methodology, and whilst these models performed better overall, the proportion of missing values at the 12-month time point, sample size and more modest difference in average AIS score between discharge and 12-months may cause overfitting, therefore this data was not included. Finally, an independent external validation of these models on separate data, potentially with a cohort with more typical surgical based care, would be desirable, particularly for the GLMs as it is difficult to obtain robust estimates of bias in penalized regression, making standard errors and confidence intervals inappropriate.⁷⁴

Conclusion

The results from this study suggest that routinely measured blood analytes can provide useful prognostic information for AIS scores and SCIM assessments up to 12-months postinjury, reinforcing the findings of our preliminary study.²³ Markers of liver function are of particular interest, and rehabilitation clinicians should consider the maintenance of liver health as a priority as it may be relevant to neurologic functional recovery. More research is needed to establish whether or not the relationship between SCI recovery and liver function is causal. Ultimately these finding need to be validated on a larger independent cohort before any firm clinical recommendations can be made.

Acknowledgements

We thank the clinical care team for taking blood samples, the hematology lab for processing the samples and assisting with data collection. We acknowledge the EPSRC, the Institute of Orthopedics and the Midlands Centre for Spinal Injuries for funding this study.

Author Disclosure Statement

No competing financial interests exist

References

1. Badhiwala, J.H., Wilson, J.R., and Fehlings, M.G. (2019). Global burden of traumatic brain and spinal cord injury. The Lancet Neurology 18, 24–25.

2. Lee, B.B., Cripps, R.A., Fitzharris, M., and Wing, P.C. (2014). The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord 52, 110–116.

3. Ge, L., Arul, K., Ikpeze, T., Baldwin, A., Nickels, J.L., and Mesfin, A. (2017). Traumatic and nontraumatic spinal cord injuries. World Neurosurg., 1–7.

4. Sekhon, L.H.S., Fehlings, M.G., and Frcs, C. (2001). Epidemiology , demographics , and pathophysiology of acute spinal cord injury.26, 2–12.

5. McDaid, D., Park, A.-L., Gall, A., Purcell, M., and Bacon, M. (2019). Understanding and modelling the economic impact of spinal cord injuries in the United Kingdom. Spinal Cord 57, 778–788.

6. Furlan, J.C., Gulasingam, S., and Craven, B.C. (2017). The Health Economics of the spinal cord injury or disease among veterans of war : A systematic review.40.

7. Bracken, M.B., Shepard, M.J., Holford, T.R., Leo-summers, L., Aldrich, E.F., Fazl, M., Fehlings, M., Herr, D.L., Hitchon, P.W., Marshall, L.F., Nockels, R.P., Pascale, V., Perot, P.L., Piepmeier, J., Richard, H., and Wilberger, J.E. (1997). Administration of Methylprednisolone for 24 or 48 hours or Tirilazad Mesylate for 48 Hours in the treatment of acute spinal cord injury.

8. Bracken, M.B. (1984). Efficacy of Methylprednisolone in acute spinal cord injury. JAMA: The Journal of the American Medical Association 251, 45.

9. Evaniew, N., Noonan, V.K., Fallah, N., Kwon, B.K., Rivers, C.S., Ahn, H., Bailey, C.S., Christie, S.D., Fourney, D.R., Hurlbert, R.J., Linassi, A.G., Fehlings, M.G., and Dvorak, M.F. (2015). Methylprednisolone for the treatment of patients with acute spinal cord injuries: A propensity score-matched cohort study from a Canadian multi-center spinal cord injury registry. J Neurotrauma 32, 1674–1683.

Page 14 of 40

10. Geisler, F., Coleman, W., Grieco, G., and Poonian, D. (2001). The Sygen multicenter acute spinal cord injury study. Spine 26.

 Fawcett, J.W., Curt, A., Steeves, J.D., Coleman, W.P., Tuszynski, M.H., Lammertse, D., Bartlett, P.F., Blight, A.R., Dietz, V., Ditunno, J., Dobkin, B.H., Havton, L.A., Ellaway, P.H., Fehlings, M.G., Privat, A., Grossman, R., Guest, J.D., Kleitman, N., Nakamura, M., Gaviria, M., and Short, D. (2007). Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205.

12. Betz, R., Biering-Sørensen, F., Burns, S.P., Donovan, W., Graves, D.E., Guest, J., Jones, L., Kirshblum, S., Krassioukov, A., Mulcahey, M.J., Schmidt Read, M., Rodriguez, G.M., Rupp, R., Schuld, C., Tansey, K., Walden, K., and ASIA and ISCoS International Standards Committee. (2019). The 2019 revision of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI)What's new? Spinal Cord 57, 815–817.

13. Middendorp, J.J. van, Hosman, A.J.F., Pouw, M.H., and Meent, H.V. de. (2009). ASIA impairment scale conversion in traumatic SCI: Is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord 47, 555–560.

14. Kahan, B.C., Jairath, V., Doré, C.J., and Morris, T.P. (2014). The risks and rewards of covariate adjustment in randomized trials: An assessment of 12 outcomes from 8 studies. Trials 15, 139.

15. Tuszynski, M.H., Steeves, J.D., Fawcett, J.W., Lammertse, D., Kalichman, M., Rask, C., Curt, A., Ditunno, J.F., Fehlings, M.G., Guest, J.D., Ellaway, P.H., Kleitman, N., Bartlett, P.F., Blight, A.R., Dietz, V., Dobkin, B.H., Grossman, R., and Privat, A. (2007). Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP Panel: Clinical trial inclusion/exclusion criteria and ethics. Spinal Cord 45, 222–231.

Journal of Neurotrauma

16. Halford, J., Shen, S., Itamura, K., Levine, J., Chong, A.C., Czerwieniec, G., Glenn, T.C., Hovda, D.A., Vespa, P., Bullock, R., Dietrich, W.D., Mondello, S., Loo, J.A., and Wanner, I.-B. (2017). New astroglial injury-defined biomarkers for neurotrauma assessment. J Cereb Blood Flow Metab 37, 3278–3299.

17. Hulme, C.H., Brown, S.J., Fuller, H.R., Riddell, J., Osman, A., Chowdhury, J., Kumar, N., Johnson, W.E., and Wright, K.T. (2017). The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord 55, 114–125.

18. Kwon, B.K., Bloom, O., Wanner, I.-B., Curt, A., Schwab, J.M., Fawcett, J., and Wang, K.K. (2019). Neurochemical biomarkers in spinal cord injury. Spinal Cord 57, 819–831.

19. Moghieb, A., Bramlett, H.M., Das, J.H., Yang, Z., Selig, T., Yost, R.A., Wang, M.S., Dietrich, W.D., and Wang, K.K. (2016). Differential neuroproteomic and systems biology analysis of spinal cord injury. Mol Cell Proteomics 15, 2379–2395.

20. Blennow, K. (2017). A review of fluid biomarkers for Alzheimer's Disease: Moving from CSF to blood. Neurol Ther 6, 15–24.

21. Kunzmann, A.T., McMenamin, Ú.C., Spence, A.D., Gray, R.T., Murray, L.J., Turkington, R.C., and Coleman, H.G. (2018). Blood biomarkers for early diagnosis of oesophageal cancer: A systematic review.

22. Lugones, M., Parkin, G., Bjelosevic, S., Takagi, M., Clarke, C., Anderson, V., and Ignjatovic, V. (2018). Blood biomarkers in paediatric mild traumatic brain injury: A systematic review. Neuroscience & Biobehavioral Reviews 87, 206–217.

23. Brown, S.J., Harrington, G.M.B., Hulme, C.H., Morris, R., Bennett, A., Tsang, W.-H., Osman, A., Chowdhury, J., Kumar, N., and Wright, K.T. (2019). A preliminary cohort study assessing routine blood analyte levels and neurological outcome after spinal cord injury. J. Neurotraum..

16

24. Amiram, C., Itzkovich, M., Steinberg, F., Ring, H., Ronen, J., Philo, O., Spasser, R., Gepstein, R., and Tamir, A. (2001). The Catz-Itzkovich SCIM: A revised version of the spinal cord independence measure. Disabil. Rehabil. 23, 263–268.

25. Ackerman, P., Morrison, S.A., McDowell, S., and Vazquez, L. (2010). Using the Spinal Cord Independence Measure III to measure functional recovery in a post-acute spinal cord injury program. Spinal Cord 48, 380–387.

26. Itzkovich, M., Gelernter, I., Biering-Sorensen, F., Weeks, C., Laramee, M.T., Craven,
B.C., Tonack, M., Hitzig, S.L., Glaser, E., Zeilig, G., Aito, S., Scivoletto, G., Mecci, M.,
Chadwick, R.J., Masry, W.S.E., Osman, A., Glass, C.A., Silva, P., Soni, B.M., Gardner, B.P.,
Savic, G., Bergström, E.M., Bluvshtein, V., Ronen, J., and Catz, P.A. (2007). The Spinal Cord
Independence Measure (SCIM) version III: Reliability and validity in a multi-center
international study. Disabil. Rehabil. 29, 1926–1933.

27. Francois, R. (2020). Bibtex: Bibtex parser.

28. Alathea, L. (2015). Captioner: Numbers figures and creates simple captions.

29. Kuhn, M. (2020). Caret: Classification and regression training.

30. Aust, F. (2019). Citr: 'RStudio' add-in to insert markdown citations.

31. Dowle, M., and Srinivasan, A. (2019). Data.table: Extension of 'data.frame'.

32. Harrell Jr, F.E., Charles Dupont, and others. (2020). Hmisc: Harrell miscellaneous.

33. Zhu, H. (2019). KableExtra: Construct complex table with 'kable' and pipe syntax.

34. Tierney, N., Cook, D., McBain, M., and Fay, C. (2020). Naniar: Data structures, summaries, and visualisations for missing data.

35. Revelle, W. (2019). Psych: Procedures for psychological, psychometric, and personality research. Evanston, Illinois: Northwestern University.

36. R_Core_Team. (2019). R: A language and environment for statistical computing.

37. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software 4, 1686.

38. Zeileis, A., and Grothendieck, G. (2005). Zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 1–27.

39. Xie, Y. (2020). Knitr: A general-purpose package for dynamic report generation in r.

40. Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., and Iannone, R. (2020). Rmarkdown: Dynamic documents for r.

41. Zariffa, J., Kramer, J.L.K., Fawcett, J.W., Lammertse, D.P., Blight, A.R., Guest, J., Jones, L., Burns, S., Schubert, M., Bolliger, M., Curt, A., and Steeves, J.D. (2011). Characterization of neurological recovery following traumatic sensorimotor complete thoracic spinal cord injury. Spinal Cord 49, 463–471.

42. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58, 267–288.

43. Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 301–320.

44. Pavlou, M., Ambler, G., Seaman, S., De Iorio, M., and Omar, R.Z. (2016). Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat. Med. 35, 1159–1177.

45. Steyerberg, E.W., Bleeker, S.E., Moll, H.A., Grobbee, D.E., and Moons, K.G.M. (2003). Internal and external validation of predictive models: A simulation study of bias and precision in small samples. J. Clin. Epidemiol. 56, 441–447.

46. Peduzzi, P., Concato, J., Kemper, E., Holford, T.R., and Feinstein, A.R. (1996). A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 49, 1373–1379.

18

47. van Smeden, M., de Groot, J.A.H., Moons, K.G.M., Collins, G.S., Altman, D.G., Eijkemans, M.J.C., and Reitsma, J.B. (2016). No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Medical Research Methodology 16, 163.

48. Hirsch, G.H., Menard, M.R., and Anton, H.A. (1991). Anemia after traumatic spinal cord injury. Arch. Phys. Med. Rehab. 72, 195–201.

49. Shi, Q., and Thomas, L. (2013). Monocytosis correlated with acute alcoholic Hepatitis: A case report and literature review. Blood 122, 4725–4725.

50. Yang, J., Zhang, L., Yu, C., Yang, X.-F., and Wang, H. (2014). Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2, 1.

51. Perrone, R.D., Madias, N.E., and Levey, A.S. (1992). Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 38, 1933–1953.

52. Thomas, L., and Huber, A.R. (2006). Renal function estimation of glomerular filtration rate. Clinical Chemistry and Laboratory Medicine (CCLM) 44, 1295–1302.

53. Elmelund, M., Oturai, P.S., Toson, B., and Biering-Sørensen, F. (2016). Forty-five-year follow-up on the renal function after spinal cord injury. Spinal Cord 54, 445–451.

54. Stöhrer, M., Blok, B., Castro-Diaz, D., Chartier-Kastler, E., Popolo, G.D., Kramer, G., Pannek, J., Radziszewski, P., and Wyndaele, J.-J. (2009). EAU guidelines on neurogenic lower urinary tract dysfunction. Eur. Urol. 56, 81–88.

55. Bao, F., Omana, V., Brown, A., and Weaver, L.C. (2012). The systemic inflammatory response after spinal cord injury in the rat is decreased by a4B1 integrin blockade. J Neurotrauma 29, 1626–1637.

56. Campbell, S.J., Zahid, I., Losey, P., Law, S., Jiang, Y., Bilgen, M., van Rooijen, N., Morsali, D., Davis, A.E.M., and Anthony, D.C. (2008). Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord. Neuropharmacology 55, 780–787.

Journal of Neurotrauma

57. Fleming, J.C., Bailey, C.S., Hundt, H., Gurr, K.R., Bailey, S.I., Cepinskas, G., Lawendy, A.r., and Badhwar, A. (2012). Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury. J. Trauma Acute Care Surg. 72, 1194–1201.

58. Gris, D., Hamilton, E.F., and Weaver, L.C. (2008). The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Exp. Neurol. 211, 259–270.

59. Sauerbeck, A.D., Laws, J.L., Bandaru, V.V.R., Popovich, P.G., Haughey, N.J., and McTigue, D.M. (2015). Spinal cord injury causes chronic liver pathology in rats. J. Neurotraum. 32, 159–169.

60. Farrell, G.C., and Larter, C.Z. (2006). Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology 43, S99–S112.

61. Targher Giovanni, and Byrne Christopher D. (2015). Circulating markers of liver function and cardiovascular disease risk. Arterioscl. Throm. Vas. 35, 2290–2296.

62. Edelstein, C.L. (2016). Biomarkers of Kidney Disease. Academic Press.

63. Cragg, J.J., Noonan, V.K., Krassioukov, A., and Borisoff, J. (2013). Cardiovascular disease and spinal cord injury. Neurology 81, 723–728.

64. Cragg, J.J., Stone, J.A., and Krassioukov, A.V. (2012). Management of cardiovascular disease risk factors in individuals with chronic spinal cord injury: An evidence-based review. J. Neurotraum. 29, 1999–2012.

65. Manns, P.J., McCubbin, J.A., and Williams, D.P. (2005). Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch. Phys. Med. Rehab. 86, 1176–1181.

66. Tong, B., Jutzeler, C.R., Cragg, J.J., Grassner, L., Schwab, J.M., Casha, S., Geisler, F., and Kramer, J.L.K. (2018). Serum albumin predicts long-term neurological outcomes after acute spinal cord injury. Neurorehab. Neural Re. 32, 7–17.

67. Cowan, R.E., and Anderson, K.D. (2019). Replication and novel analysis of age and sex effects on the neurologic and functional value of each spinal segment in the US healthcare setting. Spinal Cord 57, 156–164.

Journal of Neurotrauma

Page 20 of 40

20

68. New, P.W., and FAFRM (RACP), M.C.E. (2016). The influence of age and gender on rehabilitation outcomes in nontraumatic spinal cord injury. The Journal of Spinal Cord Medicine.

69. El Masri(y), W.S. (2018). Traumatic spinal injury and spinal cord injury: Point for active physiological conservative management as compared to surgical management. Spinal Cord Series and Cases 4, 1–4.

70. Batchelor, P.E., Wills, T.E., Skeers, P., Battistuzzo, C.R., Macleod, M.R., Howells, D.W., and Sena, E.S. (2013). Meta-Analysis of Pre-Clinical Studies of Early Decompression in Acute Spinal Cord Injury: A Battle of Time and Pressure. PLoS One 8.

71. Wilson, J.R., Singh, A., Craven, C., Verrier, M.C., Drew, B., Ahn, H., Ford, M., and Fehlings, M.G. (2012). Early versus late surgery for traumatic spinal cord injury: The results of a prospective Canadian cohort study. Spinal Cord 50, 840–843.

72. David, G., Mohammadi, S., Martin, A.R., Cohen-Adad, J., Weiskopf, N., Thompson, A., and Freund, P. (2019). Traumatic and nontraumatic spinal cord injury: Pathological insights from neuroimaging. Nat. Rev. Neurol. 15, 718–731.

73. McKinley, W.O., Seel, R.T., Gadi, R.K., and Tewksbury, M.A. (2001). Nontraumatic vs. Traumatic Spinal Cord Injury: A Rehabilitation Outcome Comparison. Am. J. Phys. Med. Rehab. 80, 693–699.

74. Jewell, N.P. (1984). Small-Sample bias of point estimators of the odds ratio from matched sets. Biometrics 40, 421–435.

		Number of SCI patients	Percent
		(n out of 417)	
	Age at injury (Median	56±28	
	years)		
	Length of stay	100±66	
	(Median days)		
	Fracture	225	53
	Surgery	217	51
	Traumatic injury	319	75
	Type 1 diabetes	5	1
Smoker	Type 2 diabetes	44	10
	No	281	66
	Yes	52	12
Alcohol consumption	Unknown	84	20
	No	181	42
	Yes	152	36
Gender	Unknown	84	20
	Male	283	66
Time from injury (Median	Female	134	31

	days)
injury (DOI: 10.1089/neu.2020.7144) tion. The final published version may differ from this proof.	Neurological lev
Journal of Neurotrauma to predict AIS scores following spinal cord to undergo copyediting and proof correc	Admission AIS ខ្
J Routinely measured haematological markers can help t This paper has been peer-reviewed and accepted for publication, but has yet	AIS conversion from admission Months

			22
5)	First blood test	22±35	
	Admission	20±34	
	Discharge	128±82	
rological level of injury	Month-12 assessment	390±103	
	Cervical	244	57
	Lumbar	30	7
	Sacral	1	0
nission AIS grade	Thoracic	142	33
	А	108	25
	В	48	11
	С	151	35
	D	110	26
conversion	A-B	4	0.9
n admission to 12- nths	A-C	4	0.9
	A-D	1	0.2
	B-C	11	2.6
	B-D	4	0.9
	C-D	47	11

			23
	C-E	1	0.2
	D-E	1	0.2
AIS conversion	A-B	4	0.9
from admission to discharge	A-C	4	0.9
	B-C	13	3
	B-D	4	0.9
	C-D	47	11
	D-E	3	0.7

Table 2. Counts of model feature occurrence. For unpenalised linear regression (LRM) statistically significant (P-value < 0.05) features are included. For penalised models (GLM) features that were not penalised to 0 are induced

Model feature	GLM	LRM
(Intercept)	8	8
Admission AIS gradeB	2	2
Admission AIS gradeC	6	6
Admission AIS gradeD	6	6
Age at injury	2	2
Alanine Transaminase (u/L)	2	0
Albumin (g/L)	1	0
Alkaline Phosphatase (u/L)	1	0
C-Reactive Protein (mg/L)	1	0
Creatinine (umol/L)	4	2
Drinking yes	5	1
Fracture	1	1
Gamma GT (u/L)	1	0
Haematocrit (L/L)	4	0
Haemoglobin (g/L)	5	0
Initial motor	8	6
Initial scim	4	2

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Routinely measured haematological markers can help to predict AIS scores following spinal cord injury (DOI: 10:1089/neu.2020.7144) Journal of Neurotrauma

Initial sensor prick	8	2
Initial sensor touch	5	3
Lumbar injury	2	0
Mean Cell Hb (pg)	4	0
Mean Cell Volume (fL)	6	0
Monocytes (10*9/L)	7	0
Neuro level T	1	0
Platelets (10*9/L)	1	0
Potassium (mmol/L)	1	0
Sex	2	1
Smoker status known	1	0
Smoker status unknown	0	1
Surgery	1	0
Time to first blood test (Days)	0	2
Total Bilirubin (umol/L)	5	3
Total Protein (g/L)	1	0
Type 1 diabetes	2	0
Type 2 diabetes	3	1
Urea (mmol/L)	1	1
White blood count (10*9/L)	1	0

Figure 1. Boxplots of AIS score change from admission

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Figure 3. Root mean square error (RMSE) for linear regression models with and without elastic net penalisation (GLM and LRM respectively) of neurological outcome at discharge and 12 months post-injury.

Figure 4. Predicted SCIM score at discharge compared to the observed SCIM scores in the test data.

	Total number of missing values	Percent missing
Initial sensor prick	3	3 1
Initial sensor touch	3	3 1
Initial motor	2	1 1
Discharge scim	37	9
Initial scim	44	11
Discharge motor	73	3 18
Discharge sensor prick	87	21
Discharge sensor touch	87	21
Month-12 scim	231	L 55
Month-12 motor	252	2 60
Month-12 sensor touch	255	5 61
Month-12 sensor prick	256	6 61

Model	Variable	Coefficients
Discharge motor	(Intercept)	14.4
	Haemoglobin (g/L)	0.56
	Mean Cell Hb (pg)	0.343
	Mean Cell Volume (fL)	0.297
	Monocytes (10*9/L)	0.714
	Admission ASIAC	8.12
	Admission ASIAD	7.27
	Alcohol Drinking status	0.665
Discharge sensor prick	Initial motor	0.681
	Initial sensor prick	0.0847
	Initial sensor touch	0.00759
	Initial scim	0.0483
	(Intercept)	16.7
	Creatinine (umol/L)	0.215
	Haemoglobin (g/L)	0.98
	Monocytes (10*9/L)	0.936
	Total Bilirubin (umol/L)	0.961
	Type 2 diabetes	0.13

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

	Discharge sensor touch	Admission ASIAC	5.97
proof.		Admission ASIAD	1.51
from this		Initial motor	0.165
may differ		Initial sensor prick	0.564
ed version		Initial sensor touch	0.13
nal publish		(Intercept)	21.3
tion. The fi		Creatinine (umol/L)	1.05
oof correct		Haematocrit (L/L)	1.55
ing and pr		Mean Cell Volume (fL)	0.225
io copyedit		Monocytes (10*9/L)	1.11
t to underg		Total Bilirubin (umol/L)	0.758
but has ye	Discharge SCIM	Type 2 diabetes	1.96
ublication,		Admission ASIAB	2.85
pted for pu		Admission ASIAC	10.3
d and acce		Admission ASIAD	5.24
:r-reviewed		Lumbar injury	0.489
s been pee		Alcohol Drinking status	0.046
s paper ha		Initial motor	0.064
Ē		Initial sensor prick	0.0308
		Initial sensor touch	0.654

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Routinely measured haematological markers can help to predict AIS scores following spinal cord injury (DOI: 10.1089/neu.2020.7144) Journal of Neurotrauma

	(Intercept)	24.1
	Alanine Transaminase (u/L)	0.743
	Albumin (g/L)	0.000168
	Alkaline Phosphatase (u/L)	0.732
	Creatinine (umol/L)	1.48
	Gamma GT (u/L)	0.189
	Mean Cell Volume (fL)	0.899
	Monocytes (10*9/L)	0.0577
	Platelets (10*9/L)	0.249
	Total Protein (g/L)	0.775
	White blood count (10*9/L)	0.697
	Type 1 diabetes	4.86
Month-12 motor	Neuro level T	0.984
	Sex	1.97
	Alcohol Drinking status	1.88
	Fracture	0.697
	Surgery	1.27
	Initial motor	0.263
	Initial sensor prick	0.0828
Month-12 sensor prick	Initial scim	0.577

Month-12 sensor prick

Journal of Neurotrauma	ematological markers can help to predict AIS scores following spinal cord injury (DOI: 10.1089/neu.2020.7144) oted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.		Month-12 sense
Journal o	Routinely measured haematological markers can help to predict This paper has been peer-reviewed and accepted for publication, but has yet to under	· · ·	

	(Intercept)	20.5
	Creatinine (umol/L)	0.016
	C-Reactive Protein (mg/L)	0.868
	Haematocrit (L/L)	0.00315
	Haemoglobin (g/L)	1.64
	Mean Cell Hb (pg)	0.0101
	Mean Cell Volume (fL)	0.442
	Monocytes (10*9/L)	0.852
	Potassium (mmol/L)	0.404
or touch	Total Bilirubin (umol/L)	0.386
	Type 1 diabetes	3.37
	Admission ASIAB	0.277
	Admission ASIAC	9.01
	Admission ASIAD	9.39
	Smoking yes	0.699
	Alcohol Drinking status	1.75
	Initial motor	0.576
	Initial sensor prick	0.126
	Initial scim	0.027
	(Intercept)	14.3

	Haematocrit (L/L)	0.425
Month-12 SCIM	Haemoglobin (g/L)	0.74
	Mean Cell Hb (pg)	0.209
	Monocytes (10*9/L)	0.986
	Total Bilirubin (umol/L)	1.12
	Admission ASIAC	6.03
	Admission ASIAD	1.44
	Lumbar injury	1.45
	Age at injury (Median years)	0.0507
	Initial motor	0.193
	Initial sensor prick	0.423
	Initial sensor touch	0.229
	(Intercept)	15.5
	Haematocrit (L/L)	0.779
	Haemoglobin (g/L)	0.777
	Mean Cell Hb (pg)	0.00573
	Mean Cell Volume (fL)	0.07
	Monocytes (10*9/L)	1.17
	Total Bilirubin (umol/L)	0.672
	Urea (mmol/L)	0.162

Type 2 diabetes	1.87
Admission ASIAC	8.83
Admission ASIAD	2.44
Age at injury (Median years)	0.0249
Alcohol Drinking status	0.65
Initial motor	0.0837
Initial sensor prick	0.0852
Initial sensor touch	0.632
(Intercept)	23.9
Alanine Transaminase (u/L)	0.168
Mean Cell Volume (fL)	0.136
Sex	1.47
Initial motor	0.221
Initial sensor prick	0.0909
Initial scim	0.591

Supplementary Table 3. Final elastic net model parameters. Alpha is a value between 0 and 1, where 0 is pure ridge regression, 1 is pure LASSO and values between are a mixture of both. Lambda is the shrinkage factor applied to model coefficients

Model target	alpha	lambda
Discharge motor	1	0.679
Discharge sensor prick	1	0.738
Discharge sensor touch	0.6	0.718
Discharge SCIM	0.6	0.632
Month-12 motor	1	0.636
Month-12 sensor prick	0.4	1.67
Month-12 sensor touch	1	0.722
Month-12 SCIM	1	1.47

Supplementary Table 4. Linear regression model coefficients without elastic net penalisation

Model	Variable	Estimate	Std.	t	Pr(> t)
			Error	value	
Discharge motor	(Intercept)	19.6	5.02	3.91	0.000117
	Admission ASIAC	12.4	2.54	4.89	1.64e-06
	Admission ASIAD	11.2	3.41	3.3	0.0011
Discharge sensor	_ Initial motor	0.705	0.0635	11.1	4.15e-24
prick	(Intercept)	14.8	5.21	2.85	0.00472
	Total Bilirubin (umol/L)	1.4	0.596	2.36	0.0192
	Admission ASIAC	9.91	2.64	3.76	0.000209
	Initial motor	0.21	0.0659	3.19	0.00158
Discharge sensor touch	Initial sensor prick	0.555	0.0611	9.09	1.59e-17
	(Intercept)	22.4	4.54	4.94	1.32e-06
	Creatinine (umol/L)	1.84	0.935	1.97	0.0496
	Admission ASIAB	6.96	2.46	2.83	0.00492
	Admission ASIAC	14.5	2.3	6.29	1.17e-09
	Admission ASIAD	9.96	3.09	3.23	0.00139
	Initial sensor touch	0.664	0.0537	12.4	1.67e-28
	(Intercept)	24.1	5.79	4.17	4.06e-05

		Creatinine (umol/L)	2.96	1.19
proof.	Discharge SCIM	Urea (mmol/L)	-2.72	1.25
r from this		Type 2 diabetes	-6.68	2.85
7144) ո may diffe		Admission ASIAB	-7.26	3.14
/neu.2020. ned versior		Admission ASIAD	-10.6	3.94
Journal of Neurotrauma Routinely measured haematological markers can help to predict AIS scores following spinal cord injury (DOI: 10.1089/ has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final publish The final publ		Age at injury (Median years)	-0.208	0.0616
		Time to first blood test (Days)	-0.109	0.0393
		Smoking unknown	-5.18	2.36
		Initial motor	0.301	0.0733
		Initial scim	0.591	0.0605
	Month-12 motor	(Intercept)	25.7	6.1
		Admission ASIAC	14.6	3.09
		Admission ASIAD	15.6	4.15
		Initial motor	0.571	0.0772
		(Intercept)	13.1	5.59
		Total Bilirubin (umol/L)	1.57	0.64
This pape		Admission ASIAC	11.3	2.83

0.0138

0.03

0.0198

0.0213

0.0078

0.00586

0.0289

5.19e-05

1.02e-19

3.51e-05

3.67e-06

1.52e-12

0.0194

0.0149

8.25e-05

0.0422

3.76 0.000206

-3.38 0.000827

3.8

7.75

2.48

-2.18

-2.34

-2.32

-2.68

-2.78

-2.2

4.11

9.78

4.2

4.72

7.39

2.35

2.45

3.99

2.04

					40
prick	Fracture	-4.39	2.19	-2	0.0461
	Initial motor	0.209	0.0708	2.95	0.00344
	Initial sensor prick	0.434	0.0656	6.62	1.75e-10
	Initial sensor touch	0.173	0.0661	2.62	0.00922
	(Intercept)	17.6	5.33	3.3	0.00111
	Total Bilirubin (umol/L)	1.37	0.611	2.25	0.0255
	Admission ASIAC	13.8	2.7	5.1	6.06e-07
Month-12 sensor	Admission ASIAD	8.18	3.62	2.26	0.0248
touch	Drinker status	3.57	1.66	2.15	0.0321
	Initial sensor touch	0.618	0.0631	9.79	9.19e-20
	(Intercept)	20.9	6.47	3.23	0.00139
	Sex	4.73	2.2	2.15	0.032
	Age at injury (Median years)	-0.226	0.0687	-3.29	0.00111
	Time to first blood test (Days)	-0.103	0.0439	-2.36	0.0191
	Initial motor	0.275	0.0819	3.36	0.000896
Month-12 SCIM	Initial scim	0.595	0.0675	8.81	1.17e-16