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ABSTRACT Engineering dynamic systems — systems where the behaviour is the dominant characteristic — has some funda-
mental differences and challenges that are often neglected in model-based software engineering. In engineering simulations,
observable system behaviour is built up from the behaviour of low-level components; such simulations are used as research
tools in biological and social systems research. A necessary part of simulation engineering is to show that the simulation is fit
for its intended purpose, which is easier at the model level than the code level, because the models can be presented in a
readable form that domain experts can access.

We explore issues in the use of model transformation for simulation development, using a published Java Mason simulator,
created using the CoSMoS approach from UML-style state diagrams. We succeed in recreating part of the class structure of
the code by manual transformation, but also expose many issues to be overcome before an automated transformation can be
developed, in terms of what needs to be modelled to enable transformation, and how and when design decisions are taken.
We identify that a transformation of a behavioural design into an OO simulation also needs a means to capture the low-level
simulation and visualisation mechanisms, and a means to capture the design of the behavioural and data aspects of simulation
experimentation.
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and practice on the behaviour-based engineering of safety crit-
1. Introduction ical systems (e.g. working from Simulink or similar designs).
This work depends on the equivalence of behavioural models
(e.g. state diagrams) and mathematical models of dynamical
systems: in effect, a special case of behaviour-dominated sys-
tems, with the strong formal underpinning necessary to support
critical-systems development.

Software engineering and software modelling has been domi-
nated by approaches to modelling data structure since the advent
of relational databases, a focus reinforced by the dominance
of object-oriented (OO) programming. Engineering dynamic
systems — systems where the behaviour of the system is the
dominant characteristic — requires a different approach to mod-
elling and validation. There is a significant body of research

Our systems of interest are complex systems simulations,
mostly agent-based simulations, engineered to be fit for the
purpose of generating and analysing specific hypotheses about
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— systematic modification of experiments;
— unlimited data generation.

Furthermore, a research simulation does not require live animals
or human subjects, so avoids many ethical and privacy concerns.

There are well-known approaches available for developing
behavioural systems (see (Polack et al. 2009) for an early discus-
sion of approaches). The CoSMoS process (Stepney & Polack
2018) provides a lifecycle and techniques for the engineering
a demonstrably fit-for-purpose complex systems simulation,
and has been used for biological and robotic systems simula-
tions. CoSMoS advocates, but does not demonstrate, the use of
model-driven engineering to reduce the uncertainty of capturing
a simulation design in simulation code. There has been some
underpinning research on MDE for behavioural modelling (e.g.
(Polack 2012)), but nothing on model transformation either at
the specification level or for code generation from models.

To develop an approach that uses model transformation to
derive an agent-based simulation from complex-system be-
havioural models, a first step is to understand how the infor-
mation in the design process maps to the implementation of a
simulation. In this paper, the proposition is to start from pub-
lished behavioural speciﬁcations1 , and to derive a class model
that would be a starting point for an OO agent-based system
implementation.

The case study uses the documented development of a Java
Mason agent simulation, following the CoSMoS approach:
Alden’s PPSim” (Alden 2012; Alden et al. 2012). The design
uses behavioural UML-style models to capture first domain be-
haviour and then a platform model which is (a) demonstrably
derived from the domain model and (b) amenable to the devel-
opment of the software platform. The model has been fully
validated with domain experts, as appropriate for the defined
simulation purpose, namely the exploration of hypotheses con-
cerning the timing and implicated behaviours of Peyer’s patch
formation in the gut of a mouse embryo. The implemented
agent simulator has been extensively studied, both as the origin
of new insights in its domain (Alden et al. 2012) and as a case
study in the engineering of fit-for-purpose simulations.

A complex system has behaviour at many scales. From the
perspective of an outside observer, there is emergent, system-
level behaviour. The observed behaviour is a consequence of
lower level, smaller-scale systems interacting. In engineering a
complex system simulation, care must be taken to to determine
the scales and abstractions at which to represent lower-level
behaviours, and at which to observe and measure the emergent
higher-level behaviours. We cannot include everything in the

! Anonymous reviewers wondered why the transformation would start from
“high-level state machines”, and why we would not develop a class diagram in
parallel: the simple answer is that the diagrams presented here are the design
models developed, some six years earlier, by the project, and are typical of
design models created in related projects that the authors were involved with.
The diagrams have to be understandable to immunologists, in order to allow
crucial review and checking activities. There is no original class diagram, as
immunology comprises cells not objects, and the key feature of a cell is its
behaviour.

2www.kennedy.ox.ac.uk/technologies/resources/
ppsim-peyers-patch-development-simulator created by
Kieran Alden.
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Figure 1 Part of the metamodel for state diagrams and class
models in UML, based on UML 2.x and MOF metamodelling.
The BooleanClause class is shown as referencing the Attribute
class and calling the Operation class: in practice, Booleans
reference the name or value of an object slot, and call the
operations of an object.

simulation: (a) we could not execute such a large simulation;
(b) we do not know about everything; (c) a simulation contain-
ing everything would be as complex as the original and thus
of limited help to the researchers — in general, it takes a uni-
verse with the same starting conditions and evolution as ours
to simulate exactly any complex system (Polack et al. 2010).
There is no method or short-cut to guide the identification and
representation of implicated behaviours; there is only domain
expert judgement, engineering judgement, and trial and error.
The resulting simulation will be a simplification of all the sys-
tems in the real world that (might) be part of or interact with
our designated system of interest; furthermore, anything rep-
resented directly in the simulation not only represents its real
equivalent, but also acts as a surrogate for things not expressed
in the simulation.

2. Establishing a basis for simulation by
model transformation

Simulation engineering focuses on low-level behaviours. Vari-
ants of state diagrams and Petri nets are widely used, and can
be combined to good effect (Polack 2012).

Agent platforms come in many forms, but Java-based plat-
forms offer a well-supported, flexible programming basis, with
good visuals and data collection capabilities. We wish to create
a development approach using model transformation, but to
fully exploit an OO platform, it is necessary to create a class
model from the behavioural design.

UML has an established abstract syntax that links be-
havioural and class concepts®. The parts of a UML metamodel
that relate state diagrams and class diagrams are summarised
in Fig. 1 (we do not include the metamodel constraints: for
instance, a full metamodel might include a constraint that the
transition conditions from any state are complete — i.e. that the

30MG’s UML metamodels:
About-UML/
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conditions (guards) cover all possible situations). The state dia-
gram concepts capture the states of interest in the lifetime of an
object of a class, and transitions between states, whilst the class
diagram concepts capture the data structure in terms of attributes
and operations that underpin OO models and implementation.
Using a common metamodel allows us to confidently relate
concepts between diagrams, and establishes the basis of model
transformation (Czarnecki & Helsen 2006). The key concept
correspondences include the following.

— The state diagram references one class, defining permitted
behaviours of its objects; the states of the state diagram are
defined over the values of attributes of that class; a state
has duration.

— The condition referenced by a transition is a Boolean
clause; the condition must be true for the transition to
occur; a transition is instantaneous.

— The literals in a Boolean clause may be (values of) at-
tributes of (objects of) the class or of any class which is
the target of an association from the class.

— A Boolean clause may imply execution of operations of
the class or any class which is the target of an association
from the class.

— An action (entry, exit, or called whilst an object is in a
particular state) is a call to one or more class operations.

For agent simulation engineering, a state diagram represents
agent behaviours, and a class diagram models agent types, oper-
ations and interactions. In general, agents are not synonymous
with objects, but in practice, and because the development tar-
gets an OO implementation medium, the abstract syntax and
semantics of UML diagrams can be considered consistent with
the agent design.

2.1. State diagram concrete syntax

The concrete syntax used for the UML-style state diagrams
(Figures 2 and 3) represents object creation by an arrow (tran-
sition) from the solid black dot to a state; object termination
is an arrow from a state to a target symbol (there are no object
terminations here). States are soft boxes containing the state
name and labelled actions that take place on entry, on exit or
during the period that an object is in the state; these actions can
change the value of attributes of the object, or reference linked
objects, etc. A transition is an arrow labelled with the condition
on the transition; a transition is triggered either when an object’s
values become inconsistent with its current state, or when the
condition on the transition becomes true.

3. Validating behaviour designs

The complex-systems simulation development scenario is one
that even critical systems engineers are not familiar with:
rather than engineering a system that minimises uncertainty,
risk or hazards, we are developing a software simulation that
seeks to faithfully replicate the uncertainty of an incompletely-
understood reality. In the simulation engineering context, sim-
ulation validity is not binary, but is an argument that captures
many assumptions and uncertainties — an argument that must

be revisited if the domain understanding, the design, or the sim-
ulation purpose is modified. CoSMoS recommends capturing
formal or informal arguments of fitness for purpose at each stage
of development (Ghetiu et al. 2009; Alden et al. 2011; Polack
2015; Stepney & Polack 2018), capturing the essential basis
of perceived trustworthiness of the system for its designated
purpose.

The process of validation includes conventional software
testing and validation, and also trial-and-error tuning of the sim-
ulation so that the desired emergent behaviour can be shown to
arise from behaviours and parameterisation that is an acceptable
match to the real system. In the case study, PPSim, significant
effort went into (a) modelling the relevant parts of the biologi-
cal domain and arguing its validity; (b) reviewing the models
and arguments with domain experts, to confirm their appropri-
ateness to specific experiments (Alden 2012). Compared to
conventional software engineering, the published fitness for pur-
pose arguments are neither complete nor sufficient: they only
establish conditional validity. However, they present the basis
on which trust is established in the simulation, which is the best
we can hope for in complex systems simulation.

There are many reasons for wishing to use model transfor-
mation to derive simulation code from validated, or at least
arguably fit for purpose, designs:

— transformation reduces the risk of coding errors — any er-
rors are in the transformation rules, and are thus systematic
(and perhaps therefore easier to spot);

— transformation is repeatable — the same rules applied to the
same diagram produces the same code; by extension, the
same rules applied to an amended diagram would produce
appropriately amended code;

— transformation enables quality simulation creation with-
out significant software engineering skills and insights —
the use of transformation (once the transformations have
been written) frees the expert software engineer to focus on
solving challenging software engineering problems such
as finding representations that optimise computational effi-
ciency with understandability (of the models) and usability
(of the simulator and its results).

A validation step on design models, which is essential for
model transformation, is to check that the models conform to
their metamodel. In this case, the state diagrams can be shown
to conform to the metamodel in Fig. 2.1. In addition, the state
diagrams need to be logically consistent, for example:

1. all literals or value expressed in every transition condition
should be consistent with the definition of the state from
which the transition is made;

2. the transitions from a state should form a logically com-
plete set;

3. the concepts referred to by a condition or action are fea-
tures or values of the object, class or linked (associated)
objects (classes).

However, conformance checking is not sufficient. It is easy to
create a conformant diagram that is not a valid representation of
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the domain. In the PPSim case study, for instance, the challenges
of simplifying and translating biological behaviour, states and
controls into computational language mean that model structure
and semantics are sometimes shown to be inconsistent with
the domain — we are still discovering issues with the relatively
simple state diagrams that describe PPSim cells. A further
motivation for using model transformation to implement an
agent simulation from design diagrams is to enable efficient
code modification when errors are identified in the design.

4. The PPSim Design: state diagram models
of cells

The original PPSim design was developed by K. Alden (Alden
2012), working with the CoSMoS team and domain experts led
by Viega-Fernandes (see e.g. (Veiga-Fernandes et al. 2007)).

The diagrammatic design comprises state diagrams for each
of three implicated cell types, known as LT,, LT;, LTZ-(n), as
well as an activity diagram (which is outside the present scope)
summarising the cyclic interactions of the cells and the environ-
ment. There is a text discussion of the representation of each
concept from the domain, and a comprehensive argument that
the model is fit for purpose (Alden 2012). In order to present
a coherent view of the case study design, the labelling of the
state diagrams has been simplified to omit features only used in
experimentation with cell division and time-outs.

The three types of cell are all located in a continuous space
representing the mouse gut; LT, cells stick to the gut wall,
whilst LT; and LT;,,) cells move within the dominant direction
of flow. LT, and LT; cells can bind a “RET Ligand”. A bound
LT, expresses chemokine which results in chemokine gradi-
ents; LT; cells can detect the local chemokine and may perform
chemotaxis.

The notes accompanying the original state diagrams (Alden
2012) explain features of motion, contact and binding:

— contact means that cells are touching, defined as cell cen-
tres being separated by no more than half the diameter of
each cell type;

— when cells are in contact, a bind occurs if a generated
random value is smaller than the bind limit for the cell
determined by calibration, referred to as ;

— chemokine level is determined by distance from a LT,
according to a set of research-based diffusion curves*;

— adhesion (in)sufficiency is defined via a probability of
prolonged cellular contact, based on a calibrated parameter,

4 (Alden 2012) states: The initial curve is tight, calculated through using the
initial chemokine expression level assigned to parameter initial Chemokine-
ExpressionLevel. This models expression over a limited distance, but one
which strengthens as distance to the LTo reduces. With each stable contact
between an LTo and LTi cell, the curve is relaxed by adjusting the parameter
increaseChemoEXxpression, representing an increase in expression. With this
increase, diffusion affects LTi cells over a greater distance. This expression
increases until a maximum level of expression is reached, set by parameter
maxChemokineExpressionLevel.

4 Polack and Alden
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Figure 2 State diagram of LT, cell, based on (Alden 2012),
with addition of non-state-changing transitions recording each
binding (these are implicit in the original model). Notations
and meaning: see Section 2.1.

adhesionSlope’;
— each LT; and LT, cell has a speed drawn from a Gaussian
distribution, calibrated to match observed cell speeds.

The model captures cell-level behaviours; the emergent be-
haviour that should arise is the formation of clusters. In line with
conventions in complex systems modelling, there is nothing in
the model that requires or programs the formation of a cluster:
a cluster arises as a consequence of the behaviour of many cells,
and can be tuned by adjusting cell characteristics, thresholds,
creation events, and parameters of the system (referred to as
calibration and sensitivity analysis) (Stepney & Polack 2018;
Read 2011; Alden et al. 2016).

41. LT, Cells

Peyer’s patch formation takes place around an active LT, cell,
a cell type that can bind a “RET Ligand”. In the simulation, a
LT, cell is created in situ and does not move; other cells may
come in to contact or bind the LT, cell (Alden 2012).

Fig. 2 shows that a LT, may be in a state that allows Peyer’s
patch development (expressing RETligand) or not; there is a
time-out for a cell in the that state. The state of the LT, cell
changes as other cells make contact and bind, so, when the LT,
cell binds to its first LTZ-(n) cell, the transition labelled Touching
LTin AND binding takes place, changing the cell state to Bound

5 (Alden 2012) states: Each LTo cell has the same initial adhesion factor expres-
sion level (set by parameter initialAdhesion). With each stable contact, the
level of adhesion factor expression increases (parameter: adhesionlncrement).
This increases the probability that a cell remains in the vicinity of the LTo cell
for a prolonged period. This probability increases until a threshold is reached
(parameter: maxProbabilityOfAdhesion)... there is a chance that an LTin/LTi
cell may move away from the forming primordial patch.



to LTin. The next state change occurs when the LT, cell binds to
a LT; cell, transitioning the cell to the state Bound to LTin and
LTi; this initiates chemokine upregulation. The final transition
occurs when a sufficient strength of adhesion (binding) and
chemokine is reached, and is described as “mature” (Alden
2012) —in simple terms, the LT, cell is now firmly bound to a
cell cluster.

4.2. LT; and LTl(n) Cells

LT; and LT;(,) cells share many characteristics (at least in sim-
ulation), differing only in that a LT;,) cell is not responsive
to chemokine. The state diagrams in Fig. 3 have been adapted
from the originals principally to apply UML conventions and to
avoid confusion across transition conditions, states and events.
Movement, which is based on a random walk, is modelled as
an action during a state. The form of movement is modelled as
different when mediated by chemokine reception, when the cell
is in contact with a LT;, and when bound to a LT, cell.

4.3. Agent Simulation Environment

A platform such as Java Mason provides a customisable envi-
ronment for agent interaction. Whilst the environment is not a
within the scope of the model transformation considered here, it
is useful to note some of the features provided, based on (Alden
2012).

— The simulation has a standard time step, and every agent
is visited and updated in each step — PPSim has a detailed
timing model which relates biological time to time steps,
but that is not in scope here.

— There is an underlying spatial model, and agents have a
location in the space — PPSim uses a continuous 2D space
to represent a 3D tube.

— Experimentation may require measurement, encoded as
data outputs.

— A simulation can be run in visual or non-visual mode. In
the latter, execution is faster and can be used to gather large
sets of output data for experimental use.

5. Creating a manual transformation

As a starting point for considering model transformation, this
section describes the manual derivation of a class diagram from
state diagrams. The steps exploit the metamodel relationships
between concepts, Fig. 1.

1. Use meta-information (which diagrams exist) to identify
classes, and propose generalisations.

2. Represent the named states for each class using attributes.

3. Represent references to (objects of, other) classes in transi-
tion conditions, using associations.

4. Systematically consider conditions and actions; determine
attributes of the class or other classes.

5. Systematically review conditions, actions, and class fea-
tures already identified, deriving class operations needed

to update attribute values and enact the behaviours deter-
mined by actions.

Note that any step might identify other features as a side-effect
of its main focus. In general, derivation may require a design
decision, which might consider information not available from
the state diagrams. In applying the steps, we use the state
diagrams and explanatory notes from (Alden 2012), outlined in
section 4.

5.1. Introductory remarks

Sections 5 and 6 attempt to convey a process of systematic,
rule-based manual transformation in sufficient detail to support
repeatability. Inevitably, this leads to dense examples that may
be hard for non-specialists to follow. Both authors are software
engineers; we have tried to make the terminology accessible to
non-specialists (like ourselves), whilst staying faithful to the
published design. We had the option to turn the diagrams into
nicer software models that map more cleanly into class diagrams,
or to simplify the diagram labelling, but chose to describe a real
starting point and a real end point in order to explore whether
it is possible and realistic to attempt transformation from real
domain and design models to real OO classes. The main points
that arise are summarised in the discussion and conclusions,
Sections 7 and 8; the manual transformation has been very time-
consuming, and it is clear that an ideal development would have
created a different set of starting models, but the principle of
using model management to support fit-for-purpose simulation
development remains.

5.2. Step 1: Identify Classes and Generalisations

The set of models is the meta-information used to determine the
set of classes, one for each state diagram:

— LTo class
— LTiclass
— LTin) class

However, mobile cells share many behavioural characteris-
tics, and all three state diagrams relate to types of cell that share
attributes such as a location, and behaviours related to touching
other cells. We can therefore deduce generalisations: Cell for
the common features of all cells and MobileCell for the common
features of LT; and LTj;,).

5.3. Step 2: Add state attributes

There are several ways to represent state-diagram states in a
class. Each state can be represented as a separate Boolean
attribute: the attribute is true when an object is in this state.
This representation requires conditions: (a) at most one state
attribute can be true for an object at any time; and (b) a defined
partial order expressing permitted state changes. Alternatively,
a single state attribute with an ordered type, such as Integer,
avoids the need for both conditions.

Here, a compromise solution, which is more readable — an
important consideration when models are validated by domain
experts as well as software engineers — but requires an ordering
constraint, is to use enumerated types, represented in UML as
an «enum» type class (Fig. 4).
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Figure 3 State diagram models of LT (Fig. 2(a)) and LTZ-(”) (Fig. 2(b)) cell, based on (Alden 2012). Notations and meaning: see

Section 2.1.

5.4. Step 3: Identify associations implied by conditions

A UML state diagram captures the life-cycle of objects of one
class but conditions can reference properties of other objects
or classes. To identify associations, we systematically review
every condition on each state diagram.

The LT, transition conditions record contact and binding
with LT;,) and/or LT; cells (Fig. 2, above), implying associa-
tions from the LTo class to each type of mobile cell, or to the
parent class, MobileCell.

In terms of multiplicity, the general association is a 1:m as-
sociation: one LT, may bind any number of mobile cells; each
mobile cell can bind to at most one LT,. The notes accompa-
nying the state diagram indicate that factors such as binding
are mediated by the number of contacts or bindings, and thus
the number of links is important: this can be recorded in an
attribute, and/or calculated by running a function over the asso-
ciation links.

There are also two specific bindings that are important to
LT, state changes: the first bind to a LT; ;) and the first bind to

LToState
<<enum>>

rETLigand
noRETLigand
boundLTin
boundLTinAndLTi
mature

LTiState
<<enum>>

free

chemotaxis
inContactRETLTi
boundLTo

LTinState
<<enum>>

free
inContactRETLTi
boundLTo

Figure 4 «enum» stereotype defining the states of cells, from

Figures 2 and 3.
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a LT;. These conditions are optional 1:1 associations, and, as
such, could be replaced with attributes (Boolean or of the type
of the linked cell).

The derivations used are:

— a l:m association, isBoundTo between LTo and MobileCell;

— attributes LTo.boundLTi and LTo.boundLTin to identify first
bindings;

— an attribute to facilitate calculation of binding,
LTo.countBinds

Both the LT; and LT; ;) state diagrams have transition con-
ditions relating to contact. These conditions exactly imply the
inverse relationship. The notes with the state diagram describe
chemotaxis of a LTi and the constrained movement of a mobile
cell that is bound to a LTo: this implies that the location, and
thus the identity, of the bound LTo is important. We propose
MobileCell.boundLTo.

The classes, generalisations and association are shown in
Fig. 5.

5.5. Step 4: Identify class attributes

In addition to the state attributes (Section 2), conditions imply
attributes; the notes accompanying the state diagrams help to
determine some of the design details. To avoid making arbitrary
decisions, the types of attributes are descriptive (e.g. adhesion-
related attributes have a type, AdhesionType), unless their type
is uncontroversial (Integer or Boolean).

The relevant conditions from the state diagrams (Figures 2
are:



LTi LTin !
0.1 .
firstLTin
0.1
0.1 -
LTo MobileCell
firstLTi
0-l1| isBoundTo ‘ *

Figure 5 Adding associations to the base class diagram.

— the LT, condition time = 7t and the action Entry: time = 0;

— the LT, condition chemokine = maxChemokine and ad-
hesion sufficient;

— the LT; conditions Local chemokine level triggers chemo-
taxis (>= ¢) and Local chemokine level not enough for
chemotaxis (>= ¢);

— the LT; and LT, conditions Adhesion sufficient and Ad-
hesion insufficient.

time refers to a local timer on the LT, cell which can be
incremented to a threshold level, 7. In (Alden 2012), the notes
accompanying the state diagram states that 7t is a simulation
parameter.

For chemokine, the notes accompanying the LT, state dia-
gram (Alden 2012) describe the derivation of chemokine gra-
dients and associated initial and maximum values: these are
simulation parameters set by calibration. Each cell has a chemo-
ExpressionLevel that is calculated from the chemokine curve.
A LT; cell calculates the localChemokineLevel based on the
chemoExpressionLevel of its nearest LT, and their relative
locations.

The notes on adhesion explain that cells have a probability of
adhesion that increases with duration of contact (Alden 2012);
all cells have an adhesion factor expression level, adhesionEx-
pressionLevel that is initially set to 0. There are simulation
parameters to establish how the adhesion level is set and incre-
mented.

In summary, the derived attributes are:

LTo.time =0

— LTo.chemoExpressionLevel
LTi.localChemokineLevel
Cell.adhesionExpressionLevel = 0

5.6. Step 5: Deriving class operations
The scope of operation coverage here is limited; although some
aspects of composite operations can be deduced from the notes
with the state diagrams, the original design does not include
sequence diagrams or equivalent that describe the composite
operations in detail.

The class model needs to provide operations that set, get (by
passing messages over object links) and adjust the values of

attributes, as well as to implement the actions and condition
evaluations in the state diagrams. Setters and getters are straight-
forward, and are usually omitted from UML class diagrams.

For the state attributes on the cell classes, operations need
to check the conditions on transitions at each time step, and
advance the state when a transition condition is true. The state
change operations are:

— LTo.changeState()
— LTi.changeState()
— LTin.changeState()

Turning to the attributes identified in the previous steps, the
attribute LTo.time has two implied operations: increment and
comparison the counter value to the simulation parameter, 7t:

— LTo.incrementTime()
— LTo.checkTime()

For adhesion, operations are needed to evaluate adhesion
sufficiency.

— LTo.incrementAdhesion()
— MobileCell.calculateAdhesionProbability()

Similarly, operations are needed for chemokine expression,
evaluation, and triggering chemotaxis:

— LTo.updateChemoExpressionLevel()
— LTi.calculateLocalChemoLevel()
— LTi.establishChemotaxis()

The state diagram actions also imply operations. The LT,
action Entry: time = 0 has been accounted for by setting the ini-
tial value of the time attribute to 0. The action on state, Bound
to LTin, Entry: upregulate adhesion molecules, corresponds
to the operation derived to incrementAdhesion(). Similarly, the
action on the Bound to LTin and LTi state, E1: upregulates
chemokine (env), is captured by updateChemoExpression-
Level().

The actions on LT; and LT, cell states concern the form
of motion. From the notes accompanying the original state
diagrams (Alden 2012), every cell has a speed drawn at random
from a Gaussian distribution, which determines how far it moves
in each time-step. The direction of travel in the time-step is
determined as follows:

— as arandom walk (E1: random movement in Fig. 3), until
cell interactions start;

— as a chemotaxis-weighted random walk (E2: mvt with
chemotaxis) in which the probability of moving in any
direction is related to chemokine strength, calculated from
the relative location of a LT, emitting chemokine;

— as a random walk weighted by the adhesion strength and a
probability that a bound cell can move away from the LT,
(E4: constrained RM).

Fig. 3 also includes a possible additional movement, E3: mvt
with contacted LTi, where two LT; cells are in contact (this is not
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7t : Integer (time)

¢ : ChemokineType

initial ChemokineExpressionValue : ChemokineType
maxChemokineExpressionValue : ChemokineType
maxProbabilityOf Adhesion : AdhesionType

adhesionIncrement : AdhesionType

Table 1 Simulation parameters derived from state diagrams
and accompanying notes (Alden 2012).

in the original model, which does not distinguish RET-binding
to by cell type). This form of movement, and the chemotaxis-
weighted random walk, only apply to LT; cells. The derived
operations are:

MobileCell.calculateSpeed()
MobileCell. moveRandomWalk()

— MobileCell.constrainedRandomWalk()
LTi.chemotaxisRandomWalk()

— LTi.contactLTiRandomWalk()

Reviewing the operation derivation, it is apparent that many
conditions relate to contact or binding and the calculations of
adhesion and bind strength. We therefore derive two further
generic operations,

— Cell.calculateContact(Cell,Cell)
— Cell.calculateBind(LTo,MobileCell)

The full set of derived classes, attributes and operations is shown
in Fig. 6 and Table 1.

6. Validating the derived model

Manual derivation of the class diagram has carefully checked
each step against information in the state diagrams, and ac-
companying notes (in (Alden 2012, Chapter 2)). As previously
noted, manual processes are error-prone: the manual PPSim
derivation has been revisited five times, and although the class
structure is consistent, the detail of each class differs depending
on how each feature of the state diagram and notes is interpreted.

Since the PPSim code exists, there is a more independent
validation check, to compare the classes derived manually (the
derived model) with the structure of the classes in the original
PPSim code (the code model), which can be extracted by any
development environment capable of representing code structure
as a UML-style class model®. The code model classes, extracted
from the PPSim code, include setters and getters, making the
image too large to reproduce clearly; Fig. 7 is included for
completeness only.

6 An anonymous reviewer makes the excellent point that it is also important to
ensure that the behaviour represented in the models matches the behaviour
of the code: this is a part of the simulation validation, typically entailing
extensive calibration and sensitivity analysis, and is beyond the scope of this
paper exploring the basis for use of model transformation.
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The most obvious difference between the derived and code
models is that the code only uses one generalisation, Cells
(sic). This means that many attributes and operations appear
in different places to, and have wider scope than in the derived
model. Furthermore, it becomes challenging to compare the
models class-by-class. Instead, the following addresses the
generic concepts in turn: state and time, chemokines and adhe-
sion, movement, contact and binding.

6.1. Derived and code models of state and time

In the code model, Cells.cellState: int represents the state
of any cell, whereas the derived model has an enumerated state
attribute for each cell class. Whilst there are advantages to either
design, the representations are conceptually similar.

State change in the derived model is an operation on each
cell class; this would allow a consistent implementation in each
class, calling the operations needed to execute checks and com-
parisons, and run actions.

By contrast, state change is not handled systematically in the
code model: there are many operations related to the behaviour
that causes and arises from state change in Cells class, coded
from the biological descriptions, rather than from the state dia-
grams. No single Cells operation encodes all state changes or
all effects of a state change for any cell type. The relevant Cells
operations are:

— Cells.alterLTiState(): the condition and effect of a
LTi binding to a LTo;

— Cells.updateLToState(): one state change, part of the
derived-model operation, LTo.changeState();

— Cells.updateRLNSState (): the effect of a non-stromal
(i.e. mobile) cell expressing RET-ligand — the platform
model does not have any corresponding terminology;

— Cells.artnRETSignalling() and
isExpressingRETLigand(): LTo and LTi RET
signalling, implicated in state changes — encodes an
interpretation of the biology rather than the behaviour
modelled in the state diagrams;

— Cells.immatureLToActivation(): part of the LTo
life-cycle — immature is a biological label for a LT, that is
still undergoing contact and binding.

In the derived model, the only reference to time is the LT, de-
activation time, with derived attribute LTo.time and operations
LTo.incrementTime() and LTo.checkTime(). The equivalent
attribute in the code model is LTo.activeTime. In the code
model, checking time is conflated with the effect of exceed-
ing the time limit, in operations activateRETLigand () and
removeRETLigand ().

In the code model, there are three more time-related
attributes that record how long a LTo cell has been in contact
with another cell (1TinContactStateChangeTimePoint,
1TiContactStateChangeTimePoint,
matureLToStateChangeTimePoint; these are used in calcu-
lating bindings (e.g. the operation LTo.stableContact()),
at a lower level of detail than the state diagrams. In addition,
the code model includes Cells.timeTracked:int and
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currentPosition : Location

i ] adhesionExpressionLevel : AdhesionType = 0
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updateChemoExpressionLevel()
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checkTime() : Boolean B e
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Figure 6 Classes, attributes and operations (omitting setters and getters) derived from state diagrams and accompanying notes

(Alden 2012).

LTi.getTimeTracked (), which support experimental data
collection.

6.2. Derived and code model chemokine representa-
tions

In the derived model, the representation of chemokines
uses ChemokineType as a placeholder for an abstract data
type which, conventionally, would capture the basic op-
erations on as well as the attribute type. The value
of LTo.chemoExpressionLevel: ChemokineType is set by
LTo.updateChemoExpressionLevel(), as required by the pro-
cess described in the notes (see Section 5.5, above). Chemokine
values are used in determining the behaviour of LT; cells —
LTi.localChemokinelLevel is set by LTi.calculateLocalChemo-
Level(), which would read LTo.chemoExpressionLevel. The
threshold and trigger level are simulation parameters (i.e. not
part of the model classes).

In the code model, attributes of the LTo cell encode cell-
related and system-related parameters: chemoSigThreshold,
chemoLinearAdjust, startingChemoLinearAdjust and
endingChemoLinearAdjust:double. The LTi class has no
chemokine-related attribute or operation. The model reflects the
detailed biological mechanisms, not the state diagrams.

Whilst a direct validation of the derived model is not possible,
it appears that there is a similar intention. In relation to the LT;,
the derived model is faithful to the state diagram in Fig. 3, but
we note that this is a redrawn version of the platform model,
where the effect of chemokine is a change in movement: the
code model includes evaluation of chemokine by LT1i cells in
the Cells movement operations.

Arguably, the derived model better supports code validation,
because it provides clear traceability and separation of concerns
— though it has not been determined whether this conceptual
clarity would complicate the encoding of low-level behaviours
in the OO platform. In software engineering terms, the use of an
abstract data type (i.e. a class, with behaviours, that is used as a
type) would generally be thought a more appropriate solution
than a direct encoding of type-related behaviours.

6.3. Derived and code model adhesion representations

Adhesion applies to all cells, and both the derived and code mod-
els position adhesion-related features in the parent class. The
derived model again uses an abstract data type, AdhesionType,
whereas the code model provides component operations that
capture the biology better than they express the state diagrams.

In the derived model, Cell.adhesionExpressionLevel
is updated by LTo.incrementAdhesion(); Mobile-
Cell.calculateAdhesionProbability()  calculates the ad-
hesion probability factor that is then compared with
Cell.adhesionExpressionLevel to determine whether adhesion
is sufficient to maintain a bind, using Cell.calculateBind().

In the code model, the encoding of low-level biol-
ogy refers to VCAM, from the biochemistry of adhe-

sion (LTo attributes startingVCAMExpressionLevel
and  endingVCAMExpressionLevel; and  Cells
attribute, vcamAdhesionEffect, and operation,

calculateVCAMEffect()).

As for chemokine, a direct validation is not possible, but
again the intention is similar. The presence of the type,
VCAMAdhesionEffect suggests that an abstract data type ap-
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<<Java Class>> <<Java Class>>

@ cells ®LTo
(default package) (default package)

o agentLocation: Double2D
o agentPreviousLocation: Double2D

o agentTrackStartLocation: Double2D

o agentTrackEndLocation: Double2D

o trackLength: double

o trackLengthScaled: double

o trackedVelocity: double

o cellDisplacement: double

o distToNearestLToAtSimEnd: double

o timeTracked: int

o stopped: boolean

o cellState: int

o cellSpeed: double

o cellSpeedScaled: double

o cellSpeedSecond: double

a simParams: SimParameters2

o contactedCell: Cells

o vcamAdhesionEffect: VCAM_Adhesion_Effect
o expressingRETLigand: boolean

o stopper: Stoppable

o chemoSigThreshold: double

o chemoLinearAdjust: double

o imLToCellContactCount: int

o activeTime: int

o stopped: boolean

o patchNum: int

o gridLoc: Int2D

o startingChemoLinearAdjust: double

o endingChemoLinearAdjust: double

o startingVCAMExpressionLevel: double

o endingVCAMEXxpressionLevel: double

o ITinContactStateChangeTimePoint: int

o [TiContactStateChangeTimePoint: int

o matureLToStateChangeTimePoint: int

& LTo(Double2D,SimParameters2, Int2Dint)
@ activateRETLigand():void

@ removeRETLigandLTo():void

@ getLToVCAMExpression():double

© getType():String

@ stableContact(Cells,int,double double):void
© step(SimState):void

@ draw(Object,Graphics2D,Drawinfo2D):void

& Cells(Double2D, SimParameters2)
@ setStopper(Stoppable):void

@ stop():void

@ getcellSpeed():double

@ artnRETSignalling(PPatchSim):void
@ alterLTiState(PPatchSim,LTo):void <<Java Class>>
@ avoidCellCollision(PPatchSim,double):double ®LTin

@ calculateVCAMEffect2(PPatchSim,double).double (default package)
@ performMoveAfterContact(PPatchSim,double):double

@ performMove3(PPatchSim,double):void

° To(Cells,PF double

@ calculateNewPosition(Double2D,double,double, PPatchSim):Double2D
@ ltitinCollision(Continuous2D):boolean

@ updateLToState(LTo,Cells,int,double,double):void

© updateRLNSState(RLNonStromal):void

@ collisionCheck2(PPatchSim):boolean

@ immatureLToActivation(PPatchSim,LTo):void <<Java Class>>

@ rollAround(Double, Double,PPatchSim):Double2D oL

@ distanceBetweenTwoPoints(Double2D,Double2D double).double (default package)

© getTimeTracked():int o chemoReceptor: ChemokineReceptor

© setTimeTracked(int):void FLTi(Double2D,SimParameters2)

@ getAgentLocation():Double2D o getCellType():String

@ getAgentPreviousLocation():Double2D o getTimeTracked():int

@ getAgentTrackStartLocation(String):double © step(SimState):void

et e o draw(Object,Graphics2D, Drawinfo2D):void
@ getDisplacement():double

o getDisplacementRate():double

o getMeanderingindex():double

@ getNearestLTo():double

@ getTrackLength():double

@ getTrackLengthScaled():double

@ getTrackedVelocity():double

o getCellDisplacement():double

@ getDistToNearestLToAtSimEnd():double
@ isStopped():boolean

@ getCellState():int

@ getCellSpeed():double

o getCellSpeedScaled():double

o getCellSpeedSecond():double

@ getSimParams():SimParameters2

o getContactedCell():Cells

@ getVcamAdhesionEffect()

@ isExpressingRETLigand():boolean

@ getStopper()

@°LTin(Double2D,SimParameters2)

@ getCellType():String

@ step(SimState):void

& draw(Object,Graphics2D,Drawinfo2D):void

Figure 7 Full details of classes and generalisations in PPSim
code

proach is used for part of the code model.

6.4. Derived and code model movement

In the state diagram, Figures 2 and 3, movement changes de-
pend on the influence of chemokines (LT; cells only) and ad-
hesion. The variants of movement are taken from the notes
and labelling of the original state diagrams. In the derived
model, movement is a feature of the MobileCell class, which
has operations, calculateSpeed(), moveRandomWalk(), and
constrainedRandomWalk(). These operations need to access
cell locations, binding and adhesion data.

The code model again
calculation details; all the movement behaviours
are on the Cells class. The main attribute is
CellSpeed:double, but there are additional speed attributes,
Cells.cellSpeedScaled:double, Cells.cellSpeed-
Second:double and Cells.trackedVelocity:double

includes biological and
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for use in experiments. The operations are at a lower
level than those in the domain model, and focus on the
effect of movement (to relocate the cell) rather than
the movement itself: performMoveAfterContact (),
performMove (), calculateNewPosition(), rollA-
round () and distanceBetweenTwoPoints ().

The basics of movement (moving a mobile cell to a new
location, according to its speed and the constraints imposed
by binding) are similar, assuming that the code model’s
performMove (), performMoveAfterContact() and roll-
Around () implement the unconstrainted random walk, a ran-
dom walk constrained by contact, and the movement of a bound
cell that cannot break contact, respectively.

The code model has some additional movement-
related operations. Cells.1TiLTinCellCollision(),
collisionCheck() and Cells.avoidCellCollision()
capture the fact that contact and binding are only relevant to cell
pairings including a LT, cell, as well as surrogating for the fact
that, in reality, the physics of flow etc., prevent cell collisions.
This detailed behaviour is not captured in the state diagrams.

6.5. Derived and code model contact and binding

Contact is defined in the original model as cell centres being
within the sum of half their respective diameters (Alden 2012).
Binding is calculated for any cells in contact, where one cell is
a LT,, using adhesion level and a generated random number (to
maintain stochasticity of binding).

The derived model contact and binding is described in
Sections 5.4 and 5.6, above. The LT, is always the source
of the contact or binding. In the code model, the at-
tribute, LTo.imLToCellContactCount plays the same role
as LTo.countBinds in the derived model. The im prefix is, again,
a reference to the biological term, immature, which covers RET-
ligand LT, cells before maturity. The behaviour associated with
immaturity is to record contact and binding to mobile cells,
which is captured in Fig. 2 as the ability to undergo a non-state-
changing transition in the relevant states. The derived model
records two further attributes, LTo.boundLTi:Boolean and
LTo.boundLTin:Boolean, which are implicated in the oper-
atational state changes in Fig. 2. The code model includes an
operation, Cells.findNearestLTo (), which avoids the need
to record which LT, cell is the current focus of movement.

In the derived model, the parent class has the operations
to calculate contact and binding: calculateContact(Cell,Cell)
and calculateBind(LTo,Cell): the latter accesses the adhesion
attribute and operations of the other classes. In the code model,
Cells.contactedCell identifies cells that are in contact with
this cell object.

Again, exact equivalence cannot be shown, but there is com-
mon intent in the code and derived models.

7. Discussion

Whilst the approach here shows that a model transformation
approach from a CoSMoS-style platform model to OO-based
agent simulation is possible in principle, the manual approach
highlights many issues. The attempt to validate the classes



derived by a systematic manual transformation against those
extracted from the PPSim simulator code reveals that the trans-
formation approach would change the developer approach, re-
stricting creativity in coding solutions but potentially facilitating
demonstration of the fitness for purpose of the code. Further-
more, it is likely that transformation could improve code quality
and facilitate creation, maintenance and reuse of code.

The manual derivation relies on meta-information such as the
existence of state diagrams (representing known classes of cell)
and intuition (in generalisation). However, it is arguable that,
for code generation, the class structure — the associations and
generalisations — could have been ignored or identified in other
ways. Generalisation can be retro-fitted, by post-hoc review of
features that classes have in common. For associations, it is a
well-known issue in OO that coding of object linkage cannot be
achieved at class level, so we could potentially ignore associa-
tion derivation. Instead, the state models could systematically
identify message passing needed by derived operations: if the
platform model included systematic definitions of operations
(e.g. sequence diagrams), the required message passing would
be clear (but then, so would the required associations).

The detail of the manually-derived classes uses all the fea-
tures of the state diagram, and applied the conceptual equiva-
lences defined in the metamodel, as well as an intuitive under-
standing of how conditions and actions reference object features.
The manual approach is relatively easy to describe, but draws
on the intuition of the modeller; because a condition can ac-
cess almost any possible value, attribute, object or class, it
would be challenging to capture the process as a set of discrete
transformation rules. Furthermore, the notes accompanying
the original state diagrams were consulted to understand the
detail of state diagrams, and this would not be available to an
automated transformation. The derivation has not addressed the
detail of operations, or even the pre- and post-conditions, which
would be an important part of a code implementation.

In this case study, only the state diagrams were used. The
original domain model includes an activity diagram, which
provides more information concerning operations across classes,
and complements the information in the notes. However, what
would be most useful for an automated transformation would
be addition of sequence diagrams (or equivalent) to describe
the key behaviours such as movement, contact and binding.
Indeed, it seems that such models are a necessary condition for
an automated transformation. This should not be surprising,
given that the more early modelling and validation work that is
undertaken, the easier it is to accomplish good-quality software
development. Tying down the platform specification early in
development leaves fewer open options in coding, and makes
design decisions easier to record and analyse.

In attempting to validate the derived model against the code
model, the effect of open design decisions is very evident.
Whilst the effect of different design decisions for recording
class states is slight, the derived and code models take very
different approaches to underpinning the detailed behaviour of
the cells. It is arguable that code derived from the diagrams
would be better structured than that manually coded. Transfor-
mation would also remove the language problems found in the

code-model classes (biological and biochemical terms) — more
specifically, transformation would eliminate the possibility of a
concept having different names in the models and the code.

It is interesting to note that the detailed notes accompanying
the design (Alden 2012) and the PPSim code model both fa-
cilitate code-level validation by the domain expert (biologists):
the domain expert is reassured that the code captures the cal-
culations that they understand. If a full model transformation
were possible, however, there would be no need for the domain
expert to re-validate implementation: fitness for purpose ar-
gued at the domain and platform model levels would pertain by
transformation to the code.

At a more detailed level, it is clear that the code model in-
cludes detail that is not captured in the design models — detail
that cannot be derived from the design, because it is not there.
The code-model classes include attributes and operations used:
(a) to record data needed for experimental results; (b) to operate
the simulator (stop and start runs); and (c) to support all or some
experimental set-ups of the simulation. An automated trans-
formation assumes that only the design models are required to
derive code, so further work would be needed, using patterns,
templates or other transformation models, to support code gen-
eration. There are simulation platforms that encapsulate the
simulator code, e.g. through application program interfaces.
However, such platforms tend to have significantly reduced flex-
ibility: the power of the OO platforms is their ability to support
any behaviour and representation that can be expressed in OO
terms. This trade-off between flexibility and convenience is
again a common issue in software engineering.

8. Conclusions

A premise of the work presented here is that, for complex sys-
tems simulation, model transformation would allow the software
engineer to focus on solving real problems rather than just rou-
tinely coding. We have shown by manual transformation that
the design contains a good part of the information needed to
create code. However, it is also the case that behavioural models
of algorithms (e.g. sequence diagrams) would be a useful addi-
tion, and it is not clear whether the human interpretation used in
the manual transformation could be captured as transformation
rules.

The attempt to validate the derived class model against the
class structure of the PPSim code shows that, at a sufficiently
abstract level, the models have similar coverage. However, the
manual transformation also revealed different design decisions,
and different approaches to supporting the same behaviours.
Code created by transformation might have better structure
than code created variously from biological detail, platform and
domain modules. A clear conclusion is that, by using model
transformation of validated models, effort could focus on fitness-
for-purpose and trustworthiness at domain and platform levels,
rather than on code validation. However, it is also clear that we
cannot simply map our manual transformations into a transfor-
mation model; we either need richer design models or we need
intermediate models to build up to code-level information. We
are starting to investigate modelling and model-management
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support not only for model-to-code transformations, but also
for the process of deriving models of complex systems that will
be simulated, and of modelling the experimentation needed to
validate and use the simulators. It is also possible that, as simu-
lation continues to grow in use as a tool for researching complex
systems, the widely-used Java-based and other OO platforms
will be replaced by media more suited to representing systems
dominated by behaviour.

The discussion has not addressed the wider aspects of simula-
tion validation. In practice, a research simulation is designed by
modelling and coding what is essentially the best-guess design.
Because the simulation is complex, the actual behaviour of the
simulation is only discovered through running it. In order to
align the simulation with the real system, calibration is used:
this may result in adjustment of values, or even adjustments
in the design. Once a calibrated model produces acceptable
behaviour, at least within the intended operational scope, sen-
sitivity analysis is used to ensure that the observed behaviours
arise from appropriate parameters and behaviours. This valida-
tion activity can also result in adjustments from values through
to design details. Better engineering support for such simula-
tion validation could include not only automated model-to-code
transformation, but also bidirectional transformation, or round-
trip engineering, to ensure that platform models and code are
mutually consistent.
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co-supervised many simulation projects in both immunology
and robotics. His work includes open-spource tool support
for simulation including calibration, sensitivity analysis and
statistical analysis (Spartan, Robospartan, Aspasia). Dr Alden
is now Lead Data Scientist for Vianet Group plc. You can
contact him at kieran.alden@gmail.com or visit https://
www.kieranalden.info/.
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