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Abstract

We consider whether it is possible in principle to retrieve the key parameters of the mixed
layer in the upper ocean (its thickness, bulk eddy viscosity and the pycnocline stratification
below) using a theoretical model, which assumes the surface velocity and wind stress to
be known from observations. To this end we examine the dynamics of the Ekman current
in the novel two-layer model of the upper ocean made of two layers with greatly differing
constant eddy viscosities. The presence of stratification manifests itself through suppression
of turbulence and, hence, in much smaller value of the eddy viscosity compared to the bulk
eddy viscosity νe1 in the mixed layer. Within this two-layer model the general solution
in terms of explicit Green’s function has been derived and analyzed. It was found that a
spectral component of frequency ω of the Ekman current on the surface “feels” the presence
of the stratified layer when the mixed layer depth d is less or comparable to the Ekman scale√

2νe1
f+ω , where f is the Coriolis parameter. Thus, under conditions of strong wind resulting

in large eddy viscosity νe1, the depth of the mixed layer could be (in principle) inferred from
the observations of wind and surface velocity. We conclude by stating, that to retrieve from
the wind and surface velocity data the mixed layer parameters, the theoretical model has
to be extended by taking into account the effects of the Stokes drift due to surface waves
and the possibility of intense mixing at the bottom of the mixed layer.

1 Introduction

In the upper ocean, the mixed layer and seasonal pycnocline are its most prominent features
(e.g. [15], [22]). In the mixed layer between the ocean free surface and the seasonal pycnocline
the temperature and salinity is nearly uniform, which led to the term “mixed layer” or “quasi-
uniform layer”. The mixed layer depth is influenced by a variety of physical processes affecting
the stratification at its bottom, including, winds, turbulent mixing, radiative heating and cooling.
The thickness of the mixed layer varies depending on the external forcing. During the spring
and summer there is strong seasonal stratification, the mixed layer is relatively shallow, while it
is deeper and less prominent in the autumn and much deeper in winter; the seasonal pycnocline
disappears in winter and the mixed layer extends to the main pycnocline. The typical depth
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of the seasonal pycnocline ranges between 20 m and 200 m. At higher latitudes, the mixed
layer depth increases as a result of stronger winds and cooling poleward. The mixed layer is the
layer in direct contact with the atmosphere and most active in the air-sea interaction. There is
very significant momentum and heat exchange with the atmosphere. Its correct modelling and
monitoring its actual state is crucial for weather prediction and climate modelling. The heat
content of the mixed layer is one of the key parameters in hurricane modelling ([8]; [18]; [24]).
There is an extensive literature on theoretical, numerical and experimental studies on the variety
of physical processes in the mixed layer reviewed in ([22]). However, at present a number of
fundamental questions remain open, which makes the accuracy of modelling of the mixed layer
dynamics unsatisfactory, especially for many applications concerned with non quasi-geostrophic
processes.

The existing measurement techniques (e.g.[22]) mostly represent contact point observations
which are too expensive and too spatially sparse. On the other hand, there are rapidly developing
remote sensing methods (both satellite e.g. [2], [3] and land based) with excellent spatial coverage.
Among the shore-based remote sensing techniques we particularly note the ‘High-Frequency (HF)
radar’ which retrieve surface velocity fields with a high accuracy and good resolution, withe range
of up to a few hundred kilometers. Since the EM waves employed in all remote sensing techniques
cannot effectively penetrate into the water, we need theoretical models linking the surface currents
with the key parameters of the mixed layer. In the literature two ideas were put forward. In
([20]) it was shown that the strong near-inertial oscillations (routinely captured by coastal high-
frequency radars) are tightly linked with the presence of shallow density stratification. However,
at present, this approach of remote probing of the upper ocean stratification is still very crude,
in its current stage it allows one to quantify neither the depth of the pycnocline nor the strength
of the stratification, just its presence; it also inconveniently depends on the occurrence of sharp
changes of wind needed to generate near-inertial oscillations. The method proposed by Zervakis,
Kokkini and Potiris ([28]) is based on the key assumption that the mixed layer responds to wind
forcing as a slab-layer. Using remotely retrieved surface velocity provided by a coastal HF radar
and concurrent wind-stress data it proved possible to get a good estimate of the mixed layer
depth for the specific conditions of the experiment carried out at the Aegean Sea. However, the
slab models are known to be very crude and the question - to what extent their predictions could
be relied upon outside the very specific environmental conditions of the experiment? - remains
outstanding. Thus, from this perspective it is highly desirable to have a better understanding of
the links between the wind stress and surface velocity, presumed to be measured remotely with
a reasonable accuracy, and the mixed layer depth and the strength of the density stratification
below. Of course, it goes without saying, that apart from this particular applied aspect, this
outstanding question is of great interest in itself.

Here, we attempt to model the momentum transfer in the upper ocean employing an extension
of the Ekman model. In the Ekman type models the turbulence is characterized by a single
parameter - eddy viscosity νe, which can, in principle, be both depth and time dependent. It
is well known that density stratification strongly suppresses turbulence (e.g. [17]; [16]), which
makes the eddy viscosity in the mixed layer much higher than in the pycnocline (e.g [5]; [26];
[13]). On this basis one layer models with a constant eddy viscosity in the mixed layer and zero
viscosity below were put forward (e.g. [12]; [7]). At the bottom of the mixed layer a variety
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of boundary conditions were attempted, a comparison of several possibilities with observations
was carried by [7]. Surprisingly, the analysis of the available data did not show a convincing
advantage of employing the vanishing shear stress at the bottom of the mixed layer, the most
natural boundary condition at the interface, over two other less justified options (no-slip condition
or removing the interface alltogether). There might be multiple reasons behind, which we will
discuss later. Clearly, there is an open question on what is the right model for the Ekman
currents in the mixed layer. Here, as a first step, we adopt the simplest two layer model: two
layers with two vastly different constant values of the eddy viscosity. Although such an approach
is an obvious oversimplification, it is a significant step forward compared to the slab models.

The second outstanding problem of major interest is how the vertical structure of stratification
manifests itself in the surface current under a variable wind. Under what conditions can we expect
discernible manifestations? Under what conditions could we employ the stratification surface
manifestations for remote sensing of the depth of the mixed layer? It is known that during the
passage of hurricanes the mixed layer dramatically deepens, could we explain this phenomenon
within the paradigm of the Ekman type-model and link it to the dynamics of surface current?
We are not aware of any work addressing these issues.

The specific open questions we aim to clarify are as follows:

(i) Under what conditions and with what accuracy the two-layer Ekman model can be well
approximated by a one layer Ekman model with appropriate boundary conditions at the
bottom of the mixed layer? What are the appropriate boundary conditions?

(ii) What are the specific effects of stratification on the surface Ekman currents caused by a
variable wind? What characteristics of the Ekman current in the near-surface layer depend
on the mixed layer thickness? How sensitive is the near surface Ekman current to the
viscosity and, hence, to the stratification in the stratified layer?

(iii) Under what conditions there might occur noticeable surface manifestations of the pres-
ence of stratification? How do these manifestations depend on the temporal scales under
consideration?

(iv) Is it possible to find the depth of the mixed layer having only observations of the surface
currents and wind stress? Could it be possible to estimate the strength of the stratification
in the pycnocline?

Here, to address the above questions we model the dynamics of the mixed layer caused by
a generic time dependent wind forcing focussing upon momentum transfer to the upper ocean
within the framework of the Navier-Stokes equations with depth-dependent eddy viscosity. The
model is an extension of the classical one-layer Ekman model with a constant eddy viscosity.
Here, we consider two layers: the upper one is of depth d with a constant eddy viscosity νe1, it
is supposed to model the mixed layer; the second layer is characterized by a different constant
eddy viscosity νe2. We assume the lower layer to be stratified; since stratification suppresses
turbulence, the eddy viscosity there is much smaller than in the upper layer, i.e. νe1 � νe2 .
To focus on the effects due to the presence of stratification, we adopt the simplest model of the
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Figure 1: (a) Sketch of the assumed stratification profile. (b) The model viscosity profile.

mixed layer, assuming the eddy viscosity to be constant both in depth and time. This could
be justified, if we understand νe1 as a bulk viscosity and do not consider too rapid variations
of wind. Since we are primarily interested in the processes in the mixed layer and the transfer
of momentum into the ocean interior is very small, we, without much loss of generality, can
assume the second layer to be infinitely deep, as sketched in figure (1). We leave aside the issue
of specific relationship between the strength of stratification in the second layer characterized by
the Brunt-Väisälä frequency N through eddy viscosity ν2. One can use any of the widely used
empirical relationships ν2(N), but to avoid discussion of their merits we just assume the value of
νe2 to be known and entirely determined by N . According to observations, the eddy viscosity in
the mixed layer ranges between O(10−4) and O(10−1) m2s−1 (see table 1), while in the pycnocline
it is much smaller, varying from O(10−6) to O(10−4) m2s−1. The table also provides an idea of
the variability of the mixed layer thickness.

This paper is organized as follows: §2 gives the formulation of the mathematical model: a
brief description of the equations and boundary conditions governing Ekman currents caused
by a time-varying wind. §3 presents the general solution in terms of Green’s function for an
arbitrary time dependence of the wind shear stress. §4 compares the predictions of the new
two-layer model with one-layer solutions derived in [6]; [7] from the remote sensing perspective.
Finally, a summary and discussion are provided in the concluding §5.

2 The mathematical model

We begin with the formulation of the Ekman model for two-layer fluid. Here, the fluid is assumed
to consist of two layers, as sketched in figure (1): the upper layer of thickness d is adjacent to the
surface, it is supposed to model the mixed layer with high eddy viscosity νe1. The second layer
with eddy viscosity νe2 suppressed by stratification is taken to be infinite, since, as it will be shown
below, the horizontal motions caused by varying winds do not penetrate far into the stratified
fluid and, therefore, in our context the thickness of the stratified fluid could be assumed infinite
without loss of generality. For horizontally uniform motions the corresponding exact reduction
of the Navier-Stokes equations (in the Cartesian frame with z directed downward and z = 0 at
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Table 1: Eddy viscosity values ([9]).

Location Layer depth m νe, 10−4(m2s−1) Source

Danish Waters 0-15 1.9-3.8 All currents
Arctic Ocean 160 Under ice

Danish Waters 250-1500 All currents
Kuroshio 0-200 680-7500 All currents
Japan Sea 0-200 150-1460 All currents

North Siberian Shelf 0-60 0-1000 Tidal currents
North Sea 0-31 75-1720 Strong tidal

currents
Tropical Atlantic 0-50 320 Temperature

Ocean fluctuation
North Siberian Shelf 0-60 10-400 Tidal current

Atlantic Ocean 50◦S − 10◦N 0-200 7-50 Wind currents
Japan Sea 0-10 100 Tidal currents

Arctic Ocean 0-100 23.8 Ice drift
North Atlantic 0-4 146 Temperature

4-8 96 fluctuation
8-12 47

Open Ocean 0-10 150-225 Surface
Lake Huron 30 65-160 Wind current

Tropical Atlantic 0-12 420± 84 Temperature
Ocean fluctuation

Tropical Atlantic Ocean 0-10 62 Temperature
10-20 68 fluctuation
20-30 85

Tropical Atlantic Ocean 0-12 480 Temperature
20-50 265 fluctuation

the unperturbed ocean surface, and x and y directed eastward and northward directions) reads

∂U 1

∂t
+ i f U 1 =νe1

∂2U 1

∂z2
, 0 ≤ z ≤ d , (1a)

∂U 2

∂t
+ i f U 2 =νe2

∂2U 2

∂z2
, d ≤ z <∞ , (1b)

where U 1 = u1 + iv1 and U 2 = u2 + iv2 are the Reynolds averaged horizontal complex velocities
in the mixed layer and the lower stratified layer, respectively, f = 2Ω sin(φ) is the Coriolis
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parameter (Ω and φ are the Earth’s rotation frequency and the latitude respectively). As it is
standard in the Ekman paradigm, here, to get closed equations for the Reynolds averaged flow
we parameterize the Reynolds stresses by adopting the Boussinesq hypothesis, i.e. assume the
Reynolds stresses to be proportional to the Reynolds averaged velocity gradient with a single
scalar eddy viscosity coefficient, νej(z, t) (j = 1, 2), constant in each layer.

The motion has to satisfy the continuity of stress boundary conditions at the surface (z = 0)
and at the interface (z = d), at the interface the velocities have to be continuous as well; the
lower boundary condition of decay of the motion at infinity closes the set of boundary conditions:

νe1
∂U 1(z, t)

∂z
=
−τ (t)

ρ
, at z = 0 , (2a)

U 1(z, t) =U 2(z, t) , at z = d , (2b)

νe1
∂U 1(z, t)

∂z
=νe2

∂U 2(z, t)

∂z
, at z = d , (2c)

U ′2(z, t) =0 , as z →∞ , (2d)

where τ (t) is the wind stress. The above set of equations provides the mathematical framework
of our further analysis.

3 General solution

3.1 Derivation

In this section we solve the equations of motion (1) by applying the Fourier transform with
respect to t,

Ũ j(z, ω) =

∫ ∞
−∞
U j(z, t)e

−iωtdt; (j = 1, 2 ), (3)

which turns the partial differential equations (1) into ordinary equations with respect to z:

i(f + ω)Ũ 1(z, ω)− νe1
d2Ũ 1(z, ω)

dz2
= 0 , i(f + ω)Ũ 2(z, ω)− νe2

d2Ũ 2(z, ω)

dz2
= 0 . (4)

By using the Fourier transformed boundary conditions:

νe1
∂Ũ 1(z, ω)

∂z
=
−τ (ω)

ρ
, at z = 0 , (5a)

Ũ 1(z, ω) =Ũ 2(z, ω) , at z = d , (5b)

νe1
∂Ũ 1(z, ω)

∂z
=νe2

∂Ũ 2(z, ω)

∂z
, at z = d , (5c)

Ũ
′
2(z, ω) =0 , as z →∞ , (5d)
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the solutions for Ũ 1(z, ω) and Ũ 2(z, ω) are sought in the form:

Ũ 1(z, ω) = τ (ω)K1(z, ω) , Ũ 2(z, ω) = τ (ω)K2(z, ω) . (6)

Then the general solution of equations (1) as function of z, t is given by the inverse Fourier
transform,

U j(z, t) =
1

2π

∫ ∞
−∞
Ũ j(z, ω)eiωtdω; j = 1, 2. (7)

The general solution to the equations of motion in the Fourier space (4) can be written as,

Ũ 1(z, ω) = A exp [(1 + i) z/δ1(ω)] +B exp [−(1 + i) z/δ1(ω)] , (8a)

Ũ 2(z, ω) = c1 exp [(1 + i) z/δ2(ω)] + c2 exp [−(1 + i) z/δ2(ω)] , (8b)

where,

δ1(ω) =

√
2νe1
f + ω

and δ2(ω) =

√
2νe2
f + ω

.

The quantities δ1(ω) and δ2(ω) are the frequency dependent Ekman scales for the first and the
second layer, they determine how deep into the layer a perturbation of frequency ω penetrates.
Usually, δ2(ω) � δ1(ω) and δ2(ω) is so small, that the assumption that the stratified layer is
infinite, is justified.

By applying the transformed boundary conditions at the surface and at infinity, the general
solution for each layer in the Fourier space can be rewritten as,

Ũ 1 = 2B cosh [(1 + i) z/δ1(ω)] +
τ (ω) e−iπ/4

ρ
√
ν1
√
f + ω

exp [−(1 + i) z/δ1(ω)] , (9)

and,

Ũ 2(z, ω) = c2 exp [−(1 + i) z/δ2(ω)] . (10)

The unspecified yet arbitrary constants B and c2 are determined from the boundary conditions
at the internal interface:

B =

(√
νe1 +

√
νe2
)
τ (ω) e−iπ/4 exp [(1 + i) d/δ1(ω)]

2 ρ
√
νe1
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) , (11a)

c2 =
τ (ω) e−iπ/4 exp [(1 + i) d/δ2(ω)]

ρ
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) . (11b)

Finally, the general solution in the upper and lower layers is as follows:
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U 1(z, t) =
1

2π

∫ ∞
−∞
Ũ 1(z, ω) eiωt dω, U 2(z, t) =

1

2π

∫ ∞
−∞
Ũ 2(z, ω) eiωt dω, (12)

where

Ũ 1(z, ω) =
e−iπ/4 τ (ω)

(√
νe1 cosh [(1 + i) (d− z)/δ1(ω)] +

√
νe2 sinh [(1 + i) (d− z)/δ1(ω)]

)
ρ
√
νe1
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) ,

(13)

and,

Ũ 2(z, ω) =
e−iπ/4 τ (ω) exp [(1 + i) (d− z)/δ2(ω)]

ρ
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) . (14)

In the limit ν2 → 0 the solution above tends to the one-layer solution with the boundary
condition U ′ = 0 at the bottom of the mixed layer derived in ([7]). Below we analyse important
particular cases and some implications of the solution derived above.

3.2 Particular regimes, the fast (ω � f) and slow (ω � f) timescales

So far we have not used any explicit assumptions regarding smallness of ν2 compared to νe1
(although we made an implicit assumption by setting the thickness of the stratified layer to be
infinite). Here we consider νe2/νe1 � 1 and, in particular, examine behaviour of the Ekman
response in the limit νe2/νe1 → 0. In this section we also examine particular regimes where the
thickness of the mixed layer is either small or large compared to the frequency dependent Ekman
scale.

General case

For νe1 � νe2, the constants B and c2 in equations (11) simplify to:

B =
τ (ω) e−iπ/4 exp [(1 + i) d/δ1(ω)]

2 ρ
√
f + ω

√
νe1 sinh [(1 + i) d/δ1(ω)]

, c2 =
τ (ω) e−iπ/4 exp [(1 + i) d/δ2(ω)]

ρ
√
f + ω

√
νe1 sinh [(1 + i) d/δ1(ω)]

, (15)

so that, the general solution in the upper and lower layer in the Fourier space takes the form:

Ũ 1(z, ω) =
τ (ω) e−iπ/4 cosh [(1 + i) (d− z)/δ1(ω)]

ρ
√
νe1
√
f + ω sinh [(1 + i) d/δ1(ω)]

. (16a)

and,

Ũ 2(z, ω) =
τ (ω) e−iπ/4 exp [(1 + i) (d− z)/δ2(ω)]

ρ
√
νe1
√
f + ω sinh [(1 + i) d/δ1(ω)]

. (16b)

The resulting transfer function in the upper layer is the same as in the one-layer Elipot and Gille
model ([7]) with velocity shear vanishing at z = d ([7]). Note, that the solution of the Elipot and
Gille model [7] is obtained under the assumption of the total suppression of turbulence in the
stratified layer and, hence, vanishing of the eddy viscosity there, was also derived in an explicit
form for the case of a sharp increase of wind in [12].
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Shallow mixed layer (z, d� δ1(ω))

The solution in the upper layer, Ũ 1, with arbitrary νe1 and νe2 is:

Ũ 1(z, ω) =
τ (ω) e−iπ/4

(√
νe1 +

√
νe2/νe1 e

iπ/4 (d− z)
√
f + ω

)
ρ
√
νe1
√
f + ω

(√
νe2 + eiπ/4 d

√
f + ω

)
=
τ (ω) e−iπ/4

(√
νe1 + (1 + i)

√
νe2 (d− z)/δ1(ω)

)
ρ
√
νe1
√
f + ω

(√
νe2 + eiπ/4 d

√
f + ω

) . (17)

For νe1 � νe2 the expression for Ũ 1(z, ω) can be simplified to,

Ũ 1(z, ω) =
τ (ω) e−iπ/4

ρ
√
f + ω

(√
νe2 + eiπ/4 d

√
f + ω

) .
(18)

For the shallow mixed layer, d/δ1 � 1, the flow in the second layer does not feel the presence of
the mixed layer and we recover the Ekman solution for the one layer ocean with viscosity νe2:

Ũ 2 =
τ (ω)e−iπ/4

ρ
√
νe2(f + ω)

exp

[
−(1 + i)z

√
f + ω

2νe2

]
,
(
Ũ2 |z=0= 2B, B =

τ (ω)e−iπ/4

2ρ
√
νe2(f + ω)

)
. (19)

For the slow time scales (ω � f) the solution can be simplified even further,

Ũ 1 =
τ (ω)e−iπ/4

ρ
√
νe2f

, Ũ 2 =
τ (ω)e−iπ/4

ρ
√
νe2f

exp

[
−(1 + i)z

√
f

2νe1

]
. (20)

Deep mixed layer (d� δ1)

The transfer function for the upper layer takes the form,

Ũ 1(z, ω) =
τ (ω)e−iπ/4

ρ
√
νe1(f + ω)

exp

[
−(1 + i)z

√
f + ω

2νe1

]
,
(
B =

τ (ω)e−iπ/4

ρ
√
νe1(f + ω)

)
, (21)

which coincides with the transfer function of the classical one-layer Ekman model. For the fast
processes (ω � f) the effect of rotation is negligible and the flow can be considered unidirectional.
The transfer function for the lower layer is expectedly vanishingly small,

Ũ 2(z, ω) =
τ (ω)e−iπ/4

ρ
√
νe1(f + ω)

exp [(1 + i)(d− z)/δ2(ω)]

exp [(1 + i)d/δ1(ω)]
. (22)
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(a) (b)

Figure 2: Dependence of the steady Ekman current at the ocean surface U 0 on the mixed
layer non-dimensional depth d̃ = d/δ1: (a) Surface current speed. (b) Deflection of the current
direction at the surface with respect to wind. The sample parameters are νe1 = 7 × 10−3m2s−1

(which corresponds to 10m s−1 wind) , νe2 = 7× 10−4m2s−1, f = 10−4s−1, ρ = 1027kg m−3 and
τ0 = 0.175N m−2.

3.3 Steady-state solution

It is helpful to examine in more details the steady solutions, as the simplest case of the general
solution discussed above. Under a constant wind (τ = τ 0) , the general solution describing the
Ekman current simplifies to become,

U 1(z) =
τ 0 e

−iπ/4 (√νe1 cosh [(1 + i) (d− z)/δ1(0)] +
√
νe2 sinh [(1 + i) (d− z)/δ1(0)]

)
ρ
√
νe1f

(√
νe2 cosh [(1 + i) d/δ1(0)] +

√
νe1 sinh [(1 + i) d/δ1(0)]

) , (23a)

U 2(z) =
τ 0 e

−iπ/4 exp [(1 + i) (d− z)/δ2(0)]

ρ
√
f
(√

νe2 cosh [(1 + i) d/δ1(0)] +
√
νe1 sinh [(1 + i) d/δ1(0)]

) . (23b)

When d� δ1(0), equation for the Ekman current at the surface z = 0 (surface current velocity,
U 1, and the angle Φ of the current deflection relative to the wind) becomes:

U 1(0) =
τ 0 e

−iπ/2

ρ f d

(
1−

e−iπ/4
√
νe2

d
√
f

)
, Φ = tan−1

(
d

√
2f

νe2
− 1

)
. (24)

Figure 2 illustrates the sensitivity of the steady Ekman current at the surface to the non-
dimensional depth of the mixed layer d̃ = d/δ1. Since δ1 scales with wind as U2

10 or, equiva-
lently, as u2∗, the surface currents feels the stratification only under strong winds, when, roughly,
d/δ1 ≤ 1. Typical samples of velocity components (u, v) and are shown in figure 3. The solution
(23) and figure 3 most clearly illustrate the point that the Ekman currents do not behave as
it is assumed in the slab models, it is less straightforward to see this in the general solution.
Thus, when we are interested in ageostrpophic Ekman motions the use of the slab models is
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problematic.

(a) (b)

Figure 3: (a,b) The x and y velocity components vs z̃ = z/δ1 for d̃ = 1.7. The parameter
values are: νe1 = 7 × 10−3m2s−1, νe2 = 7 × 10−4m2s−1, , f = 10−4 s−1, ρ = 1027 kg m−3 and
τ0 = 0.175 N m−2.

3.4 Comparison with the one-layer models

The solution found and analyzed in the previous section provides full description of the Ekman
currents caused by a given time dependent wind within the framework of the two-layer model. To
understand how the surface currents depend on the parameters of the upper ocean and whether
it might be feasible to find these parameters we have to compare the predictions of our two-layer
model with those of the available much simpler one layer models. In this section we compare
the predictions of our two-layer model and the established one-layer models: (a) The Elipot &
Gille model ([7]) which assumes infinitely strong stratification (νe2 = 0), (b) the classical Ekman
model with no stratification, constant viscosity and infinite depth of the ocean.

Figures 4 and 5 illustrate sensitivity of vertical profiles of velocity to the strength of stratifica-
tion characterized by νe2 and to the eddy viscosity in the mixed layer νe1. The figures are plotted
for the nondimensional depth of the mixed layer d̃ = d/δ1 = 1. The upper/lower panels illustrate
the sensitivity of velocity profiles to the stratification for two sample values of the viscosity in
the mixed layer νe1 equal to νe1 = 5 × 10−3m2s−1 and νe1 = 7 × 10−3m2s−1. Note that z̃ is the
normalized depth z̃ = z/δ1.

As expected, the predictions of the two-layer model are in between the predictions of the
Elipot & Gille model ([7]) corresponding to infinitely strong stratification in the second layer
and the classical Ekman model ([6]) which corresponds to infinite depth of the mixed layer. We
could see that, overall, the dependence on νe2 is relatively weak (see figure 4), but the effect of
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(a) (b)

(c) (d)

Figure 4: Sensitivity of vertical profiles of velocity components u(z̃), v(z̃) to the strength
of stratification characterized by νe2. Comparison between the steady-state solutions for the
classical Ekman model( blue dashed line) and the Elipot and Gille model (green dot-dashed line).
(a,b): νe1 = 5× 10−3m2s−1 . (c,d): νe1 = 7× 10−3m2s−1. d̃ = 1, f = 10−4 s−1, ρ = 1027 kg m−3

and τ0 = 0.175 N m−2.
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(a) (b)

Figure 5: Sensitivity of the dependence of the steady Ekman current at the surface on the mixed
layer thickness and the stratification below. Comparison between the steady-state solutions for
Elipot and Gille model (solid line) and two-layer model (dashed and dot-dashed lines): (a),(b)
Dependence of the Ekman current speed and direction at the surface on nondimensional mixed
layer depth d̃ for the two-layer model with a sample set of parameters : f = 10−4 s−1, ρ =
1027 kg m−3 and τ0 = 0.175 N m−2.

the presence of stratification is quite robust for a wide range of stratifications. Although plots in
figure (4) are made for the single value of the nondimensional depth of the mixed layer, d̃ = 1,
these conclusions hold for all d̃ = O(1). Figure (5) illustrates the surface velocity dependence
on the nondimensional depth of the mixed layer, d̃. It shows that the presence of stratification
can significantly affect the surface velocity magnitude and direction, only when, roughly, d̃ . 1.
Moreover, for such shallow mixed layers the dependence on the strength of the stratification
is robust and, can, be potentially, used for retrieving the stratification. The condition on the
thickness of the mixed layer (d̃ . 1) can be satisfied either for a shallow diurnal-type thermocline
occurring under light wind and strong solar heating in the first few meters of the water column
(e.g. [20], [10]), or under conditions of very strong wind characterized by large values of νe1.

Comparison of predictions of three models: the two-layer, Ekman (1905) and Elipot
& Gille (2009)

Here we further elaborate the discrepancies between the predictions of the Elipot and Gille
solution with the vanishing stress at the interface and the classical Ekman solution, we focus
upon discrepancies at the surface. We normalize these discrepancies by the Ekman solution at
the surface. First we recall these solutions. We begin with the steady solutions. The classical
Ekman solution (UCE) and the Elipot and Gille solution (UEG) with the vanishing stress at the
interface are, respectively,

UCE(z) =
τ 0e

−iπ/4

ρ
√
νe1f

exp[−(1 + i)z̃] , (25)
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Figure 6: The discrepancy in the surface velocity deflection angle between the Elipot and Gille
solution and the classical Ekman solution for a steady wind (∆Φ{EG−CE} = ΦEG + π/4). ΦEG is
given by eq.(28).

and,

UEG(z) =
τ 0e

−iπ/4

ρ
√
νe1f

cosh[(1 + i)(d̃− z̃)]

sinh[(1 + i)d̃]
, (z̃ = z/δ1(0) and d̃ = d/δ1(0) ). (26)

At at the surface, z = 0, the Elipot and Gille solution (26) yields,

UEG(0) =
τ 0 e

−iπ/4

ρ
√
fνe1

coth[(1 + i)d̃] =
τ 0 e

−iπ/4

ρ
√
fνe1

(
i sin(2d̃)− sinh(2d̃)

cos(2d̃)− cosh(2d̃)

)
. (27)

The explicit expressions for the surface current speed and the surface velocity deflection angle
with respect to wind take the form,

|UEG(d̃)| = τ 0

ρ
√
fνe1

(
cosh (2d̃) + cos(2d̃)

cosh (2d̃)− cos(2d̃)

)1/2

, tan
(

ΦEG(d̃)
)

=
sin(2d̃) + sinh(2d̃)

sin(2d̃)− sinh(2d̃)
. (28)

The discrepancy, ∆Φ◦{EG−CE}, between the velocity deflection angle given by equation (28) and
the deflection angle at the surface for the classical Ekman model is a measure of the maximal
possible effect of stratification, a rough estimate. The dependence of this discrepancy on the
nondimensional mixed layer depth d̃ is shown in figure 6.

To quantify the comparison between the predictions of the Elipot and Gille model and the
classical Ekman model we introduce a relative discrepancy δ{EG−CE}:

δ{EG−CE} = |∆{EG−CE}| =
UEG(0)−UCE(0)

|UCE(0)|
. (29)

On introducing notation ζ = (1+ i)d̃ and assuming |e−ζ | � 1 we can get a simple rough estimate
for the modulus of this discrepancy. To leading order in |e−ζ |,

δ{EG−CE} ≈ 2
∣∣e−2ζ∣∣.
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U10 ( m s−1) τ (N m−2) u? (m s−1) νe m2s−1 δ1 (m)
5 0.044 0.007 0.01 16
10 0.175 0.013 0.05 30
30 1.575 0.039 0.5 100
50 4.375 0.065 1.3 160

Table 2: Estimated eddy viscosity coefficients and the depth scale of the Ekman layer where
δ1 =

√
2νe1/f , νe1 = cu2?/f , c = 0.03, u? =

√
τ/ρw, τ = ρa U

2
10CD, ρa = 1.25 kg m−3,

CD = 1.4× 10−3, ρw = 1027 kg m−3, and f = 10−4 s−1 ([4]).

Let us introduce the ‘critical thickness’ d̃δ as the threshold thickness of the mixed layer at which
a strong stratification localized just below would produce in the surface velocity field an a priori
chosen discrepancy δ with the predictions of the classical Ekman model,

d̃δ =
1

2
ln

(
2

δ{EG−CE}

)
. (30)

If, for example, we set the threshold value δ{EG−CE} to be 0.1, then, according to our rough es-

timate (30), the surface current will be sensitive to stratification when d̃ ≤ 1.5. Since d̃ depends
on ν1, which scales as u2∗ or U2

10, the critical depth of the mixed layer at which the current at the
surface begins to feel the stratification increases linearly with wind increase. Depending on the
chosen threshold value of the discrepancy δ{EG−CE} and on the weather conditions determining
νe1 which we presume to be given, we can estimate the critical value of the mixed layer thickness
d̃δ at which the chosen value of δ{EG−CE} occurs. That is, figures 6, 5 suggest that depending
on δ{EG−CE} we choose, we could see manifestations of the stratification in perturbation of the

surface velocity at values of d̃ not exceeding 1-1.5. Recall, that d̃ = d/δ1 and δ1 scales as u2∗.
Table (2) gives an idea on the eddy viscosity and δ1 for winds varying from a gentle breeze to
hurricane.

Figure 7: The depth of the mixed layer for typical critical values of d̃ = d/δ1
.
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It is also helpful to provide an explicit estimate of the critical d in meters for the whole range
of possible wind strengths. Figure 7 sketches the critical layer depth as function of wind speed
for three estimates of the critical values of d̃ and thus complements table (2).

Sensitivity of transient Ekman flows to the characteristics of the upper ocean

In the previous section we analyzed the sensitivity of Ekman flows to the presence of stratification,
the strength of stratification in the pycnocline and the depth of the mixed layer confining our
consideration to the steady state situation. Here, we consider the generic case when the wind
and the Ekman response are varying with time. Since the problem is linear, we, without loss of
generality, characterize the wind and the Ekman response by their Fourier amplitude spectra.
As in the previous section, here we will focus on the sensitivity of surface manifestations of
transient Ekman flows to the same basic characteristics of the upper ocean stratification (the
strength of stratification in the pycnocline and the depth of the mixed layer). For each Fourier
harmonic we compare the model predictions for two limiting cases: (a) the case of infinitely strong
stratification in the second layer (Elipot & Gille model [7]), and, (b) the case of no stratification
(Ekman model [6]).By choosing threshold δ{EG−CE} which characterizes the discrepancy between
the models, we can estimate the depth of the mixed layer where for a chosen frequency we can
detect the presence of stratification in the surface velocity field at this frequency. We provide a
table (3) which illustrates how the critical depth for various chosen δ{EG−CE},

dδ{EG−CE} ≈
−1√

2

(∣∣∣∣f + ω

νe1

∣∣∣∣)−1/2 ln

(
δ{EG−CE}

2

)
, (31)

depends on the mixed layer eddy viscosity and chosen frequency.
A similar comparison of the two-layer model solutions with the predictions of the classical

one-layer Ekman model leads to very similar conclusions, therefore, we skip their discussion.
Instead, in figure 8 we provide a sample plot illustrating the Ekman response to a sharp increase
of wind from 0 to 10 m s−1 in all three models (two-layer, one-layer Ekman and Elipot & Gille).

In accordance with our previous analysis for a shallow mixed layer the surface current exhibits
noticeable discrepancies between the predictions of the three models, the discrepancies decay with
increase of the mixed layer thickness. A comprehensive analysis of the parameter dependence
goes beyond the scope of this work. The main new point this figure aims to illustrate is that the
inertial oscillations, which are the salient feature of the Ekman response, prove to be the most
sensitive to the presence of stratification. In particular, the oscillations live longer than in the
Ekman model.

To complement our analytical analysis based on the transfer function and provide a different
viewpoint consider a few visual examples of the evolution of surface current for a variety of
parameters. Figures 9 and 10 based upon the two-layer model illustrate the sensitivity of the
Ekman transient current caused by a sharp increase of wind (from zero to 10ms−1 ) to two
parameters: the value of eddy viscosity in and the mixed layer thickness.
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(a) (b)

(c) (d)

Figure 8: Surface current caused by a rapid increase of wind from 0 to 10 m s−1 in different
models: the classical Ekman model (solid line), the Elipot & Gille one-layer model with vanishing
shear stress at the bottom of the mixed layer (dot-dashed line), and the two-layer model (dashed
line). (a,b): d = 15 m; (c,d): d = 30 m. Other parameters: f = 10−4s−1, ρ = 1027kg m−3,
τ0 = 0.175N m−2, νe1 = 5× 10−3 m2s−1 and νe2 = 5× 10−4 m2s−1.

(a) (b)

Figure 9: Surface current caused by a sharp increase of wind from 0 to 10 m s−1 in two-layer
model with different eddy viscosities (νe1) in the upper layer. Shallow mixed layer:d = 30 m.
(a) The magnitude of the surface current. (b) The deflection angle of the surface current to
the wind direction. The parameter values: f = 10−1 s−1, ρ = 1027 kg m−3, τ0 = 0.175 N m−2,
νe2 = 3× 10−4 m2s−1.
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ω rad s−1 νe m2s−1 d0.1 m d0.2 m d0.3 m d0.5 m

2π/1hr 2.4× 10−3 2.4 1.9 1.5 1.1
5× 10−3 3.5 2.7 2.2 1.6
7× 10−3 4.1 3.2 2.6 1.9

10−2 4.9 3.8 3.1 2.3
10−1 15.6 12 10 7.2

1 49.3 37.9 31.2 22.8

2π/10hr 2.4× 10−3 6.2 4.8 4 3
5× 10−3 9 6.9 5.7 4.2
7× 10−3 10.7 8.2 6.8 4.9

10−2 12.8 9.8 8 5.9
10−1 40.4 31 25.6 18.7

1 127.8 98.3 81 59.2

ω � f 2.4× 10−3 10.4 8 6.6 4.8
5× 10−3 15 11.5 9.5 6.9
7× 10−3 17.7 13.6 11.2 8.2

10−2 21.2 16.3 13.4 9.8
10−1 67 51.5 42.4 31

1 211.8 162.8 134.1 98

Table 3: Critical depth of the mixed layer for different frequencies and threshold discrepancies
δ{EG−CE} between the predictions of the Elipot& Gille model and the classical Ekman model for
the density uniform fluid. The table shows the critical depth dδ{EG−CE} in meters for the chosen
relative discrepancy δ{EG−CE} between the two model predictions for surface velocity, the values
of the chosen threshold relative discrepancy δ{EG−CE} are indicated by the subscript.

The main conclusions we can make are simple and robust:

(i) An order of magnitude increase of the eddy viscosity ν1 leads to a more than twofold decrease
of the mean Ekman current speed and amplitude of near-inertial oscillations, independently
of the depth of the mixed layer.

(ii) The deflection of the surface current with respect to the direction of wind is sensitive to
viscosity only in the case of shallow mixed layer, then, counter intuitively, inertial oscil-
lations of the surface current direction are most pronounced for the largest viscosity; in
the case of a thick mixed layer neither the mean deflection nor its inertial oscillations are
sensitive to the viscosity. Our overall conclusion is the Ekman response is quite sensitive
to the viscosity in the mixed layer, we note an increase of the timescale of the Ekman layer
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acceleration with the increase of viscosity. Thus, the amplitudes of near inertial oscillations
(NIOs) might be considered as candidates for remote probing of bulk eddy viscosity in the
mixed layer.

(a) (b)

Figure 10: Surface current caused by a sharp increase of wind from 0 to 10 m s−1 in the two-
layer model with different eddy viscosity values (νe1) in the thick upper layer (d = 100 m). (a)
The magnitude of the surface current. (b) The deflection angle of the surface current to the
wind direction. The parameter values: f = 10−1 s−1, ρ = 1027 kg m−3, τ0 = 0.175 N m−2,
νe2 = 3× 10−4 m2s−1.

4 Can the upper ocean stratification profile be probed

remotely by HF radars?

Of great importance would have been a possibility of remote sensing the following character-
istics of the upper ocean: turbulence level in the mixed layer, the presence/absence of diurnal
stratification, the depth of the mixed layer and the strength of stratification in the pycnocline.
In the previous section within the framework of two-layer model we examined how the speed
and direction of the surface current depend on the depth of the mixed layer, eddy viscosity in
the mixed layer and below. Although the surface velocity now can be measured remotely from
satellites with improving accuracy and resolution, at present it is not clear when high-accuracy
satellite measurements of ageostrophic currents will become available. In contrast, observations
from the shore by ‘High-Frequency’ (HF) radars have been a widely used tool of monitoring of
the sea-surface for more than thirty years. In particular, the sea-echo Doppler spectra of HF
radars are used for probing surface currents (e.g. [1], [14], [27]), while the search continues for
ways of remote sensing of other aspects of air-sea interaction (e.g. [20]). Here we briefly dis-
cuss additional possibilities provided by HF radars in view of potential remote sensing of the
characteristics of the upper ocean listed above.
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Figure 11: The velocity fields U 0 (velocity at the surface), U (1) and U (2) of the steady Ekman
current caused by 10 m/s wind (U10 = 10m/s) as predicted by the 2-layer model with the eddy
viscosity in the lower layer νe2 = 2.4× 10−4 m2s−1. (a,b) turbulent viscosity νe1 = 2.4× 10−3

m2s−1 in the upper layer; (c,d), νe1 is five times larger. Other parameters: f = 10−4s−1, ρ =
1027kg m−3 and τ0 = 0.175N m−2.

The HF (high frequency) radar measurements are utilizing the fact that in the HF range
of frequencies electromagnetic waves are scattered by random wavy water surface in the Bragg
regime, where a monochromatic electromagnetic wave emitted with a wavenumber kE is reflected
back primarily by the resonant Bragg wave number kB = kE/2 of the water surface. By analyzing
the Doppler spectra which exhibit easily identifiable Bragg peaks it is straightforward to find
the phase velocity of the wave components associated with the peaks. By subtracting the phase
velocities prescribed by the linear dispersion relation one gets a correction due to the surface
currents. Although the main contribution to the EM scattering comes from the Bragg resonant
wave of length 2π/kB (the main peaks), water waves are weakly nonlinear and each free Fourier

20



5 10 15 20
t
˜

0.05

0.10

0.15

0.20

0.25

0.30

Ui m/s

U1 U2

(a)

5 10 15 20
t
˜

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Φ rad

Φ1 Φ2 Φ

(b)

5 10 15 20
t
˜

0.05

0.10

0.15

0.20

0.25

0.30

Ui m/s

U1 U2

(c)

5 10 15 20
t
˜

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Φ rad

Φ1 Φ2 Φ

(d)

5 10 15 20
t
˜

0.05

0.10

0.15

0.20

0.25

0.30

Ui m/s

U1 U2

(e)

5 10 15 20
t
˜

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Φ rad

Φ1 Φ2 Φ

(f)

Figure 12: Transient Ekman currents caused by a sharp increase of wind from 0 to 10 m s−1

as seen by HF radar for various characteristics of mixed layer and stratification. Notation:
U 0 ≡ U(0) (dot-dashed line), U (1) (dashed line), U (2) (solid line). (a,b): d = 20 m; (c,d):
d = 30 m; (e,f): d = 40 m. Other parameters: f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2,
νe1 = 5× 10−3 m2s−1 and νe2 = 5× 10−5 m2s−1.

component also has bound waves. The second harmonic of the twice longer water wave has the
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same resonant wavenumber kB. These bound waves associated with a free wave of wavelength
twice the Bragg one are responsible for the second harmonic peak in the radar spectra ([21]). The
correction due to surface current depends on the wavenumber under consideration. With a good
accuracy it could be approximated by the Stewart-Joy formula ([25]). Applying the Stewart-Joy
formula to the wave corresponding to the main Bragg peak and to the second contributor to the
scattering - the wave of twice the the Bragg wavelength one gets two integrals of the current,

U (1) = 2|kB|
∫ ∞
0

U(z, t)e−2|kB |zdz, U (2) = |kB|
∫ ∞
0

U(z, t)e−|kB |zdz. (32)

where U (z, t) is the velocity profile and |kB| = 2π/λ is the Bragg wavenumber. For the sake
of certainty in our further consideration we have chosen a commonly used radar frequency 12 MHz
which corresponds to the water wave wavelength λ = 18m. In the previous section we examined
how the properties of the upper ocean manifest themselves in the field of surface velocity U 0.
The surface velocity is routinely measured by HF radars and U (1) is usually taken as U 0. Here, in
figures 11 and12 we show how sensitive is the discrepancy between the two integrated velocities
U (1) and U (2) and the true surface velocity U 0 to the depth of the mixed layer and to the
values of eddy viscosity in each layer. The figure also shows how the discrepancies in the current
deflection angle depend on the depth of the mixed layer and to the values of eddy viscosity. The
figure suggests that the discrepancies are quite substantial for the diurnal stratification, which
looks very promising for its remote probing. Moreover, the discrepancies in the deflection angle
remain discernible for the seasonal stratification. A more thorough study is needed to explore
the potential of these findings for remote sensing of the upper ocean.

An overview of the collection of examples (figures 11,12) presented in this section enables us
to conclude that there are measurable discrepancies between the true surface velocity U 0 and
the surface velocities U (1), U (2) retrieved by HF radars for a wide range of oceanic conditions.
These discrepancies can provide quantitative estimates of the level of turbulence in the mixed
layer and the thickness of of the mixed layer. To a lesser extent, these discrepancies can constrain
the estimates of the stratification in the pycnocline. Once applied to real field observations the
above results can provide a valuable insight into an important aspect of air-sea interaction.

5 Concluding remarks

As a first step towards a theoretical framework for remote sensing of upper ocean stratification we
explore the idea that the stratification affects dynamics of the surface Ekman current, crucially,
we assume that we can measure the surface current with a good accuracy. To link the stratifi-
cation and surface current in this work we introduced and examined a novel two-layer model of
the Ekman boundary layer which utilizes the great disparity in magnitudes of eddy viscosity in
the mixed layer and in the stratified flow below. Assuming the time dependence of horizontally
uniform wind stress τ (t) on the surface to be given we found the boundary layer response to such
varying surface stress τ (t) in a closed analytical form. Thus, for an arbitrary τ (t) we found and
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analyzed the time-dependent solution which describes dynamics of the Ekman boundary layer in
such a model, which is a novel exact solution to the full Navier-Stokes equations. We examined
various steady and unsteady regimes within the framework of the adopted model. It has been
verified that in the corresponding limits the solutions tend to the classical Ekman solution for
infinitely deep fluid or to the Elipot & Gille solution one in the limit of vanishing eddy viscosity
in the stratified layer. The model is of interest per se, apart from the remote sensing context.

The solution reveals the limitations of the model. Under stronger winds the solution exhibits
a strong shear at the bottom of the mixed layer, which can cause instability of the interface.
This might be an important physical mechanism of the mixed layer deepening and entrainment.
To quantify this entrainment mechanism one has to adopt one of the existing parameterizations
of the eddy viscosity in the stratified fluid, which goes beyond the scope of this study. In the
regime of the mixed layer deepening a more appropriate boundary condition at the bottom of
the mixed layer would be the constancy of the Richardson number, Ri = 1/4, as was suggested
by ([11]). The account for mixing at the bottom of the mixed layer needs a dedicated study.

From the perspective of remote sensing of the basic characteristics of the mixed layer (such
as its thickness, the eddy viscosity) and stratification below, we analyzed the sensitivity of
the surface manifestations of the Ekman currents provided by the time-dependent solution for
the surface current U 0(t) for various regimes. We found that for a wide range of parameters
and regimes of evolution the presence of stratification does manifest itself in the field of the
surface current U 0(t). The manifestations on the surface have proved to be most sensitive to
the non-dimensional depth of the mixed layer d̃ = d/δ1, δ1 =

√
2νe1/f : the manifestations

on are discernible for d̃ ≤ 1.5. For the seasonal stratification this condition is always satisfied
under sufficiently strong winds. The amplitudes of near inertial oscillations (NIOs) proved to
be quite sensitive to the mixed layer bulk eddy viscosity νe1, which makes NIOs a candidate
worthy of consideration for remote sensing of the mixed layer turbulence. However, since the
NIOs amplitudes are also very sensitive to the mixed layer thickness and the stratification below,
it makes the task of directly evaluating the turbulence level very challenging, if not impossible.

Thus, different elements of the Ekman response are sensitive to different characteristics of
the upper ocean. A proper theory of NIOs generation is lacking, a dedicated effort is needed to
explore further the NIO’s potential for remote sensing.

The potential of advancing in remote probing of the upper ocean stratification profile by
using HF radars has been also examined. By utilizing both the main and second harmonic peaks
of the HF radar echo, which enables one to probe the boundary layer at two different effective
depths, one obtains new constraints on the mixed layer depth and parameters of stratification.

Although our analysis of the possibilities of retrieving the upper ocean stratification and
eddy viscosity characteristics from the surface velocity field is based on the exact solutions of
the Navier-Stokes equation, the adopted hydrodynamic model implicitly relies on a number of
key assumptions whose role is not obvious at the moment. In particular, as we mentioned,
we’ve ignored mixing and entrainment at the bottom of the mixed layer. Moreover, currently,
we do not know how good is the Ekman paradigm in capturing reality, we are unaware of
sufficiently detailed verification studies and have recently articulated our doubts in [19]). How
crucial are these uncertainties for the broad picture remains to be investigated. It is also known
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that the account of wave induced Stokes drift might result in order one contribution to the flow
velocity at the surface which we take as one of the key inputs into our reconstruction of the
stratification profile. The account of the Stokes drift is relatively straightforward, but it is very
detrimental for the simplicity of the model (e.g. [23]). Overall, at present we do not know what
addressing these issues might bring, but expect it will not change the picture qualitatively. We
expect our main qualitative conclusion to remain robust, that is, the presence of diurnal and
seasonal stratification noticeably alters the ageostrophic part of the surface velocity field when
the thickness of the mixed layer d is about the Ekman scale δ1, (δ1 =

√
2νe1/f) or less. Our

overall conclusion is that the outlined route of remote probing of the upper ocean stratification
is feasible in the foreseeable future, but needs dedicated efforts both at the theoretical/modelling
side and at the experimental/technical side. The techniques of retrieving the surface velocity
field (apart from HF radars) have to be significantly improved.
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