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Abstract
Understanding the Earth’s geological nitrogen (N) and carbon (C) cycles is fundamental for
assessing the distribution of these volatiles between solid Earth (core, mantle and crust),
oceans and atmosphere. This Special Communication about the Earth’s N and C cycles con-
tains material that is relevant for researchers who are interested in the Topical Collection
on planetary evolution “Reading Terrestrial Planet Evolution in Isotopes and Element Mea-
surements”. Variations in the fluxes of N and C between these major reservoirs through geo-
logical time influenced the evolution and determined the unique composition of the Earth’s
atmosphere. Here we review several key geological aspects of the N and C cycles of which
our understanding has significantly advanced during the last decade through field-based, ex-
perimental and theoretical studies. Subduction zones are the most important pathway of both
N and C from the Earth’s surface into the deep Earth. A key question in the flux quantifica-
tion is how much of the volatile elements is stored in the downgoing slab and introduced into
the mantle and how much is returned back to the surface and the atmosphere through arc
magmatism. For N, the retention of N as NH+

4 in minerals has a major influence on fluxes be-
tween reservoirs. The temperature-dependent stability of NH+

4 -bearing minerals determines
whether N is predominantly retained in the slab to mantle depths (in subduction zones with
a low geothermal gradient) or devolatilized (in subduction zones with a high geothermal
gradient). Several lines of evidence suggest that the mantle is regassing with respect to N
due to a net influx of subducted N over time, but this issue is highly debated and evidence
to the contrary also exists. Nevertheless, there is consensus that the majority of the plane-
tary N budget is stored in the Earth’s mantle, with the continental crust also constituting a
significant N reservoir. For C, release from the subducting slab occurs through decarbona-
tion reactions, dissolution and formation of carbonatitic liquids, but reprecipitation of C in
the slab or the forearc mantle wedge may limit the effectiveness of direct return of C into
the atmosphere. Carbon release through regional metamorphism in collision zone orogens
also has potentially profound effects on C release into the atmosphere and consensus has
emerged that such orogens are sources rather than sinks of atmospheric CO2. On shorter
timescales, contact metamorphism through interaction of mantle-derived magmas with C-
bearing country rocks, and the resulting release of large quantities of CH4 and/or CO2, has
been linked to global warming events.
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1 The Deep Nitrogen Cycle on Earth

The Earth’s N-cycle links to observations from planetary and extraterrestrial N-reservoirs
and to near-surface nutrient cycling and palaeoenvironmental investigations of ancient Earth.
Regarding the evolution of the Earth’s atmosphere, a key aspect is whether the Earth’s man-
tle is presently degassing or regassing and whether this balance has shifted in the Earth’s
history (Zhang and Zindler 1993). One approach to constrain the whole-Earth N distri-
bution is based on using existing observations about the sizes of the Earth’s N-reservoirs
based on data in key rock types and geotectonic settings (Javoy 1997; Tolstikhin and Marty
1998; Johnson and Goldblatt 2015, 2017a,b; Bebout et al. 2016; Zerkle and Mikhail 2017;
Hirschmann 2018). Our understanding of the geologic processes responsible for distributing
N has further improved thanks to the experimental work on mineral-fluid-melt N partitioning
(Roskosz et al. 2006; Mysen and Fogel 2010; Mallik et al. 2018; Mysen 2018) and theoreti-
cal calculations on the speciation of N as a function of P-T conditions and pH (Mikhail and
Sverjensky 2014; Mikhail et al. 2017), one can focus here on the following key areas for the
distribution and cycling of N on Earth:

1. Subduction zones, which play an essential role for the transport of N from the Earth’s
surface to the deep interior of the Earth and its subsequent partial return via a “short
circuit” through arc magmatism or a “longer loop” through incorporation into mantle
plumes.

2. Earth’s continental crust, which it appears could contain a large fraction of whole-Earth
N (perhaps ∼15%; Goldblatt et al. 2009; Johnson and Goldblatt 2017a,b).

3. The Earth’s mantle and core, which together contain large amounts of N outweighing
those of atmosphere and crust.

Much of the N in Earth’s lithosphere owes its existence to its biogeochemical processing
and fixation into organic matter, then transfer into low-temperature mineral phases such as
the clay minerals (Boyd 2001; Bebout et al. 2013b; Busigny and Bebout 2013). Once it is
stored as NH+

4 in silicate phases (see Fig. 1), N can be retained at impressive levels even in
rocks experiencing partial melting (Jia 2006; Palya et al. 2011) and this retention in NH+

4 -
bearing phases (e.g., micas, feldspars) likely plays a key role in determining the sizes of
deep-Earth reservoirs and cycling among these reservoirs (Yang et al. 2017; Mikhail et al.
2017). Of all the different lithologies in subduction zones, marine sediments have the highest
concentrations of N with concentrations of up to several hundred ppm (Sadofsky and Bebout
2014). Early diagenetic breakdown of organic matter (Sadofsky and Bebout 2003; Li et al.
2007) leads to an increase in NH+

4 in sediment pore waters, which is then at greater depths
incorporated into clays (Schroeder and McLain 1998). Reworking of sediment and organic
matter (Junium et al. 2015) and diagenesis (Williams et al. 1995) affect the distribution
of N within the sediments, resulting in a large variability in N concentration and isotopic
composition. Extremely heterogeneously distributed N is also present in hydrothermally
altered oceanic crust and mantle rocks (Busigny et al. 2005; Li et al. 2007; Halama et al.
2014). Because of the very large volume of oceanic crust and mantle being subducted, even
very small concentrations of N added during alteration can produce a subducting N inventory
rivalling that in the overlying sediment sections (Li and Bebout 2005; Busigny et al. 2011;
Halama et al. 2014).

Subduction zone thermal structure determines the stability of N-bearing mineral phases
and hence the efficiency of the deep subduction of N (Bebout and Fogel 1992; Busigny et al.
2003; Bebout et al. 2013a, 2016; Halama et al. 2017). During subduction zone metamor-
phism, preservation of pre-subduction heterogeneities in high-P/T metamorphosed rocks
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Fig. 1 Schematic representation of the geological nitrogen cycle (based on Bebout et al. 2013a,b; Cartigny
and Marty 2013). W + E = Weathering and erosion

has been observed in some metasedimentary rocks (Sadofsky and Bebout 2003; Pitcairn
et al. 2005; Bebout et al. 2013a), metabasaltic rocks (Halama et al. 2010; Busigny et al.
2011) and serpentinites (Philippot et al. 2007). In these rocks, the effects of devolatiliza-
tion are variably masked by the initial heterogeneity related to seafloor alteration over wide
ranges in temperature and at highly variable fluid/rock ratios. Only in subduction-related
metamorphic rocks that formed under a relatively warm geothermal gradient has significant
N devolatilization been observed, resulting in decreasing N contents with increasing grade
(Bebout and Fogel 1992). The behaviour of N during partial melting is largely unknown (see
Jia 2006; Palya et al. 2011), but for the mantle wedge above the subducting slab, thermody-
namic calculations indicate relatively oxidising conditions under which N is likely to degas
as N2 in fluids (Mikhail and Sverjensky 2014). The behaviour of N during fractional crys-
tallization of mantle-derived melts in the arc is also poorly constrained. However, studies of
N fluxes in volcanic arcs can provide constraints on the efficiency of N recycling through
the subduction cycle (see Hilton et al. 2002; Sano et al. 2001).

A study by Fischer et al. (2002) for the Central American margin concluded that almost
100% of sedimentary N is returned to the surface via arc volcanism. However, subsequent
investigations updated this consideration employing data for the specific sediments subduct-
ing into that margin and demonstrated that, for some margins, the altered oceanic crust can
be as important for the N input flux as the sediments (Li and Bebout 2005; Elkins et al.
2006; Li et al. 2007; Mitchell et al. 2010). If N stored in the altered oceanic crust is taken
into consideration, the return of subducted N via arc volcanism is far less efficient, yielding
values of 15-40% at the Central American margin and 4-17% at the Izu-Bonin arc. These
calculations suggest that a large amount of N is transported to beyond sub-arc depths into
mantle depths greater than 150-200 km.
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Nitrogen-bearing material that has been subducted can be traced in plume-derived mag-
mas using a combination of N elemental and isotopic systematic in combination with noble
gas data (Marty and Dauphas 2003). Systematic differences in the N isotope composition of
rocks derived from a plume mantle source compared to those from a depleted MORB man-
tle source suggest the presence of a recycled crustal component in the Iceland and Reunion
plumes (Halldórsson et al. 2016; Barry and Hilton 2016). These data were interpreted to
reflect regassing of the mantle, which can explain the imbalance between input and output
N fluxes at volcanic arcs. If correct, regassing of the mantle over geological timescales also
implies the presence of a more N-rich atmosphere before the initiation of subduction (Barry
and Hilton 2016).

Estimation of the N concentration and isotopic composition of N in Earth’s continental
crust have been plagued by the fragmentary dataset for various materials likely to make
up this highly heterogeneous reservoir (see Johnson and Goldblatt 2017a,b). The extremely
wide range of lithologies in continental crust complicates any assessment of the size and
isotopic composition of this reservoir (see Rudnick and Gao 2014) and estimates have been
based on analyses of individual rock types (e.g., Palya et al. 2011) weighted by proportions
in the crust. Johnson and Goldblatt (2017a) presented measurements of N concentration in
glacial tills through time as a proxy for the upper continental crust and, building on argu-
ments made earlier by Goldblatt et al. (2009), suggested that N in the early-Earth atmo-
sphere was uptaken via biological processes and conveyed into (and stored in) continental
crust. Johnson and Goldblatt (2017a) suggested that the isotopic composition of N shows no
obvious secular variation.

Several recent experimental studies have investigated the distribution and behaviour of
N in the deep mantle and the core (Cartigny and Marty 2013; Li et al. 2013; Li and Keppler
2014; Yoshioka et al. 2018; Li et al. 2016; Dalou et al. 2017). Despite the generally low N
concentrations in mantle minerals (Yokochi et al. 2009), most of the planetary budget of N
is stored in the Earth’s mantle (see the review by Johnson and Goldblatt 2015, and papers
cited therein). A high N storage capacity of mantle minerals indicates that N released during
subduction would be redissolved in the mantle minerals (Watenphul et al. 2010; Li et al.
2013). Nitrogen solubility data for major minerals in the Earth’s transition zone and lower
mantle suggest that these regions can store at least 33 times the mass of N presently in the
atmosphere (Yoshioka et al. 2018).

From this brief summary, one can see that the N-cycle is a complex system that is in-
terlinked to the planet’s tectonic regime and hence its initial radioactive heat producing
elements (O’Neil et al.) and even life (see Stüeken et al.; Lloyd et al.). Three review articles
within this book (Avice and Marty; Stüeken et al.; Lloyd et al.) summarize the latest knowl-
edge of early Earth’s nitrogen evolution based on constraints of a detailed analysis of early
Earth’s isotopic fingerprints.

2 A Tectonometamorphic Perspective on Carbon Cycling

For carbon cycling at the present day and in the Earth’s geological past one can focus on
three tectonic settings in which metamorphic processes play a key role in C cycling:

1. Subduction zones, which are fundamental for the return of material from the Earth’s
surface to the deep interior of the Earth and, largely (but not entirely) via arc volcanic
degassing, into the atmosphere. The metamorphic processes in the subducting slab and
the overlying lithosphere are essential to understand the balance between C input fluxes
at trenches and the output via arc volcanism and forearc seeps.
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Fig. 2 Schematic illustration of an ocean-continent subduction zone, showing global-basis estimates of C
fluxes discussed in the text (moles of C/year) and highlighting the uncertainties in the various flux estimates
(from Cook-Kollars et al. 2014; other sources cited therein). Use of the fluxes shown here would suggest
volcanic arc return efficiency (inputs/arc outputs) of ≈15 to 80%, indicating the need to examine C cycling
in individual margins for which the input and output fluxes are better constrained. VF = volcanic front; AP
= accretionary prism

2. Collision zone orogeneses, in which large quantities of C-bearing rocks undergo meta-
morphism with profound effects on C in the Earth’s atmosphere.

3. Contact metamorphism, where the interaction of mantle-derived magmas with C in sed-
imentary layers is able to produce large amounts of CO2 and/or CH4.

The key question in assessing C cycling in subduction zones is how much of the C stored
in the downgoing slab is directly transferred back to the Earth’s surface (Fig. 2). Published
global estimates vary widely from ≈ 15-80%, indicating that a significant proportion of C is
not returned (see recent estimates by Dasgupta and Hirschmann 2010; Johnston et al. 2011;
Collins et al. 2015). Detailed regional studies also show significant variations: In the Cen-
tral American subduction zone, CO2 output calculations based on petrological estimates as
well as hydrothermal and gas emissions only account for a maximum of 24% of the input
(Freundt et al. 2014). More CO2 is released from arc volcanoes than the subducted C flux in
sediments at the Sunda margin (Indonesia), requiring additional C sources in the subduct-
ing altered oceanic crust or perhaps the overriding plate (House et al. 2019). Aiuppa et al.
(2017) suggested that, in some margins, decarbonation in the upper-plate crust (released by
contact metamorphism) could contribute significantly to volcanic CO2 output. A recent re-
view of subduction zone C fluxes by Kelemen and Manning (2015) provided a contrasting
perspective that little C is recycled into the convecting mantle as the lithosphere in the over-
lying plate represents an important reservoir for C (cf. Collins et al. 2015). In this scenario,
the subduction zone C cycle is nearly balanced over geologically short timescales of 5-10
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million years and outgassing at mid-ocean ridges and within-plate volcanic centres provides
a net flux of C to the Earth’s surface.

Understanding C release from subducting slabs is crucial for evaluating the important
effects on the global C cycle, palaeoatmospheric CO2 concentrations and arc magmatism
(Kerrick and Connolly 2001). There are three main mechanisms for C release from the sub-
ducting slab: metamorphic decarbonation reactions, dissolution of carbonates, and forma-
tion of carbonatitic liquids. Metamorphic decarbonation depends on the specific subduction
geotherm. For subduction of limestones and marls, only modest amounts of devolatilization
of C occur along low-temperature geotherms (Cook-Kollars et al. 2014) unless the decarbon-
ation is driven by infiltration of the rocks by H2O-rich fluids (see Gorman et al. 2006; Collins
et al. 2015). Similarly, a significant fraction of carbonate is retained to depths >200 km dur-
ing the subduction of ophicarbonates (hydrothermally altered mantle rocks), providing a
mechanism for carbonating the mantle (Kerrick and Connolly 1998; Collins et al. 2015).
Hence, C is largely retained in the slab, in particular in relatively cool subduction zones
(Gorman et al. 2006), explaining the discrepancy between input and output CO2 fluxes.
Even though the efficiency of C release from slab metamorphic decarbonation appears to be
limited, dissolution of carbonate minerals by infiltrating fluids is a potentially voluminous
pathway for slab decarbonation (Manning 2014). However, the magnitude of this release
by carbonate dissolution, and whether it can impact margin-scale C cycling, have not yet
been ascertained. In the exhumed Cycladic subduction complex, 60-90% of the initially
present CO2 was released adjacent to former fluid conduits (Ague and Nicolescu 2014) but
extrapolation of this finding to scales of subducting slabs and overlying sediments will be
problematic. Further evidence for fluid-mediated carbonate removal comes from diamond-
bearing fluid inclusions with bicarbonate and carbonate ions in ultrahigh-pressure rocks
from the Italian western Alps (Frezzotti et al. 2011). Theoretical modelling also shows that
abundant dissolved organic and inorganic ionic C species are contained in subducted slab
fluids, which can then be transported from the slab into the mantle wedge (Sverjensky et al.
2014). Ultimately, the removal of carbonate via dissolution is dependent upon the degree
of infiltration of the rocks by fluids capable of dissolving and transporting the carbonate.
Where studied in detail, carbonate-rich metasedimentary rocks that experienced high- or
ultrahigh-pressure conditions can show only minimal petrologic and isotopic evidence for
infiltration by far-traveled fluids (e.g., Cook-Kollars et al. 2014). An additional pathway for
the release of C from subducted slabs is via the formation of carbonatitic liquids. Experi-
mental data show that carbonatitic liquids can be produced at temperatures of 870-900 °C
corresponding to ∼120 km depth underneath arcs when the presence of water depresses the
solidus for hydrous carbonate gabbro and limestone (Poli 2015). At even greater depths of
300-700 km, transport of C into the lower mantle is prevented by the formation of carbon-
atite melts when the slab geotherms intersects the melting curve of carbonated oceanic crust
(Thomson et al. 2016). Whereas carbonatite melts at depths approaching the transition zone
will metasomatise the overlying mantle and form diamonds, the sub-arc carbonatitic liquids
provide a CO2 source for subduction zone magmatism.

Even though there is widespread field evidence for mobilization of C in subduction-
related metamorphic rocks via decarbonation and/or dissolution, this C is not necessarily
recycled back into the atmosphere via arc magmatism. Precipitation of C can occur via vein
formation or replacement mechanisms (Piccoli et al. 2016), enabling sequestration of C in
the forearc and/or in crustal and mantle lithologies of the slab (Jaeckel et al. 2018; Scambel-
luri et al. 2016; van der Straaten et al. 2012). These high-pressure carbonates carry isotopic
signals of mixed organic-inorganic C sources (van der Straaten et al. 2012). Carbonate desta-
bilization in subduction zones may also be counterbalanced by carbonate reduction and the
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formation of graphite under reducing conditions (Galvez et al. 2013). Additional redistri-
bution of C in the slab takes place via abiotic methanogenesis in ultramafic rocks during
alteration (Vitale Brovarone et al. 2017). In summary, although there is a plethora of meta-
morphic processes operating in subduction zones that could impact carbon cycling, these
processes have been demonstrated at only local (in some cases single outcrop) scales and
their influence on regional (scales of individual margins) and global C recycling remains
largely unconstrained.

The effects of C release during collisional orogeneses are less well studied than C cy-
cling in subduction zones, but the magnitude of C release into the atmosphere via this path-
way could be profound. For instance, CO2 degassing from the Cordilleran belt has been
linked to Eocene global warming (Kerrick and Caldeira 1998) and CO2 flux for the Hi-
malayan orogeny carrying large fluxes of CO2 derived from metamorphic reactions was
calculated to represent 7-60% of the global flux from volcanic arcs (Evans et al. 2008). Pro-
grade metamorphism of carbonate-bearing sedimentary sequences will form calc-silicate
rocks and release CO2 in a wide range of orogenic settings during collisional metamor-
phism (Ague 2000; Groppo et al. 2013). The quantitative calculation of CO2 release for the
Himalayan orogeny through the study of calc-silicate rocks in the metamorphosed sedimen-
tary sequences yielded a production of 1-3 Mt CO2 (Groppo et al. 2017). Carbon fluxes
during greenschist facies metamorphism alone were calculated to exceed C uptake by sil-
icate weathering in orogenic belts (Skelton 2011). Whether the released CO2 reaches the
Earth’s surface or is sequestered through carbonate or graphite precipitation is uncertain
(Groppo et al. 2017), but the C sequestered by carbonate vein formation appears insignifi-
cant compared to the total amount of CO2 released (Kerrick and Caldeira 1998) and cross-
layer transport even allows for decarbonation during cooling (Ague 2000). There appears
to be consensus that the orogenic belts are a source rather than a sink of atmospheric CO2

(Skelton 2011; Evans et al. 2008). On geological timescales, metamorphic degassing dur-
ing collisional metamorphism and orogeneses will create pulses of CO2 relative to the slow
silicate weathering that eventually sequesters CO2 (Evans 2011).

A third metamorphic aspect of C release from crustal rocks relates to contact metamor-
phism, which can produce a high flux and volume of CH4 and CO2 around igneous intru-
sions (Svensen and Jamtveit 2010; Aiuppa et al. 2017). Addition of volatiles including CO2

through shallow crustal sources via contact metamorphism has been observed for individual
volcanoes such as Merapi (Indonesia) as they are located on thick sequences of limestones,
marls and volcaniclastic deposits (Troll et al. 2012; Whitley et al. 2019). On a larger scale,
the emplacement of voluminous mantle-derived melts in C-rich sedimentary strata (carbon-
ates, evaporates, coal and organic-rich shales) generates large quantities of gases (CO2, CH4)
that are vented directly into the atmosphere or rise as plumes through the water column into
the atmosphere (Svensen et al. 2004; Ganino and Arndt 2009). For several large igneous
provinces, this release of sediment-derived gases has been linked to global warming and
mass extinctions (Ganino and Arndt 2009).

3 Conclusions

Field-based, experimental, and theoretical studies have greatly advanced our understanding
of the Earth’s geological N and C cycles and the distribution of these volatiles between the
Earth’s major reservoirs. Assessing key geological aspects of both the N and C cycles, we
conclude:
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1. The incorporation of N as NH+
4 in minerals is crucial for N subduction and release upon

breakdown of the host minerals. Cold subduction causes preferential N transport into the
deep mantle, whereas warm subduction favours N recycling into the atmosphere through
greater loss in forearcs and via arc magmatism.

2. Both the continental crust and the mantle are important N reservoirs. Long-term storage
of N in continental crust appears to be largely as NH+

4 in silicate minerals such as the
micas. Despite low N contents in mantle minerals, N stored in the mantle outweighs N
in the other Earth reservoirs and significantly more N can be stored in the mantle given
its large N storage capacity.

3. Subducted C is released from the slab via decarbonation, dissolution of carbonates and
carbonatite liquid formation. However, long-term carbonation of the mantle is indicated
by the discrepancy between input and output CO2 fluxes in subduction zones.

4. Release of CO2 into the atmosphere also occurs during regional metamorphism in colli-
sional orogens and by interaction with mantle-derived magmas with C-bearing country
rocks. Periods when these fluxes appear to have been enhanced can be linked to specific
past global warming events.
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