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Abstract This paper presents, for the first time, an analytical formulation to determine the transient response of an
elastic beam possessing distributed inertia and connected to a coupling inertial resonator, represented by a gyroscopic
spinner. The latter couples the transverse displacement components of the beam in the two perpendicular directions,
thus producing roto-flexural vibrations. A detailed parametric study is presented that illustrates the effects of the
beam’s distributed inertia and of the resonator’s characteristics. The limit case of massless beam is examined and it
is shown that in some situations the distributed inertia in the beam should not be neglected. Analytical results are
also validated by finite element computations. An illustration is also presented that demonstrates the effectiveness
of using the considered inertial devices to mitigate hazardous vibrations in structural systems. It is envisaged that
this paper may be useful in the analysis of flexural waveguides and metamaterials consisting of inertial elastic beam
elements.

Keywords Flexural waves · Transient analysis · Inertial resonator · Gyroscopic spinner · Vibration isolation

1 Introduction

In recent years, there has been an increasing interest in the study of engineering elements that produce inertial
coupling effects. This has been partially motivated by the need to better characterise the tools embedded in pre-
existing technologies, for instance, rotor systems used in aircraft and drive shafts employed in a variety of land and
sea vehicles. Rotating elements also play a crucial role in the stabilisation of light, flexible and large spacecraft, and
this has motivated research in this direction concerning mechanical elements with embedded gyroscopic effects in
the last 40 years. More recently, this research has been reinvigorated through the development of devices used to
design structured systems or metamaterials possessing rotating inertial elements for the purposes of controlling wave
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motion. Here, we study an example of such a device, which is formed from connecting a gyroscopic spinner to a
beam, and demonstrate its performance in controlling the vibration of structures exposed to hazardous environmental
conditions.

Gyroscopic systems are widely used not only in the flight control of aircrafts and spacecrafts, but also in gas
turbines and in the construction of robotic manipulators [1]. In a recent work [2], it has been proposed to employ
beams with gyroscopic properties to reduce the low-frequency vibrations, produced by seismic sources, in a bridge.
This novel device has potential applications in the earthquake protection of civil engineering structures and represents
an efficient alternative to other approaches [3]. In elastic lattices, the introduction of gyroscopic spinners has been
exploited to alter the dispersive properties of the system [4,5], to create waveforms localised in a single line passing
through any point of the medium [6] and to generate one-way interfacial and edge waves [7–10]. A novel asymptotic
model has been developed in [11] to determine the transient responses of gyro-elastic lattices capable of exhibiting
cloaking properties and creating unidirectional waveforms. In [12], it has been proposed to use gyroscopic spinners
for the stabilisation of slender monopole towers that are very sensitive to wind and earthquakes.

The mechanical action of gyroscopic spinners induces chiral effects into a system. Chiral structures have gathered
increasing interest in the scientific community due to their unique properties and numerous potential applications.
A structure or an object is “chiral” if it cannot be mapped onto its mirror image by rotations and translations [13].
In the literature, most of the elastic and mechanical chiral systems are geometrically chiral [14–22].

Systems of elastic beams connected to gyroscopic spinners have been considered in [23–25]. The spinners are used
to tune the natural frequencies and vibration modes of the structure for stabilisation purposes. The models presented
in [23,24] represent physical interpretations of the so-called “gyrobeams”, which are theoretical structural elements
consisting of elastic beams with a continuous distribution of angular momentum. The analytical formulation of
gyrobeams and gyro-elastic continua has been developed in [26–30]. In elastic plates, gyroscopic spinners attached
at the tips of elastic beams have been introduced to create one-way interfacial flexural waves [31,32].

In previous works, the study of a system of elastic beams connected to gyroscopic spinners has been carried out
in the frequency domain. In some cases, in order to obtain a closed-form analytical solution, it has been assumed
that the distributed inertia in the beam is negligible when compared to the concentrated mass of the spinner. In
this paper, we present an analytical formulation that provides a method to determine the response of an inertial
beam in the transient regime. It will be shown that taking into account the distributed inertia of the beam leads to
a response of the system with significantly different features with respect to the case of a massless beam. In the
present paper, the beam is connected to a “gyro-hinge”, which is a special constraint represented by a hinge attached
to a gyroscopic spinner, as described in Sect. 2. Motivated by applications to turbo-machinery and rotor systems,
in [33] the natural frequencies and mode shapes of a flexible system composed of a spinning disk and a shaft have
been obtained by using the finite element method.

The proposed formulation corresponds to a linearised model, following from the coupling of Euler’s equations
for the spinner and the equations of the Euler–Bernoulli beam, resulting from the assumption that the nutation angle
of the spinner is small. This is in accordance with Euler–Bernoulli theory, which is constructed under the premise
that the displacements and rotations in the beam are small. Accordingly, stability problems are not considered in this
paper (the interested reader can refer to other works, for example [34]). Perturbation methods used in the analysis of
the stability of multi-parameter gyroscopic systems in the presence of non-conservative forces have been discussed
in [35,36]. Vibrations of a rotating beam connected to a point mass have been studied in [37], in conjunction with
the dynamic stability of the rectilinear shape of the beam by employing the Lyapunov direct method. Stability
problems in a nanobeam have been investigated in [38] using a higher-order non-local strain gradient theory.

The use of gyroscopic spinners in civil structures is not common as in other fields, such as aerospace and
mechanical engineering. Nonetheless, it is important to emphasise that gyroscopic spinners are different from
rotors that have a prescribed spin and are employed in several applications dealing with vibration problems of
rotating machines. In fact, a gyroscopic spinner not only spins around its axis, as a common rotor, but it also nutates
and precesses. This motion is governed by a separate set of differential equations, the Euler equations. Moreover,
the sum of precession and spin rates of a gyroscope remains constant throughout the motion, while the individual
rates may change in time. This brings additional physical features that are not present when classical rotors are
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considered. Here, we show that the main effect of a gyroscopic spinner attached to a single elastic beam is to couple
the two transverse displacement components of the beam that would be independent in the absence of the spinner;
we also demonstrate that this effect significantly modifies the dynamic behaviour of the beam.

The growth of interest in flexural systems with uncommon properties (“flexural metamaterials”) has led to the
design of innovative structures consisting of beams and rods. Dispersion degeneracies and localisation phenomena
in lattices of Rayleigh beams have been studied in [39–41]. Applications in soft robotics and structural folding
of beams undergoing large deformations have been considered in [42–44]. The effect of configurational forces
on periodic systems of elastic beams with sliding sleeves has been investigated in [45]. A passive technique to
suppress localised vibrations in periodic structures made of small beams has been proposed in [46]. Analytical and
experimental approaches have been developed in [47] to extract torsional and flexural bandgaps in phononic crystal
beams. Near-resonance phenomena, total reflection and trapping of flexural waves in elastic plates connected to
spring-mass oscillators have been investigated in [48] for both plates in vacuo and those floating on the surface of
water. Wave propagation and bandgap optimisation in quasi-crystalline structures made of rods have been analysed
in [49,50]. Problems of dynamic failure propagation in periodic flexural systems have been presented and solved
in [51–53]. Characterisation of waves in periodic micro-structured flexural systems incorporating rotational inertia
has been carried out in [54].

The present paper is organised as follows. In Sect. 2, we present the analytical formulation to determine the
transient response of an elastic beam with distributed inertia connected to a gyro-hinge. In Sect. 3, we consider the
limit case of a massless beam, for which a simplified approach can be employed. We also compare the analytical
results obtained in Sect. 3 with those based on the general formulation developed in Sect. 2 in the case when the
beam’s density is assumed to be small, showing that there is a very good agreement. In Sect. 4, we analyse the
transient motion of the flexural system for different values of the beam’s density and for various properties of the
gyroscopic spinners. In Sect. 5, we provide concluding remarks. Further, in Appendices A and B, we present some
important results used in deriving the solution to the considered problem. In Appendix C, we compare the analytical
results yielded by the procedure described in Sect. 2 with the numerical outcomes provided by an independent finite
element model built in a commercial software, which is used to validate the analytical procedure. Finally, in the
Supplementary Material accompanying this paper, we present the results of a physical application demonstrating
how gyro-hinges can be implemented in a structural frame to reduce the vibrations due to external loading.

2 Transient motion of a beam with distributed inertia and gyroscopic boundary conditions

We study the flexural vibrations of an Euler–Bernoulli beam, clamped at one end and connected to a gyro-hinge
at the other end, as shown in Fig. 1. The gyro-hinge is a special constraint, introduced for the first time in [23],
consisting of a hinge attached to a gyroscopic spinner. Physically, this configuration for the connection between
the beam and the gyroscopic spinner can be realised by drilling a hole at the tip of the beam and nesting the base
of the gyroscopic spinner inside that hole. This allows the gyroscope to spin and, at the same time, prevents the
transmission of the twisting motion to the beam. Furthermore, this type of connection ensures the continuity of
rotation between the beam and the spinner. Namely, the flexural rotations of the beam at its tip and the tilting of
the gyroscope at its base are equal at any instant of time. The reader is also referred to [24] for a more detailed
description of the connection.

The beam has length L , mass density ρ, Young’s modulus E and square cross-section of area A and second
moment of area J . We are interested in the beam’s transverse motion, characterised by the displacements u and
v in the x- and y-direction, respectively. The system is subjected to an initial disturbance, whose specific form is
described in what follows. The presence of external loads, which are not considered in this formulation for the sake
of simplicity, can be taken into account following standard procedures based on Duhamel’s principle; in particular,
the effect of time-dependent bending moments applied at the boundary z = L can be incorporated using a similar
method to that described in [55].
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Fig. 1 Euler–Bernoulli
beam, with a clamped end at
z = 0 and a gyro-hinge at
z = L

Since Euler–Bernoulli beam theory is based on the assumption of small displacements and small rotations, the
equations of motion of the gyroscopic spinner (namely, Euler’s equations) are linearised, in particular assuming that
the angle of nutation is small. As discussed in detail in [23], this linearised formulation leads to the derivation of
coupled boundary conditions for the gyro-hinge, which relate the curvatures in the beam with the time derivatives
of the beam’s rotations at the junction (see (2d)).

2.1 Formulation of the problem

The governing equations for the flexural vibrations of an Euler–Bernoulli beam are given by

E Ju′′′′(z, t) + ρAü(z, t) = 0 , E Jv′′′′(z, t) + ρAv̈(z, t) = 0 , (1)

where the primes and the dots denote derivatives with respect to the longitudinal coordinate z and to time t ,
respectively. We point out that the equation of motion for the displacement component w along the z-axis is
decoupled from Eqs. (1), and hence axial vibrations will not be considered in the present paper.

At the end z = 0 the transverse displacements and flexural rotations are zero, while at the end z = L the
gyro-hinge boundary conditions are imposed (see [23]). Therefore, the boundary conditions for the beam in Fig. 1
have the form

u(0, t) = 0 , v(0, t) = 0 , (2a)

u′(0, t) = 0 , v′(0, t) = 0 , (2b)

u(L , t) = 0 , v(L , t) = 0 , (2c)

and

E Ju′′(L , t) + I0ü
′(L , t) + I1Ωv̇′(L , t) = 0 ,

E Jv′′(L , t) + I0v̈
′(L , t) − I1Ω u̇′(L , t) = 0 , (2d)

for t > 0. The gyro-hinge boundary conditions are given by (2c) and (2d), where the latter correspond to the balance
of angular momentum for the spinner. Eqs. (2d) are obtained assuming that the rotations of the gyroscopic spinner
and of the beam at their connection remain the same at every instant of time. Further, the connection is designed such
that the spinning motion of the spinner is not transmitted to the beam; this can be realised by drilling a cylindrical
hole inside the beam, make it frictionless and nest the end of the spinner inside the hole. In (2d), I0 and I1 indicate
the moments of inertia of the spinner. Assuming that the latter is a solid of revolution, I1 is the moment of inertia
about the axis of revolution, while I0 is the moment of inertia about the transverse principal axes passing through
the spinner’s base. The parameter Ω is referred to as gyricity and represents the sum of the initial precession and
spin rates of the gyroscopic spinner, which remains constant throughout the motion when the nutation angle of the
spinner is small, as proved in [23]. We point out that the gyricity is an independent parameter, which can be varied
by changing the precession and spin rates at t = 0. We also note that the precession and spin rates can vary during
time, but their sum Ω is constant. When I0 = I1 = 0, the gyro-hinge reduces to a classical hinge, characterised by
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zero displacements and moments. When I0 �= 0 and I1 = 0 or Ω = 0, the gyroscopic spinner behaves as a mass
with non-zero rotational inertia.

The initial conditions are expressed by

u(z, 0) = u0(z) , v(z, 0) = v0(z) , (3a)

u̇(z, 0) = u̇0(z) , v̇(z, 0) = v̇0(z), (3b)

where u0(z), v0(z), u̇0(z) and v̇0(z) are given functions.

2.2 Normalisation of governing equations

Now, we formulate the problem in normalised form in order to study the effect of non-dimensional parameters on
the behaviour of the system. To this aim, we use the following normalisations:

z = ẑL , t =
√

I0L

E J
t̂, u(z, t) = û(ẑ, t̂)L , v(z, t) = v̂(ẑ, t̂)L ,

u0(z) = û0(ẑ)L , v0(z) = v̂0(ẑ)L , u̇0(z) =
√

E J

I0L
˙̂u0(ẑ) , v̇0(z) =

√
E J

I0L
˙̂v0(ẑ). (4)

In addition, we introduce the non-dimensional quantities

μ = ρAL3

I0
and Ω∗ = Ω

√
L I 2

1

E J I0
, (5)

that play the role of the effective mass of the beam and the effective gyricity of the spinner, respectively.
In going forward, we use the above normalisation and we drop the symbol “∧” for ease of notation. Accordingly,

the governing equations (1) become

u′′′′(z, t) + μü(z, t) = 0 , v′′′′(z, t) + μv̈(z, t) = 0 , 0 < z < 1 , t > 0 , (6)

with the boundary conditions at the base

u(0, t) = v(0, t) = 0 , u′(0, t) = v′(0, t) = 0 , (7)

the gyro-hinge conditions at the tip

u(1, t) = v(1, t) = 0 , (8a)

u′′(1, t) + ü′(1, t) + Ω∗v̇′(1, t) = 0 , v′′(1, t) + v̈′(1, t) − Ω∗u̇′(1, t) = 0 , (8b)

and the initial conditions

u(z, 0) = u0(z) , v(z, 0) = v0(z) , (9a)

u̇(z, 0) = u̇0(z) , v̇(z, 0) = v̇0(z) . (9b)

2.3 Eigenfunction expansions for the displacement functions

The displacements satisfying (6)–(9) can both be expressed in the form of a series as follows:

u(z, t) =
∞∑
k=1

F (k)
1 (t)G(k)

1 (z) , v(z, t) =
∞∑
k=1

F (k)
2 (t)G(k)

2 (z) . (10)
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Here, F (k)
j (t) and G(k)

j (z), for k ≥ 1 and j = 1, 2, govern the temporal and spatial variation of the response of the
system, respectively, for t > 0. Upon substitution of these representations into (6)–(9), using a standard procedure
outlined in Appendix A, one can decouple the functions F (k)

j (t) and G(k)
j (z), for k ≥ 1 and j = 1, 2, and then solve

the problems satisfied by these functions separately. It follows that the time-dependent functions are

(
F (k)

1 (t)

F (k)
2 (t)

)
= d(k)

1

(
1
1

)
eiωk t + d(k)

2

(
1

−1

)
e−iωk t , (11)

where d(k)
1 and d(k)

2 are unknown constants that are determined from the initial conditions (9). Here, the quantity
ωk will be interpreted as the dimensionless frequency of vibration for mode k. Additionally, the spatially dependent
functions are retrieved in the form

G(k)
j (z) = Bj {−γk [cos(βk z) − cosh(βk z)] + sin(βk z) − sinh(βk z)} , (12)

where

γk = sinh(βk) − sin(βk)

cosh(βk) − cos(βk)
. (13)

The quantity βk = (μω2
k )

1/4 in (12) and (13) represents a dimensionless spectral parameter.

2.3.1 Orthogonality conditions for the eigenfunctions

Let

G(k)(z) =
(
G(k)

1 (z)

G(k)
2 (z)

)
and G̃(k)(z) =

(
G(k)

1 (z)

−G(k)
2 (z)

)
. (14)

Using the above conditions on G(k)
j , k ≥ 1 and j = 1, 2, and applying integration by parts, one can show that the

vector functions G( j)(z) and G(m)(z), j �= m, satisfy the orthogonality conditions

0 =μ

∫ 1

0
G( j)(z) · G(m)(z)dz +

(
G( j)(z)

)′∣∣∣∣
z=1

·
(
G(m)(z)

)′∣∣∣∣
z=1

+ iΩ∗

ω j − ωm

(
G( j)(z)

)′∣∣∣∣
z=1

· R
(
G(m)(z)

)′∣∣∣∣
z=1

( j �= m) , (15)

with

R =
(

0 1
−1 0

)
, (16)

where (15) will be referred to as orthogonality condition 1, and

0 =μ

∫ 1

0
G( j)(z) · G̃(m)(z)dz +

(
G( j)(z)

)′∣∣∣∣
z=1

·
(
G̃(m)(z)

)′∣∣∣∣
z=1

+ iΩ∗

ω j + ωm

(
G( j)(z)

)′∣∣∣∣
z=1

· R
(
G̃(m)(z)

)′∣∣∣∣
z=1

( j �= m), (17)
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that we call orthogonality condition 2. The proofs of the orthogonality conditions 1 and 2 are given in Appendix B.

2.3.2 Eigenfrequency equation

Substituting the expression (12) for G(k)
j (z) ( j = 1, 2) into the gyro-hinge boundary conditions, we derive the

following homogeneous system:

(
νk iηk

−iηk νk

)(
B1

B2

)
=

(
0
0

)
, (18)

where

νk = {γk [cos (βk) + cosh (βk)] − sin (βk) − sinh (βk)}

− β3
k

μ
{γk [sin (βk) + sinh (βk)] + cos (βk) − cosh (βk)} (19a)

ηk =βkΩ
∗

√
μ

{γk [sin (βk) + sinh (βk)] + cos (βk) − cosh (βk)} . (19b)

Looking for non-trivial solutions of (18), we determine the equations which provide the eigenfrequencies of the
system:

νk + ηk = 0 , νk − ηk = 0. (20)

We note that when the effective gyricity Ω∗ = 0 we have that ηk = 0, and (20) yields the double eigenfrequencies
of a beam, clamped at one end and with a hinge at the other end that connects the beam’s tip to a rotational
mass. Furthermore, we observe that the system (18) allows to determine B1 as a function of B2 (or vice versa),
providing the complete representation of the eigenfunctions of the system. In this case, one of the components of
the eigenfunction is purely imaginary if the other one is chosen as real in determining the eigenmode.

Additionally, if βk → ∞, (13), (19) and (20) imply that the eigenfrequencies for the system are determined from
the equation

[1 − cos(βk) cosh(βk)]
2 = 0, (21)

which provides the double eigenfrequencies of a beam whose ends are clamped. This observation also follows from
the governing equations of the system in Appendix A (see (A.23)–(A.26)).

2.3.3 Expressions of transverse displacements as series representations

The transverse displacements u and v of the beam are thus given by

(
u(z, t)
v(z, t)

)
=

∞∑
k=1

(
F (k)

1 (t)G(k)
1 (z)

F (k)
2 (t)G(k)

2 (z)

)

=
∞∑
k=1

{
d(k)

1 G(k)(z)eiωk t + d(k)
2 G̃(k)(z)e−iωk t

}
, (22)

where (10) and (11) were used.
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2.4 Initial conditions

Using the initial conditions (9), we calculate the coefficients d(k)
1 and d(k)

2 in order to fully determine the transverse
displacements u and v (see Eq. (22)).

2.4.1 Initial displacement vector

Evaluating the displacement vector in (22) at the initial time t = 0 using (9a), taking the dot product with G(m)(z)
and integrating, we obtain

∫ 1

0
U0(z) · G(m)(z)dz =

∞∑
k=1

{
d(k)

1

∫ 1

0
G(k)(z) · G(m)(z)dz + d(k)

2

∫ 1

0
G̃(k)(z) · G(m)(z)dz

}
, (23)

where U0(z) = (u0(z), v0(z))T. Next, by using (22) to compute the initial rotation at the beam’s tip at z = 1, in a
similar way we obtain

U ′
0(1) ·

(
G(m)(z)

)′∣∣∣∣
z=1

=
∞∑
k=1

{
d(k)

1

(
G(k)(z)

)′∣∣∣∣
z=1

·
(
G(m)(z)

)′∣∣∣∣
z=1

+d(k)
2

(
G̃(k)(z)

)′∣∣∣∣
z=1

·
(
G(m)(z)

)′∣∣∣∣
z=1

}
. (24)

We combine (23) with (24) and employ the orthogonality conditions 1 and 2, given by Eqs. (15) and (17), respectively,
to retrieve the following infinite algebraic system for the coefficients d(k)

j ( j = 1, 2):

U (m) = d(m)
1 α(m) + d(m)

2 α̃(m) +
∞∑
k=1
k �=m

{
d(k)

1
iΩ∗

ωm − ωk

(
G(k)(z)

)′∣∣∣∣
z=1

· R
(
G(m)(z)

)′∣∣∣∣
z=1

+d(k)
2

iΩ∗

ωm + ωk

(
G̃(k)(z)

)′∣∣∣∣
z=1

· R
(
G(m)(z)

)′∣∣∣∣
z=1

}
, (25)

where U (m) on the left-hand side is

U (m) = μ

∫ 1

0
U0(z) · G(m)(z)dz + U ′

0(1) ·
(
G(m)(z)

)′∣∣∣∣
z=1

(26a)

that is found from combining (23) and (24) according to the orthogonality conditions. Additionally, in the right-hand
side of (25) we have

α(m) = μ

∫ 1

0
G(m)(z) · G(m)(z)dz +

(
G(m)(z)

)′∣∣∣∣
z=1

·
(
G(m)(z)

)′∣∣∣∣
z=1

, (26b)

α̃(m) = μ

∫ 1

0
G̃(m)(z) · G(m)(z)dz +

(
G̃(m)(z)

)′∣∣∣∣
z=1

·
(
G(m)(z)

)′∣∣∣∣
z=1

. (26c)

In the calculations, we consider a finite number of M terms in the series of (25), with M taken sufficiently large
(note that when Ω∗ = 0 there is no need to employ such an approach). Accordingly, we can write (25) as

U = Σ (1)D(1) + Σ (2)D(2), (27)
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where

U =
{
U (m)

}M

m=1
, D( j) =

{
d(m)
j

}M

m=1
, Σ ( j) =

[
Σ

( j)
pq

]M
p,q=1

( j = 1, 2) (28)

with

Σ(1)
pq =

⎧⎨
⎩

αp if p = q,

iΩ∗
ωp−ωq

(
G(q)(z)

)′∣∣∣
z=1

· R (
G(p)(z)

)′∣∣∣
z=1

otherwise
(29a)

and

Σ(2)
pq =

⎧⎪⎨
⎪⎩

α̃p if p = q,

iΩ∗
ωp+ωq

(
G̃(q)(z)

)′∣∣∣∣
z=1

· R (
G(p)(z)

)′∣∣∣
z=1

otherwise.
(29b)

Note that the components of the eigenfunctions G(p)(z) are related by a purely imaginary factor (see Sect. 2.3.2).
Hence the corresponding scalar products in the off-diagonal components Σ ( j), j = 1, 2, will be real.

2.4.2 Initial velocity vector

Following a similar procedure to that presented in Sect. 2.4.1, we use the initial condition (9b) to obtain

V = iS(1)D(1) − iS(2)D(2). (30)

In the above,

V =
{
V (m)

}M

m=1
, S( j) = Σ ( j)P ( j = 1, 2), (31)

with

P = diag1≤k≤M {ωk} (32)

and

V (m) = μ

∫ 1

0
U̇0(z) · G(m)(z)dz + U̇ ′

0(1) ·
(
G(m)(z)

)′∣∣∣∣
z=1

, (33)

where U̇0(z) = (u̇0(z), v̇0(z))T.

2.4.3 Determination of coefficients d(m)
j

From (27) and (30), we derive the vectors D(1) and D(2), corresponding to approximate solutions of the infinite
system, which are given by

D(1) = −i
(
S(1)

)−1 [
V + iS(2)D(2)

]
(34a)
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and

D(2) =
[
Σ (2) + Σ (1)

(
S(1)

)−1
S(2)

]−1 [
U + iΣ (1)

(
S(1)

)−1
V

]
, (34b)

respectively. By construction, the matrices involved in the above expressions contain real entries (see Sect. 2.4.1
and 2.4.2). Nonetheless, if both the initial displacement and velocity vectors are non-zero, the resulting coefficients
d(k)

1 and d(k)
2 of the vectors D(1) and D(2) are generally complex.

Substituting the coefficients of the vectors D(1) and D(2) into the approximate expressions for the transverse
displacements u and v along the beam’s axis during time, we obtain

(
u(z, t)
v(z, t)

)
=

[
M∑
k=1

{
d(k)

1 G(k)(z)eiωk t + d(k)
2 G̃(k)(z)e−iωk t

}]
+ RM (z, t) , (35)

where RM (z, t) is the remainder term resulting from the truncation of the infinite system (25). In the subsequent
calculations, we use the first term in the right-hand side of (35). Since the coefficients d(k)

1 and d(k)
2 are generally

complex, the displacement components u(z, t) and v(z, t) are given by the real part of the right-hand side of (35).
The method proposed above has also been validated with an independent finite element simulation performed

in Comsol Multiphysics (version 5.3). The comparison between analytical and numerical results is presented in
Appendix C.

3 Limit case: non-inertial beam

In this section, we study the limit case when the density of the beam is negligibly small in comparison with the
inertia of the gyroscopic spinner.

3.1 Problem formulation for a massless beam

The governing equations for the flexural motion of a massless beam are given by (6) with μ = 0. Consequently,
the transverse displacements are cubic functions of the spatial coordinate z. In this case, we write the boundary
conditions as follows:

u(0, t) = 0 , v(0, t) = 0 , (36a)

u′(0, t) = 0 , v′(0, t) = 0 , (36b)

u(1, t) = 0 , v(1, t) = 0 , (36c)

u′(1, t) = θy(t) , v′(1, t) = −θx (t), (36d)

where θy(t) and θx (t) are the unknown rotations around the x- and y-axis, respectively. Therefore, the expressions
for the transverse displacements in the beam are given by

u(z, t) = θy(t)
(
z3 − z2

)
, v(z, t) = −θx (t)

(
z3 − z2

)
. (37)

Using the gyro-hinge boundary conditions (8b), we obtain the following system of ordinary differential equations
for the rotations:

θ̈y(t) − Ω∗θ̇x (t) + 4θy(t) = 0, θ̈x (t) + Ω∗θ̇y(t) + 4θx (t) = 0. (38)
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Fig. 2 Trajectory of the
point of the beam’s axis
positioned at z = 1/2,
determined for a massless
beam using the formulation
in Sect. 3.1 (solid black
line) and the analytical
approach in Sect. 2 (dashed
grey line) when μ = 0.001,
Ω∗ = 25 rad/s and
ū0 = 0.1. The trajectories
are shown up to t = 9.845

The initial conditions (9) lead to

θy(0)
(
z3 − z2

)
= u0(z) , θx (0)

(
z3 − z2

)
= −v0(z) , (39a)

θ̇y(0)
(
z3 − z2

)
= u̇0(z) , θ̇x (0)

(
z3 − z2

)
= −v̇0(z) , (39b)

where u0(z), v0(z), u̇0(z) and v̇0(z) are given functions that have to be consistent with the boundary conditions.

3.2 Example and comparison with the analytical formulation based on the series representations

We assume that u0(z) = ū0(z3 − z2), u̇0(z) = 0, v0(z) = 0 and v̇0(z) = 0. Hence, the initial conditions for the
rotations are given by

θy(0) = ū0 , θx (0) = 0 , θ̇y(0) = 0 , θ̇x (0) = 0 . (40)

We solve the system of differential equations (38) complemented with the initial conditions (40) using the solver
ODE45 in Matlab. In particular, we calculate the time-histories of the transverse displacements in the middle point
of the beam’s axis, located at z = 1/2. The trajectory of this point is shown in Fig. 2 by a solid black line.

In the same figure, the dashed grey line represents the trajectory obtained with the method developed in Sect. 2
when the effective density μ is very small. The total number of modes considered in the present simulation is M = 8.
This value has been chosen after checking the convergence of results for increasing values of M (see Sect. 4.2).
Figure 2 shows that the agreement between the formulations presented in Sects. 2 and 3.1 is excellent, as the two
curves are almost indistinguishable. We emphasise that additional studies have been performed for this linearised
system (whose results are not reported here for brevity) where different initial conditions have been considered;
also for those cases, the approaches developed in Sects. 2 and 3.1 yield almost indiscernible outcomes, as expected.

The results of Fig. 2 also highlight the coupling introduced into the system by the gyro-hinge between the two
transverse displacements u and v. Although the initial disturbance is produced by a displacement in the x-direction,
the beam also vibrates in the y-direction. The motion of each point of the beam’s axis is not circular, but small
oscillations are generated by the contributions of different harmonics.
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Fig. 3 Spectral parameters βk versus k for Ω∗ = 0 and μ = 1. The mode shapes associated with the double values of βk are also
plotted in the figure. In these insets, the solids at z = 1 represent masses with rotational inertia that do not spin (Ω∗ = 0)

4 Dynamic regimes in the elastic gyroscopic system: parametric study

In this section, we explore the dynamic behaviour of the elastic beam due to the gyroscopic effect induced by the
gyro-hinge. In particular, we investigate how the transient response of the elastic system varies if either the effective
density of the beam or the effective gyricity of the spinner is changed.

In the numerical examples, the initial conditions (9) are taken as u0(z) = ū0(z3 − z2), u̇0(z) = 0, v0(z) = 0
and v̇0(z) = 0, with ū0 = 0.1. We note that the initial disturbance is applied in the x-direction only; however, the
coupling terms in the gyro-hinge boundary conditions will also produce displacements in the y-direction.

4.1 Case of zero effective gyricity

First, we discuss the special case when the effective gyricity is zero, which will be used as a reference for the
investigations performed in Sects. 4.2 and 4.3.

When Ω∗ = 0, because of the symmetry of the problem in the x- and y-directions (see in particular how the
gyro-hinge boundary conditions (8b) are modified in this case), the system is characterised by double eigenvalues,
since the vibrations in the x- and y-directions are identical. The values of βk for k = 1, . . . , 10 are reported in
Fig. 3 for a unitary effective density. The shapes of the modes corresponding to these spectral parameters are also
illustrated in the insets.

In particular, we are interested in the slopes at the end z = 1, where the gyroscopic spinners are connected. We
notice that these slopes, associated with the first derivatives of the displacements, are large in the lowest two modes,
while they are negligibly small in all the higher modes. Hence, the effective gyricity will affect mainly the lowest
two modes, as shown in the following sections.

4.2 Effect of the beam’s effective density

We set Ω∗ = 25 and consider different values of the beam’s effective density, i.e. μ = 0.1, 1, 10. We determine
the transient response of the system employing the analytical approach developed in Sect. 2. In the series we take
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(a) (b)

Fig. 4 Dependence of the displacement components a u and b v, computed at z = 1/2 and t = 1, on the number of terms M in the
series of (35). Here, Ω∗ = 25 and μ = 1. The values of the two displacement components for the different values of M are detailed in
the figures

M = 8 terms that ensure convergence of results up to the eight decimal digit. An illustrative example is shown in
Fig. 4, where the values of the displacement components u and v calculated at the middle point of the beam and at
a specific time are plotted for increasing values of M .

In Fig. 5 we show the trajectory of the middle point of the beam’s axis when the effective density is μ = 0.1
(part a), μ = 1 (part b) and μ = 10 (part c). It can be noticed that the transverse displacement of the beam changes
dramatically if the effective density is varied; in particular, the contributions of higher-order terms, which are
responsible for the generation of smaller oscillations, are more significant when the effective density is increased.
This implies that the effect of inertia cannot be neglected when the aim of the analysis is to predict accurately the
transient response of the system.

Figure 6a contains the lowest ten values of the spectral parameter βk , corresponding to the three values of
the beam’s effective density used in this section. The dots with a surrounding circle indicate the positions of
two values of the spectral parameter, which are too close to each other to be discriminated. The values of βk

(k = 1, . . . , 10) are detailed in Table 1. From the figure and the table, it is apparent that the lowest frequency
slightly increases with the effective density μ (see the lowest dashed line); consequently, the beam can be approx-
imated as massless only if the initial configuration of the beam induces a dynamic behaviour of the flexural
system resembling the lowest vibration mode. The second frequency for μ = 0.1 increases more rapidly as
the effective density is increased, as shown by the other dashed line, which indicates it can move through the
spectrum positioning itself between higher frequency modes. Conversely, the positions of the couples of two
close values of βk are not affected significantly by a change in μ. We note that unlike these pairs of values
of βk that are very close, the lowest two eigenfrequencies for μ = 0.1 appear to be isolated and easily dis-
tinguishable from other members of the spectrum. This is due to the separation induced by the effective gyric-
ity, which only affects the lowest two modes in a significant way, as discussed in Sect. 4.1. Additionally, as
mentioned in Sect. 2.3.2, when the spectral parameter is large, the system begins to behave like a beam with
clamped ends, having double eigenfrequencies. This behaviour is reflected in Fig. 6a in the high frequency
range.

Figure 6b shows the values of βk for k = 1, . . . , 10 and for μ = 0.1 (circles), μ = 1 (stars) and μ = 10
(squares). The insets present the mode shapes associated with the isolated values of βk (the modes corresponding
to the double values of βk are very similar to those illustrated in Fig. 3, and hence they are not reported here).
From the insets in Fig. 6b it can be noticed how the deformed shape of the beam changes as the effective density
is increased.
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(a) (b)

(c)

Fig. 5 Trajectory of the point of the beam’s axis located at z = 1/2, calculated for an inertial beam with a μ = 0.1, b μ = 1 and c
μ = 10. The time required to complete a closed loop is a t = 39.568, b t = 39.590 and c t = 39.799

4.3 Effect of the spinner’s effective gyricity

Here, we consider a beam with effective density μ = 1, connected to a gyro-hinge where the spinner is assigned
three different values of effective gyricity, namely Ω∗ = 1/2, 5, 50. As in Sect. 4.2, the proposed series solution
(see (35)) converges when the number of terms in the series is M = 8 for the parameters and initial conditions
considered.

Figure 7 illustrates how the middle point of the beam’s axis moves when the effective gyricity is Ω∗ = 1 (part
a), Ω∗ = 10 (part b) and Ω∗ = 100 (part c). For smaller effective gyricities, the central point of the beam’s axis
undergoes more complex trajectories. All trajectories shown are contained within an annulus whose inner and outer
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(a) (b)

Fig. 6 a Spectral parameters βk (k = 1, . . . , 10) for the three values of the beam’s effective density considered in Fig. 5. The horizontal
axis is in logarithmic scale. The dots inside circles represent two distinct values of βk , which are too close to be distinguished in the
diagram. The single dots indicate isolated frequencies, and they are linked by dashed lines which show their evolutions with μ. b
Spectral parameters βk versus k. Some illustrative mode shapes are also included

Table 1 Values of the spectral parameter βk (k = 1, . . . , 10) for three values of the beam’s effective density μ

Mode μ = 0.1 μ = 1 μ = 10

1 0.224224 0.398722 0.708849

2 2.819135 4.667555 4.694019

3 4.730739 4.734515 4.751178

4 4.731502 5.073915 7.788078

5 7.853388 7.854675 7.862315

6 7.853441 7.856682 8.983098

7 10.995688 10.996231 11.000173

8 10.995689 10.996557 11.017517

9 14.137200 14.137480 14.139707

10 14.137202 14.137570 14.143045

radii approach each other with increase of the effective gyricity. The trajectory becomes “more circular” as the
effective gyricity is increased, since for larger values of Ω∗ the oscillations are smaller. The patterns presented
in Fig. 7 could not be obtained if the simulations were performed in the frequency regime, where the trajectory
associated with each mode of vibration would be circular. In fact, as discussed in [24], typically circular trajectories
for the flexural system are associated with scenarios where individual eigenmodes can be initiated with a specific
choice of the initial conditions.

Figure 8a shows how βk (k = 1, . . . , 10) depend on the effective gyricity of the spinner. As in Fig. 6, the dots
surrounded by a circle represent two close frequencies. From Fig. 8, it can be seen that the first (second) frequency
for Ω∗ = 1 decreases (increases) as the effective gyricity is increased; the dashed lines are plotted to show these
trends more clearly, where the second frequency for Ω∗ = 1 can migrate upward within the spectrum with increase
of effective gyricity. On the other hand, the pairs of values of βk , which are practically indistinguishable in Fig. 8,
change very slightly with effective gyricity. This can also be noticed by looking at Table 2, containing the values of
βk (k = 1, . . . , 10). These results are in agreement with the observations made in Sect. 4.1, concerning the effect
of the effective gyricity on the modes of the system. In Fig. 8b, the values of the spectral parameter are given in an
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(a) (b)

(c)

Fig. 7 Trajectory of the point of the beam’s axis positioned at z = 1/2, obtained for different values of the spinner’s effective gyricity:
a Ω∗ = 1/2; b Ω∗ = 5; c Ω∗ = 50. All the trajectories are shown up to t = 80

increasing sequence of the integer k. Some mode shapes are also plotted in the figure to show how they are affected
by the effective gyricity. We emphasise that only the two lowest modes are influenced by Ω∗, because the slopes at
the right end of the beam for the higher modes are close to zero. Being the slopes associated with the first derivatives
of the displacements, from the gyro-hinge boundary conditions (8b) it is clear that the effect of effective gyricity
on the higher modes is negligible.
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(a) (b)

Fig. 8 a Spectral parameters βk (k = 1, . . . , 10) corresponding to the systems characterised by the three values of the effective gyricity
used in Fig. 7. The horizontal axis is plotted in logarithmic scale. The dots inside circles represent two distinct values of βk , which are
too close to be distinguished in the diagram. The single dots indicate isolated frequencies, and they are joined by dashed lines to show
how they evolve with Ω∗. b Spectral parameters βk versus k. Examples of some mode shapes are also shown in the figure

Table 2 Values of the spectral parameter βk (k = 1, . . . , 10) for three values of the spinner’s effective gyricity Ω∗

Mode Ω∗ = 1/2 Ω∗ = 5 Ω∗ = 50

1 1.325975 0.837156 0.282615

2 1.501142 2.377163 4.722453

3 4.739314 4.737789 4.732967

4 4.739737 4.742242 7.071019

5 7.855255 7.855117 7.854346

6 7.855289 7.855455 7.864058

7 10.996357 10.996331 10.996140

8 10.996364 10.996393 10.996891

9 14.137519 14.137511 14.137449

10 14.137520 14.137529 14.137638

5 Conclusions

In this paper, we have presented an approach for analysing the transient response of an inertial beam, clamped at one
end and attached to a gyro-hinge at the other end. The method developed here relies on an eigenfunction expansion
of the transverse displacements of the beam. This expansion embeds two infinite collections of eigenfunctions:
one governing the beam’s response in time and the other providing information about the spatial variation in the
beam’s profile. The individual elements of these collections are attributed to different harmonics of the system and
the gyro-hinge induces a coupling between the functions associated with each harmonic. Due to the nature of the
orthogonality conditions for the spatial eigenfunctions and the gyricity possessed by the spinner, the coefficients
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of the expansions of the transverse displacements of the inertial beam are determined as solutions of a truncated
algebraic system.

The eigenfunction expansion for the inertial beam has been shown to reduce to the case of the massless beam
if the beam’s inertia is assumed to be sufficiently small. An additional verification of the proposed expansion has
been implemented using an independent method based on finite element calculations.

A parametric study of the system has been carried out and the examples considered have revealed:

– The beam undergoes transverse displacements contained inside annuli whose thickness and size are sensitive
to the choice of the beam’s density and the spinner’s gyricity.

– The system possesses a spectrum composed of closely situated pairs of eigenfrequencies, in addition to isolated
eigenfrequencies that for small density and gyricity are situated in the low-frequency regime.

– The beam’s density has a significant role in promoting the influence of high-frequency harmonic motion of the
system. Increasing the density allows some isolated eigenfrequencies to migrate to higher frequencies within
the system’s spectrum.

– The gyricity can dramatically affect the response of the beam, producing a variety of complex motions if the
gyricity is sufficiently low. In contrast to the effect attributed to beam’s density, increasing the gyricity of the
spinner forces isolated eigenfrequencies to diverge from each other moving to either a higher frequency range
or a lower frequency regime.

The numerical example in the Supplementary Material has also illustrated that gyro-hinges can be introduced
into a structural frame to mitigate significant vibrations caused by an external load.

We believe that the results presented here will be important in the design of new resonator systems, with
applications in controlling vibration processes in structured and continuous systems having potential technological
benefits in civil engineering.
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Appendix A: Derivation of the governing equations of the functions composing the eigenfunction expansions

Here, we show how to determine the governing equations of the functions G(k)
j (z) and F (k)

j (t), j = 1, 2 and k ≥ 1.
First, we introduce the transverse displacements in the form:

u(z, t) = G1(z, ω)F1(t, ω) , v(z, t) = G2(z, ω)F2(t, ω) , (A.1)

where ω represents the radian frequency.
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Governing equations for Fj and G j , j = 1, 2. By direct substitution of the above into (6), we immediately
obtain via standard arguments that

1

μ

G ′′′′
j (z, ω)

G j (z, ω)
= − F̈j (t, ω)

Fj (t, ω)
= ω2 = Const (A.2)

or, equivalently,

G ′′′′
j (z, ω) − β(ω)4G j (z, ω) = 0 , F̈j (t, ω) + ω2Fj (t, ω) = 0 , (A.3)

with β(ω) = (μω2)1/4 being the spectral parameter.
Boundary conditions for G j and the determination of Fj , j = 1, 2. In a similar way, using (7) and (8a) one

can determine a subset of the boundary conditions for G j , j = 1, 2, as

G j (0, ω) = G ′
j (0, ω) = 0 , G j (1, ω) = 0 , for j = 1, 2 . (A.4)

It remains to obtain the conditions representing the spinner’s effect through the gyro-hinge, which couples both G j ,
j = 1, 2, in addition to the functions Fj , j = 1, 2. From substituting (A.1) into the boundary conditions (8b) we
obtain

F1(t, ω)G ′′
1(1, ω) + F̈1(t, ω)G ′

1(1, ω) + Ω∗ Ḟ2(t, ω)G ′
2(1, ω) = 0 ,

F2(t, ω)G ′′
2(1, ω) + F̈2(t, ω)G ′

2(1, ω) − Ω∗ Ḟ1(t, ω)G ′
1(1, ω) = 0 . (A.5)

Using (A.3), (A.5) also takes the matrix form:

(
Ḟ1(t, ω)

Ḟ2(t, ω)

)
=

(
0 ξ(ω)

ζ(ω) 0

)(
F1(t, ω)

F2(t, ω)

)
, (A.6)

with

ξ(ω) = G ′′
2(1, ω) − ω2G ′

2(1, ω)

Ω∗G ′
1(1, ω)

, (A.7)

ζ(ω) = −G ′′
1(1, ω) − ω2G ′

1(1, ω)

Ω∗G ′
2(1, ω)

. (A.8)

Next, we identify the forms of ξ(ω) and ζ(ω) that allow us to fully prescribe the problems for G j , j = 1, 2. Based
on (A.6), we introduce the time-dependent functions in the form

(
F1(t, ω)

F2(t, ω)

)
=

(
c1

c2

)
eλ(ω)t , (A.9)

which upon substitution into (A.6) produces the homogenous system

(−λ(ω) ξ(ω)

ζ(ω) −λ(ω)

) (
c1

c2

)
=

(
0
0

)
. (A.10)

Seeking a non-trivial solution to the above system yields

(λ(ω))2 − ξ(ω)ζ(ω) = 0 . (A.11)
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Note that by combining (A.3) and (A.6), we can also write

F̈1(t, ω) = ξ(ω)Ḟ2(t, ω) = ξ(ω)ζ(ω)F1(t, ω) = −ω2F1(t, ω) , (A.12)

which implies that

ξ(ω)ζ(ω) = −ω2 . (A.13)

Thus, it follows from (A.11) and (A.13) that

λ(ω) = ±iω . (A.14)

Using (A.14) in the homogeneous system (A.10), we have that if λ = iω, then

− iωc1 + ξ(ω)c2 = 0, (A.15)

ζ(ω)c1 − iωc2 = 0, (A.16)

whereas if λ = −iω, then

iωc1 + ξ(ω)c2 = 0, (A.17)

ζ(ω)c1 + iωc2 = 0. (A.18)

Here, (A.15) and (A.16) coincide if ξ(ω) and ζ(ω) both coincide with either iω or −iω. The same is also true for
(A.17) and (A.18). Hence, we can choose

ξ(ω) = ζ(ω) = iω . (A.19)

With regard to the case when the above right-hand side has the opposite sign, we note that this yields the same
solution (22) (see also the remark below).

Now (A.15), (A.16) and (A.19) imply that c1 = c2 if λ = iω, whereas (A.17), (A.18) and (A.19) show that
c1 = −c2 if λ = −iω. Thus, according to (A.9) and (A.14), the time-dependent functions take the form

(
F1(t, ω)

F2(t, ω)

)
= d1

(
1
1

)
eiωt + d2

(
1

−1

)
e−iωt . (A.20)

From (A.7) and (A.8), we also derive the conditions

G ′′
2(1, ω) − ω2G ′

2(1, ω) − iωΩ∗G ′
1(1, ω) = 0, (A.21)

G ′′
1(1, ω) − ω2G ′

1(1, ω) + iωΩ∗G ′
2(1, ω) = 0 . (A.22)

The problem satisfied by G(k)
j . Therefore, we have identified the complete set of conditions, found in (A.3),

(A.4), (A.21) and (A.22), enabling us to determine the functions G j , j = 1, 2. The solutions of the associated
homogeneous problem can exist when the radian frequency ω = ωk , where ωk (k ≥ 1) are the roots of (20) and form a
monotonically increasing sequence. As a result, we can define the collection of eigenfunctions G(k)

j (z) = G j (z, ωk)

for k ≥ 1 and j = 1, 2, that we have shown satisfy

(G(k)
j )′′′′(z) − β4

k G
(k)
j (z) = 0 , j = 1, 2 , 0 < z < 1, (A.23)

together with the clamping conditions at the beam’s base

G(k)
j (0) = (G(k)

j )′(0) = 0 , j = 1, 2, (A.24)
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and the constraints representing influence of the gyro-hinge at the other end, given by

G(k)
j (1) = 0 j = 1, 2, (A.25)

and

(G(k)
1 )′′(1) − ω2

k (G
(k)
1 )′(1) + iωkΩ

∗(G(k)
2 )′(1) = 0,

(G(k)
2 )′′(1) − ω2

k (G
(k)
2 )′(1) − iωkΩ

∗(G(k)
1 )′(1) = 0. (A.26)

The problem for F (k)
j . Additionally, if we define F (k)

j (t) = Fj (t, ωk), from (A.3), (A.6) and (A.20) we have that
these time-dependent functions satisfy

F̈ (k)
j (t) + ω2

k F
(k)
j (t) = 0. (A.27)

They are coupled via the constraint

(
Ḟ (k)

1 (t)

Ḟ (k)
2 (t)

)
=

(
0 iωk

iωk 0

) (
F (k)

1 (t)

F (k)
2 (t)

)
, (A.28)

and take the form (A.20).
Finally, due to the linearity of the considered problem, we construct the general solutions for the transverse

displacements as in (10).

Remark With regard to the choice taken in (A.19), we note that if the right-hand side is replaced with −iω then the
associated results can be obtained by replacing F2(t, ω) and G2(t, ω) by −F2(t, ω) and −G2(t, ω), respectively,
in the above procedure, which does not influence the form of the solution in (A.1).

Appendix B: Derivation of orthogonality conditions

Owing to (A.23)–(A.26), the vector G(k)(z) defined in (14) is governed by the differential equation

(
G(k)(z)

)′′′′ − β4
kG

(k)(z) = 0 (B.1)

and is subjected to the boundary conditions

G(k)(0) = 0 , (B.2a)(
G(k)(z)

)′∣∣∣∣
z=0

= 0 , (B.2b)

G(k)(1) = 0 , (B.2c)[(
G(k)(z)

)′′ − ω2
k

(
G(k)(z)

)′ + iωkΩ
∗R

(
G(k)(z)

)′]∣∣∣∣
z=1

= 0 , (B.2d)

where R is defined in (16).
The vector G̃(k)(z), also found in (14), is determined from the same governing equations and boundary conditions,

provided that in (B.2d) the matrix R of (16) is replaced with −R.
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(a)

(b)

Fig. 9 Comparison between the analytical results based on (35) (black solid lines) and the numerical findings (grey dashed lines),
showing the time-histories of the transverse displacements a in the x-direction and b in the y-direction, calculated at z = 1/2. The
magnifications in the insets clearly show that there are two distinct curves, which are very close to each other

Next, consider the following expression:

(
β4
j − β4

m

) ∫ 1

0
G( j)(z) · G(m)(z)dz

=
∫ 1

0

[(
G( j)(z)

)′′′′ · G(m)(z) − G( j)(z) ·
(
G(m)(z)

)′′′′]
dz , (B.3)

where j �= m and (B.1) was used. By successive application of integration by parts twice we obtain

(
β4
j − β4

m

) ∫ 1

0
G( j)(z) · G(m)(z)dz
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(a) (b)

Fig. 10 Differences between the peaks of the curves determined numerically from the finite element model in Comsol Multiphysics and
those obtained from the analytical approach developed in this paper, relative to the displacement in the a x- and b y-direction, plotted
by dots at the average times (tnum

peaks + tanal
peaks)/2 where the peaks are detected

=
[(

G( j)(z)
)′′′ · G(m)(z) − G( j)(z) ·

(
G(m)(z)

)′′′]1

0

−
[(

G( j)(z)
)′′ ·

(
G(m)(z)

)′ −
(
G( j)(z)

)′ ·
(
G(m)(z)

)′′]1

0
. (B.4)

Making use of the boundary conditions (B.2), we find

(
β4
j − β4

m

) ∫ 1

0
G( j)(z) · G(m)(z)dz

= −
(
ω2

j − ω2
m

) (
G( j)(z)

)′∣∣∣∣
z=1

·
(
G(m)(z)

)′∣∣∣∣
z=1

− iΩ∗ (
ω j + ωm

) (
G( j)(z)

)′∣∣∣∣
z=1

· R
(
G(m)(z)

)′∣∣∣∣
z=1

. (B.5)

Recalling that β4
k = μω2

k , we arrive at (15). In a similar way we can also derive (17).

Appendix C: Independent numerical simulation

Here, we validate the analytical method based on the series representations by comparing the analytical results with
the outcomes of a finite element simulation carried out in Comsol Multiphysics.

In this example, we assume that the beam has effective mass μ = 1 and the gyroscopic spinner has effective
gyricity Ω∗ = 25. The initial conditions are given by

u(z, 0) = 16ū0z
2 (z − 1)2 , v(z, 0) = 0 , (C.1a)

u̇(z, 0) = 16 ¯̇u0z
2 (z − 1)2 , v̇(z, 0) = 0 , (C.1b)

where ū0 = 0.1 and ¯̇u0 = −2. We point out that the initial displacement and velocity vectors are parallel to the
x-axis.

The analytical approach provides the following values for the spectral parameter βk corresponding to the first
ten modes (see Sect. 2.3.2): β1 = 0.398722, β2 = 4.667555, β3 = 4.734515, β4 = 5.073915, β5 = 7.854675,
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β6 = 7.856682, β7 = 10.996231, β8 = 10.996557, β9 = 14.137480 and β10 = 14.137570. We highlight that with
M = 8 modes the convergence of solutions is attained.

The model in Comsol Multiphysics consists of an Euler–Bernoulli beam with unit length and flexural stiffness,
and having zero displacements and rotations at the base where z = 0 and the gyro-hinge boundary conditions (8)
at z = 1. The beam is divided into 1000 finite elements and the normalised time step is 10−3.

Figure 9 shows the transverse displacements u (part a) and v (part b), determined at the middle point of the
beam’s axis and calculated in the normalised time interval 0 ≤ t ≤ 2. The solid black curves are obtained with the
analytical approach presented in Sect. 2, while the dashed grey curves are produced by the numerical code. It is
apparent that the agreement between the analytical and numerical methods is very good. This confirms the validity
of the analytical approach developed in this paper.

From Fig. 9 it is apparent that the curves obtained numerically and analytically exhibit a slight time shift that
increases with time due to the numerical scheme employed in the finite element model. Consequently, the local
maxima and minima of the curves are attained at different times. In Fig. 10a (Fig. 10b) we show the differences
between the peaks relative to the u (v) displacement component, denoted as unum

peaks −uanal
peaks (vnum

peaks −vanal
peaks), plotted

at the average times (tnum
peaks + tanal

peaks)/2. It is clear that these differences become larger as the computational time
increases.
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