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Abstract

We investigate localised bulging or necking in an incompressible, hyperelastic cylindrical tube

under axial stretching and surface tension. Three cases are considered in which the tube is

subjected to different constraints. In case 1 the inner and outer surfaces are traction-free

and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively)

are fixed to prevent radial displacement and surface tension. However, each free surface in

these latter two cases is still under surface tension. We first state the analytical bifurcation

conditions for localisation and then validate them numerically whilst determining whether

localisation is preferred over bifurcation into periodic modes. It is shown that bifurcation

into a localised solution is unattainable in case 1 but possible and favourable in cases 2 and

3. In contrast, in case 1 any bifurcation must necessarily take the form of a periodic mode

with a non-zero wave number. Our results are validated using Finite Element Method (FEM)

simulations.

Keywords: Soft tube, Non-linear elasticity, Surface tension, Bifurcation, Localisation.

1. Introduction

In fluid mechanics, surface tension is the architect of many beautiful phenomena such

as water walking insects and the bundling of wetted lamellae (Bico et al., 2004; Bush and

Hu, 2006). Perhaps the most famous is the Rayleigh-Plateau instability (Plateau, 1873;

Rayleigh, 1892), which is manifested in the destabilisation of uniform cylindrical columns of

viscous fluid into a succession of droplets. With the surface of the fluid acting essentially as

a stretched membrane due to intermolecular forces, the desire to reduce the surface area to

volume ratio causes a transformation into spherical droplets, thus lowering the total energy

in tandem (De Gennes et al., 2013).

In recent years, interest in surface tension has transcended into the field of solid mechanics

(Liu and Feng, 2012). Whilst surface tension is negligible in the classic continuum framework

∗Corresponding author
Email address: y.fu@keele.ac.uk (Yibin Fu)

Preprint submitted to Elsevier March 31, 2021



above the elastocapillary length scale γ/µ (Style et al., 2017; Bico et al., 2018) (where γ is

the surface tension and µ the shear modulus), it dominates bulk elastic forces in microscale

soft materials such as gels and biological tissue. Thus, the development of the field of elasto-

capillarity has become a necessity in understanding surface instabilities in swollen hydrogels

(Tanaka et al., 1992) and soft substrates under mechanical constraints (Mora et al., 2011;

Chen et al., 2012; Ciarletta, 2014), for example. Moreover, surface tension has been shown

recently to influence genetic diseases such as lissencephaly, which is characterised by a reduc-

tion of sulci in brain organoids (Dobyns et al., 1993; Engstrom et al., 2018). By modelling

said organoids as a soft solid cylinder encapsulated by a growing elastic layer, Riccobelli

and Bevilacqua (2020) showed that reduction in tissue stiffness (and thus increased elasto-

capillary effects) stabilised the tube against circumferential buckling modes, thus offering a

theoretical explanation for lissencephaly.

Peristaltic instability in soft cylinders, commonly referred to as “beading” or “pearling”,

has been implicated in axonal degeneration due to cytoskeletal trauma (Kilinc et al., 2009;

Goriely et al., 2015) and neurodegenerative disorders such as Alzheimer’s and Parkinson’s

disease (Datar et al., 2019). Thus, a host of studies have attempted to resolve the theoretical

perplexities surrounding this phenomenon. In the case of a solid cylinder, contributions come

from Barriere et al. (1996), Boudaoud and Chäıeb (2003), Mora et al. (2010), Ciarletta and

Ben Amar (2012), Taffetani and Ciarletta (2015), and Xuan and Biggins (2016), all of whom

conclude that beading is a long wavelength instability. Only very recently has the explicit

nature of this localised solution become apparent. Both Xuan and Biggins (2017) and Giudici

and Biggins (2020) showed that beading is in fact a phase separation phenomenon, whilst Fu

et al. (2021) focussed on the characterisation of localised solutions that can bifurcate from

the uniform state and demonstrated that a variety of localised bifurcation behaviours such

as necking and bulging can exist depending on the loading path.

Localised bulging has been extensively studied in hollow tubes under internal inflation

and without surface tension; see, for example, Chater and Hutchinson (1984), Kyriakides

and Chang (1991), Fu et al. (2008), Alhayani et al. (2014), Fu et al. (2016) and the refer-

ences therein. However, when inflation is forgone and surface tension effects are introduced,

theoretical works are far less concrete. Henann and Bertoldi (2014) conducted FEM simu-

lations for bifurcation from finitely deformed tubes which are externally or internally fixed,

whilst Xuan and Biggins (2016) proposed analytically that the bifurcation of a cylindrical

cavity in an infinite incompressible solid is again associated with infinite wavelength. Most

recently, Wang (2020) examined two of the three cases alluded to in the Abstract. Surpris-

ingly, an analytical solution was obtained for the governing equation. This was contrary to

expectations given the investigations of Haughton and Ogden (1979) into tubes under axial

tension and internal pressure, whose boundary value problem could only be solved numeri-
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cally. There is clearly a need to resolve this discrepancy and to deduce absolutely whether

localised bifurcation can occur in cylindrical tubes under different constraints. It turns out

that the predictions based on our current analysis are quite different from those given by

Wang (2020). For instance, for case 1 Wang (2020) predicted that the critical wavelength is

also infinite, but our analysis shows that such a mode is associated with negative values of

surface tension and therefore cannot physically occur.

The remainder of this paper is divided into five sections as follows. After formulating the

problem in section 2, we present in section 3 analytical conditions for localised bifurcation

by drawing upon known results for the analogous problem of localised bulging of inflated

hyperelastic tubes. In section 4 we firstly elaborate on the need for further analysis of the

problem at hand. We then conduct a linear bifurcation analysis for each of the three cases

under consideration, and produce a numerical relationship between the bifurcation parameter

and the wave number. Based on this relationship we deduce for each case whether a localised

solution can bifurcate from the finitely deformed state and, where it can, we determine

conditions for localised bifurcation numerically via a determinant shooting method. In section

5 we conduct FEM simulations to validate our theoretical predictions. Finally, concluding

remarks are offered in section 6.

2. Problem formulation

Consider a hyperelastic cylindrical tube whose reference configuration B0 is defined in

terms of the cylindrical polar coordinates (R, Θ, Z) such that

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −L ≤ Z ≤ L, (2.1)

where A and B are respectively the undeformed inner and outer radii and the cylinder has an

axial half-length L. The position vectors of a representative material particle in the reference

configuration B0 and the finitely deformed configuration Be are denoted X and x respectively,

such that

X = RER + Z EZ , x = r er + z ez, (2.2)

where (r, θ, z) are the coordinates of x and (ER,EΘ,EZ) and (er, eθ, ez) are the orthonormal

bases of B0 and Be, respectively. For the sake of generality, we assume for the meantime that

both the inner and outer surfaces are unconstrained, and thus we denote by a and b the inner

and outer radii in Be. A general axi-symmetric deformation of the tube can be characterised

by the following variable transformations

r = r (R,Z) , θ = Θ, z = z (R,Z) . (2.3)
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The deformation gradient F is defined by dx = FdX and takes the following form:

F =
∂r

∂R
er ⊗ ER +

∂r

∂Z
er ⊗ EZ +

r

R
eθ ⊗ Eθ +

∂z

∂R
ez ⊗ ER +

∂z

∂Z
ez ⊗ EZ . (2.4)

The cylindrical tube is assumed to be incompressible, and so the following constraint of

isochorism must be satisfied

detF = 1. (2.5)

For the sake of simplicity, we assume that the constitutive behaviour of the tube is governed

by a strain energy function of the form

W = W (IB) , (2.6)

where IB is the first principal invariant of the left Cauchy-Green strain tensor B = FF>,

i.e. IB = trB and the superscript > denotes transposition. This form of the strain energy

function includes neo-Hookean and Gent material models as special cases, and there is some

evidence that it is capable of giving results that are at least qualitatively correct for the

kind of deformation under consideration (Wineman, 2005; Zhou et al., 2018). To simplify

presentation, we shall only present our analytical results for the case where the tube material

is neo-Hookean. However, our actual derivations are carried out with the aid of Mathematica

(Wolfram Research Inc., 2019) for the general strain energy (2.6) allowing for some results to

be presented for the Gent material model when comparison is made with FEM simulations.

The neo-Hookean and Gent material models are given respectively as follows:

W (IB) =
1

2
µ (IB − 3) , W (IB) = −1

2
Jm µ log

(
1− IB − 3

Jm

)
, (2.7)

where µ is the shear modulus and Jm is the extensibility limit. In the limit Jm →∞, the neo-

Hookean strain energy function (2.7)1 is recovered from the Gent model. For the remainder

of this paper we scale all lengths by B and stresses by µ. Therefore, we may set B = 1 and

µ = 1 without loss of generality.

2.1. Stream-function formulation

As proposed by Ciarletta (2011), we may consider a reformulation of the problem in terms

of the mixed co-ordinate stream function φ = φ (R, z) which enforces the incompressibility

constraint (2.5) exactly through the relations

r2 = 2φ,z, Z =
1

R
φ,R, (2.8)
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where a comma denotes partial differentiation with respect to the implied coordinate. Now,

(2.8) may be applied in conjunction with the chain rule to re-express F in terms of φ as such

F =

[
φ,Rz + φ,zz

φ,Rz

(
φ,R
R
− φ,RR

)]
√

2φ,z
er ⊗ ER +

Rφ,zz√
2φ,z φ,Rz

er ⊗ EZ +

√
2φ,z

R
eθ ⊗ EΘ

+

[
φ,R
R
− φ,RR

]
φ,Rz

ez ⊗ ER +
R

φ,Rz
ez ⊗ EZ . (2.9)

Thus, IB is determined to take the form

IB =

[
φ,Rz − Rφ,zz

φ,Rz

(
φ,RR

R
− φ,R

R2

)]2

2φ,z
+

1

2

R2 φ2
,zz

φ,z φ2
Rz

+
2φ,z
R2

+
R2

φ,Rz
+

R2

φ2
,Rz

[
φ,R
R2
− φ,RR

R

]2

.

(2.10)

A variational approach is considered in deriving the equilibrium equation and the associ-

ated boundary conditions. We introduce the total potential energy E which comprises of the

bulk elastic energy Eb and the surface energies EAs and EBs on the inner and outer boundaries

such that

E = Eb + EAs + EBs , (2.11)

where Eb, EAs and EBs are given in terms of φ and its partial derivatives as follows

Eb = 2π

∫ `

−`

∫ B

A

φ,RzW (IB) dR dz, EA,Bs = 2π γ

∫ `

−`

√
2φ,z + φ2

,zz

∣∣∣
R=A,B

dz. (2.12)

In the above expression, γ denote the surface tension scaled by µB and ` the axial half-

length in Be. Note that in (2.12)1 IB is given by (2.10) and use has been made of the relation

dZ = ∂Z
∂z
dz = 1

R
φ,Rz dz. The equilibrium equation corresponds to the vanishing of the first

variation of (2.12)1. Equivalently, we must solve the Euler-Lagrange equation(
∂Lb
∂φ,iA

)
,iA

−
(
∂Lb
∂φ,j

)
,j

= 0, (2.13)

where the standard summation convention is applied, with j = R or z and iA = RR, Rz or

zz, and the bulk Lagrangian Lb is defined by

Lb = φ,RzW (IB). (2.14)

In case 1, the curved surfaces R = A and R = B are traction-free and under surface tension,

and these boundary conditions take the respective forms[
∂Lb
∂φ,R

−
(
∂Lb
∂φ,RR

)
,R

−
(
∂Lb
∂φ,Rz

)
,z

]
R=A

−
(
∂LAs
∂φ,zz

)
,zz

+

(
∂LAs
∂φ,z

)
,z

= 0, (2.15)
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[
∂Lb
∂φ,R

−
(
∂Lb
∂φ,RR

)
,R

−
(
∂Lb
∂φ,Rz

)
,z

]
R=B

+

(
∂LBs
∂φ,zz

)
,zz

−
(
∂LBs
∂φ,z

)
,z

= 0, (2.16)

where the inner and outer surface Lagrangian’s LAs and LBs are defined by

LA,Bs = γ
√

2φ,z + φ2
,zz

∣∣∣
R=A,B

. (2.17)

It is noted that the opposite signs of the surface Lagrangian terms in (2.15) and (2.16) signify

the opposing mean curvatures of the inner and outer surfaces. In cases 2 and 3, the inner

and outer surfaces (respectively) are constrained to prevent radial displacement, with the

other curved boundary remaining traction-free. In these circumstances, we require that the

incremental radial displacement on the fixed surface vanishes. For all three cases, we have

zero shear forces on R = A and R = B, invoking two further boundary conditions which are

expressed as follows

∂Lb
∂φ,RR

∣∣∣∣
R=A,B

= 0. (2.18)

3. The primary deformation and bifurcation conditions for localisation

We first characterize the following primary axi-symmetric deformation, a sub-class of (2.3),

that is theoretically possible for all values of surface tension γ and principal axial stretches

λ = `/L

r = r(R), θ = Θ, z = λZ. (3.1)

The associated deformation gradient is given by

F =
∂r

∂R
er ⊗ ER +

r

R
eθ ⊗ EΘ + λ ez ⊗ EZ . (3.2)

Upon substituting (3.2) into (2.5) and integrating the resulting equation, we obtain

r(R) =
√
λ−1 (R2 − A2) + a2. (3.3)

Through further integration of (2.8), we find that the corresponding stream function, denoted

by φ0, takes the form

φ0 =
R2z

2λ
+

1

2

(
a2 − A2

λ

)
z. (3.4)

The outer deformed radius is defined from (3.3) as b =
√
λ−1 (B2 − A2) + a2. We consider

the three cases alluded to in the Abstract separately.
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Case 1: Traction-free curved boundaries under surface tension

We first consider the case whereby the inner and outer surfaces of the tube are traction-

free and under surface tension. Under these conditions, the inner deformed radius a is an

unknown quantity. We assume that the tube is subject to the combined action of surface

tension and a resultant axial force N , which modifies the total potential energy (2.11) as

follows

E = Eb + EAs + EBs − (λ− 1)N . (3.5)

For the primary deformation, E can be evaluated by substituting (3.4) into (2.12). To satisfy

equilibrium, we require that ∂E/∂a = 0 and ∂E/∂λ = 0. Corresponding to the neo-Hookean

material model, the former yields an equation for γ = γ (λ, a) as follows

γ =
(a2 λ− A2)(a− b)

2 a b λ2
+

a b

λ (a+ b)
log

(
Ab

a

)
, (3.6)

whereas the latter gives the following expression for N = N (λ, a)

N =
π

2λ2

[
4 a γ +

a2

b2

(
A2 − 2

) (
λ3 − 1

)
+

2 γ λ

b

(
a2 + b2

)
+ 2A2 log

( a

A b

)]
, (3.7)

with γ eliminated through substitution of (3.6). Alternatively, (3.6) can be derived with the

aid of the Cauchy stress tensor σ, defined through the constitutive equation σ = 2W ′ (IB) B−
p I, together with the boundary conditions σrr|r=a = γ/a and σrr|r=b = −γ/b. where p is the

Lagrangian multiplier associated with the constraint of incompressibility and I is the identity

tensor. N is then equal to the resultant of σzz plus 2 π γ (a+ b).

Mathematically, the above two relations γ = γ (λ, a) andN = N (λ, a) cannot be inverted

to express λ and a uniquely in terms of γ and N when

J (γ, N ) ≡ ∂γ

∂ a

∂N
∂λ
− ∂γ

∂λ

∂N
∂ a

= 0, (3.8)

where J (γ, N ) is the Jacobian of the vector function (γ, N ). Based on the analysis of Fu

et al. (2016), we may conjecture that this is the condition for localisation. It will be verified in

the next section that this is the condition for a bifurcation mode with zero axial wave number

to exist. Alternatively, this is the condition for zero to become a triple eigenvalue of a certain

spectral eigenvalue problem governing the incremental perturbations (Kirchgässner, 1982;

Iooss and Adelmeyer, 1999). When a or b is fixed (cases 2 and 3 to be discussed shortly), the

above bifurcation condition reduces to ∂N /∂λ = 0 for fixed surface tension or ∂γ/∂λ = 0

for fixed axial force.

Fig. 1 shows contour plots in the (λ, γcr) plane of the bifurcation condition (3.8) for four

typical values of A. It is seen that the critical surface tension γcr is always negative, which

suggests that localisation is not possible in this case. This will be confirmed in the next

section where we also show that bifurcation into periodic modes are possible provided N is

negative and has sufficient magnitude.
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Figure 1: Solutions of the bifurcation condition (3.8) for localisation in the (λ, γcr) plane. The vertical

order of the curves and the parameter values in the legend are equivalent.

Case 2: Radially fixed inner boundary free of surface tension

In case 2, prevention of radial displacement of the inner surface requires we fix a = A, and

the absence of surface tension on this boundary means that EAs = 0. Thus, φ0 and b become

φ0 =
R2 z

2λ
+
A2

2

(
1− 1

λ

)
z, b =

√
λ−1(1− A2) + A2. (3.9)

In this case, the single parameter λ is sufficient to determine the deformation completely.

Therefore, equilibrium requires only that ∂E/∂λ = 0, from which we obtain the following

expression for N = N (λ) where γ is fixed

N =
1

π

[
(1− λ)

2λ2

(
A4

b2
+ (2λ+ 1)

(
A2 − λ

)
− λ− 2

)
+
γ

b

(
A2 + b2

)
− A2

λ2
log b

]
. (3.10)

Alternatively, we may fix N and (3.10) can instead be solved for γ = γ (λ). In Fig. 2 we

have shown the variation of N against λ for three fixed values of γ, and γ against λ for three

fixed values of N . For the case A = 0.5 considered, N has a maximum and a minimum

if γ > γmin = 8.46454, and γ has a maximum and a minimum if N > Nmin = 33.2479.

At the respective thresholds γ = γmin and N = Nmin, N and γ have an inflection point at

λmin = 1.14282.

As is the case for a solid cylinder (Fu et al., 2021), the condition for localised bifurcation

corresponds to N (resp. γ) as a function of λ attaining its extrema with γ (resp. N ) fixed.

For instance, we may deduce from ∂N /∂λ = 0 the following expression for the critical surface

tension γcr at which a localised solution occurs

γcr =
1

b λ2 (A2 − 1)

[
4 (A3(λ− 1) + A)

2
log b

A2 − 1
− A4 ξ1(λ)− A2 ξ2(λ)− 2

(
λ3 + 2

)]
, (3.11)
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Figure 2: (a) The variation of N with respect to λ for a tube of inner radius A = 0.5 under several fixed

surface tensions. As γ is increased from zero, N is initially a monotonically increasing function of λ until γ

reaches γmin, after which N has a maximum and a minimum. (b) The variation of γ with respect to λ for

various fixed N where A = 0.5. Only when N becomes larger than Nmin will the variation become non-

monotonic and localized bifurcation become possible. The vertical order of curves and legend parameter

values are equivalent.

where ξ1(λ) = 2λ5−4λ4 +2λ3 +2λ2−3λ+1 and ξ2(λ) = 4λ4−4λ3 +7λ−5. This expression

has a minimum at λ = λmin, where λmin depends on the tube’s thickness. As a form of

validation, we take the limit of (3.11) as A→ 0 and obtain

γcr =
2 (2 + λ3)

λ3/2
. (3.12)

This is the well established condition for localised bifurcation in solid cylinders under axial

stretching and surface tension given originally by Taffetani and Ciarletta (2015).

Case 3: Radially fixed outer boundary free of surface tension

In case 3, the radial fixing of the outer boundary enforces the condition b = B, whilst the

associated absence of surface tension requires that we set EBs = 0. With the aid of (3.3), the

former condition is found to invoke the following expression for the finitely deformed inner

radius a

a =
√
λ−1 (A2 − 1) + 1. (3.13)

Then, it follows that the primary solution φ0 in this case is given by

φ0 =
R2z

2λ
+

1

2

(
1− 1

λ

)
z. (3.14)

Thus, as in case 2 previously, the primary deformation is determined solely by λ. From the

equilibrium equation ∂E/∂λ = 0, the following expression for N = N (λ) is obtained

N =
π

2λ2

[
2 γ λ2

a

(
1 + a2

)
+ (λ− 1)

(
1

a2
+ λ+ 1

)
− 2A2

(
λ3 − 1

)
+ 2 log

( a
A

)]
. (3.15)
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We have shown in Fig. 3 (a) the variation of N against λ for three fixed values of γ and

A = 0.55, but the variation of γ is not displayed for the sake of brevity. In this case the

threshold value of γ above which the variation of N is non-monotonic is γmin = 2.86616, and

the threshold value of N above which the variation of γ is non-monotonic is Nmin = 21.2744.

Then, as in case 2, the condition for localised bifurcation is that N (resp. γ) as a function

of λ attains its extrema where γ (resp. N ) is fixed. From ∂N /∂λ = 0, an expression for γcr

is deduced

γcr =
a

λ2 (A2 − 1)2

[(
2− 2A2

)
λ4 + λ+ λ2 − 4A2 λ− λ log

(
a4

A4

)
+

2 + λ− λ2

a4

]
. (3.16)

This bifurcation condition is plotted in Fig. 3 (b) for the representative case A = 0.55. It is

observed that γcr attains a minimum at λ = λmin = 0.84881. Similar behaviour is observed

in case 2 and also in the case of a solid cylinder. For the latter it is shown in Fu et al. (2021)

that this minimum marks the transition from localised necking to localised bulging.

γ = 3.5
γ = γmin
γ = 2

0.8 1.0 1.2 1.4 1.6 1.8 2.0
λ

10

15

20

25

30


λmin

(a)

0.7 0.8 0.9 1.0 1.1 λ2.8

3.0

3.2

3.4

3.6

3.8

γcr

(λmin, γmin)

(b)

Figure 3: (a) Variation of N with respect to λ for a tube of inner radius A = 0.55 under several fixed sur-

face tensions. Note that N is a monotonically increasing function of λ for γ < γmin and has a maximum

and a minimum for γ > γmin where γmin = 2.86616. The vertical order of the three curves and the leg-

end parameter values are equivalent. (b) A blow up of the bifurcation condition (3.16) about (λmin, γmin)

where λmin = 0.84881 and A = 0.55. Note that localised bifurcation cannot occur for γ < γmin.

4. Linear bifurcation analysis

In the previous section we have presented for the three cases under consideration necessary

conditions for localised bifurcation. Even if these are satisfied, we still need to ascertain

whether localisation occurs before bifurcation into periodic modes. To this end, we solve

in this section the eigenvalue problem governing infinitesimal perturbations of the primary

solution and determine the dependence of the critical load on the axial wave number.
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Consider a pertubation φ1 (R, z) of the finitely deformed state governed by (3.4) or equiva-

lent. On substituting the perturbed solution φ = φ0 +φ1(R, z) into the equilibrium equation

(2.13) and linearising in terms of φ1(R, z), we obtain

L [φ1 ] + a1(R)φ1,RRzz + a2(R)φ1,Rzz + a3(R)φ1,zz + a4(R)φ1,zzzz = 0, (4.1)

where the operator L and the variable coefficients are given by

L [φ ] = φ,RRRR −
2

R
φ,RRR +

3

R2
φ,RR −

3

R3
φ,R, a1(R) = λ2 +

R2

λη
,

a2(R) =
R (η − 2R2)

λ η2
− λ2

R
, a3(R) =

2

λ

(
R2

η2
− 1

R2

)
a4(R) =

λR2

η
,

(4.2)

with η ≡ η(R) = R2 − A2 + a2 λ. Equations (4.1) – (4.2) differ from equation (26) in

Wang (2020). Agreement can only be achieved if we make the generally invalid substitution

a→ A/
√
λ in (4.2), in which case the variable coefficients reduce to

a1(R) = λ−1 + λ2, a2(R) = −1 + λ3

λR
, a3(R) = 0, a4(R) = λ. (4.3)

The only exceptional case for which the above-mentioned substitution is valid is when the

primary deformation is homogeneous. This may only be achieved when the outer radius

tends to infinity or when λ = 1 in cases 2 and 3 discussed previously, and a consequence of

this is that incompressibility forces r = R/
√
λ.

To validate our equations (4.1) – (4.2), we further make the substitution φ1 = rf(r) eikz

and obtain a fourth-order differential equation for f(r). We have verified that this equation

is identical to the equation (53) of Haughton and Ogden (1979) when the latter is specialised

to a neo-Hookean material.

We look for a non-trivial solution of the form

φ1 = g (R) eikz, (4.4)

where k is the axial mode number and g is a scalar function of R. On substituting (4.4) into

(2.13), we obtain a fourth order ordinary differential equation (ODE) for g, which may be

re-written as the following system of first order ODEs;

dg

dR
= A(R) g, A =


0 1 0 0

0 0 1 0

0 0 0 1

a41 a42 a43 a44

 , (4.5)
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where g = [ g, g′, g′′, g′′′ ]> and the variable components of A are given as follows

a41(R) = k2

[
2

λ

(
R2

η2
− 1

R2

)
− k2λR2

η

]
, a42(R) = k2

[
R (η − 2R2)

λ η2
− λ2

R

]
+

3

R3
,

a43(R) = k2

[
λ2 +

R2

λη

]
− 3

R2
, a44(R) =

2

R
.

(4.6)

On substituting (4.4) into (2.15) – (2.17) and (2.18), we find that the boundary conditions

on R = A and R = B in case 1 may be expressed as the following matrix equations

B1(A, ξ) g = 0,

B2(B, ξ) g = 0,

where



B1(R, ξ) =

b11 −1/R 1 0

b+
21 b22 −1/R 1

 ,
B2(R, ξ) =

b11 −1/R 1 0

b−21 b22 −1/R 1

 ,
(4.7)

with

b11(R, ξ) =
k2R2

λ η
, b22(R, ξ) =

1

R2
− k2

λ η

[
2R2 + λ3 η

]
,

b±21(R, ξ) = k2R

[
2R4 − (A2 − a2λ)

2

λR2 η2
± γ

λ1/2η3/2

(
k2 η − λ

) ]
.

(4.8)

Note that ξ is a dummy variable introduced for presentational purposes to represent the load

parameter, for which there can be several choices. For cases 2 and 3, on substituting (4.4)

into (2.8)1, we deduce that satisfying zero incremental radial displacement on R = A and

B (respectively) requires we enforce the corresponding constraints g(A) = 0 and g(B) = 0

in place of traction-free conditions. Indeed, the matrices B1 and B2 can then be modified

accordingly. The linear system B1 (A, ξ) g = 0 has two independent solutions, say g
(1)
0 and

g
(2)
0 . For instance, in case 1 we have

g
(1)
0 =

[
1, 0, −b11, −b11/R− b+

21

]>
R=A

, g
(2)
0 =

[
0, 1, −1/R, 1/R2 − b22

]>
R=A

. (4.9)

We may then integrate forward (4.5) from R = A to R = B, using (4.9) or equivalent as

initial data for g at R = A. Two linearly independent solutions for g, say g1 and g2 are

obtained, and thus a general solution for g takes the form

g = c1 g1 + c2 g2 = M (R, ξ) c, (4.10)

where c = [ c1, c2 ]> is an arbitrary constant vector and M (R, ξ) = [ g1, g2 ]. By its construc-

tion, (4.10) satisfies the boundary conditions on R = A, and it remains only to satisfy the

12



corresponding conditions on R = B. On substituting (4.10) into B2 (B, ξ) g = 0, we obtain

B2 M (B, ξ) c = 0. Then, since c is arbitrary, the existence of a non-trivial solution to the

eigenvalue problem is conditional on satisfying

det
[
B2 M (B, ξ)

]
= 0. (4.11)

Thus, (4.11) represents a numerical bifurcation condition which must be satisfied by γ, λ and

k. The bifurcation points are obtained by iterating on the load parameter ξ until (4.11) is

satisfied. We may take either γ or λ as the load parameter.

The primary aim is to produce a numerical relationship between the load parameter ξ

and the axial mode number k. For a localised inhomogeneous solution to exist, we expect

ξ to take a physically plausible value at k = 0 (Kirchgässner, 1982; Iooss and Adelmeyer,

1999). In such a case, we can then determine whether localisation is preferred by the tube

over periodic modes with k 6= 0. For instance, say we fix λ and increase γ monotonically

from zero. Then, for localisation to be preferred we would expect curves in the (k, γ) plane

to have a minimum at k = 0, and this is indeed the case for a solid cylinder. A minimum at

a non zero value of k indicates a preference towards periodic modes instead. We denote by

kcr and γcr the values of k and γ at this minimum.

Case 1: Traction-free curved boundaries under surface tension

We begin by taking γ as the load parameter, and plot the surface tension γ against the

mode number k for several fixed λ in Fig. 4 (a). It is seen that the dependence of γ on

λ = 0.7
λ = 0.8
λ = 1
λ = 1.2-0.3

-0.2

-0.1

0.0

0.1

0.2
2 4 6 8 10

γ

k

(a)

γ = 0
γ = 0.5
γ = 1

2 4 6 8 10
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

(b)

Figure 4: (a) The variation of γ with respect to k for A = 0.8 and several fixed λ. (b) The variation of

λ with respect to k for A = 0.5 and several fixed γ. When γ = 0 the preferred mode is k = 3.605 occur-

ring at the critical stretch λcr = 0.645 (indicated by the black dot), which agrees with the result given by

Wilkes (1955). The vertical order of curves (for k > 2, say, for (a)) and the legend parameter values are

equivalent.

k is very different from that in the case of solid cylinder. Fig. 4 (a) shows that no form
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of bifurcation can take place when the tube is stretched since γ < 0 consistently. However,

for sufficiently small fixed λ < 1, whilst localised modes are still associated with negative

surface tension values, bifurcation into non-zero periodic modes can be triggered at γ = 0.

To investigate this further, we consider the alternative loading condition whereby γ is fixed

and the tube is subjected to increasing compression. As shown in Fig. 4 (b), the tube gives

preference towards periodic non-zero bifurcation modes rather than localised solutions in

such a case. For larger fixed γ, the bifurcation curve descends, meaning that surface tension

has a stabilising effect in the sense that it drastically decreases the critical stretch at which

bifurcation can take place. When surface tension is sufficiently large, the bifurcation curve

disappears completely and even bifurcation into a periodic mode becomes impossible.

We have numerically computed the relationship between γcr and λ when k = 0, and

have verified that it is identical to (3.8) although both give negative values of γcr which are

physically unachievable.

Case 2: Radially fixed inner boundary free of surface tension

Results in case 2 are in stark contrast to those presented previously for case 1. In Fig. 5 (a)

we plot the load parameter γ against k for A = 0.55 and several fixed λ ≥ 1. Interestingly, we

observe that localised modes are both possible and favourable since kcr = 0 for all stretches

considered. In Fig. 5 (b) and (c), the variation of the critical surface tension for localisation

across different axial stretches and tube thickness’s is considered. We observe from Fig. 5 (b)

that γcr as a function of λ possesses a minimum for all tube thickness’s considered. Such

a property resonates with results obtained from the linear analysis of solid cylinders by Fu

et al. (2021), and there is a potential that the distinction between localised solutions either

side of this minimum shown in the solid case may also occur here. However, such a conjecture

must be investigated through a weakly non-linear analysis since a linear analysis gives no

information on the nature of localised solutions in the near-critical regime. From Fig. 5 (c),

we determine that γcr is an increasing function of A. Thus, greater tube thickness destabilises

the tube towards localisation. We checked and verified that all numerical conditions in Fig.

5 (b) and (c) are identical to the analytical counterpart (3.11).

We also deduced localised bifurcation conditions for the Gent material model (2.7)2 ana-

lytically using the variational approach employed in the previous section. These conditions

are presented in Fig. 5 (d). We observe that γcr as a function of λ possesses a minimum for

materials of any extensibility, and γcr increases as Jm decreases for each fixed λ 6= 1. Thus,

materials of lesser extensibility under fixed stretch may withstand higher levels of surface

tension before instability ensues.
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Figure 5: (a) The variation of γ with respect to k for A = 0.55 and several fixed λ. In (b) and (c) we

give conditions for bifurcation at k = 0. For the neo-Hookean model, we present the variation of γcr with

respect to (b) λ for several fixed A and (c) A for several fixed λ. In (d), we present the Gent Model coun-

terpart of the analytical condition (3.11). We plot γcr against λ for A = 0.4 and several fixed Jm. The

black squares give the corresponding numerical results obtained for Jm = 6. The vertical order of curves

and legend parameter values are equivalent.

Case 3: Fixed outer surface free of surface tension

In case 3, we again choose γ as the load parameter and fix λ. We examine the variation

of γ against k in Fig. 6 (a) for A = 0.55 and several fixed λ. As in case 2, the critical

mode number is kcr = 0 for all stretches considered. Therefore, a localised solution is not

only possible but preferred over periodic modes. We observe from Fig. 6 (b) that tubes

can only admit a non-trivial localised solution up to a certain level of fixed compression.

Indeed, as the axial stretch tends to some limiting value, γcr is shown to diverge. It is also

evident that the thicker the tube, the larger this limiting value becomes. As in case 2, the

bifurcation curves possess minima; this has already been highlighted in Fig. 3 (b) for the

representative case A = 0.55. Thus a potential distinction between localised solutions either

side of the critical stretch can also be pondered here. In Fig. 6 (c), we observe that for each
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Figure 6: (a) The variation of γ with respect to k for A = 0.55 and several fixed λ. In (b), (c) and (d) we

give conditions for bifurcation at k = 0. For the neo-Hookean model, we present in (b) the variation of γcr

with respect to λ for several fixed A, whilst in (c) we plot γcr/A against A for several fixed λ. In (d), we

present the Gent model counterpart of the analytical condition (3.16). We plot γcr against λ for A = 0.55

and several fixed Jm. The black squares give the corresponding numerical results obtained for Jm = 6. The

vertical order of curves and legend parameter values are equivalent.

fixed λ > 1 considered, localisation is not possible beyond some critical tube thickness. For

instance, for λ = 1.4 (blue curve), the critical surface tension scaled by A becomes negative

below A = 0.0441709. However, λ = 1 (red curve) is an exception, and localisation can

occur for any tube thickness. In fact, in the limit A → 0, the case of a cylindrical cavity in

an infinite solid is recovered, and we replicate the corresponding result γcr/A → 2 that was

given originally by Xuan and Biggins (2016). Indeed, the numerical bifurcation curves given

in Fig. 6 (b) and (c) can also be obtained from our analytical condition (3.16).

We also deduced localised bifurcation conditions for the Gent model (2.7)2 analytically in

Fig. 6 (d). As in case 2, we observe that materials with lower extensibility limits are more

resistant to localised modes since, for each fixed λ, γcr increases as Jm decreases.
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5. Comparison with FEM simulations

We firstly facilitate a comparison with the FEM simulations of Henann and Bertoldi (2014)

in order to verify our analytical results for cases 2 and 3. In order to do so, we revisit our

conditions analogous to (3.11) and (3.16) for the Gent material model. As is done in the

aforementioned simulations, we also assume that λ = 1 throughout.

It is noted that in both cases 2 and 3, the bifurcation condition is independent of the

extensibility constant Jm where λ = 1. These conditions are given respectively as follows

γcr =
2 (3 + A2)

1− A2
, and

γcr
A

=
2 (1 + 3A2)

1− A2
. (5.1)

We observe that in the limit A → 0, (5.1)2 reduces to γcr/A = 2, which is the localisation

threshold for a cylindrical cavity inside an infinite solid given originally by Xuan and Biggins

(2016). The conditions (5.1)1, 2 are shown in Fig. 7 (a) and (b) respectively along with the

corresponding FEM simulations of Henann and Bertoldi (2014).
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Figure 7: Localised bifurcation conditions for cases 2 and 3 respectively where the Gent material model

is employed and λ = 1. (a) The variation of γcr as given by (5.1)1 against A (red curve). Black squares

give the corresponding FEM simulations in Fig. 4 (b) of Henann and Bertoldi (2014). (b) The variation of

γcr/A as given by (5.1)2 against A (red curve). Black squares give the corresponding FEM simulations in

Fig. 4 (c) of Henann and Bertoldi (2014).

To further validate our theoretical predictions when λ 6= 1, we have conducted additional

numerical simulations in Abaqus (2013) by adapting the user subroutines of Henann and

Bertoldi (2014). In our simulations we take µ = 20Pa, L = 10mm, A = 0.10mm, and

B = 0.25mm so that the scaled value of A is 0.4. Our simulations are conducted for the

Gent material model with Jm = 100 for which λmin = 1.161 and γmin = 7.299. We consider

case 2 and focus on the scenario in which localisation/bifurcation is induced by increasing γ

gradually with the axial stretch fixed. We further assume that the total tube length is fixed

during the entire process, that is both before and after bifurcation has taken place. This
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means that the average axial stretch, which is defined as the deformed length divided by

the undeformed length, is fixed. For the bifurcation value of γ, we have excellent agreement

between the simulation result and the theoretical prediction given by the counterpart of

(3.11) for the Gent material considered.
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Figure 8: Abaqus simulation results (solid lines) and theoretical predictions (squares) for the case when λ

is fixed to be λmin and localisation is induced by increasing γ. The single black dot represents the theo-

retical result given by the counterpart of (3.11) for the Gent material. The lower and upper solid lines in

(a) correspond to the axial stretches at the central (bulged) section and at the two (depressed) ends, re-

spectively, computed according to λ = (1 − A2)/(r2 − A2) where r is taken to be the radius of the outer

surface at the appropriate cross-section. The total axial length is fixed throughout the entire process and

Gent material model with Jm = 100 is used for which λmin = 1.161 and γmin = 7.299. For all γ > γmin the

deformation is always a kink-wave solution with the axial stretches in the two uniform sections satisfying

Maxwell’s equal area rule in the Szz vs λ diagram.

Although we have only focused on a linear analysis, our expressions for the primary de-

formation can in fact be used to predict the fully developed “two-phase” deformation that

the tube will adopt after going through the initial bifurcation. Thus, more comparison-

s/validations can be made in addition to the comparison made above for the bifurcation

value of γ. Extending the observations made by Xuan and Biggins (2017) and Fu et al.

(2021) for the case of a solid cylinder, we may summarize the anticipated bifurcation be-

haviour as follows. When λ = λmin, bifurcation will take place when γ reaches the critical

value γmin. For each γ > γmin, the curve of N against λ has a maximum and a minimum, and

by applying the equal area rule we may determine two values λS and λL such that λS < λL,

and

Szz(λS) = Szz(λL),

∫ λL

λS

Szzdλ = Szz(λS)(λL − λS), (5.2)

where Szz denotes N scaled by the cross-sectional area π(1− A)2. Note that λS and λL are

in fact functions of γ. These functions are determined numerically on Mathematica for the
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Gent material model considered. According to Fu et al. (2021), as soon as γ is increased

beyond γmin, the deformation will be a static kink wave consisting of a bulged section with

axial stretch λS and a depressed section with axial stretch λL, the two sections being joined

by a sharp but smooth transition region (similar to the coexistence of two-phases in one-

dimensional phase transitions). The proportion of the bulged section is determined by the

specified total length (or equivalently the average stretch). Furthermore, if λ is fixed at a

value other than λmin, bifurcation/localisation will take place at the value of γ determined

by the bifurcation condition, but as soon as γ is increased above its bifurcation value, the

tube will jump to the same kink wave configuration corresponding to λ = λmin although the

proportion of the bulged section will be different since the length is now fixed at a different

value. These predictions are fully confirmed by our numerical simulations. In Fig. 8 we show

the perfect agreement between the simulation results and our theoretical results for the case

when λ = λmin, whereas in Fig. 9 we confirm the above-mentioned jump behaviour for a

typical value of λ = 1.5. Finally in Fig. 10 we display a typical “two phase” configuration of

the tube when the average axial stretch is fixed to be λmin and γ is increased to 9. All our

numerical results have been obtained by adopting the geometrical imperfection recommended

by Henann and Bertoldi (2014), namely that the wall thickness is reduced linearly from both

ends of the tube towards the middle section (Z = 0) where the maximum reduction imposed

is 0.004%.
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Figure 9: Abaqus simulation results when λ is fixed to be λmin (blue lines) and 1.5 (red lines), respectively,

and Gent material model with Jm = 100 is employed. The two black dots represent the theoretical results

given by the counterpart of (3.11) for the Gent material. It is noted that although when λ = 1.5 bifurca-

tion takes place later, the associated axial stretches in the center and at the two ends will jump to join the

curves corresponding to λ = λmin. This means that no matter what value λ takes, the tube always adopts

the same kink-wave state that is determined by the value of γ and the corresponding Szz vs λ diagram.
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Figure 10: Profile of the tube when the average axial stretch is fixed to be λmin and γ is increased to 9.

The values of λ in the two “phases” are determined by (5.2) and the proportion of each phase is deter-

mined by the average axial stretch imposed.

6. Conclusion

The objective of this study was two-fold. Firstly, determine a physical interpretation of

localised bifurcation in cylindrical tubes under three separate constraints through analytical

means. In case 1, the inner and outer surfaces of the tube were traction-free and under

surface tension, whilst in cases 2 and 3 the inner and outer surfaces respectively were fixed to

prevent radial displacement and surface tension. Secondly, establish whether localisation is

indeed possible and favoured in any of these 3 scenarios through a linear bifurcation analysis.

We discovered that a condition for localised bifurcation can indeed be deduced analytically

in each scenario and under any loading condition by applying the variational formulation in

section 2. For case 1, we stated that localised bifurcation occurs where the Jacobian of the

vector function (γ, N ) vanishes. In cases 2 and 3, localisation was found to occur when the

resultant axial force as a function of the axial stretch attains its extrema for fixed surface

tension, or when the surface tension as a function of the axial stretch attains it extrema

for fixed axial force. Analytical bifurcation conditions were provided for each scenario. Of

course, we recognised that these conditions are only valid provided that bifurcation into a

localised solution is possible. To determine the existence of localisation, we conducted a

linear analysis for all three cases. For case 1 our analysis demonstrated that, when fixing the

axial stretch λ and taking the surface tension γ as the load parameter, γ ≤ 0 at k = 0 for all λ

considered. This suggests that bifurcation into localised solutions is not possible in this case.

Instead bifurcation into periodic modes with a preferred non-zero wave number is possible

when the axial compression is sufficiently large and surface tension has a stabilizing effect in

this respect. In contrast, localised bifurcation was shown to be both possible and favourable

in cases 2 and 3. Our linear analysis showed that, where γ is increased and λ is fixed, the

critical surface tension for a localised mode γcr as a function of λ possesses a minimum in both

scenarios. It can then be expected, based on the weakly nonlinear analysis of Fu et al. (2021)

for a solid cylinder, that a similar distinction, necking or bulging, between localised solutions

either side of this minimum will also occur. We verified that the numerical bifurcation curves

showing the variation of γcr on λ and tube thickness were in perfect agreement with our

analytical conditions. Further validation comes from the excellent agreement of our results

with the corresponding numerical simulation results.

We conclude by noting that the linear bifurcation condition derived in this paper is only a
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necessary condition for localisation to occur; whether such a bifurcation can really occur or

not, whether the bifurcation is sensitive to imperfections, and whether the initial bifurcated

configuration is a bulge or a depression can only be settled by a nonlinear analysis. Such a

weakly non-linear analysis will be presented in a separate paper.
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