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Abstract
Traditional linear discriminant analysis (LDA) approach discards the eigenvalues which are very small or equivalent to zero, 
but quite often eigenvectors corresponding to zero eigenvalues are the important dimensions for discriminant analysis. We 
propose an objective function which would utilize both the principal as well as nullspace eigenvalues and simultaneously 
inherit the class separability information onto its latent space representation. The idea is to build a convolutional neural 
network (CNN) and perform the regularized discriminant analysis on top of this and train it in an end-to-end fashion. The 
backpropagation is performed with a suitable optimizer to update the parameters so that the whole CNN approach minimizes 
the within class variance and maximizes the total class variance information suitable for both multi-class and binary class 
classification problems. Experimental results on four databases for multiple computer vision classification tasks show the 
efficacy of our proposed approach as compared to other popular methods.

Keywords  Convolutional neural network · Latent space representation · Regularization; subspace learning

Introduction

Linear discriminant analysis (LDA) is a method from mul-
tivariate statistics which attempts to find a linear projection 
of high-dimensional observations onto a lower-dimensional 
space [10]. It finds the optimal decision boundaries in the 
resulting lower dimensional subspace. LDA is an efficient 
way to separate the features on the basis of class information, 
but since it requires inverse operation it often becomes prob-
lematic if the dimension becomes very high as compared to 
the number of available training samples. Thereby it ignores 
the eigenvectors corresponding to zero eigenvalues so as to 
have the within class scatter matrix non-singular. In Sharma 
et al. [29], an improved regularized LDA is proposed which 
is carried out by adding a perturbation term � to the diagonal 

elements of within class matrix to make it non-singular and 
invertible. However, the eigenvectors corresponding to zero 
eigenvalues also contain the important class discriminatory 
information as reported in [6, 17, 19, 27]. Thus, we aim to 
utilize both the principal as well as nullspace eigenvalues 
and extend the beneficial properties of the proposed regu-
larized fisher method (low intra-class variability, high total-
class variability, optimal decision boundaries). This is done 
by reformulating its objective to learn linearly separable 
representations based on a deep neural network (DNN) for 
both binary as well as multi-class problem.

LDA is used widely as a supervised dimensionality 
reduction method in computer vision and pattern recogni-
tion. Its recent generalization to non-Euclidean Grassmann 
manifolds can be found in [33]. This aims to impose the 
highest possible variance among classes, by maximizing the 
between-class distances, whilst minimizing the within-class 
scattering. Recently, deep learning combined with various 
multivariate statistics methods have achieved great success 
[12]. Andrew et al. [4] introduced a deep canonical cor-
relation analysis (DCCA) which can be viewed as a non-
linear extension of CCA . In their evaluations, they argued 
that DCCA learns representations with significantly higher 
correlation than those learned by CCA and Kernel (non-
linear) CCA. They experimented using the MNIST hand-
written data and simultaneous recording of articulatory and 

 *	 Bappaditya Mandal 
	 b.mandal@keele.ac.uk

	 Nazneen N. Sultana 
	 nns11@iitbbs.ac.in

	 N. B. Puhan 
	 nbpuhan@iitbbs.ac.in

1	 School of Electrical Sciences, Indian Institute of Technology, 
Bhubaneswar, India

2	 School of Computing and Mathematics, Keele University, 
Newcastle under Lyme, UK

http://orcid.org/0000-0001-8417-1410
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00647-z&domain=pdf


	 SN Computer Science           (2021) 2:235   235   Page 2 of 9

SN Computer Science

acoustic data. Ghassabeh et al. [13] presents new adaptive 
algorithms for online feature extraction using principal com-
ponent analysis (PCA) and LDA for classification purpose. 
In Al-Waisy et al. [2], they have merged the advantages of 
local handcrafted feature descriptors with the Deep Belief 
Networks for the face recognition problem in unconstrained 
conditions and have obtained better performances.

PCANet proposed by Chan et  al. [5] which includes 
cascading of PCA, binary hashing and block histogram 
computations. This can be seen as an unsupervised con-
volutional deep learning approach. Due to computational 
complexity these multi-stage filter banks are limited to 
two stages but can be extended to any number. They also 
experimented further modifications on PCANet as RandNet 
and LDANet. RandNet and LDANet share the same meth-
odology like PCANet, but their cascaded filters are either 
selected randomly as in RandNet or learned from LDA in 
case of LDANet. Lifkooee et al. [24] combines regular deep 
convolutional neural network with the Laplacian of Gauss-
ian filter (LoG) right before fully connected layer and they 
have shown that the proposed feature descriptor along with 
LoG introduced in CNN further improves the performance 
of deep learning.

Stuhlsatz et al. [31] initially proposed the idea of combin-
ing LDA with neural networks. In their proposed approach, 
they pre-train a stack of restricted Boltzmann machines and 
this pre-trained model is finetuned with respect to a lin-
ear discriminant criterion. LDA has the disadvantage that 
it overemphasizes large distances at the cost of confusing 
neighbouring classes. Thus, to tackle this problem, they 
introduced a heuristic weighing scheme for computing the 
within-class scatter matrix required for LDA optimization. 
The LDA based objective function proposed by Dorfer et al. 
[9] is a non-linear extension of classic LDA where the objec-
tive function is obtained from the general LDA eigenvalue 
problem while still allowing to train the CNN architecture 
with stochastic gradient descent and back-propagation.

In this paper, we propose to modify the LDA based objec-
tive function which would utilize both the principal as well 
as nullspace eigenvalues onto its latent space representa-
tion for both multi-class as well as binary class problem. 
Extensive experimental results on multiple computer vision 
classification tasks illustrates the superiority of our proposed 
approach as compared to other popular methods. Below, we 
describe our proposed method in details.

Proposed Approach

The approaches mentioned so far are based on the study 
of multi-variate statistics. In our work, we propose to train 
a CNN architecture in an end-to-end fashion with a new 
objective function which would enable the network to 

inherit the property of maximizing the total variation and 
minimizing the within class variation.

Deep Learning has become state-of-the-art for many 
image based applications of classification, object recogni-
tion, segmentation, image captioning and natural language 
processing [14, 26]. The mathematical model of Convo-
lutional Neural Network (CNN) is explained by Kuo et al. 
[22] where the fundamental questions about the structure 
of the convolutional neural networks is explained. There 
are many variations of deep convolutional neural networks 
for various vision tasks. The intuition behind our approach 
is to use the proposed regularized Fisher method as the 
objective function on top of a powerful feature learning 
model. The optimization of parameters is carried by back-
propagating the error of the proposed objective function 
through the entire network. One of our objectives in this 
work is to come up with a CNN architecture that can be 
generically applied to many computer vision classification 
tasks. For experimental evaluation, we evaluated our pro-
posed objective function on various benchmark databases 
like MNIST (handwritten digit recognition), CIFAR-10 
(natural image classification) and ISBI (skin cancer detec-
tion into melanoma and non-melnoma cases) to show that 
the objective function is effective for both multi-class as 
well as binary class classification problems.

Deep Regularized Discriminative Network 
over simple ConvNet

Deep learning networks are different from the simple sin-
gle-hidden-layer neural networks by their depth. Deep-
learning networks effectively learn the features automati-
cally without human intervention, unlike most traditional 
machine-learning algorithms. A neural network with P 
hidden layers is represented as a non-linear function f (Θ) , 
where Θ = {Θ1,… ,ΘP} . In supervised learning for N num-
ber of samples, we have x = {x1,… , xN} as training data 
and y = {y1,… , yN} ∈ 1,… ,C , where C is the number of 
classes. In the last layer, we have softmax as the classifier 
which gives the normalized probability of the data that 
belongs to a particular class. The output, oi = {oi1,… , oiC} 
is a function of f (xi,Θ) . The network is optimized using 
stochastic gradient descent or any other optimizer like 
Adam with the goal of finding optimal model parameters 
Θ by minimizing the objective function li(Θ):

where li(Θ) = f ((xi,Θ), yi) . For categorical cross entropy 
(CCE), the loss function is defined as

(1)Θ = argmin
Θ

1

N

N∑

i

li(Θ),
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where pi,j is the network output probability and yi,j is 1 if 
observation xi belongs to class yi for (j = yi) and 0 other-
wise. Figure 1 shows the deep regularized network where 
the objective is different from the CCE in maximizing the 
total scatter matrix eigenvalues and minimizing the within 
class scatter matrix eigenvalues. In the following subsec-
tions, detail description of the proposed objective function 
and the related analysis are discussed.

Proposed Objective Function

Linear discriminant analysis tries to find out the axes 
which maximize the between-class scatter matrix Sb , while 
minimizing the within-class scatter matrix Sw in the pro-
jective subspace A ∈ ℝ

l×d . The projective subspace is a 
lower dimensional subspace, i.e., l = C − 1 where C is the 
number of classes. The resulting projection matrix onto 
this subspace xiAT are maximally separated in this space 
[10]. Fisher criterion is defined as the ratio of between-
class and within-class variances, given by

Here, W is the weight vector. To compute the within class 
scatter matrix:

(2)li(Θ) = −

C∑

i

yi,j log(pi,j),

(3)J(W) =
|WTSbW|
|WTSwW|

.

The total scatter matrix is computed using

where X is the input data matrix; in our case it would be the 
output of the CNN model and Nc is the sample numbers in 
that particular class. N is the total samples and X̄c = Xc − mc , 
mc is the mean of that class, X̄ = X − m where m is the total 
mean of the samples. The output predicted values from the 
CNN model (y_pred) is used as X values for the computa-
tion of Sw , as in (5). To extract discriminative features, at 
first we perform eigen decomposition of the within-class 
scatter matrix Sw , given by

Here, Φ contains the eigenvectors and Λ are the eigenval-
ues of Sw . Then the eigenvectors are sorted according to 
the eigenvalues in descending order. Matrix Φ is then split 
into W1 and W2 , where W1 is the matrix which contains the 
eigenvectors corresponding to those eigenvalues which are 
greater than a certain minimum variance. For our experi-
mentation, we took minimum variance value as 1e−2. W2 
matrix are the eigenvectors corresponding to those eigenval-
ues whose variance are less than the minimum variance. W1 
matrix is divided with the square root of the corresponding 
eigenvalues and W2 matrix is divided with the square root 
of the minimum eigenvalues. These two matrices are con-
catenated to form Ψ as shown in (8) and it is multiplied with 
the y_pred to form the model output y:

Then, we compute the total scatter matrix St using (6). After 
computing the covariance matrix, the projection matrix Ω 
is selected by eigen decomposition of St and selecting the 
eigenvectors in Φwy according to the most significant eigen-
values Λwy . Eigen decomposition of St is given by

Using the eigenvalues of St matrix, we formulate the objec-
tive as,

(4)Sc =
1

(Nc − 1)

∑
X̄c

T
X̄c,

(5)Sw =
1

(C)

∑
Sc.

(6)St =
1

N − 1
X̄T X̄,

(7)Sw = ΦΛΦT .

(8)Ψ =[Φi(Λi)
−

1

2 Φi(Λsmallest)
−

1

2 ].

(9)y =ΨT�_����

(10)St = ΦwyΛwyΦ
T
wy
.

Input Layer

Regularized Discriminant 
Analysis

Deep Regularized Latent 
Space

EigenValue Objec�ve

Objec�ve: Maximize eigenvalues of 
Regularized LDA on last hidden 
representa�on

Features Classified using 
SVM

DNN (Deep Neural 
Network)

Fig. 1   Schematic sketch of deep regularized discriminative network 
which learns the linear separability property in the latent represen-
tation. Here the objective is to maximize the eigenvalues so that the 
class separability also increases
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The objective of combining this with the deep neural net 
is that of maximization of the individual eigenvalues of St 
and minimization of the eigenvalues of Sw . In particular we 
expect maximization (minimization) of the eigenvalues of 
St ( Sw ) leads to maximizing (minimizing) separation in the 
respective eigenvector direction. Thus we would achieve the 
target of minimizing the within-class variation and maximiz-
ing the total variation. Deep neural network with categorical 
cross entropy (CCE) or binary cross entropy loss function 
does not take into account this aspect of discriminatory 
power. CCE main objective is to maximize the likelihood 
of the class labels according to the target labels.

Here the objective function is designed to consider only 
the k eigenvalues that do not exceed a certain threshold for 
variance maximization:

where for symbol easiness we have considered Λwy as v and 
n is the rank of the covariance matrix which is equal to one 
less than the number of samples ( n − 1 ). This formulation 
of objective function allows to train the deep networks with 
backpropagation in end-to-end fashion. This is similar to the 
classic LDA but it lifts the constraint that generally occurs 
for binary classification where C (number of classes) is 2 
and the l-dimensional projection matrix with classic LDA 
method will be l = C − 1 , i.e., 2 − 1 = 1 . The above pro-
posed objective function can be used for both multi-class as 
well as binary class classification problems.

Experimental Results

One of the key objectives of our work is to propose a CNN 
architecture that can be generically applied to many vision 
tasks. For our experimental evaluation we considered four 
publicly available databases, namely MNIST (hand written 
digits recognition), CIFAR-10 (natural scenes classification), 
ISBI 2016 (skin cancer classification) and ISBI 2017 (skin 
cancer classification). We compare our results with various 
other similar approaches available for vision classification.

Databases

–	 MNIST [23]: The MNIST or handwritten digits database 
consists of a 60,000 training set examples, and 10,000 
testing set examples. The images have been size-normal-

(11)argmax
Θ

1

C − 1

C−1∑

i

Λwy.

(12)
argmax

Θ

1

k

k∑

i

vi with(vi,… , vk),

= {vj|vj < min{vi,… , vn−1} + 𝜖},

ized and centered to a defined size of 28 × 28 gray scale 
images. The database is freely available to public under a 
Creative Commons Attribution-Share Alike 3.0 license.

–	 CIFAR-10 [21]: The CIFAR-10 database is freely 
obtained under MIT licensing (MIT), used for object 
recognition application is an established computer-vision 
database which consists of 60000 32 × 32 colour images 
in 10 classes, with 6000 images per class. There are a 
total of 50000 training images and 10000 test images.

–	 ISBI 2016 [16]: The ISIC archive, containing training 
database of 900 images of dermoscopic lesion and 369 
in testing database in JPEG format, obtained under CC0 
licensing. From leading clinical centers internationally, 
these images have been collected that are acquired from 
various devices used at each center. It has both natural 
(skin hairs, veins) as well as man-made artifacts which 
becomes difficult to classify without pre-processing.

–	 ISBI 2017 [7]: International skin imaging collaboration 
(ISIC) is an international effort to improve melanoma 
diagnosis. In 2017 challenge, the database consists of 
more images in number as compared to 2016 including 
Seborrheic keratosis, a benign skin tumor derived from 
keratinocytes (non-melanocytic) along with benign nevus 
(melanocytic) and melanoma (melanocytic). The train-
ing data consists of 2000 images (374 melanoma, 254 
seborrheic keratosis and 1626 benign nevus) and testing 
data consists of 600 images (117 melanoma images), all 
obtained under CC0 licensing. This is the largest among 
all state-of-the-art melanoma databases.

Experimental Setup

The general structure of the CNN model is based on VGG 
model using 3 × 3 convolutions [30]. We experimented 
with and without including the BatchNormalization layer 
after each convolutional layer [18]. This layer helps in 
increasing the convergence speed and also the performance 
of the model. For non-linearity RELU is used, since it 
greatly accelerate the convergence rate of stochastic gra-
dient descent or any other optimizer as compared to the 
sigmoid/tanh functions [20]. All the networks are trained 
using Adam optimizer, but the learning rate is decreased to 
half after every 200 epochs. The batch size for MNIST data 
and CIFAR-10 is 1000 and for ISBI 2016 and ISBI 2017, the 
batch size is 400, as the training data is quite small in case 
of ISBI databases.

Related methods show that mini-batch learning on dis-
tribution parameters (in this case covariance matrices) is 
feasible if the batch-size is sufficiently large to be representa-
tive for the entire population [32]. Even though a large batch 
size is required to have stable estimates, it is limited by the 
data availability, image size and memory available on the 
GPU. Table 1 shows detail CNN model specifications for 
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the CIFAR-10 and MNIST databases. The total number of 
trainable parameters for CIFAR-10 model is 5,752,414 and 
MNIST is 467,486. In all our experiments, the proposed 
method is validated with the existing ones using the same 
corresponding datasets and protocols. They are implemented 
on a system with Intel Core i7 processor, 16GB RAM, and 
NVIDIA GeForce GTX-1050Ti GPU card.

Results and Discussion

MNIST

The MNIST database consists of 28 × 28 gray scale image 
with labels as 0 to 9. The data structure consists of 60,000 
samples of which 50,000 is training data and 10,000 is vali-
dation data. The test sample consists of 10,000 images, same 
protocol as that in [9]. Since the proposed method requires 
large batch size, thus for MNIST we took 1000 as the batch 
size. The optimizer is the Adam optimizer and the initial 
learning rate is reduced to half for every 200 epochs. For 
final classification, we use the linear support vector machine 
(SVM) classifier.

Table 2 shows the comparison of our proposed approach 
as compared to various relevant methods on MNIST data-
base. From the results, it can be seen that our proposed 
method with new cost function is second best and compa-
rable with the other state of-the-art reported performances. 
Therefore, it is evident that adding the latent space represen-
tation into the cost function, by maximizing the between-
class and minimizing the within-class eigen representation 
efficiently learns the features required for classification. 
Thus the training is done in an unsupervised manner and 
using linear SVM, we do the final classification using the 
testing data.

Figure 2a shows the evolution of mean eigenvalues of the 
total scatter matrix with varying epochs during the train-
ing. Figure 2b shows the eigenvalues of within class scat-
ter matrix with respect to varying epochs, which initially 
increases but later decreases; thus achieving our objective of 
minimizing the within class and maximizing the total varia-
tion among different classes, as shown in Fig. 2a, b.

CIFAR‑10

The CIFAR-10 database consists of 32 × 32 size image con-
taining 10 different classes. The database structure consists 
of 50,000 training samples and 10,000 testing samples, same 
as that in [9]. We normalize the pixel values between 0 and 
1. Table 1 describes the network structure, and similar to 
MNIST approach described above the initial learning rate 
is reduced to half for every 200 epochs. Table 3 summa-
rizes the comparison of our proposed approach and various 
relevant methods on this database. It can be seen that our 
proposed methodology has achieved second best accuracy 
for this natural image classification task.

Table 1   Our proposed CNN model specifications for CIFAR-10 and MNIST databases

BN batch normalization, ReLu rectified linear activation function, Conv convolutional layer

CIFAR-10 MNIST
Input 3 × 32 × 32 Input 1 × 28 × 28

3 × 3 Conv (pad-1)-64-BN-ReLu 
3 × 3Conv (pad-1)-64-BN-ReLu 
2 × 2 Max-Pooling + Drop-Out (0.25)
3 × 3 Conv (pad-1)-128-BN-ReLu 
 3 × 3 Conv (pad-1)-128-BN-ReLu 
2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-1)-96-BN-ReLu 
 3 × 3 Conv (pad-1)-96-BN-ReLu 
2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-1)-256-BN-ReLu 3 × 3 Conv (pad-1)-256-BN-ReLu 3 × 3 Conv (pad-1)-
256-BN-ReLu 3 × 3 Conv (pad-1)-256-BN-ReLu 2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-0)-1024-BN-ReLu Drop-Out (0.5) 3 × 3 Conv (pad-0)-256-BN-ReLu Drop-Out (0.5)
1 × 1 Conv (pad-0)-1024-BN-ReLu Drop-Out (0.5) 1 × 1 Conv (pad-0)-256-BN-ReLu Drop-Out (0.5)
1 × 1 Conv (pad-0)-10-BN-ReLu 
 2 × 2 Global Average Pooling

1 × 1 Conv (pad-0)-10-BN-ReLu 
5 × 5 Global Average Pooling

Regularized LDA Layer

Table 2   Comparison of test errors (%) on MNIST database using our 
proposed approach and other relevant methodologies

Method Test error (in %)

NIN [25] 0.47
Conv. Maxout + Dropout [15] 0.45
ScatNet-2 [3] 0.43
PCANet-1 [5] 0.62
DeepLDA [9] 0.29
Proposed method 0.35
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ISBI 2016 and ISBI 2017

To show the efficacy of the proposed objective function, 
we have conducted experimentation on both multi-class 
(MNIST and CIFAR-10) and binary class classification 
databases (ISBI 2016 and 2017). ISBI databases consist 
of dermoscopic lesion images for the diagnosis of skin 
cancer melanoma from the non-melanoma cases. ISBI 
2016 database consists of 900 training set and 379 testing 
set. The database is unbalanced with 727 benign images 
and 173 melanoma images. Similarly, ISBI 2017 database 
consists of 2000 training samples and 600 testing samples. 
As stated by Wang et al. [32], minibatch learning with 
covariance estimates requires large batch size such that it 
could represent the entire population. Thus to overcome 
the batch size problem due to limited availability of ISBI 
training and testing data as well as due to large size of 
these images ( 224 × 224 ) and limited amount of memory 
available in GPU, we first performed fine-tuning of pre-
trained ResNet-50 model which has 25,636,712 parameters 

and then extracted the features from the last convolutional 
layer. We used these 2-dimensional features as inputs to 
train MLP (multi-layer perceptron) or fully connected lay-
ers. The fully connected layers used for training with the 
proposed objective function can be represented as

Sigmoid activation function is the most favoured activa-
tion function for shallow networks. We experimented 
using RELU and tanh as well, but there was no significant 
improvement using them. Activation function adds non-
linearity to the existing nodes of the network. For deeper 
networks, RELU is the best activation function since RELU 
increases the convergence rate. Disadvantage of RELU is 
that ReLU units can be fragile during training and can erode 
easily [1]. The following performance criteria are used for 
comparison of the proposed approach with the existing 
methodologies:

–	 Accuracy: The ratio of correct prediction to that of total 
predictions, mathematical formulation as 

 where TP is the True Positive, TN is the True Negative, 
FP is the False Positive, FN is the Flase Negative.

(13)

ΘMLP = Input(900, 2048) →

Dense(2048) − Sigmoid − l2 regularizer →

Dense(1024) − Sigmoid − l2 regularizer →

Dense(1024) − Sigmoid − l2 regularizer →

Dense(100) − Sigmoid − l2 regularizer.

(14)ACC =
TP + TN

TP + FP + TN + FN
,

(a) (b)

Fig. 2   a Shows the evolution of mean eigenvalues of S
t
 with respect to epoch number, b depicts the minimization of within class scatter matrix 

S
w
 with respect to epoch, on MNIST database

Table 3   Comparison of test accuracy (%) on CIFAR-10 database 
using our proposed approach and other relevant methodologies

Method Accuracy (in %)

NIN+ Dropout [25] 89.59
Conv. Maxout + Dropout [15] 88.32
PCANet-2 [5] 78.67
DeepLDA [9] 92.42
Proposed method 90.04
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–	 Sensitivity: The ability of the algorithm to correctly pre-
dict the diseased cases (i.e., malignant): 

–	 Specificity: It is the ability of the algorithm to correctly 
predict the non-diseased cases (i.e., benign): 

–	 AUC: Area under receiver operating characteristic curve. 
It is the graph between true positive rate against the false 
positive rate.

–	 Average precision: Average precision (AP) is the area 
under the precision-recall curve. The detailed explana-
tion can be found in [16].

Since DeepLDA approach uses the traditional LDA 
where we could get at most, number of classes minus 

(15)SE =
TP

TP + FN
.

(16)SP =
TN

TN + FP
.

one as the principal eigenvalues which in this database 
would be (2 − 1) = 1. Thus, at the end there would be only 
one eigenvalue to maximize so as to have maximum inter 
class separation and minimum within class separation. In 
our approach, we use total class scatter matrix variance 
information to find the optimal projection among all the 
training data samples. This has enabled us to select up 
to n − 1 , where n is the total number of training samples. 
The model loss plot with respect to varying epochs are 
shown in Fig. 3a for ISBI 2016 and Fig. 3b for ISBI 2017 
databases, respectively. The plot shows that in both the 
cases the loss decreases evenly with increase in number 
of epochs and finally converges.

Tables 4 and 5 show the various comparison of this 
approach with the existing ones on ISBI 2016 and 2017 
databases, respectively. The results obtained on these data-
bases do not exceed the best accuracy so far obtained, but 
show a new approach to proceed by inheriting the class 
separability into the deep neural net as a result of chang-
ing the objective function. We implemented DeepLDA 

Fig. 3   Loss with respect to number of epochs during training a loss vs epochs on ISBI 2016 database (with training data only as validation data-
base is unavailable) b loss vs epochs on ISBI 2017 database (for both training and validation datasets)

Table 4   Comparison of the 
proposed approach with 
the existing state-of-the-art 
methodologies on ISBI 2016 
database

Methods Accuracy AUC​ AP SE SP

LDF-FV (fusion) [35] 0.868 0.852 0.684 0.426 0.977
CNN-FV (fusion) [36] 0.831 0.796 0.535 – –
FCRN+deep ResNet [34] 0.855 0.804 0.637 0.507 0.941
Ensemble model [8] 0.805 0.838 0.645 0.693 0.832
Deep Bayesian Active Learning [11] – 0.750 – – –
ResNet features+SVM 0.738 0.620 0.313 0.347 0.835
DeepLDA [9] 0.839 0.807 0.595 0.546 0.911
Proposed method 0.849 0.818 0.629 0.640 0.901
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method [9] and experimented on ISBI databases. These 
tables show that our proposed approach achieves third best 
in its accuracy and AUC on ISBI 2016 database and sec-
ond best for these metrics on ISBI 2017 database. Fisher 
vector based methods [35] and [36] use 32,768 (even 
after dimensionality reduction using principal component 
analysis) and 12,800 feature dimensions, respectively, for 
final feature matching, which are very high as compared 
to ours that uses only 2048 feature dimensions and 899 
(number of samples − 1 ) for final classification purpose. 
For ISBI 2017 [28], the authors used two pretrained CNN 
models ResNet-101 and Inception-v4. Experimentation 
using large number of data requires huge computational 
resources such as large memory CUDA-compatible GPUs. 
The training time and complexity are huge as compared 
to our approach, which uses only 2048 features and still 
achieve competitive accuracy performances. Our method 
is simple, efficient, requires less computing time and com-
plexity that can be generically applied to many computer 
vision classification tasks.

Conclusions

In this paper, we have proposed an objective function which 
would work for both binary as well as multi-class classifi-
cation problems. The proposed loss function minimizes the 
within class variance and maximizes the total class vari-
ance. We experimented our method on popular databases 
for various applications like MNIST (hand written digit 
recognition) and CIFAR-10 (natural image classification), 
and we have shown that the proposed approach achieves 
competitive performances on these databases as compared 
to other methods. For the application of melanoma detection 
(skin cancer detection into melanoma and non-melanoma 
cases), since the number of images are few we trained the 
network using multi-layer perceptron and are able to achieve 
an accuracy of 84.9% on ISBI 2016 and 83.3% on ISBI 2017 
databases. These experimental results show the efficacy of 
our proposed approach as compared to other methods for 
many computer vision classification tasks.
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