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Abstract

The research is investigating anti-plane shear of a strongly inhomogeneous dy-

namic asymmetric laminate. Two types of contrast are considered, including those for

composite structures with thick or thin stiff outer layers. In all types of contrast, the

value of the cut-off frequency corresponding to the lowest harmonic tends to zero.

For two modes, i.e. the fundamental mode and aforementioned lowest harmonic,

the shortened dispersion relations and the associated formulae for displacement and

stresses are obtained. As a particular case a symmetric three-layered plate is studied.

The asymptotic equations of motion are derived with the evaluation of the validity

range for each of two considered setups of contrast parameters. In addition, the

asymptotically justified boundary conditions are derived by the generalisation of the

Saint Venant’s principle to high-contrast structures.
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Chapter 1

Introduction

1.1 State of the Art

Layered elastic structures have numerous industrial applications. For example, such

structures are used within a great number of civil and mechanical engineering projects

and also in aircraft and automotive design along with several areas in geo- and bio-

mechanics. They are also of interest for high-tech domains including meta-material

technology.

1
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Sandwich structure is seemingly the most popular example of a laminate. They con-

sist of relatively thin and stiff outer layers divided by a thick and soft lightweight

core. Among the materials used for outer layers there are wood, metal sheets, while

the core is often composed of various polymers, including those in the form of honey-

combs. The sandwich panels are utilised in various engineering constructions, having

simultaneously numerous advantages such as high stiffness and light weight, see for

example Zenkert [1995].

Thus, sandwich composites are extensively exploited in modern engineering design,

aiming at weight reduction, e.g. see Vinson [1999]. They are used not only in the

aerospace industry where sandwiches have been initially implemented, see Dutton

et al. [2004], but also in trains, racing cars and high-speed marine crafts, see Arbaoui

et al. [2015]. In particular, for high speed trains a composite sandwich structure

is examined in Zinno et al. [2010] and Kim and Chung [2007]. We also mention

Torre and Kenny [2000] concerned with composite sandwich panels as structural

components of trains and buses.

In contrast to conventional sandwich structures layered composites may also possess

soft skins and stiff inner layers. A precipitator plate is a good example of this type

of laminates. It is an important part of gas filters for collecting dust particles from

gas streams e.g. see Tassicker [1972] and Lee and Chang [1979].
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Ultra-light photovoltaic layered structures are used in solar cars and satellite solar

panels, e.g. see Renno [2008], studying solar aircraft. This is a multi functional low

cost concept enabling weight reduction and energy saving, see also Mines et al. [1998],

Rion [2008], and Beral [2007].

Laminated glass plates and beams are another example of thin structures exhibit-

ing high contrast in material and geometrical properties. Laminated glass which is

widely used in automotive and civil engineering are usually composed of three layers.

Among them there are two relatively thick claddings and a soft slim polymeric core.

This layout enables to achieve high stiffness along with other important technical

properties, e.g. see Aşık and Tezcan [2005].

Layered composites also find applications in the fast developing area of meta-materials.

These materials demonstrate unique properties originating from periodically arranged

layers having high contrasting parameters, e.g. see Martin et al. [2012].

Multi-layered structures have been of particular interest for theoretical analysis since

long ago. In particular, main focuses are in mathematics and mechanics of solids.

There are numerous publications on the subject and it is hardly possible to present

a complete account of all the developments in this area. In what follows we concen-

trate only on most influential deliveries e.g. substantial books by Reddy [2003] and



Chapter 1. Introduction 4

Mikhasev and Altenbvach [2019] as well as on the output closely related to the main

theme of the thesis.

Mechanics of sandwich plates has a remarkable history. Apparently, the first analyt-

ical investigation of bending and buckling of sandwich plate structures was proposed

by Reissner [1947]. In this study, the author considered a sandwich plate with rela-

tively stiff outer layers. In this case, in addition, the thickness of the outer layers is

assumed to be much smaller than that of the core layer. A simple solution based on

ad-hoc hypothesis on the sandwich behaviour is obtained.

Similar analysis was also conducted by Hoff [1950], who used a variational approach

for deriving the differential equations and boundary conditions governing sandwich

plates. In another study, Eringen [1951] found the solution of the partial differential

equations modelling bending and buckling of rectangular shaped sandwich plates.

The core of the rectangular plate is supposed to be isotropic. The main focus of

the above mentioned papers is elastic buckling. Also, Cheng [1961] investigated

the Reissner equation, see Reissner [1947], and also initiated investigation of the

connection between Reissner and classical plate theories. In this paper the expressions

for moment, shear and deflection are also provided. We also mention two substantial

general reference work reporting on numerical modelling of sandwich structures, see

Ha [1990] and Noor et al. [1996].
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Analysis of waves in layered infinite media, mainly inspired by needs in seismology,

logically precedes dynamic treatment of elastic thin wave-guides in the shape of elastic

plates, shells and beams. The classical example includes the famous paper Ewing

et al. [1957], see also Abramovici and Alterman [1965] reporting on further numerical

results for a layered half space.

Structural dynamics can be understood with the help of examination of associated

dispersion relations. Analysis of the dispersion relations for homogeneous layers was

the subject of many publications, beginning with Lamb [1917]. We also mention

later substantial contributions Tolstoy and Usdin [1957], Mindlin [1960] along with

the books Kaplunov et al. [1998] and Achenbach [2012]. Another popular shape

corresponds to a cylindrical shell, see Beresin et al. [1995].

Elastic wave propagation in isotropic sandwich plates with the emphasis on the flex-

ural wave propagation is analysed in Mindlin [1959] and Yu [1960]. Later on, both

numerical and asymptotic techniques were adapted. In particular, Jones [1970] com-

puted the dispersion curves for quasi-flexural and quasi-extensional waves. The flexu-

ral wave approximation appears to be in accordance with the classical plate theory at

a moderate wavelength range. On the other hand, extensional vibrations correspond

to the long wavelength limit. The results for two, three, four and five-ply laminates

are given by Kulkarni and Pagano [1972]. The solution to the plane-strain problem
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with the continuity conditions of traction and displacements along the interfaces is

presented in Lee and Chang [1979]. They consider both flexural and SH-waves. The

numerical solutions of the obtained dispersion relations are derived.

Waves propagation in symmetric three-layered fibre-reinforced elastic structures is

considered by Baylis and Green [1986a,b]. Numerical data is obtained for two specific

directions of wave propagation. The results of parametric analysis for various ratios

of core thickness to outer layer thickness are also included.

Comparisons of the solutions in classical structural theories and those coming from

shear deformation formulations are presented in particular in Wang and Wang [2016]

and Qatu [2004]. The cited textbook Wang and Wang [2016] considers linear free

vibrations of composite structures of canonical shapes including thick ones. Approx-

imate theories for laminated composite structures along with finite element models

can be found in Renno [2008]. In addition, we mention a useful review Kreja [2011]

dealing with the computational modelling of laminates.

The paper Naumenko and Eremeyev [2014] starts from the approximations to the

exact Rayleigh-Lamb dispersion relation. As a result a comprehensive Timoshenko-

Reissner type model is found to be robust for treating thin laminated plates. The

results are applied to modelling of laminated glass and photovoltaic panels.
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The first order shear deformation plate theory was also applied for analysis of lami-

nates with thin and soft core layers in Nguyen et al. [2008]. The results of this paper

are useful for computation of laminated glasses and photovoltaic panels.

Basic asymptotic analysis found to be valuable for interpretations of dispersion rela-

tions. For a long time its range was restricted to low-frequency vibrations. The qual-

itative study of the dispersion relation over the high-frequency range starts from sev-

eral papers cited in the general reference work Ainola and Nigul [1965] and Grigolyuk

and Selezov [1973]. Among later publications, taking into consideration pre-stressed

and layered structures we mention Kaplunov et al. [2000b], Pichugin and Roger-

son [2002a], Kaplunov et al. [2002a], Leungvichcharoen and Wijeyewickrema [2003],

Lashhab et al. [2015], Nolde et al. [2004], Rogerson et al. [2007]. In particular, the in-

vestigation of small amplitude vibrations in a symmetric, incompressible, pre-stressed

three-layered plate is developed in Rogerson and Sandiford [1996] and Rogerson and

Sandiford [1997]. In these papers numerical and analytical results were obtained for

both short and long wave limits. The effect of imperfect bonding have been also

investigated numerically in the first of the cited papers. In the second one this effect

was further treated analytically at high and low wave number limits in the case of

antisymmetric motion. The cut-off frequencies for harmonics are also studied.

The highly original paper Chapman [2013] also deals with long-wave low-frequency
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analysis of dispersion relation for a multi-layered plate. For the first time it develops

finite product approximation adapted for steady state problems in elastic wave prop-

agation. Anti-symmetric waves in a three-layered elastic plate are given a special

attention. The obtained results are compared with two well known approximations,

including Tiersten’s thin-skin formulation and the Timoshenko theory.

Dispersion of elastic waves for the unbounded three-layered isotropic sandwich plate

under heavy fluid loading is analyzed in Sorokin [2004]. However, alternatives to

the full 3D hydro-elasticity are also studied. In particular, it is demonstrated that

simplified structural theories give pretty accurate estimations over certain parameter

ranges.

Among all the variety of vibration modes, the fundamental one originating from zero

frequency is usually of particular interest for various practical needs. This mode

involves the most important from the technical viewpoint long wave low frequency

range. However, according to the studies of Kaplunov and Markushevich [1993],

Kaplunov et al. [2002a], and many others Berdichevskii [1977], Tovstik [1992], the

long-wave behaviour of harmonics may be also very relevant in case of more advanced

applications, including in particular modelling of resonators and other acoustic de-

vices.
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The asymptotic methodology is very powerful in dynamics of thin elastic structures,

e.g. see the monographs Goldenveizer [1976], Kaplunov et al. [1998], Berdichevsky

[2009], Aghalovyan [2015], Le [2012]. It plays a central role in the considerations

within the thesis and is reviewed in the next section. Here, as an example we only

mention the paper by Lutianov and Rogerson [2010], analysing long-wave motions in

three-layered isotropic plate and deriving the associated 2D asymptotic models. It is

noted that the asymptotic governing equations for a three-layered plate are similar

to those for a single layer in case of both low- and high-frequency motions.

The asymptotic methodology has been more recently adapted for structures with

high contrast properties, see Berdichevsky [2010], Tovstik and Tovstik [2017], Boutin

and Viverge [2016], Kaplunov et al. [2017a,b], Prikazchikova et al. [2020] and Lee

and Chang [1979], Horgan [1998], Ryazantseva and Antonov [2012], Viverge et al.

[2016], Boutin and Viverge [2016], Berdichevsky [2010], Liu and Bhattacharya [2009],

Tovstik and Tovstik [2017]. In particular, in Kaplunov et al. [2017a] multi-parametric

analysis of a three-layered symmetric plate was developed taking into account the

effect of small-large ratios of thickness, densities and stiffness of the layers. The

condition on the aforementioned ratios are derived ensuring the smallest shear cut-

off to be asymptotically close to zero, see Kaplunov et al. [2016, 2019b]. In this case

the Kirchhoff plate theory is valid over a rather restricted domain. This motivates
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deriving of two-mode approximations which contains both the fundamental bending

mode and lowest shear harmonic. There are some setups of contrasting problem

parameters resulting in non-uniform asymptotic behaviour, e.g. see Kaplunov et al.

[2017a] considering a plane problem for a symmetric sandwich plate. In this case, the

associated asymptotic behaviour appears to be composite, i.e. it is valid only over

narrow non-intersecting vicinities of zero and lowest cut-off frequencies.

It is worth noting that the cut-off frequencies of three-layered plate correspond to

the eigen frequencies of three-component elastic rod, e.g. see Kaplunov et al. [2016]

and Kaplunov et al. [2019b] dealing with multi-component structures.

Further insight into multi-parametric behaviour, investigated within the plane-strain

framework in Kaplunov et al. [2017a], has been developed for its less technical anti-

plane counterpart in Prikazchikova et al. [2020] concerned with the antisymmetric

vibration of a three-layered plate. This formulation does not assume a fundamental

mode. In this case wave propagation takes place above the lowest cut-off with an

asymptotically small value. In addition to polynomial approximations to full dis-

persion equations, the partial differential equations corresponding to the long-wave

low-frequency limit were presented.
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We specially remark on the paper Liu and Bhattacharya [2009] dealing with elas-

tic wave propagation in a sandwich composed of two stiff face-plates and a heavy

compliant core. In this paper the wave equations are transformed to a Hamiltonian

system tackled by the transfer matrix technique. The long-wave limit is studied in

great detail, including the fundamental vibration mode.

Another recent important paper by Tovstik and Tovstik [2017] considers highly het-

erogeneous material, including laminates. The cases in which neither Kirchhoff-Love

nor Timoshenko - Reissner theories are applicable are highlighted.

1.2 Asymptotic methods for thin elastic structures

The asymptotic derivation of 2D static equations for thin plates and shells starting

from 3D equilibrium equations in linear elasticity originated from pioneering contri-

butions by Friedrichs and Dressler [1961], Goldenveizer [1966, 1980], Reiss and Locke

[1961], Reissner [1963] and Aksentian and Vorovich [1963].

Similar approach can be adapted to low-frequency dynamics, e.g. see Goldenveizer

et al. [1993] and references therein along with more recent papers by Pichugin and

Rogerson [2002a] and Kaplunov et al. [2000b] that focus on pre-stressed plates.
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Asymptotic methods can be also implemented over the high-frequency domain, in-

cluding both short-wave and long-wave limits. In this case, the high frequency ap-

proximation in contrast to more conventional low-frequency one demonstrates sinu-

soidal variation across the thickness of the structure, see Kaplunov et al. [1998]. For

short wave approximations a typical wavelength is of thickness order, while for long-

wave approximations it is greater than the thickness. The general classification for

the asymptotic approximation in dynamic structures is presented in Kaplunov et al.

[1998], see also Beresin et al. [1995].

In various setups this includes anisotropic structures (Kaplunov et al. [2000a]), pre-

stressed structures (Pichugin and Rogerson [2001, 2002b], Kaplunov et al. [2000b]),

high-frequency long-wave modes (Kaplunov et al. [2005], Gridin et al. [2005]), fluid

structure interaction (Kaplunov and Markushevich [1993]), layered structures (Lu-

tianov and Rogerson [2010], Ryazantseva and Antonov [2012], Craster et al. [2014],

Lashhab et al. [2015], Nolde et al. [2004] and structures with non-classical boundary

conditions along faces (Kaplunov et al. [2000a], Kaplunov and Nolde [2002], Rogerson

et al. [2007], Nolde and Rogerson [2002]). As an example of high-frequency short-

wave analysis we again mention Kaplunov et al. [1998] along with the generalisation

to a pre-stressed plate reported in Kaplunov et al. [2002b] as well as Rogerson et al.

[2004] treating a longitudinally inhomogeneous cylindrical shell.
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For example, Pichugin and Rogerson [2002a] implement the asymptotic technique for

examining flexural plate motion near the cutoff frequencies of a pre-stressed incom-

pressible elastic plate. Acoustic radiation and forced thickness vibrations in a fluid

loaded elastic layer is studied in Kaplunov and Markushevich [1993]. The considera-

tion in the cited paper starts from 1D equation of motion governing long-wave high-

frequency vibration taking into account radiation into the fluid. 2D equations of mo-

tion are derived in the paper by Kaplunov et al. [2002a] dealing with high-frequency

long-wave vibrations of a thin elastic shell with clamped faces. Similar asymptotic

approach is applied for analysis of high-frequency long-wave trapped modes in the

paper by Kaplunov et al. [2005], analysing linear isotropic elastic plates and rods.

Asymptotic analysis of initial and boundary conditions is particularly sophisticated

and important. It is remarkable, that the majority of the publication on the subject

are focused on the derivation of the differential equations of motion, overlooking the

impact of initial and boundary conditions. Asymptotic treatment of the boundary

conditions usually starts from the properly adapted Saint-Venants principle express-

ing a rapid decay of self-equilibrated edge data, e.g. see Goldenveizer [1976, 1998],

Gregory and Wan [1984] and Gregory and Wan [1985]. The decay conditions for a

semi-infinite elastic strip play a key role in the implementation of the Saint-Venant’s
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principle. Initially established for statics, see Gregory and Wan [1984] and Gusein-

Zade [1965], these conditions later on were extended to dynamics Babenkova and

Kaplunov [2004, 2005].

Superposition of high-frequency long-wave approximations along with more classical

low-frequency long-wave ones has to be investigated in order to establish the initial

conditions in 2D plate theories, see Kaplunov et al. [2006] and Nolde [2007]. Publi-

cations by Goldenveizer et al. [1993], Popescu and Hodges [2000], Nolde et al. [2018],

Stephen [1981, 2006], Berdichevskii [1979], Berdichevskii and Starosel’skii [1983], Le

[2012] and Elishakoff et al. [2015] are aimed at higher order low-frequency analy-

sis applied to justification and refinement of ad-hoc Timoshenko-Reissner structural

theories.

We also mention the concept of composite expansions assuming asymptotic behaviour

only at distinct limiting cases without an emphasis on less important intermediate

regions, e.g. see Van Dyke [1975] and Andrianov et al. [2013]. Recently, composite

wave models have been constructed for thin and periodic structures in Erbaş et al.

[2018b, 2019] and Colquitt et al. [2019].

Finally, we mention a series of fresh contributions concerned with long-wave asymp-

totic analysis in statics and dynamics of elastic coatings Aghalovyan [2015], Dai
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et al. [2010], Kaplunov et al. [2018, 2019c], Chebakov et al. [2016]. These publica-

tions study thin structures modelling elastic coatings and result in the derivation

of effective boundary conditions or elastic foundation models, see also Kudish et al.

[2020, 2021]. Here we reiterate that the original problem in mechanics of thin-walled

bodies is formulated for traction free (or loaded) faces, but not for clamped ones,

see Erbaş et al. [2018a]. In the latter case, also corresponding to contact problems,

low-frequency extensional modes can only be observed for a sliding contact. Other

types of low-frequency modes appear only over the high-frequency domain.

1.3 Objectives and outline of the thesis

The thesis deals with low-frequency long-wave vibrations of elastic layered plates

composed of the layers with distinct geometric and material properties. The main

inspiration for the developed research is due to the possibility of extra low-frequency

shear modes and asymptotic analysis of the associated dynamic phenomena, including

two-mode low-frequency behaviour of strongly inhomogeneous laminates. The thesis

is aimed at elucidation of the effect of high contrast in problem parameters on the

peculiarities of low-frequency long-wave motions.
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In this work we insert asymmetry in the formulation of Prikazchikova et al. [2020],

considering antiplane shear of a symmetric three-layered plate, resulting in a two-

mode low-frequency behaviour. The low-frequency shear mode studied in the cited

paper now interacts with the fundamental one, propagating with zero cut-off fre-

quency. For a symmetric plate these two modes are separated from each other,

making possible to analyse the low-frequency shear mode without the reference to

the fundamental one.

The observed two-mode phenomena obviously occur only under certain limitations

on the problem parameters; i.e. this happens only when the smallest cut-off tends

to zero at the limit in which the ratios of stiffnesses, densities or thicknesses of the

layers take small or large values.

In what follows, we deal with the two-mode long-wave low-frequency approximations

of the full dispersion relation for shear waves, similarly to Kaplunov et al. [2017a], but

for a simpler scalar problem. This is promising for the deeper insight in dynamics of

high-contrast layered structures, including not only asymptotic considerations of the

dispersion relation, but also the derivation of the associated equations of motions.

The algebra in the thesis is obviously more involved than that in Prikazchikova et al.

[2020], since the plate motion now cannot be split into symmetric and antisymmetric

components.
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The dissertation is organised as follows. The introductory Chapters 1 and 2 contain

a literature review and general relations in linear elasticity, respectively.

The Chapter 3 is concerned with the toy problem for a two-layered plate with mixed

boundary conditions along the faces and the conditions of a perfect contact along the

interface. The stiffness of the lower layer is assumed to be much greater than that of

the upper layer. The ratio of the densities of these layers is considered to be of the

same order. This type of contrast is adapted in all the forthcoming chapters apart

from Chapter 6. Both shortened dispersion relation and associated 1D equation of

motion are derived. They govern long-wave low-frequency antiplane shear vibrations

with the smallest shear cut-off frequency. As might be expected, the obtained results

are in agreement with the developments in Prikazchikova et al. [2020], dealing with

the low-frequency antisymmetric (with respect to the midplane) motion of a three-

layered plate with traction free faces.

In Chapter 4 we generalise the approach developed in Chapter 3, see also Kaplunov

et al. [2017a] and Prikazchikova et al. [2020] for antiplane shear of a three-layered

asymmetric laminate with traction free faces. We restrict ourselves to the high con-

trast scenario in which the outer layers are stiff, while the inner one is relatively

soft; in doing so, we start from the assumptions on the contrast parameters, adapted

in the previous chapter. The formulated scalar problem seems to be the simplest
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example in structural mechanics supporting a two-mode long-wave low-frequency be-

haviour involving both the fundamental mode and lowest shear harmonic. In this

chapter we derive and analyse the full transcendental dispersion relation only. It is

shown that the leading order shortened polynomial equation can be factorised into

two ones corresponding to the fundamental mode and the lowest shear harmonic.

The latter equation also approximates a slow quasi-static (and static at zero fre-

quency) decay below the smallest cut-off frequency, when the lowest shear harmonic

is still evanescent. In spite of asymmetry of the problem, the factorisation of the

shortened dispersion relation takes place due to a ’weak’ coupling of two retained

modes, supported by the considered high contrast. Numerical comparison of the full

and two-mode shortened polynomial dispersion relations are presented.

The Chapter 5 is the central for the thesis. In this chapter we first use a preliminary

insight originating from the asymptotic dispersion analysis in the previous chapter

for deriving 1D equations of motion generalising the technique in Prikazchikova et al.

[2020], see also earlier publications Goldenveizer et al. [1993], Kaplunov et al. [1998],

oriented to single layer elastic structures. The derived fourth order 1D operator is also

factorised into two second-order ones corresponding to the fundamental mode and

the lowest shear harmonic. As above, the operator governing the harmonic describes

a decay below the cut-off. In addition, by the long-term tradition for elastic plates



Chapter 1. Introduction 19

and shells, e.g. see Goldenveizer [2014], the obtained equations are also presented in

terms of stress resultants, stress couples and also the average displacement and the

angle of rotation.

Apparently for the first time in mechanics of layered structures, we implement the

Saint-Venants principle, e.g. see Love [2013], combined with asymptotic considera-

tions, taking into account high contrast, for extending the powerful procedures estab-

lished for homogeneous plates and shells, e.g. see Goldenveizer [1976], Gregory and

Wan [1984, 1985], Goldenveizer [1998]. We begin with the static decay conditions

for a semi-infinite three-layered strip subject to homogeneous boundary conditions

along the faces and prescribed anti-plane shear stresses at the edge, see for example

Gregory and Wan [1984], Gusein-Zade [1965], Babenkova and Kaplunov [2004]. In

contrast to the previous considerations, we expect a strong decay of the boundary

layer, i.e. localisation of the stress field over a narrow edge vicinity. In this case

slowly decaying solutions, characteristic of high-contrast laminates, e.g. see Horgan

[1998], are not counted as boundary layers.

Two decay conditions are formulated in this chapter. The first of them is expresses

the self-equilibrium of the prescribed shear stress in agreement with the classical

Saint-Venants principle. The second one is of asymptotic nature and has no obvious

counterparts within the non-contrast setup. This condition is compared with the
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exact Laplace transform solution for a symmetric plate. The decay conditions im-

mediately result in the sought for boundary conditions at the edge of a finite length

three-layered plate, similarly to Babenkova and Kaplunov [2003] and many others.

In Chapter 6 we study another type of high contrast, for which the two stiff outer

layers are assumed to be much thinner than a soft inner one. In addition, we con-

sider a greater than before contrast in densities of the layers. We derive two-mode

shortened approximations of the full dispersion relation, obtained in the Chapter 4.

It is shown that in contrast to the consideration in that chapter, the derived two-

mode approximation is not uniformly valid. It’s range of validity consists of two non

overlapping vicinities of zero and the smallest shear cut-off frequencies. As before,

the asymptotic results are compared numerically with the exact ones. A clear gap

within the validity range of the two-mode polynomial approximation is observed in

the plotted graphs. The obtained scaling may be applied to the derivation of a 1D

equation of motion corresponding to the parameter setup studied in this chapter.

In Chapter 7 the conclusions of the thesis are briefly summarised along with several

suggestions for a possible follow-up programme.

The results of the thesis were partly published in the publications Alkinidri et al.

[2019, 2020], Kaplunov et al. [2021], written in collaboration with the supervisory
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team.



Chapter 2

Governing equations

The basic relations in continuum mechanics are briefly addressed. The constitutive

relations in linear elasticity are written down. 2D equations of motion studied in

what follows are presented.

22
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2.1 Deformation, stress tensor and balance of lin-

ear momentum

Consider a continuum medium that undergoes deformation. Let u(x1, x2, x3, t) be a

small displacement vector of a material point, where t represents time and u1,u2, u3

are its Cartesian components. This vector can be written as

u = uivi, (2.1)

where vi, i = 1, 2, 3 are unit vectors along Cartesian axis and summation over re-

peated index is assumed. It is emphasised that the summation convention is only

assumed within this chapter and is not adopted throughout the remaining thesis. In

this case the symmetric second order infinitesimal strain tensor ε has the components,

e.g. see Spencer [1988]

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3. (2.2)

We also consider the surface traction vector τn, which defines the force per unit area

across a surface with a unit outward normal n. The traction components τn
j serve to
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define the stress tensor σ using the formula

τn
i = σjinj. (2.3)

Along with the above mentioned strain tensor, the latter tensor plays a fundamental

role in a linear elastic model, adapted in this thesis.

Now consider an elastic body occupying a closed region D with the boundary T

having an outward unit normal n. Then the law of conservation of linear momentum

is expressed in the form, e.g. see Spencer [1988]

∫∫
T
τn
i dA +

∫∫∫
D
ρbidV =

∫∫∫
D
ρ
∂2ui

∂t2
dV, (2.4)

where bj are the components of the body forces per unit mass acting on the particles

in D, ρ is density of the elastic material and dA and dV denote area and volume

differentials, respectively.

In the left hand side the surface integral can be transformed into a volume one using

the divergence theorem, see Spencer [1988]. Substitution of (2.3) into (2.4) together
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with aforementioned observation results in

∫∫∫
D

(
∂σji

∂xj
+ ρbi – ρ

∂2ui

∂t2

)
dV = 0. (2.5)

Since relation (2.5) must hold in any part D of the elastic body, we obtain the

following equation

∂σji

∂xj
+ ρbi = ρ

∂2ui

∂t2
, (2.6)

corresponding to the equation of motion in linear elastodynamics.

2.2 Stress and strain relations for homogeneous

isotropic linearly elastic solid

The linear relations between the components of the stress and strain tensors can be

sought as a natural generalisation of Hooke’s law in the one-dimensional case. In the

general case they can be written as

σij = Cijklεkl, (2.7)
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where Cijkl are the components of the fourth order elasticity tensor, satisfying the

identities

Cijkl = Cjikl = Cklij = Cijlk. (2.8)

The medium is called homogeneous if all the coefficients Cijkl are constants. In case

of elastic isotropy constants Cijkl can be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.9)

where λ and µ are Lame elastic constants, e.g. see Achenbach [2012] and δij is

Kronecker delta with δij = 0 for i 6= j and δij = 1 if i = j.

Expression (2.9) can be inserted into equation (2.7) leading to

σij = λδijεkk + 2µεij. (2.10)

The latter are usually referred to as the constitutive equations for an isotropic linear

elastic solid.
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2.3 Equations of Motion

2.3.1 1D motion

Consider first the components of the stress tensor depending only on one spatial

variable x1. Then the equations of motion reduce to

∂σ1i

∂x1
+ ρbi = ρ

∂2ui

∂t2
, i = 1, 2, 3. (2.11)

In particular, for the longitudinal 1D motion we have i = 1 in the above equation.

2.3.2 2D motion

In case of two-dimensional problems, the components of stress tensor and forces of

body are dependent on two variables, e.g. x1 and x2. Therefore, the equations of

motion can be obtained from (2.6) by setting ∂
∂x3

= 0. Thus, we can separate the

system of equations (2.6) into two uncoupled systems as:

∂σ31

∂x1
+
∂σ32

∂x2
+ ρb3 = ρ

∂2u3

∂t2
, (2.12)
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and

∂σ11

∂x1
+
∂σ12

∂x2
+ ρb1 = ρ

∂2u1

∂t2
,

∂σ21

∂x1
+
∂σ22

∂x2
+ ρb2 = ρ

∂2u2

∂t2
.

(2.13)

Motion, corresponding to the displacement u3(x1, x2, t) is known as the antiplane or

out of plane motion, while the displacements u1 and u2 are associated with plane

strain deformation.

In what follows we study the antiplane motion, starting from the equation (2.12),

where we can use u instead of u3 without ambiguity. The stress components of

interest are expressed through the Hooke’s Law as

σ13 = µ
∂u

∂x1
, σ23 = µ

∂u

∂x2
. (2.14)

Therefore, in absence of body forces, the scalar wave equation for u(x1, x2, t) becomes

∂2u

∂x2
1

+
∂2u

∂x2
2

=
1

c2
2

∂2u

∂t2
, (2.15)
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where c2 =
√

µ
ρ is the shear wave speed; we also remark that compression wave speed

is given by c1 =
√

λ+2µ
ρ .

For harmonic motions we have

u(x1, x2, t) = U(x1, x2)eiωt, (2.16)

where ω denotes the angular frequency. Then (2.15) can be re-written as

∂2U

∂x2
1

+
∂2U

∂x2
2

+
ω2

c2
2

U = 0, (2.17)

where U(x1, x2) is the magnitude of the out of plane displacement.

2.4 Concluding remarks

The presented fundamental relations including 2D equations for antiplane motion

can be immediately adapted for the analysis of dynamic antiplane shear of layered

laminates exposed in the subsequent chapters of the thesis. Extra basic formulae in

linear elasticity, i.e. formulations of boundary-value problems as well as interfacial

conditions for a perfect contact are introduced due to course below.



Chapter 3

Two-layered plate

Anti-plane dynamic shear of two-layered laminate is analysed for Neumann and De-

richlet homogeneous boundary conditions along the upper and lower faces, respec-

tively. The high contrast in stiffnesses and densities of the layers is considered; in

doing so, the thicknesses of the layers are assumed to be of the same order. It is

shown that for the studied contrast setup the value of the lowest cut-off frequency

tends to zero. For this mode shortened dispersion relations and associated 1D equa-

tions of motion are derived. They appear to be valid over the whole low-frequency

30
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range. Numerical data illustrating comparisons of exact and asymptotic results are

presented.

3.1 Statement of the problem

h2

h1

x1

x2

Figure 3.1: Two-layered laminate

Consider dynamic anti-plane shear of a two-layered laminate with the thicknesses of

the upper and lower layers denoted by h1 and h2, respectively, see Figure 3.1. It is

assumed that the layers are linearly elastic and isotropic.

Then the equations of motion in Cartesian coordinates x1, x2 can be written as

µq∆uq = ρquq,tt (3.1)

where uq (q = 1, 2) are out of plane displacements of q–th layer, t - time, ∆ =

∂2

∂x2
1

+
∂2

∂x2
2

is 2D Laplacian, µq is Lame parameters and ρq is mass density.
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The continuity conditions along the interface between the layers are

u1 = u2 at x2 = 0, (3.2)

σ1
32 = σ2

32 at x2 = 0, (3.3)

where σ
q
32 are relevant shear stresses. Here and below

σ
q
32 = µq

∂uq

∂x2
. (3.4)

We consider mixed fixed-free boundary conditions along the faces in the form

σ1
32 = 0 at x2 = h1, (3.5)

u2 = 0 at x2 = –h2. (3.6)

3.2 Dispersion relation

We seek solutions of the formulated above problem in the form of the travelling wave

uq = fq(x2)ei(kx1–ωt), q = 1, 2, (3.7)
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where k is the wave number and ω is the frequency. Substituting the latter into

equations of motion (3.1) we arrive at

∂2fq

∂x2
2

+ fq

(
ω2

c2
2q

– k2

)
= 0, (3.8)

where c2q =
√
µq/ρq. As a result, we obtain the functions fq in the form

fq(x2) = Aq cosh

(√
k2 –

ω2

c2
2q

x2

)
+ Bq sinh

(√
k2 –

ω2

c2
2q

x2

)
. (3.9)

Now applying boundary conditions and continuity relations stated in the previous

section, we obtain a system of four equations in four unknowns A1, A2, B1, B2. This

system has a non-trivial solution provided

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 µ1φ1 0 –µ2φ2

1 0 –1 0

µ1φ1S1 µ1φ1C1 0 0

0 0 C2 –S2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.10)

where

Sq = sinh(φqhq), Cq = cosh(φqhq), (3.11)
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and

φq =

√
k2 –

ω2

c2
2q

, q = 1, 2. (3.12)

Equation (3.10) yields a dispersion relation in the form

µ2φ1
[
µ2φ2C1C2 + µ1φ1S1S2

]
= 0. (3.13)

The obtained dispersion relation can also be re-written in dimensionless form as

µα1 cosh(α1) cosh(α2h) + α2 sinh(α1) sinh(α2h) = 0, (3.14)

where

α1 =
√

K2 – Ω2, α2 =

√
K2 –

µ

ρ
Ω2. (3.15)

Non-dimensional frequency Ω and wavenumber K are introduced as

Ω =
ωh2

c22
, K = kh2, (3.16)
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with

h =
h1

h2
, µ =

µ2

µ1
, ρ =

ρ2

ρ1
, c2q =

√
µq

ρq
, q = 1, 2. (3.17)

Dispersion curves, computed from the dispersion relation above, are plotted in Figures

3.2 and 3.3 for non-contrast and contrast cases. Due to a contrast in density and

stiffness of the layers, the first harmonic cut-off in Figure 3.3 is less than that in

Figure 3.2.

Ω

K

Figure 3.2: Dispersion curve for (3.14) for h = 1.0, µ = 0.6 and ρ = 3.0.
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Ω

K

Figure 3.3: Dispersion curves (3.14) for h = 1.0, µ = 0.014 and ρ = 0.32.
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3.3 Asymptotic approximations

Here we study the parameter setup for which

µ� 1, h ∼ 1, ρ ∼ µ. (3.18)

The equation for cut-off frequency follows from the dispersion relation (3.14) at K = 0.

It is given by

tan

(
hΩ

√
µ

ρ

)
tan Ω =

√
µρ. (3.19)

The chosen set of parameters (3.18) corresponds to the so-called global low-frequency

regime, see for example Kaplunov et al. [2017a]

ρ� h� µ–1, (3.20)

giving for leading order for a single low-frequency cut-off

Ω ≈
√
ρ

h
� 1. (3.21)
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Consider the long-wave low-frequency limit

K� 1, Ω� 1. (3.22)

Then, we expand trigonometric functions in (3.14) into asymptotic series, resulting

in the polynomial dispersion relation

γ0 + K2γ1 + Ω2γ2 + K2γ3 + Ω4γ4 + Ω2K2γ5 + ... = 0, (3.23)

where γi are coefficients depending on dimensionless problem parameters ρ,µ, h. In

the polynomial dispersion relation above

γ1 =
h2µ

2
+ h +

µ

2
,

γ2 =
h4µ

24
+

h3

6
+

h2µ

4
+

h

6
+

µ

24
,

γ3 = –
h4µ2

12ρ
–

h3µ

3ρ
–

h2µ2

4ρ
–

h2µ

4
–

hµ

6ρ
+

h

6
–
µ

12
,

γ4 = –
h2µ2

2ρ
–

hµ

ρ
–
µ

2
,

γ5 =
h4µ3

24ρ2
+

h3µ2

6ρ2
+

h2µ2

4ρ
+

hµ

6ρ
+

µ

24
.

(3.24)
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At leading order these coefficients are given below

γ0
1 = h,

γ0
2 =

1

6

(
h3 + h

)
,

γ0
3 =

–2h3 – hρµ – h

6ρµ
,

γ0
4 = –

h

ρµ
,

γ0
5 =

h3 + hρµ

6ρ2
µ

,

(3.25)

where ρµ = ρ/µ ∼ 1.

Thus, for the chosen contrast we have

γ0 ∼ γ1 ∼ γ2 ∼ γ3 ∼ γ4 ∼ γ5 ∼ 1,

leading to the shortened dispersion relation

µ

h
+ K2 –

µ

ρ
Ω = 0. (3.26)

The derived approximate dispersion relation for the long-wave low-frequency regime

demonstrates good agreement with the numerical implementation of the exact solu-

tion, see Figure 3.4. In this figure solid line denotes exact solution, while dashed one
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Ω

K

Figure 3.4: Dispersion curves (3.14)(solid line) and (3.26)(dotted lines) for h =
1.0, µ = 0.01 and ρ = 0.03.

corresponds to the shortened dispersion relation.
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3.4 Derivation of approximate equation of motion

First, scale longitudinal coordinate and time by

x1 =
h1√
µ
ξ1

and

t =
h1

c21
√
µ
τ ,

motivated by the asymptotic analysis of the associated dispersion relation. Also,

introduce the dimensionless transverse coordinate as

x2 = h1ξ21, 0 < x2 < h1,

x2 = h2ξ22 + h1, h1 < x2 < h1 + h2.

Then, displacements and stresses are

uq = h1vq, σ
q
13 = µq

√
µs

q
13, σ

q
23 = µ1s

q
23, q = 1, 2, (3.27)

where vq, s
q
13, s

q
23 assumed of O(1).
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Prior proceeding with asymptotic analysis re-write the governing equations above in

the form

∂σ
q
13

∂x1
+
∂σ

q
23

∂x2
– ρq

∂2uq

∂t2
= 0, (3.28)

σ
q
i3 = µq

∂uq

∂xi
, i, q = 1, 2.

In the dimensionless form the latter become

µ
∂s1

13

∂ξ1
+
∂s1

23

∂ξ21
– µ

∂2v1

∂τ2
= 0, (3.29)

and

∂s2
13

∂ξ1
+

1

h

∂s2
23

∂ξ22
–

1

ρµ

∂2v2

∂τ2
= 0, (3.30)

where ρµ = ρ/µ and

s2
23 =

1

µh

∂v2

∂ξ22
, s2

13 =
∂v2

∂ξ1
. (3.31)

The related continuity conditions are

v1|ξ21=1 = v2|ξ22=0 (3.32)
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and

s1
23|ξ21=1 = µs2

23|ξ22=0. (3.33)

Finally, the imposed mixed face boundary conditions are written as

s2
23|ξ22=1 = 0, v1|ξ12=0 = 0. (3.34)

Now, expand the dimensionless quantities vq and s
q
j2 in asymptotic series in small µ.

We get

vq = vq,0 + µvq,1 + · · · , (3.35)

s
q
j2 = s

q
j2,0 + µs

q
j2,1 + · · · , q = 1, 2, j = 1, 2.
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At leading order we have

∂s1
23,0

∂ξ21
= 0,

s1
13,0 =

∂v1,0

∂ξ1
, s1

23,0 =
∂v1,0

∂ξ21
,

∂s2
13,0

∂ξ1
+

1

h

∂s2
23,0

∂ξ22
–

1

ρµ

∂2v2,0

∂τ2
= 0,

s2
13,0 =

∂v2,0

∂ξ1
,

∂v2,0

∂ξ22
= 0.

v1,0|ξ21=1 = v2,0|ξ22=0

s1
23,0|ξ21=1 = s2

23,0|ξ22=0

s2
23,0|ξ21=1 = 0.

(3.36)

Thus, we have from the (3.36) in the equations above

v2,0 = w(ξ1, τ). (3.37)

Then, the rest of the quantities above is expressed in terms of w(ξ1, τ) becoming

v1,0 = ξ21w(ξ1, τ),

s1
13,0 = ξ21

∂w

∂ξ1
, s2

13,0 =
∂w

∂ξ1
,

s1
23,0 = w(ξ1, τ), s2

23,0 = (1 – ξ22)w,

(3.38)
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with w satisfying the 1D equation

∂2w

∂ξ2
1

–
1

h
w –

1

ρµ

∂2w

∂τ2
= 0. (3.39)

In terms of the original variables we have for u2(x1, t) ≈ w(x1, t)

∂2u2

∂x2
1

–
ρ2

µ2

∂2u2

∂t2
–

µ1h1

µ2h1h2
u2 = 0. (3.40)

Now insert u2 = ei(kx1–ωt) into the last equation having

k2 –
ρ2

µ1
ω2 +

µ1

µ2h1h2
= 0. (3.41)

This is the same as shortened dispersion equation (3.26), presented in dimensionless

form.
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3.5 Concluding remarks

In conclusion of this chapter we mention that all of the obtained results are in agree-

ment with the consideration in Prikazchikova et al. [2020], dealing with antisymmetric

antiplane shear of a three-layered laminate. In the latter case the even out of plane

displacement takes a zero value along the middle line. As a result, the mixed bound-

ary conditions (3.5) and (3.6), adapted in this chapter, are satisfied for a three-layered

symmetric structure as well.

Thus, the problem considered in this chapter is in fact a toy one aiming at establishing

the general methodology implemented in what follows for tackling a novel setup of

an asymmetric three-layered laminate. In particular, first we study the long-wave

low-frequency asymptotic limit of the full dispersion relation. Then, the scaling

determined are applied for the derivation of the associated 1D shortened equations

of motion. In this case, in contrast to one-mode asymptotic analysed in this chapter,

the rest of the thesis is concerned with two-mode ones. The latter also involve the

fundamental vibration mode in addition to the lowest shear harmonic considered

above.



Chapter 4

Dispersion of antiplane shear

waves in a three-layered plate

The anti-plane shear of a three-layered laminate of an asymmetric structure is con-

sidered. The chosen geometry of the laminate assumes coupling its symmetric and

anti-symmetric vibration modes, which is not a feature of a symmetric structure, see

Prikazchikova et al. [2020]. As in the previous chapter, high contrast in mechanical

properties of the inner and outer layers is assumed. A specific contrast setup sup-

porting an asymptotically small lowest shear cut-off frequency is studied. Traction

free boundary conditions are imposed on the faces. The conditions of the perfect

47
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contact between layers are considered.

The exact dispersion relation of the problem is obtained. Two-mode long-wave low-

frequency approximation of this dispersion relation incorporating both the funda-

mental mode and the first harmonic is derived. The accuracy of the derived approx-

imations is tested by numerical comparison with the exact solution.

4.1 Statement of the problem

Consider a three-layered asymmetric laminate with isotropic layers of thickness h1,

h2 and h3, see Figure 4.1. The Cartesian coordinate system (x1, x2) is chosen in such

a way that the axis x1 goes through the mid-plane of the core layer. Two outer layers

are assumed to have the same material parameters.

For the antiplane shear deformation the equations of motion for each layer can be

written as

∂σl
13

∂x1
+
∂σl

23

∂x2
– ρl

∂2ul

∂t2
= 0, l = 1, 2, 3, (4.1)

with

σl
i3 = µl

∂ul

∂xi
, i = 1, 2, (4.2)
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x1

x2

h1

h2

h3

0

Figure 4.1: A three-layered asymmetric plate

where σl
i3 are shear stresses, ul = ul(x1, x2) are out of plane displacements, t is time,

µl are Lamé parameters, and ρl are mass densities. As we have already mentioned,

µ1 = µ3 and ρ1 = ρ3.

The continuity and traction-free boundary conditions are given by

u1 = u2, σ1
23 = σ2

23 at x2 =
h2

2
,

u2 = u3, σ2
23 = σ3

23 at x2 = –
h2

2
,

(4.3)
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and

σ1
23 = 0 at x2 =

h2

2
+ h1,

σ3
23 = 0 at x2 = –

h2

2
– h3,

(4.4)

respectively.

4.2 Dispersion relation

We proceed in a way, similar to two-layered plate, although in this case we need to

take into account three layers. We seek solutions of the formulated above problem

(4.1)-(4.4) in the form of the travelling wave

uq = fq(x2)ei(kx1–ωt), q = 1, 2, (4.5)

where k is the wave number and ω is the frequency. Substituting the latter into

equations of motion (4.1) we arrive at

∂2fq

∂x2
2

+ fq

(
ω2

c2
2q

– k2

)
= 0, (4.6)
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where c2q =
√
µq/ρq, q = 1, 2, 3. As a result, we obtain the functions fq in the form

fq(x2) = Aq cosh

(√
k2 –

ω2

c2
2q

x2

)
+ Bq sinh

(√
k2 –

ω2

c2
2q

x2

)
, q = 1, 2, 3. (4.7)

Using boundary conditions (4.4) and continuity relations (4.3) we obtain a system

of six equations in six unknowns Aq, Bq, q = 1, 2, 3. This system has a non-trivial

solution provided the following determinant is zero

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ1φ1S1 µ1φ1C1 –µ2φ2S2 –µ2φ2C2 0 0

0 0 –µ2φ2S2 µ2φ2C2 µ1φ1S1 –µ1φ1C1

C1 S1 –C2 –S2 0 0

0 0 C2 –S2 –C2 S1

µ1φ1SS1 µ1φ1CC1 0 0 0 0

0 0 0 0 µ1φ1SSS1 µ1φ1CCC1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4.8)

where

Sq = sinh(φq(
h2

2
)), Cq = cosh(φq(

h2

2
)),

SSq = sinh(φq(
h2

2
+ h1)), CCq = cosh(φq(

h2

2
+ h1)),

SSSq = sinh(φq(
–h2

2
– h3)), CCCq = cosh(φq(

–h2

2
– h3)),

(4.9)
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and

φq =

√
k2 –

ω2ρq

µq
q = 1, 2. (4.10)

Equation (4.8) provides the dispersion relation which can be represented in the ex-

plicit form

µ2 cosh(h3φ1)

[
µ1φ1φ2 cosh(h2φ2) sinh(h1φ1) + µ2φ2

2 cosh(h1φ1) sinh(h2φ2)

]
+

µ1 sinh(h3φ1)

[
µ2φ1φ2 cosh(h1φ1) cosh(h2φ2) + µ1φ1

2 sinh(h1φ1) sinh(h2φ2)

]
= 0

(4.11)

The obtained dispersion relation (4.11) can also be re-written in dimensionless form

as

µα1α2
(

tanh(h12α1) + tanh(h32α1)
)

+ µ2α2
2 tanh(α2)+

+ α1
2 tanh(h12α1) tanh(h32α1) tanh(α2) = 0

(4.12)

where

α1 =

√
K2 –

µ

ρ
Ω2, α2 =

√
K2 – Ω2, (4.13)
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and

K = kh2, Ω =
ωh2

c2
, µ =

µ2

µ1
, ρ =

ρ2

ρ1
,

h12 =
h1

h2
, h32 =

h3

h2
,

(4.14)

with c2 =
√
µ2/ρ2.

Dispersion relation (4.12) can be reduced to a simpler one for a symmetric sandwich

plate setting h1 = h3 and h2 = 2h̃2, e.g. see Prikazchikova et al. [2020]. Substituting

these into above and introducing new notation h = h1/h̃2 we obtain a dispersion

relation which can be factorised as

(
2µα2 + α1 tanh(α1h) tanh(α2)

)(
2µα2 tanh(α2) + α1 tanh(α1h)

)
= 0. (4.15)

The first and second aggregates in the left-hand side of (4.15) correspond to the

dispersion relations for symmetric and antisymmetric waves, respectively, i.e they

are

(
2µα2 + α1 tanh(α1h) tanh(α2)

)
= 0, (4.16)

and

(
2µα2 tanh(α2) + α1 tanh(α1h)

)
= 0. (4.17)
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We also present the formulae for displacements

u1 = 2βµα2 cosh

(
α1

(
h12 +

1

2
– ξ

))
,

u2 = β
(

(µα2 + α1) cosh
(
α1h12 – α2ξ +

α2

2

)
+(µα2 – α1) cosh

(
α1h12 + α2ξ –

α2

2

))
,

u3 =
β

2α1

(
–(µα2 – α1)2 cosh

(
α1

(
h12 –

1

2
– ξ

)
– α2

)

+(µα2 + α1)2 cosh

(
α1

(
h12 –

1

2
– ξ

)
+ α2

)

+(µ2α2
2 – α2

1) cosh

(
α1

(
h12 +

1

2
+ ξ

)
– α2

)

–(µ2α2
2 – α2

1) cosh

(
α1

(
h12 +

1

2
+ ξ

)
+ α2

))
,

(4.18)

where ξ = x2/h2 is dimensionless vertical coordinate and

β = A
(

(µα2 – α1) sinh
(
α1h12 –

α2

2

)
– (µα2 + α1) sinh

(
α1h12 +

α2

2

))–1
,

with A being an arbitrary constant.

As an example we also plot in Figure 4.2 and Figure 4.3 the variation of properly

normalised plate displacements ui/β (4.18) across the thickness calculated at cut-off

frequency (4.23), which takes the value Ω ≈ 0.18 for the same problems parameters

as in Figure 4.11. For the fundamental mode in Figure 4.2 we have from (4.12)
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K ≈ 0.13, whereas for the first harmonic in Figure 4.3 we get K = 0.

ξ

u

Figure 4.2: Displacement variations at the cut-off frequency Ω ≈ 0.18 for h12 =
1.0, h32 = 1.5, µ = 0.01, and ρ = 0.02, fundamental mode

ξ

u

Figure 4.3: Displacement variations at the cut-off frequency Ω ≈ 0.18 for h12 =
1.0, h32 = 1.5, µ = 0.01, and ρ = 0.02, first harmonic.
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The next series of the graphs, see Figures 4.4-4.7, nicely illustrate a gradual transition

from a high contrast setup to a more homogeneous one. At certain values of the

problem parameters, see Figures 4.6-4.7, the analysed eigenform cannot be visually

distinguished from a smooth one, characteristic of a single layer. We also note, that

the cut-off frequency in all these graphs grows as the contrast diminishes according

to the asymptotic considerations above. Similar illustrations could be also presented

for the stresses.

ξ

u

Figure 4.4: Displacement variations at the cut-off frequency Ω ≈ 0.32 for h12 =
1.0, h32 = 1.5, µ = 0.05, and ρ = 0.06, first harmonic.
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ξ

u

Figure 4.5: Displacement variations at the cut-off frequency Ω ≈ 0.54 for h12 =
1.0, h32 = 1.5, µ = 0.1, and ρ = 0.2, first harmonic.

ξ

u

Figure 4.6: Displacement variations at the cut-off frequency Ω ≈ 0.9 for h12 =
1.0, h32 = 1.5, µ = 0.8, and ρ = 0.9, first harmonic.
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ξ

u

Figure 4.7: Displacement variations at the cut-off frequency Ω ≈ 1.2 for h12 =
1.0, h32 = 1.5, µ = 1.0, and ρ = 2.0, first harmonic.

The related stresses are expressed as

σ1
23 = µα1α2β∗ sinh

(
α1

(
h12 – ξ +

1

2

))
,

σ2
23 = (µα2β∗)

(
µ2 cosh(h12α1) sinh

(
α2

(
1

2
– ξ

))

+µα1 sinh(h12α1) cosh

(
α2

(
1

2
– ξ

)))
,

σ3
23 = –β∗

((
µα2 cosh(α2) cosh(h12α1)

+ α1 sinh(α2) sinh(h12α1)
)(

(µα1) sinh

(
α1

(
h13 + ξ +

1

2

))))
,

(4.19)
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ξ

σ23

Figure 4.8: Normalized stresses σ23 computed from exact relations (4.19)

where ξ = x2/h2 and

β∗ =
(
µα2 cosh(h12α1) sinh

(α2

2

)
+ α1 cosh

(α2

2

)
sinh(h12α1)

)–1
(4.20)

4.3 Shortened dispersion relation

First, setting K = 0 in dispersion relation (4.12), we have for the cut-off frequencies

√
µρ

(
tan

(
h12

√
µ

ρ
Ω

)
+ tan

(
h32

√
µ

ρ
Ω

))
+ µρ tan (Ω)

– tan

(
h12

√
µ

ρ
Ω

)
tan

(
h32

√
µ

ρ
Ω

)
tan (Ω) = 0.

(4.21)
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Consider the contrast in the material parameters of the outer and core layers given

by

µ� 1, ρ ∼ µ, h12 ∼ 1, h32 ∼ 1. (4.22)

These formulae specify an asymmetric laminate with stiff outer layers and a soft

core. In this case, apart from usual zero cut-off (Ω = 0) we have an extra small one

approximated by

Ω ≈

√
(h12 + h32)ρ

h12h32
� 1. (4.23)

Hence, for the assumed contrast material properties we have two cut-offs over the

low frequency band. This is not the case for a non-contrast setup which allows only a

zero cut-off, corresponding to the fundamental symmetric mode. This observation is

illustrated numerically in Figure 4.9 and Figure 4.10 , where dispersion curves (4.12)

are plotted for both non-contrast and contrast setups.
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Ω

K

Figure 4.9: Dispersion curves (4.12) for h12 = 1.0, h32 = 1.5 and µ = 1.0 and
ρ = 2.0

Ω

K

Figure 4.10: Dispersion curves (4.12) for h12 = 1.0, h32 = 1.5 and µ = 0.01 and
ρ = 0.02.
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Next, expanding all trigonometric functions in (4.21) in asymptotic Taylor series at

Ω� 1 and K� 1 and assuming relations (4.22) to be valid, we derive a polynomial

dispersion relation, which can be written as

γ1K2 + γ2Ω2 + γ3K4 + γ4K2Ω2 + γ5Ω4 + γ6K6

+ γ7K4Ω2 + γ8K2Ω4 + γ9Ω6 + · · · = 0,

(4.24)

where

γ1 = µ (h12 + h32 + µ) ,

γ2 = –
µ2

ρ
(h12 + h32 + ρ) ,

γ3 = h12h32 –
µ

3

(
h3

12 + h3
32 + µ

)
,

γ4 =
2µ

3ρ

(
h3

12µ+ h3
32µ – 3h12h32 + µρ

)
,

γ5 = –
µ2

3ρ2

(
h3

12µ+ h3
32µ – 3h12h32 + ρ2

)
,

γ6 =
2µ

15

(
h5

12 + h5
32 + µ

)
–

h12h32

3

(
h2

12 + h2
32 + 1

)
,

γ7 = –
1

15ρ

(
6µ2

(
h5

12 + h5
32 + ρ

)
– 5h12h32

(
3h2

12µ+ 3h2
32µ+ 2µ+ ρ

))
,

γ8 =
µ

15ρ2

(
6µ
(

h5
12µ+ h5

32µ+ ρ2
)

– 5h12h32

(
3h2

12µ+ 3h2
32µ+ µ+ 2ρ

))
,

γ9 = –
µ2

15ρ3

(
2
(

h5
12µ

2 + h5
32µ

2 + ρ3
)

– 5h12h32

(
h2

12µ+ h2
32µ+ ρ

))
.

(4.25)
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At leading order coefficients γi ≈ γ0
i are given by

γ0
1 = (h12 + h32)µ,

γ0
2 = –

h12 + h32

ρµ
µ,

γ0
3 = h12h32,

γ0
4 = –

2h12h32

ρµ
,

γ0
5 =

h12h32

ρ2
µ

,

γ0
6 = –

h12h32

3

(
h2

12 + h2
32 + 1

)
,

γ0
7 =

h12h32

3ρµ

(
3h2

12 + 3h2
32 + ρµ + 2

)
,

γ0
8 = –

h12h32

3ρ2
µ

(
3h2

12 + 3h2
32 + 2ρµ + 1

)
,

γ0
9 =

h12h32

3ρ3
µ

(
h2

12 + h2
32 + ρµ

)
,

(4.26)

where ρµ = ρ/µ . From (4.26) we observe that γ1 ∼ γ2 ∼ µ, and γi ∼ 1, i =

3, . . . , 9. The leading order of each term in (4.24) can also be estimated for both the

fundamental mode and the lowest harmonic. This data is presented in Table 4.1.
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Order of γi Terms

Fundamental mode First harmonic

Ω2 ∼ µK2 Ω2
sh ∼ µ

γ1 ∼ µ γ1K2 µK2 µK2

γ2 ∼ µ γ2Ω2 µK2 µ

γ3 ∼ 1 γ3K4 µK4 µK4

γ4 ∼ 1 γ4K2Ω2 µK4 µK2

γ5 ∼ 1 γ5Ω4 µK4 µ

γ6 ∼ 1 γ6K6 µK6 µK6

γ7 ∼ 1 γ7K4Ω2 µK6 µK4

γ8 ∼ 1 γ8K2Ω4 µK6 µK2

γ9 ∼ 1 γ9Ω6 K6 µK

Table 4.1: Asymptotic behaviour at µ� 1, ρ ∼ µ, h12 ∼ h32 ∼ 1

As a result, the leading order shortened approximation, involving the fundamental

mode with a zero cut-off along with the lowest harmonic with the cut-off of order

O(
√
µ) given by (4.23), takes the form

γ0
1K2 + γ0

2Ω2 + γ0
3K4 + γ0

4K2Ω2 + γ0
5Ω4 + · · · = 0.
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The above equation can be factorised as

(
K2ρµ – Ω2

)(
h12h32

(
K2ρµ – Ω2

)
+ ρµµ(h12 + h32)

)
= 0. (4.27)

Therefore, for the fundamental mode and first harmonic we have

Ω2 = ρµK2 (4.28)

and

Ω2 =
ρµ

h12h32

(
µ(h12 + h32) + h12h32K2

)
, (4.29)

respectively. It is worth mentioning that approximation (4.28) for the fundamental

mode is valid over the whole low-frequency band K � 1, consequently, it does not

fail at the vicinity of the cut-off (4.23), leading to a uniform approximation, see also

Kaplunov et al. [2017a] concerned with a plane problem for three-layered symmetric

laminate.

A numerical comparison is shown in Figure 4.11 for the exact dispersion curves (4.12)

and approximations (4.28) and (4.29).
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Ω

K

Figure 4.11: Dispersion curves (4.12) (solid line) together with approximations
(4.28) and (4.29) (dotted lines) for h12 = 1.0, h32 = 1.5, µ = 0.01, and ρ = 0.02.

4.4 Asymptotic formulae for displacements and stresses

Lets introduce variables ξ2i (i = 1, 2, 3)

ξ21 =
x2

h1
–

h2

2h1
,

ξ22 =
x2

h2
+

1

2
,

ξ23 =
x2

h3
+

h2

2h3
+ 1,

(4.30)

where 0 < ξ2i < 1. On inserting

K = K∗
√
µ, Ω = Ω∗

√
µ, K∗ ∼ Ω∗ ∼ 1,
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we get at leading order,

u1 =

√
µ
√

K∗2 – Ω∗2ρµ–1

h12

(
K∗2 – Ω∗2

) , (4.31)

u2 =

√
µ
√

K∗2ρµ – Ω∗2ρµ–1
(

h12K∗2 – h12Ω∗2 – 2h12K∗2 + 2h12ξ22Ω∗2 + 2h12

)
2h12

(
K∗2 – Ω∗2

) ,

(4.32)

u3 =

√
µ
(

–h12K∗2 + h12Ω∗2 – 1
)√

K∗2ρµ – Ω∗2ρµ–1

h32

(
K∗2 – Ω∗2

) , (4.33)

σ1
23 =

√
µµ2

(
h12 – ξ21 + 1

2

)√
K∗2 – Ω∗2ρµ–1

h12
, (4.34)

σ2
23 =

µ3/2µ1

√
K∗2ρµ – Ω∗2ρµ–1

h12
, (4.35)

σ3
23 = –

µ3/2µ1

(
h12K∗2 – h12Ω∗2 + 1

)(
h32 + ξ23 + 1

2

)√
K*2ρµ – Ω∗2ρµ–1

h12
. (4.36)
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4.5 Evanescent waves

Now, setting Ω = 0, we deduce from (4.12) the static equation for K

K2
(
µ
(

tanh(h12K) + tanh(h32K)
)

+ µ2 tanh(K)+

+ tanh(h12K) tanh(h32K) tanh(K)
)

= 0.

(4.37)

We have an obvious root K = 0, associated with rigid body motion and another small

one, given by

K2 = K2
bl ≈ –

h12 + h32

h12h32
µ� 1. (4.38)

The latter is associated with slowly decaying boundary layers specific of high contrast

laminates only, e.g. see Horgan [1998].

Figure 4.13 demonstrates dispersion curves including that corresponding to an evanes-

cent wave for two sets of material parameters. In particular, Figure 4.12 is plotted

for a laminate without contrast, while Figure 4.13 corresponds to a laminate with

high contrast in material properties of the layers. The values of Ωsh and Kbl are

calculated using (4.23) and (4.38), respectively, for each set of parameters; here and

below the lowest shear cut-off frequency Ωsh is given by

Ωsh =

√
(h12 + h32)ρ

h12h32
. (4.39)
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It can easily be observed that for the laminate with no contrast these values are of

order 1, while for a high-contrast laminate they become small. In the case of Figure

4.12 the approximate values Kbl and Ωsh do not provide even a rough estimation of

the original values of these quantities, determined numerically.
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 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1.2 1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0

ImK ReK

Ω

Ωsh

Kbl

Figure 4.12: Numerical solution of dispersion relation (4.12) for h12 = 1.0, h32 =
1.5 and µ = 1.0 and ρ = 2.0
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0.2 0.1 0 0.1 0.2 0.3 0.4

ImK ReK

Ω

Ωsh

Kbl

Figure 4.13: Numerical solution of dispersion relation (4.12) for h12 = 1.0, h32 =
1.5 and µ = 0.01 and ρ = 0.02.

We also note that if K = 0 in (4.29) than we arrive at the expression for the cut-off

frequency (4.39), which is of order
√
µ. Alternatively, setting Ω = 0 in this equation,

we get (4.38) for K. Hence, asymptotic formula (4.29) is valid for both quasi-static

(Ω� √µ) and near cut-off (Ω ∼ K ∼ √µ) behaviour. Moreover, at
√
µ� K� 1 it

coincides at leading order with (4.28).
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Figure 4.14: Numerical solution of dispersion relation (4.12)(solid line) together
with asymptotic expansions (4.27) (dashed line) for h12 = 1.0, h32 = 1.5, µ = 0.01
and ρ = 0.02.

Figure 4.14 demonstrates a good agreement between two exact dispersion curves

calculated from transcendental relation (4.12) and polynomial approximation (4.27)

for the chosen set of parameters



Chapter 4. Dispersion in three-layered plate 72

4.6 Concluding remarks

For the chosen high contrast scenario, in which the smallest shear cut-off frequency

for a three-layered asymmetric laminate tends to zero, two low-frequency vibration

modes, including the fundamental one and the first harmonic, are observed. These

modes are evaluated from a shortened polynomial dispersion equation established

in this chapter. This dispersion equation appears to be uniformly valid over the

low-frequency range containing the first cut-off frequency.

Leading order asymptotic formulae for leading order displacements and stresses are

also presented. In addition, the lowest evanescent mode having a long-wave static

limit has been investigated in detail, including comparison of asymptotic and exact

results.

Numerical comparison with the solutions of the full dispersion relation demonstrates

a high accuracy of the derived two-mode asymptotic formula. The obtained explicit

results have a clear potential to be extended to other types of contrast, as well as

to plane vector problems. They also make an important preliminary insight to the

essence of dynamic behaviour of high-contrast layered structures prior deriving long-

wave partial differential models justifying which will be derived in the next chapter.



Chapter 5

Approximate equations of motion

and boundary conditions for a

three-layered plate

An asymmetric three-layered laminate with prescribed stresses along the faces is con-

sidered. The outer layers are assumed to be much stiffer than the inner one. The

same type of contrast as in the previous chapter is assumed. The focus is on long-

wave low-frequency anti-plane shear.

73
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The 1D equations of motion associated with the shortened dispersion relations de-

rived in the previous chapter are split into two second-order operators in line with the

factorisation of the mentioned dispersion relation. Asymptotically justified boundary

conditions are established using the Saint-Venant’s principle modified by taking into

account the high-contrast properties of the laminate.

5.1 Statement of the problem

Consider a three-layered asymmetric plate defined in the previous section, see Figure

4.1. Hence, the equations of motion can be written as (4.1) and (4.2). All the

notations and assumptions are the same as above. In particular, as we have already

mentioned, µ3 = µ1 and ρ3 = ρ1.
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The continuity and boundary conditions at the upper and lower faces are given by

(4.3) and

σ1
23 = F1 at x2 =

h2

2
+ h1,

σ3
23 = F3 at x2 = –

h2

2
– h3,

(5.1)

respectively. Here F1 and F3 are prescribed forces.
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5.2 Asymptotic derivation of 1D equations of mo-

tion

Introduce local dimensionless thickness variables ξ2i, i = 1, 2, 3 in such a way that

they vary from 0 to 1 across each layer, i.e.

ξ21 =
1

h1

(
x2 –

h2

2

)
,

ξ22 =
1

h2

(
x2 +

h2

2

)
,

ξ23 =
1

h3

(
x2 +

h2

2
+ h3

)
.

(5.2)

From (4.28) it follows that Ω ∼ K. At the same time, (4.29) implies that Ω ∼ K ∼

√
µ. In the latter case both (4.28) and (4.29) are valid. Motivated by this observation,

we introduce the scaling

x1 =
h2√
µ
ξ1, t =

h2

c22
√
µ
τ . (5.3)

Then, the displacements and stresses can be normalised as

uq = h2vq, σ
q
13 = µq

√
µS

q
13, σ

q
23 = µ2S

q
23, q = 1, 2, 3. (5.4)
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The dimensionless form of the equations in the previous section for layers 1 and 3

(q = 1, 3) can be written as

hq2
∂S

q
13

∂ξ1
+
∂S

q
23

∂ξ2q
–

hq2

ρµ

∂2vq

∂τ2
= 0, (5.5)

S
q
13 =

∂vq

∂ξ1
, (5.6)

µhq2S
q
23 =

∂vq

∂ξ2q
, (5.7)

while for layer 2 we get

µ
∂S2

13

∂ξ1
+
∂S2

23

∂ξ22
– µ

∂2v2

∂τ2
= 0, (5.8)

S2
13 =

∂v2

∂ξ1
, (5.9)

S2
23 =

∂v2

∂ξ22
. (5.10)

The continuity and boundary conditions become, respectively

v1
∣∣
ξ21=0 = v2

∣∣
ξ22=1, v2

∣∣
ξ22=0 = v3

∣∣
ξ23=1,

S1
23

∣∣
ξ21=0 = S2

23

∣∣
ξ22=1, S2

23

∣∣
ξ22=0 = S3

23

∣∣
ξ23=1,

(5.11)

and

S1
23

∣∣
ξ21=1 =

F1

µ2
= f1(ξ1, τ), S3

23

∣∣
ξ23=0 =

F3

µ2
= f3(ξ1, τ). (5.12)
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Now expand displacements and stresses into asymptotic series in small parameter µ

vq = v
q
0 + µv

q
1 + . . . ,

S
q
j3 = S

q
j3,0 + µS

q
j3,1 + . . . , q = 1, 2, 3; j = 1, 2.

(5.13)

At leading order we have for q = 1, 3

hq2

∂S
q
13,0

∂ξ1
+
∂S

q
23,0

∂ξ2q
–

hq2

ρµ

∂2v
q
0

∂τ2
= 0, (5.14)

S
q
13,0 =

∂v
q
0

∂ξ1
, (5.15)

∂v
q
0

∂ξ2q
= 0, (5.16)

and for q = 2

∂S2
23,0

∂ξ22
= 0, S2

13,0 =
∂v2

0

∂ξ1
, S2

23,0 =
∂v2

0

∂ξ22
. (5.17)

Continuity relations (5.11) together with boundary conditions (5.12) become

v1
0

∣∣
ξ21=0 = v2

0

∣∣
ξ22=1, v2

0

∣∣
ξ22=0 = v3

0

∣∣
ξ23=1, (5.18)

S1
23,0

∣∣
ξ21=0 = S2

23,0

∣∣
ξ22=1, S2

23,0

∣∣
ξ22=0 = S3

23,0

∣∣
ξ23=1, (5.19)

S1
23,0

∣∣
ξ21=1 = f1, S3

23,0

∣∣
ξ23=0 = f3. (5.20)
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Next, we derive

v1
0 = w1(ξ1, τ), v3

0 = w3(ξ1, τ), v2
0 = w2ξ22 + w3,

where

w2 = w1 – w3.

Integrating equation (5.14) for q = 1 and q = 3, we obtain

S1
23,0

∣∣
ξ21=0 = f1 + h12

(
∂2w1

∂ξ2
1

–
1

ρµ

∂2w1

∂τ2

)
, (5.21)

and

S3
23,0

∣∣
ξ23=1 = f3 – h32

(
∂2w3

∂ξ2
1

–
1

ρµ

∂2w3

∂τ2

)
. (5.22)

Since

S2
23,0 =

∂v2
0

∂ξ22
= w2 = w1 – w3, (5.23)

we can conclude that

S1
23,0

∣∣
ξ21=0 = S3

23,0

∣∣
ξ23=1 = w1 – w3 (5.24)



Chapter 5. Equations and boundary conditions for three-layered plate 80

resulting in the equations

w1 – w3 = f1 + h12

(
∂2w1

∂ξ2
1

–
1

ρµ

∂2w1

∂τ2

)
,

w1 – w3 = f3 – h32

(
∂2w3

∂ξ2
1

–
1

ρµ

∂2w3

∂τ2

)
.

(5.25)

Using the formulae above, we derive an equation for wq, q = 1, 3. It is given by

(
ρµ
∂2wq

∂ξ2
1

–
∂2wq

∂τ2

)(
ρµ(h12 + h32)wq–

h12h32

(
ρµ
∂2wq

∂ξ2
1

–
∂2wq

∂τ2

))
= 0,

(5.26)

and supports the same dispersion relation as (4.27) as might be expected.

In terms of stresses we have the equations

S2
23,0 = f1 + h12

(
∂S1

13,0

∂ξ1
–

1

ρµ

∂2w1

∂τ2

)
,

S2
23,0 = f3 – h32

(
∂S3

13,0

∂ξ1
–

1

ρµ

∂2w3

∂τ2

)
,

(5.27)

where

S
q
13,0 =

∂wq

∂ξ1
, q = 1, 3, (5.28)

S2
23,0 = w2. (5.29)
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Thus,

∂S2
13,0

∂ξ22
= S1

13,0 – S3
13,0. (5.30)

In what follows, we also need the equations

∂

∂ξ1

(
h12S1

13,0 + h32S3
13,0

)
–

1

ρµ

∂2

∂τ2
(h12w1 + h32w3) = f3 – f1,

∂2S2
13,0

∂ξ1∂ξ22
–

(
1

h12
+

1

h32

)
S2

23,0 –
1

ρµ

∂2w2

∂τ2
= –

f3

h32
–

f1

h12
,

(5.31)

obtained as a linear combination of the equations in (5.27). Here, the first equation

corresponds to the outer stiff layers, while the second one governs the motion of the

soft middle layer.
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5.3 Equations of motion in stress resultants and

stress couples

As usual for thin plates and shells Kaplunov et al. [1998], Goldenveizer [2014], we

define, starting from (5.4) and (5.13)

N =

∫ h2/2+h1

h2/2
σ1

13dx2 +

∫ –h2/2

–h2/2–h3

σ3
13dx2

≈ µ1
√
µ
(

h1S1
13,0 + h3S3

13,0

)
,

T =

∫ h2/2

–h2/2
σ2

23dx2 ≈ h2µ2S2
23,0,

G =

∫ h2/2

–h2/2
σ2

13x2dx2 ≈ µ2
√
µh2

2

∫ 1

0
S2

13,0

(
ξ22 –

1

2

)
dξ22

=
µ2
√
µh2

2

12

∂S2
13,0

∂ξ22
,

(5.32)

where the stress resultant N corresponds to the stiff layers, while the stress resultant

T and stress couple G are associated with the soft layer. Introducing the average

displacement U and the angle of rotation φ as

U =
h1u1 + h3u3

h1 + h3
≈ h2(h1w1 + h3w3)

h1 + h3
, φ =

u1 – u3

h2
≈ w2, (5.33)
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we can re-write above equations (5.31) in terms of the integral quantities defined in

(5.32) and (5.33)

∂N

∂x1
– ρ1(h1 + h3)

∂2U

∂t2
= F3 – F1,

12

h2µ

∂G

∂x1
–

(
1

h1
+

1

h3

)
T – ρ1h2

2
∂2φ

∂t2
= –h2

(
F3

h3
+

F1

h1

)
.

(5.34)

The forces T, N and the moment G at leading order can be expressed in terms of U

and φ as

T = h2µ2φ,

N = µ1 (h1 + h3)
∂U

∂x1
,

G =
µ2h3

2

12

∂φ

∂x1
.

(5.35)

Finally, equations (5.34) can be presented as

µ1(h1 + h3)
∂2U

∂x2
1

– ρ1(h1 + h3)
∂2U

∂t2
= F3 – F1,

µ1h2
∂2φ

∂x2
1

– µ2

(
1

h1
+

1

h3

)
φ – ρ1h2

∂2φ

∂t2
= –

(
F3

h3
+

F1

h1

)
,

(5.36)

governing the sought for two-mode low-frequency model in case of shear stresses,

prescribed at the faces of the considered laminate.
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5.4 Asymptotic derivation of boundary conditions

First, consider static equilibrium of a semi-infinite three-layered strip (0 6 x1 < +∞,

–h3–h2/2 6 x2 6 h2/2+h1) with the geometrical and mechanical properties specified

in Section 5.1, see Figure 5.1.

h3

h2

h1

μ1

μ20

μ1

ρ1

ρ2

ρ1

x1

x2

Figure 5.1: A semi-infinite three-layered strip

Let the strip faces are traction free, while its left edge x1 = 0 is subject to prescribed

stress p(x2)

σ
q
13

∣∣
x1=0 = p(x2), q = 1, 2, 3. (5.37)
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Our goal is to find the so-called decay conditions on the function p when

σ
q
13

∣∣
x1=+∞ = 0, q = 1, 2, 3. (5.38)

Moreover, we require the related boundary layer to be localised over the narrow

vicinity of the edge of width h (h ∼ h1 ∼ h2 ∼ h3), which does not depend on the

small contrast parameter µ, defined above. Thus, we assume

∂

∂x1
∼ ∂

∂x2
∼ 1

h
. (5.39)

Let us start from the static counterpart of equations (4.1), i.e.

∂σ
q
13

∂x1
+
∂σ

q
23

∂x2
= 0, q = 1, 2, 3, (5.40)

subject to homogeneous boundary conditions along the faces (5.1), setting F1 = F3 =

0 and continuity conditions (4.3), together with (5.37) and (5.38). Integrating the

equation of motion for the upper layer (q = 1) over the domain 0 6 x1 < +∞

and h2 6 x2 6 h2 + h1 and applying the aforementioned continuity and boundary
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conditions, we obtain

∫ +∞

0

∫ h2/2+h1

h2/2

(
∂σ1

13

∂x1
+
∂σ1

23

∂x2

)
dx2dx1 =

∫ h2/2+h1

h2/2
σ1

13

∣∣∣+∞
x1=0

dx2 +

∫ +∞

0
σ1

23

∣∣∣h2/2+h1

x2=h2/2
dx1 =

–

∫ h2/2+h1

h2/2
p(x2)dx2 –

∫ +∞

0
σ1

23

∣∣∣
x2=h2/2

dx1 = 0.

(5.41)

Hence, ∫ +∞

0
σ1

23

∣∣∣
x2=h2/2

dx1 = –

∫ h2/2+h1

h2/2
p(x2)dx2 (5.42)

Similarly, for the bottom layer (q = 3) we derive

∫ +∞

0

∫ –h2/2

–h2/2–h3

(
∂σ3

13

∂x1
+
∂σ3

23

∂x2

)
dx2dx1 =

–

∫ –h2/2

–h2/2–h3

p(x2)dx2 +

∫ +∞

0
σ3

23

∣∣∣
x2=–h2/2

dx1 = 0.

(5.43)

Therefore, ∫ +∞

0
σ3

23

∣∣∣
x2=–h2/2

dx1 =

∫ –h2/2

–h2/2–h3

p(x2)dx2. (5.44)
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For the middle layer (q = 2) we first integrate the associated equation of motion,

resulting in

∫ +∞

0

∫ h2/2

–h2/2

(
∂σ2

13

∂x1
+
∂σ2

23

∂x2

)
dx2dx1 =

–

∫ h2/2

–h2/2
p(x2)dx2 +

∫ +∞

0
σ2

23

∣∣∣
x2=h2/2

dx1 –

∫ +∞

0
σ2

23

∣∣∣
x2=–h2/2

dx1 = 0.

(5.45)

Now, we substitute (5.42) and (5.44) into the latter, taking into account the continuity

conditions. As might be expected, the following exact result corresponds to the

conventional decay condition, expressing the classical formulation of the Saint-Venant

principle. It manifests self-equilibrium of the external load and is given by

∫ h2/2+h1

–h2/2–h3

p(x2)dx2 = 0. (5.46)
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Next, we multiply the equation of motion for the middle layer by x2 and integrate

again over its area. We obtain

∫ +∞

0

∫ h2/2

–h2/2
x2

(
∂σ2

13

∂x1
+
∂σ2

23

∂x2

)
dx2dx1 =

∫ h2/2

–h2/2
x2σ

2
13

∣∣∣+∞
x1=0

dx2 +

∫ +∞

0

∫ h2/2

–h2/2
x2
∂σ2

23

∂x2
dx2dx1 =

–

∫ h2/2

–h2/2
x2p(x2)dx2 +

∫ +∞

0

(
x2σ

2
23

∣∣∣h2/2

x2=–h2/2
–

∫ h2/2

–h2/2
σ2

23dx2

)
dx1 =

–

∫ h2/2

–h2/2
x2p(x2)dx2 +

h2

2

∫ +∞

0

(
σ2

23

∣∣∣
x2=h2/2

+ σ2
23

∣∣∣
x2=–h2/2

)
dx1

–

∫ +∞

0

∫ h2/2

–h2/2
σ2

23dx2dx1 ≈

–

∫ h2/2

–h2/2
x2p(x2)dx2 +

h2

2

∫ +∞

0

(
σ2

23

∣∣∣
x2=h2/2

+ σ2
23

∣∣∣
x2=–h2/2

)
dx1 = 0,

(5.47)

where we have neglected the asymptotically small O(µ) term

∫ +∞

0

∫ h2/2

–h2/2
σ2

23dx2dx1 = µ2

∫ +∞

0
u2

∣∣∣h2/2

x2=–h2/2
dx1 ∼ µ. (5.48)

This is due to the effect of contrast, resulting in a sort of squeezing of the softer

middle layer by the stiff outer layers. In fact, we may readily deduce that in

the last formula σ2
23 ∼ p while u2(x1, h2/2) = u1(x1, h2/2) ∼

hσ1
23

µ1
∼ hp

µ1
and

u2(x1, –h2/2) = u3(x1, –h2/2) ∼
hσ3

23

µ1
∼ hp

µ1
. These asymptotic estimates follow
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from the aforementioned condition on the boundary layer given by (5.39), which al-

low to relate the asymptotic orders of stresses and displacements of the thin high

contrast strip, also using the continuity conditions. Next, substituting (5.42) and

(5.44) into (5.45) we obtain the second decay condition on the prescribed edge load

p

∫ h2/2

–h2/2
x2p(x2)dx2 +

h2

2

∫ h2/2+h1

h2/2
p(x2)dx2 –

h2

2

∫ –h2/2

–h2/2–h3

p(x2)dx2 = 0, (5.49)

which is, in contrast with the first ”exact” condition (5.46), is of an asymptotic

nature and holds only for high contrast laminates. At h1 = h3 and p(–x2) = –p(x2)

the last formula reduces to decay conditions (5.78), derived using Laplace transform

technique below.

It can be easily shown, see e.g. Babenkova and Kaplunov [2004], that obtained decay

conditions (5.46) and (5.49) are also valid at leading order for the low-frequency setup

considered in this case (∂/∂t� h
√
ρk/µk, k = 1, 2).

Let us then adopt the latter for deriving the leading order boundary conditions at

the edge x1 = 0 of the laminate governed by formulae (4.1) and (5.1), subject to an
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arbitrary low-frequency loading P(x2, t), i.e.

σ
q
13

∣∣
x1=0 = P(x2, t), q = 1, 2, 3. (5.50)

It is obvious that the function P(x2, t) is not assumed to satisfy two decay conditions

above in contrast to the function p(x2).

As usual, see Goldenveizer [1976, 1998], Babenkova and Kaplunov [2003] for greater

detail, insert the discrepancy of the prescribed edge load P and stresses σ
q
13, resulting

from the equations of motion established in Section 5.3, into the decay conditions.

Neglecting asymptotically secondary stress σ2
13, see formula (5.4), we set in (5.46)

and (5.49)

p = P – σ1
13,

h2

2
< x2 <

h2

2
+ h1, (5.51)

p = P, –
h2

2
< x2 <

h2

2
, (5.52)

p = P – σ3
13, – h3 –

h2

2
< x2 < –

h2

2
, (5.53)

having

∫ h2/2+h1

h2/2
(P – σ1

13)dx2 +

∫ h2/2

–h2/2
Pdx2 +

∫ –h2/2

–h3–h2/2
(P – σ3

13)dx2 = 0, (5.54)
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and

∫ h2/2

–h2/2
x2Pdx2 +

h2

2

∫ h2/2+h1

h2/2
(P – σ1

13)dx2 –
h2

2

∫ –h2/2

–h2/2–h3

(P – σ3
13)dx2 = 0, (5.55)

Finally, expressing σ1
13 and σ3

13 in (5.54) through N by formulae (5.32), first boundary

condition becomes

N =

∫ h2/2+h1

–h3–h2/2
Pdx2. (5.56)

Similarly, expressing second condition (5.55) through N and G and using the last

equation, we obtain

∫ h2/2

–h2/2
x2Pdx2 +

h2

2

∫ h2/2+h1

h2/2
Pdx2 –

h2

2

∫ –h2/2

–h2/2–h3

Pdx2

+
h2

2

(
h1 – h3

h1 + h3
N +

24h1h3

µh2
2(h1 + h3)

G

)
= 0, (5.57)

resulting in

G = –
µh2(h1 + h3)

12h1h3

(∫ h2/2

–h2/2
x2Pdx2 +

h2

2

∫ h2/2+h1

h2/2
Pdx2

–
h2

2

∫ –h2/2

–h2/2–h3

Pdx2 +
h2

2

h1 – h3

h1 + h3

∫ h2/2+h1

–h2/2–h3

Pdx2

)
.

(5.58)

Derived boundary conditions (5.56) and (5.58) correspond to the first and second

equations in (5.34), respectively. They can be also expressed through the average
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displacement U and the angle of rotation φ using (5.35)

∂U

∂x1
=

1

µ1 (h1 + h3)

∫ h2/2+h1

–h3–h2/2
Pdx2,

∂φ

∂x1
= –

(h1 + h3)

h1h2
2h3µ1

(∫ h2/2

–h2/2
x2Pdx2 +

h2

2

∫ h2/2+h1

h2/2
Pdx2

–
h2

2

∫ –h2/2

–h2/2–h3

Pdx2 +
h2

2

h1 – h3

h1 + h3

∫ h2/2+h1

–h2/2–h3

Pdx2

)
.

It is obvious that the boundary conditions above can be also imposed at each of the

edges of a finite length thin strip. In the latter case, an extra exponentially small

error will naturally arise, along with standard observations typical for thin elastic

structures, e.g. see Goldenveizer [1976].

5.5 Laplace transform technique for a symmetric

plate

Let us now establish the decay conditions for a symmetric three-layered plate (h1 =

h3) with traction free faces using Laplace transform technique. We restrict ourselves

with the motion for which the displacements of the laminate are odd functions in x2,

i.e. u2(x1, –x2) = –u2(x1, x2), u3(x1, –x2) = u1(x1, x2).
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Let the functions Uq(s, x2) denote Laplace transform of displacements uq, q = 1, 2, 3,

i.e.

Uq(s, x2) =

∫ ∞
0

uq(x1, x2)e–sx1dx1, (5.59)

where s is Laplace transform parameter. Transforming equilibrium equations (5.40),

we get

∂2Uq

∂x2
2

+ s2Uq = Rq, (5.60)

where Rq(s, x2) are defined through

Rq(s, x2) = suq
∣∣
x1=0 +

∂uq

∂x1

∣∣∣∣
x1=0

= suq
∣∣
x1=0 +

p(x2)

µq
. (5.61)

Solving equations (5.60) for the odd displacements, we have

U1 = A1(s) sin sx2 + A2(s) cos sx2 +
1

s

∫ x2

0
R1(s, x′2) sin s(x2 – x′2)dx′2, (5.62)

and

U2 = B1(s) sin sx2 +
1

s

∫ x2

0
R2(s, x′2) sin s(x2 – x′2)dx′2, (5.63)
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where unknown functions A1, A2 and B1 are determined from the transformed bound-

ary and continuity conditions and given by

A1(s) = D–1(s)
{

– C1

(
h1 +

h2

2

)(
µ cos2 sh2

2
+ sin2 sh2

2

)

+

(
S2

(
h2

2

)
– S1

(
h2

2

))
µ sin

(
sh1 +

sh2

2

)
cos

sh2

2

+

(
C1

(
h2

2

)
– µC2

(
h2

2

))
sin

(
sh1 +

sh2

2

)
sin

sh2

2

}
,

(5.64)

A2(s) = D–1(s)
{

C1

(
h1 +

h2

2

)
(µ – 1) sin

sh2

2
cos

sh2

2

+

(
S2

(
h2

2

)
– S1

(
h2

2

))
µ cos

(
sh1 +

sh2

2

)
cos

sh2

2

+

(
C1

(
h2

2

)
– µC2

(
h2

2

))
cos

(
sh1 +

sh2

2

)
sin

sh2

2

}
,

(5.65)

and

B1(s) = D–1(s)
{

– C1

(
h1 +

h2

2

)
+

(
S2

(
h2

2

)
– S1

(
h2

2

))
sin sh1

+

(
C1

(
h2

2

)
– µC2

(
h2

2

))
cos sh1

}
,

(5.66)

where

D(s) = s

(
µ cos sh1 cos

sh2

2
– sin sh1 sin

sh2

2

)
, (5.67)

and

Cq(s, x2) =

∫ x2

0
Rq(x′2) cos s(x2 – x′2)dx′2, (5.68)
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Sq(s, x2) =

∫ x2

0
Rq(x′2) sin s(x2 – x′2)dx′2, q = 1, 2. (5.69)

The sought for displacements are expressed through Mellin integrals as

uq(x1, x2) =
1

2πi

∫ δ+i∞

δ–i∞
U(s, x2)esx1ds (5.70)

for δ > 0. These integrals can be found using the residue theory

uq(x1, x2) =
∞∑

n=0

Ressn{Uq(s, x2)esx1}, (5.71)

where only small poles sn, corresponding to unwanted slow decay are of the concern,

see also Gusein-Zade [1965], Babenkova and Kaplunov [2004].

At µ � 1 and s � 1 the leading order asymptotic behaviour of denominator (5.67)

is given by

D(s) = –2s(h1h2s2 – µ), (5.72)

resulting in two small non-zero roots

s± = ±
√

2µ

h1h2
. (5.73)
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The associated residues are

Ress± {U1(s, x2)esx1} = Ress±

{
D–1(s) (A1(s) sin sx2 + A2(s) cos sx2) esx1

}
,

Ress± {U2(s, x2)esx1} = Ress±

{
D–1(s)B1(s) sin sx2esx1

}
,

(5.74)

where D(s) is defined in (5.72).

Expanding now the numerators in these relations at µ � 1 and s ∼ √µ and using

the formula

R2 = su2

∣∣
x1=0 +

p(x2)

µµ1
, (5.75)

we obtain at leading order

Ress± = ±
√

2h2

4µ1
√

h1
√
µ

(∫ h2/2+h1

h2/2
p(x2)dx2 +

2

h2

∫ h2/2

0
p(x2)x2dx2

)
, (5.76)

and

Ress± = ±
√

2x2

2µ1
√

h1h2
√
µ

(∫ h2/2+h1

h2/2
p(x2)dx2 +

2

h2

∫ h2/2

0
p(x2)x2dx2

)
, (5.77)

for u1 and u2, respectively.
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These residues diminish at

∫ h2/2+h1

h2/2
p(x2)dx2 +

2

h2

∫ h2/2

0
p(x2)x2dx2 = 0, (5.78)

ensuring strong decay of the boundary layer. The latter equation can be restored

from a more general one (5.49), obtained in the previous section, by taking p(x2) in

(5.49) to be an odd function, i.e. p(–x2) = –p(x2).
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5.6 Concluding remarks

The consideration in the chapter is seemingly the optimal scalar boundary value

problem for elucidating the effect of high contrast. In spite to asymmetry of the

plate, the leading order equations of motion are not coupled. The findings in the

chapter facilitate asymptotic analysis of various more sophisticated formulations for

strongly inhomogeneous thin structures, including vector problems for multi-layered

laminates with a variety of contrast setups.

A weak boundary layer, noted earlier in statics of high-contrast laminates, e.g. see

Horgan [1998], can be naturally embedded into the low-dimensional theory for the

interior domain, see 1D equation (5.31). This is in line with the observation that the

lowest harmonic describes both static (and quasi-static) slow decay and near cut-off

long wave propagation.

Asymptotically consistent boundary conditions (5.56) and (5.58) are established using

the Saint-Venant principle adapted for a high-contrast plate. It is remarkable that

the extra approximate decay condition (5.49) is not directly related to the overall

equilibrium as the traditional exact decay condition (5.46).



Chapter 6

Two-mode non-uniform

approximations for a three-layered

plate

An elastic asymmetric sandwich is considered under the assumption that the

stiffness and density of thin skin layers are much greater than those of a core layer.

As above, it is shown that for typical values of problem parameters the lowest shear

resonance frequency appears to be asymptotically small, while the rest of thickness

resonances do not belong to a low-frequency range. The same as in Chapters 2-5
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scalar antiplane problem in linear elasticity is studied.

A polynomial long-wave low-frequency approximation of the full dispersion relation

is derived. Again, it governs two vibration modes including the fundamental one

and the lowest harmonic. It is obvious that without asymmetry the dispersion re-

lation splits into two parts corresponding to symmetric and antisymmetric modes

Prikazchikova et al. [2020], simplifying analysis drastically. It is remarkable that for

the chosen set of problem parameters the derived approximation is not asymptoti-

cally uniform and is only valid over narrow non-overlapping vicinities of zero and the

lowest shear thickness resonance frequencies.

This is in contrast to the setup of a similar laminate with the thick skin layers, for

which the associated asymptotic behaviour is uniform, see Chapters 4-5. The same

observation is also true for in-plane motion of a symmetric laminate, see Kaplunov

et al. [2017a] for further detail.
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6.1 Dispersion analysis

Consider a three-layered asymmetric elastic laminate, comprised of isotropic layers

of thickness hq, q = 1, 2, 3, see Figure 6.1. Let us assume in this chapter that the

outer layers are thin in comparison to the core one, i.e. h1 � h2 and h3 � h2, while

h1 ∼ h3. As before, we assume that the two outer layers have the same material

parameters.

h3

h2

h1

μ1

μ2

μ1

ρ1

ρ2

ρ1

x1

x2

0

Figure 6.1: A three-layered asymmetric laminate with thin outer layers

We start from the dispersion relation (4.12), with the focus on the high contrast setup

for which

µ� 1, ρ ∼ µ2, h12 ∼ µ, h32 ∼ µ. (6.1)
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This formulae correspond to an asymmetric laminate of a sandwich type, with the

outer layers being stiff, thin and very heavy compared to the inner core layer.

In this case the lowest shear cut-off frequency is also defined by the asymptotic

estimate (4.23) and is O(
√
µ) as above. At the same time, now, in view of (6.1),

leading order coefficients γi in the polynomial dispersion relation (4.24) become

γ1 = γ0
1µ

2, γ0
1 = 1 + h0

12 + h0
32,

γ2 = γ0
2µ+ O

(
µ2
)

, γ0
2 = –

h0
12 + h0

32

ρ0
,

γ3 = γ0
3µ

2 + O
(
µ4
)

, γ0
3 = h0

12h0
32 –

1

3
,

γ4 = γ0
4µ+ O

(
µ2
)

, γ0
4 = –

2h0
12h0

32

ρ0
,

γ5 = γ0
5 + O

(
µ2
)

, γ0
5 =

h0
12h0

32

ρ2
0

,

γ6 = γ0
6µ

2 + O
(
µ4
)

, γ0
6 =

2

15
–

h0
12h0

32

3
,

γ7 = γ0
7µ+ O

(
µ2
)

, γ0
7 =

2h0
12h0

32

3ρ0
,

γ8 = γ0
8 + O (µ) , γ0

8 = –
h0

12h0
32

3ρ2
0

,

γ9 = γ0
9 + O (µ) , γ0

9 =
h0

12h0
32

3ρ2
0

,

(6.2)

where ρ0 = ρ/µ2 , h0
12 = h12/µ and h0

32 = h32/µ. These results are summarised in

Table 6.1, allowing comparison of asymptotic orders of the terms in approximation
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(4.24) both in the vicinity of zero and the lowest cut-off frequency (4.23).

Order of γi Terms

Fundamental mode First harmonic

Ω2 ∼ µK2 Ω2
sh ∼ µ

γ1 ∼ µ2 γ1K2 µ2K2 µ2K2

γ2 ∼ µ γ2Ω2 µ2K2 µ2

γ3 ∼ µ2 γ3K4 µ2K4 µ2K4

γ4 ∼ µ γ4K2Ω2 µ2K4 µ2K2

γ5 ∼ 1 γ5Ω4 µ2K4 µ2

γ6 ∼ µ2 γ6K6 µ2K6 µ2K6

γ7 ∼ µ γ7K4Ω2 µ2K6 µ2K4

γ8 ∼ 1 γ8K2Ω4 µ2K6 µ2K2

γ9 ∼ 1 γ9Ω6 µ3K6 µ3

Table 6.1: Asymptotic behaviour at µ� 1, ρ ∼ µ2, h12 ∼ h32 ∼ µ
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6.2 Two-mode shortened dispersion relation

Using the Table 6.1, the leading order shortened approximate dispersion relation may

be constructed, incorporating the fundamental mode along with the lowest harmonic

with the asymptotically small cut-off frequency (4.23). It may be expressed as

µ2γ0
1K2 +

(
µγ0

2 + γ0
5Ω2

)
Ω2 + µγ0

4K2Ω2 + γ0
8K2Ω4 + γ0

9Ω6 = 0. (6.3)

In this formula all the terms are of the same order µ3 at Ω – Ωsh ∼ µ3/2, K ∼ √µ.

The local asymptotic approximation for the fundamental mode is given by

µγ0
1K2 + γ0

2Ω2 = 0. (6.4)

At the same time, the local expansion for the first harmonic becomes

µ2γ0
1K2 +

(
µγ0

2 + γ0
5Ω2

)
Ω2 + µγ0

4K2Ω2 + γ0
8K2Ω4 + γ0

9Ω6 = 0. (6.5)
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The associated local near cut-off expansion, e.g. see Kaplunov and Markushevich

[1993], Lashhab et al. [2015] for further details, is

Ω2 – Ω2
sh = –K2 1

γ0
5

(
µ2 γ

0
1

Ω2
sh

+ µγ0
4 + γ0

8Ω2
sh

)
–
γ0

9Ω4
sh

γ0
5

(6.6)

where Ωsh is given by (4.23).

Note that the long-wave assumption K � 1 dictates that the approximation (6.4)

for the fundamental mode is valid only for Ω � √µ, whereas (6.6) is associated

with Ω ∼ √µ. Thus, the approximation (6.3) is non-uniform, in line with previous

considerations in Kaplunov et al. [2017a,b].

Numerical illustrations of the derived approximations are given in Figures 6.2-6.4.

In Figure 6.2 two-mode approximation (6.3) (dotted lines) is compared numerically

with the exact solution of the dispersion relation (4.12) (solid lines). A characteristic

gap where the asymptotic formula (6.3) is not applicable is shown in Figure 6.2.
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Ω

K

G

A

P

Figure 6.2: Dispersion curves (4.12) (solid lines) together with approximation
(6.3) (dotted lines) for h12 = 0.1, h32 = 0.2, µ = 0.1, and ρ = 0.01.

In Figure 6.2 exact dispersion curves (4.12) (solid lines) are shown together with

approximations for the fundamental mode (6.4) and for the lowest harmonic (6.6)

(dotted lines), demonstrating high accuracy of asymptotic predictions.

Next two figures present the results of comparison separately for two considered

modes, using the local approximations (6.4) and (6.6).
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Ω

K

Figure 6.3: Dispersion curves (4.12) (solid lines) together with approximations
for the fundamental mode (6.4) (dotted lines) for h12 = 0.1, h32 = 0.2 , µ = 0.1
and ρ = 0.01
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Ω

K

Figure 6.4: Dispersion curves (4.12) (solid lines) together with approximations
for the lowest harmonic (6.6) (dotted lines) for h12 = 0.1, h32 = 0.2 , µ = 0.1 and
ρ = 0.01
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6.3 Concluding remarks

The present analysis complements the previous results for an asymmetric layered

plate in the previous Chapters 3-4. Two-mode approximate dispersion relation has

been derived for the scenario in which the outer layers are relatively stiff, thin and

very heavy compared to the inner layer. In contrast to the dispersion analysis in

chapter 3, where the two-mode long-wave low-frequency approximation was asymp-

totically uniform, the approximation obtained in this chapter is of composite nature,

being only valid over non-overlapping vicinities of the origin and the first cut-off

frequency. Thus, the effect of high contrast does not always result in a uniform two-

mode approximation as might be expected. This observation may be expanded to

the derivation of the related two-mode differential equations of motion, based on the

same scaling similarly to the Chapter 4.



Chapter 7

Conclusions

It is demonstrated that for two-layered laminate the first shear cut-off frequency is

small for a high contrast in stiffnesses (and densities) of the layers. In this case the

thicknesses of the layers are assumed to be of the same order. The approximate

dispersion relations along with associated scalar 1D equations of motion are derived

for long-wave low-frequency out of plane vibrations. A good agreement with the

numerical implementation of the exact dispersion relation is demonstrated.

For the same as above high contrast scenario, an asymmetric three-layered laminate

supports two low-frequency vibration modes, including the fundamental one and

the first shear harmonic. A shortened polynomial dispersion equation is derived
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for these two modes. This equation is uniformly valid over the range containing

the first shear cut-off frequency. Numerical comparison with the solutions of the

exact dispersion relation for asymmetric three-layered laminate demonstrates a high

accuracy of the developed two-mode shortened relation. The obtained asymptotic

results can be extended to various types of high contrast structures, as well as to

Lamb-type waves, arising in 2D plane and 3D vector problems in dynamic elasticity

for multi-layered plates. They also make an important preliminary insight for the

derivation of approximate equations of motion starting from original 2D equations

for antiplane shear.

The 1D equation of motion corresponding to the two-mode uniformly valid dispersion

relation above are obtained. They are presented both in terms of displacements of

the layers as well as through stress resultants and stress couples, average laminate

displacement and angle of rotation. External loading is taken into consideration both

for loads applied to the faces and the edges of the laminate. For the latter, asymptoti-

cally consistent boundary conditions are derived based on the Saint-Venant’s principle

adapted for the laminate with the chosen contrast properties.

Two-mode approximate dispersion relations are also derived for the scenario in which

the outer layers are relatively stiff, thin and very heavy compared to the inner layer. In

contrast to the above mentioned set of parameters, in which the two-mode long-wave
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low-frequency approximation is asymptotically uniform, the shortened dispersion re-

lation in the considered case is not uniform and is only valid over non-overlapping

vicinities of the zero and the first shear cut-off frequencies. Thus, the high contrast is

not always lead to a uniform two-mode approximation as might be initially expected.

The related differential equations of motion can be also established for this type of

contrast.

We also remark that, the transition from uniform to non-uniform asymptotic be-

haviours occurs in modelling of light-weighted sandwiches, when the relative density

of the light filler may vary over a certain parametric range, see Kaplunov et al. [2019a].

The technique presented in this thesis seems to be relevant for further development

of the results in the cited paper. This may contribute to the follow-up program.

The immediate follow-up research may be aimed at the derivation of approximate

equations of motion and boundary conditions corresponding to the obtained two-

mode non-uniform approximation for an elastic asymmetric sandwich. The next step

may be oriented to multi-layered plates with various configurations of stiff and soft

layers as well as non-ideal interfacial conditions. It is no doubt that the developed

methodology can be also extended to a broad range of the dynamic problems outside

the studied scalar setup of antiplane shear. At the same time, the problems for
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thin-layered shells can be initially tackled, namely within the framework of antiplane

shear.



Bibliography

F. Abramovici and Z. Alterman. Computations pertaining to the problem of propa-

gation of a seismic pulse in a layered solid. Methods of Computational Physics, 4:

349–379, 1965.

J. Achenbach. Wave propagation in elastic solids. Elsevier, 2012.

L. A. Aghalovyan. Asymptotic theory of anisotropic plates and shells. World Scien-

tific, 2015.

L. Ainola and U. Nigul. Wave processes of deformation of elastic plates and shells.

Izvestiya Akademii Nauk Estonskoi SSR, Ser. Fiz.-Mat. Tekhn. Nauk, 14(1):3–63,

1965.

O. Aksentian and I. Vorovich. The state of stress in a thin plate. Journal of Applied

Mathematics and Mechanics, 27(6):1621–1643, 1963.

114



Bibliography 115

M. Alkinidri, J. Kaplunov, and L. Prikazchikova. Two-mode long-wave low-frequency

approximations for anti-plane shear deformation of a high-contrast asymmetric

laminate. Springer Proceedings in Mathematics and Statistics, DSTA 2019:in press,

2019.

M. Alkinidri, J. Kaplunov, and L. Prikazchikova. A two mode non-uniform ap-

proximation for an elastic asymmetric sandwich. In EURODYN 2020, XI In-

ternational Conference of Structural Dynamics, pages 528–535, 01 2020. doi:

10.47964/1120.9041.19171.

I. V. Andrianov, J. Awrejcewicz, and L. I. Manevitch. Asymptotical mechanics of

thin-walled structures. Springer Science & Business Media, 2013.

J. Arbaoui, Y. Schmitt, J.-L. Pierrot, and F.-X. Royer. Comparison study and me-

chanical characterisation of a several composite sandwich structures. International

Journal of Composite Materials, 5(1):1–8, 2015.
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parametric dynamic analysis of lightweight elastic laminates. In IOP Conference



Bibliography 124

Series: Materials Science and Engineering, volume 683, page 012014. IOP Pub-

lishing, 2019a.

J. Kaplunov, D. Prikazchikov, L. Prikazchikova, and O. Sergushova. The lowest

vibration spectra of multi-component structures with contrast material properties.

Journal of Sound and Vibration, 445:132–147, 2019b.

J. Kaplunov, D. Prikazchikov, and L. Sultanova. Elastic contact of a stiff thin layer

and a half-space. Zeitschrift für angewandte Mathematik und Physik, 70(1):22,

2019c.

J. Kaplunov, L. Prikazchikova, and M. Alkinidri. Antiplane shear of an asymmetric

sandwich plate. Continuum Mechanics and Thermodynamics, pages 1–16, 2021.

J. D. Kaplunov, L. Y. Kossovitch, and E. Nolde. Dynamics of thin walled elastic

bodies. Academic Press, 1998.

J.-S. Kim and S.-K. Chung. A study on the low-velocity impact response of laminates

for composite railway bodyshells. Composite Structures, 77(4):484–492, 2007.

I. Kreja. A literature review on computational models for laminated composite and

sandwich panels. Open Engineering, 2011.



Bibliography 125

I. I. Kudish, E. Pashkovski, S. S. Volkov, A. S. Vasiliev, and S. M. Aizikovich. Heavily

loaded line ehl contacts with thin adsorbed soft layers. Mathematics and Mechanics

of Solids, 25(4):1011–1037, 2020.

I. I. Kudish, S. S. Volkov, A. S. Vasiliev, and S. M. Aizikovich. Characterization of

the behavior of different contacts with double coating. Mathematics and Mechanics

of Complex Systems, 9:179–202, 2021. doi: 10.2140/memocs.2021.9.179.

S. Kulkarni and N. Pagano. Dynamic characteristics of composite laminates. Journal

of Sound and Vibration, 23(1):127–143, 1972.

H. Lamb. On waves in an elastic plate. Proceedings of the Royal Society of London.

Series A, Containing papers of a mathematical and physical character, 93(648):

114–128, 1917.

M. Lashhab, G. Rogerson, and L. Prikazchikova. Small amplitude waves in a pre-

stressed compressible elastic layer with one fixed and one free face. Zeitschrift für

angewandte Mathematik und Physik, 66(5):2741–2757, 2015.

K. C. Le. Vibrations of shells and rods. Springer Science & Business Media, 2012.

P. Lee and N. Chang. Harmonic waves in elastic sandwich plates. Journal of Elas-

ticity, 9(1):51–69, 1979.



Bibliography 126

S. Leungvichcharoen and A. C. Wijeyewickrema. Dispersion effects of extensional

waves in pre-stressed imperfectly bonded incompressible elastic layered composites.

Wave Motion, 38(4):311–325, 2003.

L. Liu and K. Bhattacharya. Wave propagation in a sandwich structure. International

Journal of Solids and Structures, 46(17):3290–3300, 2009.

A. E. H. Love. A treatise on the mathematical theory of elasticity. Cambridge uni-

versity press, 2013.

M. Lutianov and G. A. Rogerson. Long wave motion in layered elastic media. Inter-

national Journal of Engineering Science, 48(12):1856–1871, 2010.

T. P. Martin, C. N. Layman, K. M. Moore, and G. J. Orris. Elastic shells with

high-contrast material properties as acoustic metamaterial components. Physical

Review B, 85(16):161103, 2012.

G. I. Mikhasev and H. Altenbvach. Thin-walled Laminated Structures. Springer,

2019.

R. Mindlin. Flexural vibrations of elastic sandwich plates. Technical report, De-

partment of Civil Engineering and Engineering Mechanics. Columbia University,

1959.



Bibliography 127

R. Mindlin. Waves and vibrations in isotropic, elastic plates. In Proc Symposium on

Naval Structural Mechanics, pages 199–232. Pergamon Press, 1960.

R. Mines, C. Worrall, and A. Gibson. Low velocity perforation behaviour of polymer

composite sandwich panels. International Journal of Impact Engineering, 21(10):

855–879, 1998.

K. Naumenko and V. A. Eremeyev. A layer-wise theory for laminated glass and

photovoltaic panels. Composite Structures, 112:283–291, 2014.

T.-K. Nguyen, K. Sab, and G. Bonnet. First-order shear deformation plate models

for functionally graded materials. Composite Structures, 83(1):25–36, 2008.

E. Nolde. Qualitative analysis of initial-value problems for a thin elastic strip. IMA

Journal of Applied Mathematics, 72(3):348–375, 2007.

E. Nolde and G. Rogerson. Long wave asymptotic integration of the governing equa-

tions for a pre-stressed incompressible elastic layer with fixed faces. Wave Motion,

36(3):287–304, 2002.

E. Nolde, L. Prikazchikova, and G. Rogerson. Dispersion of small amplitude waves in

a pre-stressed, compressible elastic plate. Journal of Elasticity, 75(1):1–29, 2004.



Bibliography 128

E. Nolde, A. Pichugin, and J. Kaplunov. An asymptotic higher-order theory for

rectangular beams. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 474(2214):20180001, 2018.

A. K. Noor, W. S. Burton, and C. W. Bert. Computational models for sandwich

panels and shells. Applied Mechanics Reviews, 49(3):155, 1996.

A. V. Pichugin and G. A. Rogerson. A two-dimensional model for extensional motion

of a pre-stressed incompressible elastic layer near cut-off frequencies. IMA Journal

of Applied Mathematics, 66(4):357–385, 2001.

A. V. Pichugin and G. A. Rogerson. An asymptotic membrane-like theory for long-

wave motion in a pre-stressed elastic plate. Proceedings of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences, 458(2022):

1447–1468, 2002a.

A. V. Pichugin and G. A. Rogerson. Anti-symmetric motion of a pre-stressed incom-

pressible elastic layer near shear resonance. Journal of Engineering Mathematics,

42(2):181–202, 2002b.

B. Popescu and D. H. Hodges. On asymptotically correct Timoshenko-like anisotropic

beam theory. International Journal of Solids and Structures, 37(3):535–558, 2000.



Bibliography 129
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