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Previous linear bifurcation analyses have evidenced
that an axially stretched soft cylindrical tube may
develop an infinite-wavelength (localised) instability
when one or both of its lateral surfaces are
under sufficient surface tension. Phase transition
interpretations have also highlighted that the tube
admits a final evolved "two-phase" state. How the
localised instability initiates and evolves into the final
"two-phase" state is still a matter of contention, and
this is the focus of the current study. Through a weakly
non-linear analysis conducted for a general material
model, the initial sub-critical bifurcation solution is
found to be localised bulging or necking depending
on whether the axial stretch is greater or less than a
certain threshold value. At this threshold value, an
exceptionally super-critical kink-wave solution arises
in place of localisation. A thorough interpretation
of the anticipated post-bifurcation behaviour based
on our theoretical results is also given, and this
is supported by Finite Element Method (FEM)
simulations.

1. Introduction
A surge of interest in the behaviour, functionality and
development of micro and nano-scale soft materials
has transpired in recent years, with applications in soft
robotics [1] and the construction of artificial muscles [2]
and other biomedical devices [3] being at the forefront
of this new-found motivation. A bi-product of this is
the emerging field of elasto-capillarity, which is concerned
with the finite deformation of elastic solids with surface
energy [4–9]. This surface energy becomes non-negligible
when the typical length scale of a system is comparable to
the ratio of the surface tension γ to the ground state shear
modulus µ [10]. Thus, when modelling extremely soft
materials such as gels, elastomers and biological tissue
on the nano to milli-scale, the consideration of elasto-
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capillary effects is of vital importance. A geometry which arguably requires greater attention
is the cylindrical tube, which is widespread in physiological systems in the form of arteries,
airways and intestines, for instance. The villification of the gastrointestinal tract [11], the closure
of pulminary airways [12] and the gyrification of the brain [13] are examples of physiological
tubular instabilities which have predominantly been treated as purely growth induced, with little
attention given to elasto-capillary effects. Exceptionally, consideration is given to the surface
tension induced buckling of liquid lined tubes as a model for airway closure in [14], and
insights into elasto-capillary circumferential buckling instabilities in tubes under axial loading
[15], growth [16] and uniform pressure and geometric everting [17] have very recently transpired.

The well known peristaltic instability in which soft slender cylinders/tubes adopt
axisymmetric beads under bulk and surface stresses has drawn much attention in recent years
[18–23]. This bifurcation phenomenon can occur in stretched nerve fibres [24], in axons under
mechanical trauma [25,26], and it has also been implicated in neurodegenerative disorders such
as Alzheimer’s and Parkinson’s diseases [27]. Also, stretched tubes termed tunnelling nanotubes
have been observed between migrating cells, and allow for inter-cellular communications and
migration support [28–33]. As is shown in Fig. 1, the formation of static localised beads has in-
fact been observed in these nanotubes [34]. Theoretically, it has been evidenced in the case of
a solid cylinder that the beading instability culminates in a "two-phase" state, or a "kink-wave"
solution, characterised by two sections with distinct but uniform axial stretch connected by a
smooth transition zone [35,36]. Moreover, it was determined in [37] that a localised bulging or
necking solution will initially occur depending on the loading path.

The beading instability is also observable in hollow tubes which are filled with magnetic
fluids [38], submerged in hydrophillic polymer solutions [39] and under growth [40], and has also
been implicated in the synthesis of soft matter nanotubes [41] which have a variety of physical,
biological and chemical applications [42].

Figure 1: Tunnelling nanotubes (TNT’s) have been observed between cells which migrate from
one another, and are subject to axial stretching as the cells move further apart. Such tubes have
been found to develop static localised axisymmetric beads [34].

In spite of this, only very recently have the first steps been taken towards obtaining a
concrete theoretical understanding of beading in hollow tubes. An infinite-wavelength instability
in a cylindrical cavity under surface tension was first found to be preferred in [22]. Then,
a linear bifurcation analysis of tubes under surface tension and axial stretching was initially
conducted by [43], with further insights provided by [44]. In the latter, necessary conditions
for localised bifurcation are determined for three distinct boundary conditions. In Case 1, both
lateral boundaries are traction-free and under surface tension, whilst in Case 2 (resp. Case 3),
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the inner (resp. outer) lateral surface is in smooth contact with a rigid boundary to prevent
radial displacement and surface tension (with the other surface remaining traction-free and under
surface tension). Cases 2 and 3 have previously been investigated through FEM simulations [45],
with motivation stemming from the fact that the two types of boundary conditions seem to appear
in many biological systems. Indeed, consideration of these different boundary conditions allows
us to analyse how the localised instability is affected by different constraints. For instance, a
change in results will later be highlighted when the (scaled) initial inner radius A < 0.08567 in
Case 3.

In Case 1, we originally thought in [44] that localised bifurcation was associated with negative
surface tension, which is physically implausible. However, we have now discovered that localised
solutions can in theory exist in Case 1, but are less favourable than circumferential buckling modes
[15]; an explanation of this change in viewpoint is given shortly. In Cases 2 and 3, the linear
bifurcation analysis in [44] showed that localisation is favourable over periodic axisymmetric
modes. To provide further understanding of the beading instability in hollow tubes, we extend
this work here by conducting a weakly non-linear near-critical analysis for Cases 2 and 3. We
show that a localised bifurcation solution generally initiates sub-critically, and that the explicit
nature of this solution is highly dependant on the value of the principal axial stretch λ and the
loading path. Through this theoretical analysis, we are able to give in-depth insights into the
post-bifurcation behaviour for multiple loading scenarios. Namely, we interpret the evolution
from the initial localised solution to a final "two-phase" state, and this is supported by previous
FEM simulations [44].

We remark that the localised solutions discussed in the current study are essentially solitary
waves with zero wave speed. The necking and bulging solutions correspond to static "dark" and
"bright" solitons, respectively. Solitary waves were first observed in the context of water waves by
Russell [46], and the associated model equation was first derived by Korteweg and De Vries [47]
and is nowadays known as the KdV equation. The other simplest model equation that admits
a solitary wave solution is the nonlinear Schrödinger equation (NLSE) which was first derived
in [48] for propagation of light in nonlinear optical fibers (mathematically the amplitude evolution
of wave trains). The static counterpart of NLSE has been derived to describe the amplitude
variation of periodic buckling modes [49,50]. In recent decades, buckling of an Euler beam on a
nonlinear foundation has been much studied in relation to localised solutions [51]. Such localised
solutions again correspond to amplitude localisation of periodic buckling modes. A huge variety
of other model equations have also been derived for a range of physical processes to incorporate
additional effects and/or to describe degenerate cases. Some of these equations involve higher
order spatial derivatives and multi spatial dimensions, e.g. the Swift-Hohenberg equation for
thermal convection [52]. We refer to the monograph by Peletier and Troy [53] for a discussion of
some of these equations. Physically speaking, solitary waves arise from a balance of nonlinearity
and dispersion, and this balance underpins all the amplitude equations that admit solitary wave
solutions. For a dynamical systems theory point of view, we refer to one of the earliest papers by
Kirchgässner [54] and the more recent monograph by Haragus and Iooss [55].

The remainder of this paper is organised as follows. After formulating the problem in the
next section, we extend in section 3 the derivation of the primary deformation and analytical
bifurcation conditions for localisation (presented originally in [44] for the neo-Hookean strain-
energy function) to a general material model. We also explain why, contrary to our original
claims, localised bifurcation is theoretically possible in Case 1. We then conduct a thorough
weakly non-linear analysis in section 4 for Case 2 to decipher whether a localised solution
can actually bifurcate from the primary state, and also to determine the explicit nature of
possible bifurcations. For multiple loading paths, a complete interpretation of the anticipated
post-bifurcation behaviour is also given. Then, in section 5, we comment on the distinctions in the
corresponding analysis for Case 3, focussing primarily on the regime of large thickness. Finally,
concluding remarks are given in section 6. All of our computations and algebraic manipulations
were performed in Mathematica [56], and the supplementary code is available on request.
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2. Problem formulation
Consider a hyperelastic cylindrical tube with an initial inner radius A, outer radius B and axial
half-length L�B. We use cylindrical polar coordinates (R,Θ,Z) and (r, θ, z) to describe the
position vectors X and x of a representative material particle in the undeformed and deformed
configurations, respectively. Under the general axisymmetric deformation

r= r (R,Z) , θ=Θ, z = z (R,Z) , (2.1)

the inner and outer radii become a and b, respectively, whilst the axial half-length becomes `� b.
The deformation gradient F is then defined through dx=F dX and takes the form

F=
∂r

∂R
er ⊗ER +

∂r

∂Z
er ⊗EZ +

r

R
eθ ⊗EΘ +

∂z

∂R
ez ⊗ER +

∂z

∂Z
ez ⊗EZ , (2.2)

where (ER, EΘ, EZ) and (er, eθ, ez) are the orthonormal bases associated with the previously
defined sets of coordinates. Assuming that the tube material is incompressible, we enforce the
following constraint of isochorism:

detF= 1. (2.3)

A strain-energy function w, which governs the constitutive behaviour of the tube, can then be
introduced as follows:

w=w (IB) , (2.4)

where IB is the first principal invariant of the left Cauchy-Green strain tensor B=FFT , i.e. IB =

trB, with the superscript T denoting transposition. This class of strain-energy functions has been
shown to be suitable for many different materials under tension [57]. Two of the most common
strain-energy functions of this form are the neo-Hookean and Gent material models, which take
the respective forms

w=
1

2
µ (IB − 3) and w=−1

2
µJm ln

(
1− IB − 3

Jm

)
, (2.5)

where Jm is a constant governing the extensibility limit of the material. We note that, in the limit
Jm→∞, the neo-Hookean material model is recovered from (2.5)2. For the remainder of this
paper we scale all lengths by B, all stresses by µ and the surface tension γ by µB. Therefore, we
may set B = 1 and µ= 1 without loss of generality.

(a) Stream-function formulation
The problem can be elegantly re-formulated in terms of a single mixed co-ordinate stream
function φ= φ (R, z) so that the incompressibility constraint (2.3) is satisfied exactly [58]. This
stream function is defined through the relations

r2 = 2φ,z , Z =
1

R
φ,R, (2.6)

where a comma denotes partial differentiation with respect to the implied coordinate.
Accordingly, F can be re-written in the form

F=
1√
2φ,z

[
φ,Rz −R

φ,zz
φ,Rz

∂

∂R

(
1

R
φ,R

)]
er ⊗ER +

Rφ,zz√
2φ,z φ,Rz

er ⊗EZ +

√
2φ,z

R
eθ ⊗EΘ

− R

φ,Rz

∂

∂R

(
1

R
φ,R

)
ez ⊗ER +

R

φ,Rz
ez ⊗EZ , (2.7)

and the invariant IB may then be computed from (2.7). In Case 1 where both lateral boundaries
are under surface tension, the total energy E of the static axisymmetric solution is the sum of the
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bulk elastic energy and the surface energies on these boundaries, i.e.:

E = 2π

∫ `
−`

∫B
A
Lb dRdz + 2π

∫ `
−`

(
LAs + LBs

)
dz, (2.8)

where the bulk Lagrangian Lb and surface Lagrangians LA,Bs are defined through

Lb = φ,Rz w(IB), LA,Bs = γ
√

2φ,z + φ2,zz

∣∣∣∣
R=A,B

. (2.9)

Equilibrium of bulk elastic forces requires we satisfy Euler-Lagrange equation given by(
∂Lb
∂φ,βΓ

)
,βΓ

−

(
∂Lb
∂φ,δ

)
,δ

= 0. (2.10)

The standard summation convention is applied here, with δ=R or z and βΓ =RR, Rz or zz.
The normal traction-free boundary conditions on the inner and outer lateral surfaces take the
respective forms

∂Lb
∂φ,R

−

(
∂Lb
∂φ,RR

)
,R

−

(
∂Lb
∂φ,Rz

)
,z

−

(
∂LAs
∂φ,zz

)
,zz

+

(
∂LAs
∂φ,z

)
,z

= 0, R=A, (2.11)

∂Lb
∂φ,R

−

(
∂Lb
∂φ,RR

)
,R

−

(
∂Lb
∂φ,Rz

)
,z

+

(
∂LBs
∂φ,zz

)
,zz

−

(
∂LBs
∂φ,z

)
,z

= 0, R=B, (2.12)

where the change in sign of the surface energy terms is due to the opposing mean curvatures
of the inner and outer boundaries. Where a lateral surface is in smooth contact with a rigid
boundary (i.e. Cases 2 and 3 detailed previously), the zero normal traction condition on this
surface is replaced by the requirement that the radial displacement vanishes. This condition will
be introduced at a later stage in this paper. In all three cases, we have zero shear traction on both
lateral surfaces, invoking a further two boundary conditions which are expressed as follows:

∂Lb
∂φ,RR

= 0, R=A, B. (2.13)

3. Primary deformation and bifurcation conditions for localisation

We now narrow our focus towards the following primary axi-symmetric deformation, a sub-class
of (2.1), which is theoretically possible for all strain-energy functions:

r= r(R), θ=Θ, z = λZ, (3.1)

with λ defined as the principal axial stretch. The deformation gradient corresponding to (3.1) is

F=
∂r

∂R
er ⊗ER +

r

R
eθ ⊗EΘ + λ ez ⊗EZ . (3.2)

We consider Cases 1, 2 and 3 separately for the remainder of this section.

(a) Case 1 - Traction-free lateral boundaries under surface tension
In Case 1, upon substitution of (3.2) into (2.3), the primary radial displacement r0 which satisfies
incompressibility exactly is found to take the form

r0 =
√
λ−1

(
R2 −A2

)
+ a2, (3.3)

with the outer deformed radius b then becoming r0(B) and with a being an unknown parameter.
Through integration of (2.6), the primary solution for φ, denoted φ0, and the associated expression
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for IB are given by

φ0 =
R2z

2λ
+

1

2

(
a2 − A2

λ

)
z and I0(R) = IB |φ0

=

(
A2 − a2λ

)2
r20 R

2 λ2
+

2 + λ3

λ
. (3.4)

The tube is under the combined action of surface tension γ onR=A, B and a resultant axial force
N , such that the total energy of the primary state is

E = 2π

[ ∫λL
−λL

∫B
A
Lb dRdz +

∫λL
−λL

(
LAs + LBs

)
dz

]
− (λ− 1)N , with φ= φ0. (3.5)

Equilibrium of the primary state requires that we satisfy ∂E/∂λ= 0 and ∂E/∂a= 0, and from
these equations the following expressions for N =N (λ, a) and γ = γ(λ, a) are respectively
obtained:

N = π

[
γ

b
(a+ b)2 + 2

∫B
A
wd I0λRdR

]
and γ =− b

λ(a+ b)

∫B
A
wd I0aRdR, (3.6)

wherewd =w′(I0),wdd =w′′(I0) etc., I0λ = ∂I0/∂λ and I0a = ∂I0/∂a. We note that the γ in (3.6)1
is eliminated through substitution of (3.6)2. For any loading scenario (e.g. fixed surface tension
with monotonically varying axial stretch, or fixed axial stretch with increasing surface tension),
the condition for localised bifurcation is [44,59]

J (λ, a)≡ ∂N
∂a

∂γ

∂λ
− ∂N

∂λ

∂γ

∂a
= 0. (3.7)

Now, it was originally thought in [44] that all values of λ and a which satisfy (3.7) are associated
with negative values of γ = γ(λ, a). Given that negative surface tension is physically implausible,
it was concluded that localisation is not possible in this case. However, on re-examination of
the contours J (λ, a) = 0 in the (λ, a) plane, we find that there is in-fact an inconspicuous lower
branch present in the regime of extremely small a in addition to the main branch that we originally
identified. It transpires that the values of λ and a along this branch correspond to positive values of
γ, and so contrary to our initial thoughts, localisation is theoretically possible in Case 1. However,
it was shown in [15] that the tube will bifurcate into an elliptic circumferential buckling mode at a
far lower value of γ than is predicted from (3.6)− (3.7) for localisation, suggesting that the latter
won’t actually occur in reality. As an example, for the neo-Hookean strain-energy with A= 0.4

and λ= 1.7 fixed, the critical surface tension at which bifurcation into a circumferential elliptic
mode occurs is γcr ≈ 0.056 [15], whereas for localisation the corresponding value is γcr ≈ 6.65.
Thus, in the rest of this paper our attention will be focused on Cases 2 and 3.

(b) Case 2 - Radially fixed inner lateral boundary free of surface tension
In Case 2, the restrictions imposed on the inner lateral surface require that the deformed inner
radius is unchanged from its initial value. That is, we must enforce the constraint a=A. The
total energy of the primary state is then the same as (3.5), except we must set LAs = 0 since there
is no surface tension on the inner lateral boundary here. Since a is known in Case 2, the single
parameter λ is sufficient to determine the deformation completely, and equilibrium requires only
that ∂E/∂λ= 0. Say we fix the surface tension γ and monotonically vary λ from some initial
value, then this equilibrium equation yields an expressionN =N (λ) which is simply (3.6)1 with
a→A and γ equal to the chosen fixed value. Alternatively, we may fixN and solve ∂E/∂λ= 0 for
γ = γ (λ) instead. The condition for localised bifurcation then reduces from (3.7) to dN/dλ= 0 or
dγ/dλ= 0, respectively. In the former case, the following implicit relationship between the critical
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axial stretch λcr for localisation and the fixed surface tension γ is obtained:

γ =
4 b3λ3

(A2 − 1)2

∫B
A

∂

∂λ
(wd I0λ)RdR

∣∣∣∣
λ=λcr

. (3.8)

An important feature of (3.8) is that the associated bifurcation curves in the (λcr, γ) plane
have a minimum at (λmin, γmin), say. For each fixed γ > γmin, there exists a single bifurcation
value for λ either side of λ= λmin, say λLcr <λmin and λRcr >λmin, which corresponds to the local
maximum and minimum of N =N (λ), respectively; see Fig. 2. In the limit γ→ γmin, these two
extrema of N coalesce to form an inflection point, and for any γ < γmin, N is a monotonically
increasing function of λ and localised bifurcation cannot occur.
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⨯
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Figure 2: (Colour online) (a) The bifurcation condition (3.8) plotted in the (λcr, γ) plane for the
Gent material model (2.5)2 with Jm = 100 and A= 0.4. The bifurcation curve has a minimum at
(λmin, γmin)≈ (1.16, 7.3) as marked by the black cross. Then, for each fixed γ > γmin, there exists
a bifurcation point either side of λ= λmin. For example, where γ = 10, the tube can bifurcate into
a localised solution at λLcr ≈ 0.69<λmin and λRcr ≈ 1.84>λmin as shown by the black dots. (b) The
variation ofN with respect to λ for γ = 10 (red), γ = γmin (orange) and γ = 4.5 (yellow).

Now, for any strain-energy function of the form (2.4), N is a monotonic function of λ up to
the first bifurcation point encountered, which means that we can equivalently take N or λ as the
control parameter in this scenario. We may then consider two distinct approaches to varyingN or
λ, and these approaches are referred to as "loading" and "unloading" hereafter. When "loading",
we fix γ > γmin with zero axial force N initially, and an axial stretch λ< λLcr is produced. As we
increase λ from this initial value, we transverse along the N =N (λ) curve from left to right (as
shown by the "loading" arrow in Fig. 2 (b)). As such, we will always encounter the maximum of
N at λ= λLcr first, and it is only the bifurcation solution corresponding to this maximum that is of
interest in this scenario. When "unloading", we apply a dead load to an end of the tube such that
an initial axial stretch λ> λRcr is produced. We can then theoretically decrease the axial load until
the tube bifurcates into the solution corresponding to the minimum of N at λ= λRcr . It is noted
however that this approach lacks physical viability since it is somewhat unrealistic to expect soft
slender tubes to withstand such a dead load.

(i) A spectral interpretation

The analysis presented previously can be extended by a spectral approach. On taking λ as the
control parameter with γ fixed, we enforce the ansatz φ= φ0 + ε f(R) eαz , where ε� 1 and α

is the spectral parameter to be determined. We substitute this solution firstly into (2.10), (2.12)
and (2.13) and linearise in terms of f . We also require that the incremental radial displacement
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vanishes on R=A, i.e. f(A) = 0; see (2.6)1. We obtain the following linear eigenvalue problem:

df

dR
= A (R,α)f , B1(A,α)f = 0, B2(B,α)f = 0, (3.9)

where f = [f, f ′, f ′′, f ′′′]T and the matrices A, B1 and B2 can be obtained from the
supplementary Mathematica code. The eigensystem (3.9) can be solved numerically through a
determinant shooting method, and we refer the reader to [44] for details of its implementation. It
is found that, on fixing γ, the system (3.9) has a trivial eigenvalue α= 0, infinitely many complex
eigenvalues and infinitely many real eigenvalues α=±α1, ±α2, ±α3 . . . , where |α1|< |α2|<
|α3|< · · · . In Fig. 3, we study the change in α2

1 for a representative case as we monotonically vary
the load parameter λ.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
-0.2

-0.1

0.0

0.1

0.2

0.3

λ

×

α1
2

λcr
L ≈ 0.89 λmin ≈ 1.12

Loading
U
nl
oa
di
ng

Stable Stable

Unstable

λcr
R ≈ 1.41

Figure 3: The variation of α2
1 with respect to λ for A= 0.5 and γ = 10.

Say that, on fixing γ > γmin, we take N = 0, producing an initial axial stretch λ< λLcr. As
λ is increased from this value, we transcend along the red curve in Fig. 3 in the direction of
the arrow marked "loading". We observe that α2

1 is positive, and hence ±α1 are non zero and
real, up to the bifurcation point λ= λLcr (as indicated by the left-most black dot), where α2

1 = 0.
Therefore, bifurcation into a localised solution coincides with zero becoming a triple eigenvalue
of the system (3.9), and axial stretches below this bifurcation value lie in the sub-critical or stable
regime wherein ±α1 are real. Beyond this bifurcation value, we enter the unstable regime, and
we see that α2

1 becomes negative, with±α1 therefore becoming purely imaginary. Thus, it is only
after localised bifurcation occurs that the eigensystem (3.9) can support periodic solutions, and
this was also shown to be the case in [44] for the alternate loading scenario of fixed λ> 1 and
varying γ. Notwithstanding, if N is fixed such that λ> λRcr initially and we unload from this
point, the previous interpretations are also still valid. However, we transcend along the curve in
Fig. 3 in the direction of the "unloading" arrow, and localisation occurs at the right-most black dot
instead.

(c) Case 3 - Radially fixed outer lateral boundary free of surface tension
In Case 3, since the radial displacement of the outer lateral surface is instead prohibited, the
constraint b=B is enforced, and we may then determine that the inner deformed radius a=√
λ−1(A2 − 1) + 1. To ensure that this expression for a is real, we require that λ> 1−A2, and in

the limit λ→ 1−A2, the inner deformed radius a→ 0. The total energy of the primary solution
is again slightly modified from (3.5) since LBs must be zero. Then, for fixed γ, the resultant axial
force N can be obtained from the equilibrium equation ∂E/∂λ= 0, and is found to be equivalent
to (3.6)1 but with the expressions for a and b in Case 3 substituted. The corresponding localised
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bifurcation condition is again dN/dλ= 0, from which we obtain

γ =
4 a3λ3

(A2 − 1)2

∫B
A

∂

∂λ
(wd I0λ)RdR

∣∣∣∣
λ=λcr

. (3.10)

IfN is zero when applying the fixed surface tension, an axial stretch 1−A2 <λ< 1 is produced.
For larger fixed γ, the inner radius of the tube will be smaller.

The weakly non-linear analysis in the following section is tailored towards Case 2. However,
an overview of the results for Case 3 (and their distinctions from Case 2) is given in section 5 for
completeness. In the next section, we not only validate (3.8), but we also demonstrate that the
bifurcation solutions corresponding to the local maximum and minimum of N are sub-critical
and are explicitly localised necking and bulging, respectively.

4. Weakly non-linear near-critical analysis
In a weakly non-linear analysis, we are interested in the relationship between the increment of
the control parameter from its bifurcation value and the amplitude of the associated localised
solution. Further insights into the principal ideas of such an analysis can be found in [60]. Here,
we construct an exhaustive weakly non-linear analysis for Case 2 in terms of a general material
model and focus on two main loading scenarios. Namely, we fix γ and take λ as the control
parameter, or we fix λ and take γ as the control parameter.

(a) Taking λ as the control parameter with fixed γ.
Guided by the framework in [60], we consider a small deviation of the axial stretch from its critical
value for localisation λcr:

λ= λcr + ε λ1, (4.1)

where ε� 1 is a positive parameter and λ1 is a constant of O(1). From the spectral analysis in
section 3 (b) (i), we find that λ is parabolic with respect to the axial wavenumber k=−i α1 in this
near-critical regime, motivating the introduction of a far distance variable s such that

s= ε1/2 z. (4.2)

Again, guided by [60], we extend (3.4) and look for a solution of the form

φ= φ0 + ε1/2
{
φ
(1)
1 (R, s) + ε φ

(2)
1 (R, s) + ε2 φ

(3)
1 (R, s) + · · ·

}
. (4.3)

Then, the corresponding expansions for the mixed co-ordinates given in (2.6) are as follows:

r= rcr +
ε

rcr

{
λ1
2λ2cr

(
A2 −R2

)
+ φ

(1)
1,s

}
+ · · · , Z =

z

λcr
+
ε1/2

R
φ
(1)
1,R − ε

zλ1
λ2cr

+ · · · , (4.4)

where rcr is simply r0 as given by (3.3) evaluated at λ= λcr. On substituting (4.3) into (2.10)
and the associated boundary conditions, we obtain a hierarchy of boundary value problems by
equating the coefficients of like powers of ε. To leading order, we obtain the governing equation

L
[
φ
(1)
1

]
= 0, (4.5)

and the associated boundary conditions

B1
[
φ
(1)
1

]
R=1

= 0, B2
[
φ
(1)
1

]
R=1, A

= 0, φ
(1)
1,s (A, s) = 0, (4.6)

with the three differential operators L, B1 and B2 being defined as

L=
∂

∂R

1

R

∂

∂R
Rwd

∂

∂R

1

R

∂

∂R
, B1 =

1

R

∂

∂R
Rwd

∂

∂R

1

R

∂

∂R
, B2 =

∂

∂R

1

R

∂

∂R
. (4.7)
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We note that (4.6)1,2 are derived from (2.12) and (2.13), respectively, whilst (4.6)3 ensures that the
leading order incremental radial displacement vanishes on R=A; see (4.4)1. Through repeated
integration of (4.5), the following general solution for φ(1)1 is determined:

φ
(1)
1 =C1(s)R

2 + C2(s) ξ2(R) + C3(s) ξ3(R) + C4(s), (4.8)

where ξ2(R) =

∫R
A
u

∫u
A

t

wd
dt du and ξ3(R) =

∫R
A
u

∫u
A

1

t wd
dt du. (4.9)

In the above expressions, the variable R in wd should be replaced by t (i.e. wd =w′(I0(t))). On
substituting (4.8)− (4.9) into (4.6)2, we find that C2 and C3 must necessarily be zero, whilst
(4.6)1 is automatically satisfied and (4.6)3 requires that C′4(s) =−A2 C′1(s). We may integrate the
latter equation with respect to s and set the additive constant to zero without loss of generality
since the displacements (4.4) depend only on the partial derivatives of φ(1)1 . This statement also
holds true at higher orders. Thus, the particular leading order solution is

φ
(1)
1 =C1(s)

(
R2 −A2

)
, (4.10)

where C1(s) is to be determined.
At the next order order, we have the following governing equation:

L
[
φ
(2)
1

]
= p1(R)C

′′
1 (s), where p1 = p

(1)
1 wd + p

(2)
1 wdd + p

(3)
1 wddd, (4.11)

with the functions p(m)
1 (R) (m= 1, 2 and 3) available in the supplementary Mathematica code.

The associated normal and shear traction-free boundary conditions take the respective forms:

B1
[
φ
(2)
1

]
R=1

= k1C
′′
1 (s), B2

[
φ
(2)
1

]
R=1,A

= s1(R)C
′′
1 (s)

∣∣
R=1,A

, (4.12)

where the constant k1 = (k
(1)
1 + k

(2)
1 wd + k

(3)
1 wdd)|R=1 is likewise given in our Mathematica

code and s1(R) =R(R2 −A2)/(rcrλcr)
2. Furthermore, the boundary condition enforcing zero

incremental radial displacement at R=A at this order is φ(2)1,s(A, s) = 0. A general solution to
(4.11) is

φ
(2)
1 =D1(s)R

2 +D2(s) ξ2(s) +D3(s) ξ3(s) +D4(s) + C′′1 (s)P(R), (4.13)

where P(R) is a particular integral given by

P(R) =
∫R
A
x

∫x
A

1

v wd

∫v
A
u

∫u
A
p1(t) dt du dv dx. (4.14)

We note thatP(R) is non-elementary, and we evaluate it numerically using the procedure detailed
in section 4 of [61]. On substituting (4.13) into φ(2)1,s(A, s) = 0 and (4.12)2, we find that D2, D3

and D4 are linear in terms of D1 and C′′1 . Then, on substituting (4.13) into (4.12)1, the resulting
equation can be shown to be numerically equivalent to the bifurcation condition (3.8) when the
Gent strain-energy (2.5)2 is deployed. In contrast, for the neo-Hookean model (2.5)1, (3.8) can
in-fact be recovered in closed form.

At the third order, the governing equation is

L
[
φ
(3)
1

]
= p1(R)D

′′
1 (s) + p2(R)C

′′′′
1 (s) + p3(R)C

′′
1 (s)

(
λ1 − 2λ2cr C

′
1(s)

)
. (4.15)

The normal and shear traction-free boundary conditions also contain non-linear inhomogeneous
terms at this order, and they are expressed respectively as follows:

B1
[
φ
(3)
1

]
R=1

=

{
k1D

′′
1 (s) + k2 C

′′′′
1 (s) + k3 C

′′
1 (s)

(
λ1 − 2λ2cr C

′
1(s)

)} ∣∣∣∣
R=1

, (4.16)
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and

B2
[
φ
(3)
1

]
R=1,A

=

{
s1D

′′
1 (s) + s2 C

′′′′
1 (s) + s3 C

′′
1 (s)

(
λ1 − 2λ2cr C

′
1(s)

)} ∣∣∣∣
R=1,A

. (4.17)

Also, the condition enforcing zero incremental radial displacement on R=A is φ(3)1,s(A, s) =

0. The expressions for p2,3, s2,3 and k2,3 are lengthy, which makes obtaining the desired
amplitude equation by solving the above third order boundary value problem algebraically
and computationally involved. Alternatively, since the homogeneous form of this third order
boundary value problem has a non-trivial solution, we may use the fact that the inhomogeneous
terms on the right hand side of (4.15) - (4.17) must satisfy a solvability condition. In-fact, for
sufficiently smooth functions f(R) and g(R), the following identity holds true:∫1

A

{
gL [ f ]− f L [ g ]

}
dR=

[
g B1 [ f ]− f B1 [ g ] + f ′ wd B2 [ g ]− g′ wd B2 [ f ]

]1
A
, (4.18)

and originates from the self-adjointness of L [61]. The additional constraints f(A) = g(A) = 0

must also be enforced to ensure that terms in (4.18) involvingB1 [ · ] from the normal traction-free
condition on R= 1 are not evaluated at R=A. Particularly, on setting g equal to the first order
solution (4.10) and f = φ

(m)
1 (m= 2, 3), (4.18) reduces to∫1

A

(
R2 −A2

)
L
[
φ
(m)
1

]
dR=

[(
R2 −A2

)
B1
[
φ
(m)
1

]
− 2Rwd B2

[
φ
(m)
1

] ]1
A

, (4.19)

and we note that L [φ(m)
1 ], B1[φ

(m)
1 ] and B2[φ

(m)
1 ] are each equal to expressions which involve

only lower order solutions. On setting m= 2 in (4.19) and equating coefficients of C′′1 , we obtain
the bifurcation condition for localisation. This condition is found to be numerically equivalent to
(3.8) when the Gent material model is deployed, giving further verification of our derivations.
On setting m= 3 in (4.19), we yield the desired amplitude equation. Through integrating once
and setting the arbitrary constant to zero for decay solutions, we obtain

A
′′ = λ1κ1A+ κ2 A

2, (4.20)

where the amplitude A(s) =C′1(s) and the coefficients κ1,2 are discussed below.

(i) Analysis of the amplitude equation

For any strain-energy function of the form (2.4), the special relationship κ2 =−λ2cr κ1 is found
to hold and can be explained as follows. On substituting (4.3) into the zZ component of F, the
following expansion of the principal axial stretch is determined to O(ε):

λ= λcr + ε
(
λ1 − 2λ2cr A(s)

)
. (4.21)

As is now established, the bifurcation points λcr = λLcr and λcr = λRcr for localisation occur
respectively at the local maximum and minimum of the resultant axial force N when γ > γmin
is fixed. Therefore, N must admit parabolic behaviour in a small neighbourhood of λcr and,
provided the amplitude A(s) is constant and non-zero, (4.1) and (4.21) are two distinct near-
critical solutions which must be equidistant from λcr and yield the same value of N . That is, we
must have

λcr −
{
λcr + ε

(
λ1 − 2λ2cr A(s)

)}
= (λcr + ελ1)− λcr, (4.22)

from which we obtain A(s) = λ1/λ
2
cr. Then, on substituting this expression for A back into (4.20),

the relation κ2 =−λ2cr κ1 follows.
Whilst the determined expression for κ1 is analytical, it is largely in terms of integrals which

cannot be evaluated explicitly. Thus, for the chosen material model, κ1 must be determined
numerically by evaluating these integrals through the approach given in [61]. Nevertheless, by
the following interpretation, we expect that κ1 is negative (resp. positive) for any λcr = λLcr <λmin
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(resp. λcr = λRcr >λmin) such that γ > γmin is fixed. Consider the linearised form of the amplitude
equation (4.20). On assuming a solution of the form A= eαs, the spectral parameter α is found to
take the non-trivial values ±α1 =±

√
λ1κ1. We note that these are the same ±α1 from the section

3 (b) (i) defined analytically in the near-critical regime. From the spectral analysis, we expect that
bounded periodic solutions (i.e. purely imaginary values of ±α1) are possible only in the regime
unstable to localisation, and that ±α1 are real in the stable regime. With reference to Fig. 2, λ1
is negative (resp. positive) in the stable (resp. unstable) regime when "loading" and we therefore
require that κ1 < 0 for ±α1 to take its expected form. In contrast, λ1 is positive (resp. negative)
in the stable (resp. unstable) regime when "unloading", and so we must have κ1 > 0 instead. On
specifying the Gent strain-energy function with Jm = 100, we present in Tables 1 and 2 numerical
values of κ1 corresponding to λcr = λLcr ("loading") and λcr = λRcr ("unloading"), respectively. We
observe that, in the former and latter cases, κ1 is respectively negative and positive, suggesting
that κ1 does indeed change sign as we pass through λ= λmin.

Table 1: Numerical values of κ1 for the Gent material model with Jm = 100

and λcr = λLcr <λmin (i.e. when "loading").

γ = 10.5 γ = 11 γ = 11.5 γ = 12 γ = 12.5 γ = 13

A= 0.2 -1.2349 -1.2548 -1.2703 -1.2823 -1.2913 -1.2977
A= 0.3 -1.2226 -1.2523 -1.2766 -1.2965 -1.3128 -1.3261
A= 0.4 -1.1642 -1.2108 -1.2497 -1.2825 -1.3103 -1.3341
A= 0.5 -0.9856 -1.0667 -1.1336 -1.1897 -1.2375 -1.2788
A= 0.6 -0.2857 -0.5763 -0.7545 -0.8698 -0.9685 -1.05002

Table 2: Numerical values of κ1 for the Gent material model with
Jm = 100 and λcr = λRcr >λmin (i.e. when "unloading").

γ = 10.5 γ = 11 γ = 11.5 γ = 12 γ = 12.5 γ = 13

A= 0.2 1.3889 1.4339 1.4748 1.5124 1.5472 1.5796
A= 0.3 1.3158 1.3632 1.4045 1.4433 1.4777 1.5092
A= 0.4 1.1925 1.2483 1.2965 1.3387 1.37604 1.4094
A= 0.5 0.96797 1.0495 1.1167 1.1735 1.2221 1.2643
A= 0.6 0.2717 0.5545 0.7158 0.8326 0.9237 0.9979

A localised solution to the amplitude equation (4.20) is a standing solitary wave given by

A(s) =−3λ1κ1
2κ2

sech2
(
1

2

√
λ1κ1s

)
. (4.23)

Given the aforementioned sign change of κ1 across λ= λmin, the form of (4.23) means that
this localised solution exists for λ1 < 0 (resp. λ1 > 0) when "loading" (resp. "unloading"). In other
words, the solution (4.23) emerges sub-critically in both scenarios. Explicitly, (4.23) is a dark soliton
(necking) when "loading" and a bright soliton (bulging) when "unloading".

When the Gent material model is employed, we have verified numerically that κ1→ 0 as
(λcr, γ)→ (λmin, γmin). Moreover, when reducing to the neo-Hookean model, it can be shown
explicitly that κ1 ∝ dγ/dλ|λcr , where γ is given by (3.8). Thus, the form of (4.23) suggests that a
rescaling of the dependent variable s is required in this limit, and we analyse this case separately
in the next subsection.
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(ii) The limit λcr → λmin

By expanding κ1 about λ= λmin, the following re-scaling of s in this limit is deduced from (4.23):

ŝ= ε1/2s= ε z. (4.24)

Since γ is locally parabolic with respect to λcr near (λmin, γmin), we set

λ= λmin + ε λ̂1 and γ = γmin + ε2 γ̂1, (4.25)

where λ̂1 and γ̂1 are constants of O(1). Given (4.24), we implement the following re-scaling of φ:

φ= φ0 + Ĉ1(ŝ)
(
R2 −A2

)
+ ε φ̂

(1)
1 + ε2 φ̂

(2)
1 + ε3 φ̂

(3)
1 + ε4 φ̂

(4)
1 +O(ε5), (4.26)

noting that, although the second term Ĉ1(ŝ)(R
2 −A2) in (4.26) is of the same order as the first

term φ0, the corresponding deformation gradient is of higher order.
We then follow the same procedure as presented previously for the non-limit case. At O(ε),

we find that φ̂(1)1 must necessarily be zero. At O(ε2), the bifurcation condition for localisation
evaluated at (λcr, γ) = (λmin, γmin) is obtained and is found to be equivalent to (3.8) (numerically
for the Gent model, but in closed form for the neo-Hookean model). Then, atO(ε3), we recover an
equation which is numerically equivalent to dγ/dλ |λmin = 0 (and which is satisfied automatically).

AtO(ε4), by setting g= Ĉ1(ŝ)(R
2 −A2) and f = φ̂

(4)
1 in (4.19), the following amplitude equation

for Â(ŝ) = Ĉ′1(ŝ) is obtained:

Â
′′ =

(
γ̂1κ̂1 + λ̂21 κ̂2

)
Â− 2 λ̂1λ

2
min κ̂2 Â

2 +
4

3
λ4minκ̂2 Â

3, (4.27)

where κ̂1 and κ̂2 are new constants.
Although we have initially derived two separate expressions for κ̂1 and κ̂2, simpler

connections between these two coefficients can be established as follows. First, on substituting
Â= eα̂1ŝ into the linearised form of (4.27), we obtain α̂2

1 = γ̂1κ̂1 + λ̂21 κ̂2, which will be used
repeatedly below. For fixed γ̂1 > 0, the local maximum and minimum of N are near the point
of coalescence; see Fig. 2. On Taylor expanding N around (λmin, γmin), the following bifurcation
points λL,Rcr for localisation near λmin can be deduced from the equation dN/dλ= 0:

λL,Rcr = λmin + ε λ̂L,R1 , where λ̂L,R1 =∓

√
−2 γ̂1

∂2N
∂λ∂γ

(
∂3N
∂λ3

)−1
, (4.28)

with the derivatives of N evaluated at (λmin, γmin). When "loading", say, the bifurcation point
of interest is λLcr = λmin + ε λ̂L1 . Since λ̂1 = λ̂L1 lie on the bifurcation curve, we must have α̂1 = 0

when λ̂1 is replaced by λ̂L1 in the above expression for α̂2
1, which yields the connection

κ̂2 =−
γ̂1 κ̂1

(λ̂L1 )
2
. (4.29)

Alternatively, consider the following two term expansion of the original bifurcation condition
(3.8) around γmin:

γ = γmin +
1

2
(λ− λmin)

2 · d
2γ

dλ2

∣∣∣∣
λ=λmin

. (4.30)

On substituting (4.25) into (4.30), we obtain an expression for γ̂1. Since this also lies on the
bifurcation curve, the corresponding α̂1 must vanish as well, which then yields a second
connection between κ̂1 and κ̂2:

κ̂2 =−
1

2
κ̂1
d2γ

dλ2

∣∣∣∣
λ=λmin

. (4.31)

As a consistency check, we have verified numerically that the two expressions (4.29) and (4.31) are
indeed equivalent. These two expressions can further be used to show that κ̂1 must be negative
whereas κ̂2 must be positive. To this end, we first substitute (4.29) into the expression for α̂2

1

to obtain α̂1 =±
√
γ̂1κ̂1(1− λ̂21/(λ̂L1 )2). In the stable regime where λ̂1 < λ̂L1 < 0, α̂1 must be real
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as expected from the spectral analysis. It then follows that κ̂1 must necessarily be negative. In
the unstable regime where λ̂L1 < λ̂1 < 0, κ̂1 must remain negative for α̂1 to be purely imaginary.
An analogous interpretation exists when "unloading", and the requirement that κ̂1 be negative
remains true. The second connection (4.31) then implies that κ̂2 is positive.

Alternatively, (4.27) can be expressed as the one degree-of-freedom Hamiltonian system

Â
′′ =−∂V̂

∂Â
, where V̂ =−1

3
λ4min κ̂2 Â

2
(
Â− Â

+
0

)(
Â− Â

−
0

)
. (4.32)

The fixed points Â± and ground states Â±0 of (4.32) are then

Â
± =

3

4

 λ̂1
λ2min

± 1

λ2min

√
λ̂21 −

4

3

(
λ̂21 +

κ̂1
κ̂2
γ̂1

) (4.33)

and Â
±
0 =

1

λ2min

{
λ̂1 ±

√
− 1

2κ̂2

(
3κ̂1γ̂1 + κ̂2λ̂

2
1

)}
. (4.34)

Equation (4.32) admits a localised solution if and only if the following two conditions are satisfied:

κ̂1γ̂1 + κ̂2 λ̂
2
1 > 0, 3 κ̂1γ̂1 + κ̂2 λ̂

2
1 ≤ 0. (4.35)

The first condition (4.35)1 ensures that the localised solution decays as |ŝ| →∞ and that there are
fixed points other than Â= 0, whereas (4.35)2 guarantees that Â′ = 0 has a non-trivial root (i.e.
Â−0 is real). We observe that (4.35) cannot be satisfied at λ̂1 = 0, and it will be shown shortly that
a kink-wave solution exists in place of localisation at this point. On combining the inequalities in
(4.35), we obtain the following range of values of λ̂1 for which a localised solution can exist:

√
3 λ̂L1 < λ̂1 < λ̂

L
1 and λ̂R1 < λ̂1 <

√
3 λ̂R1 . (4.36)

The localised solution is given explicitly in [37] as follows:

Â(ŝ) =
Â+
0 Â−0 (1− ζ2)
Â+
0 − Â−0 ζ

2
, where ζ(ŝ) = tanh

−
√
κ̂2Â

+
0 Â−0
6

λ2minŝ

 . (4.37)

When "loading" (resp. "unloading"), this solution in the limit λ̂1→ λ̂L1 (resp. λ̂1→ λ̂R1 ) takes the
form of a localised neck (resp. bulge), and a non-trivial fixed point Â− (a center) emerges in this
limit; see Fig. 4 (a). However, in the limits λ̂1→

√
3 λ̂L1 and λ̂1→

√
3 λ̂R1 , (4.37) degenerates into a

kink-wave solution characterised by two regions of uniform but distinct axial stretch

λL,R = λmin +
√
3 ε λ̂L,R1 , (4.38)

connected by a smooth transition region. In this limit, the ground states Â±0 coalesce to form the
fixed point Â+ (a saddle) which connects to the origin via a heteroclinic orbit; see Fig. 4 (b).

To give further insights, say as an example we are "loading" with γ̂1 > 0 fixed; see Fig. 5.
Intuitively, we might say that since we reach λ̂1 =

√
3λ̂L1 first, the initial bifurcation is into a

kink-wave solution. However, a direct transition from the primary axial tension state to a fully
developed kink-wave solution is only possible if the perturbations applied to the tube are large
in amplitude [62]. Given that our "loading" is extremely controlled, such a bifurcation is not
physically feasible. Thus, the initial bifurcation is as generally expected into a localised necking
solution as λ̂1→ λ̂L1 (i.e. as λ→ λLcr), and this occurs sub-critically since λ̂1 < λ̂L1 must hold by
(4.36); see Fig. 5 (a). Beyond this point, we expect that this necking solution evolves into a kink-
wave solution. In other words, the neck or depression will first undergo a propagation in the
radial direction to a near maximum amplitude followed by an axial propagation; see Fig. 5 (b). The
final "two-phase" or "kink-wave" configuration consists of a thin section with stretch λR centred
at z = 0 in between two thick sections with stretch λL. These thick and thin sections are connected
by a smooth transition region whose length is assumed to be negligible, and the overall average
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Figure 4: Phase portraits when λ̂1 is (a) close to and (b) equal to
√
3λ̂L1 . Away from λ̂1 =

√
3λ̂L1 ,

a center Â− exists inside a homoclinic orbit, with the latter connecting Â−0 to the origin. In the
limit λ̂1→

√
3λ̂L1 , the ground states Â±0 coalesce to form the saddle point Â+. This signals the

transition from a localised (homoclinic) solution to a kink-wave (heteroclinic) solution.
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Figure 5: (a) A plot of the intervals of existence (4.36) of the localised solution (4.37) (orange
region). Say we fix γ̂1 > 0 with N = 0 initially (i.e. we enforce the "loading" scenario). Then, as λ
is increased, we move in the direction of the dashed black arrow shown. The initial bifurcation
occurs sub-critically as we approach the black dot at λLcr, and takes the form of a localised neck
(as shown by the yellow curve in (b)). On increasing the overall stretch beyond λLcr, a transition
to a kink-wave solution as shown in (b) is expected, and the stretches λL,R corresponding to the
final "two-phase" configuration are marked by the red dots in (a).

stretch of the tube is λLcr plus some small increment. Since we are "loading", the stretch as z→±∞
is also λLcr plus some small increment near the initial bifurcation point, which is why the thicker
sections are on the outside. However, we note that whether or not the transition from necking
to kink-wave solution is sudden or gradual is largely dependent on the stability of the solution
(4.37) which we do not analyse here. If we were "unloading", the initial bifurcation would of
course be into a localised bulge as λ̂1→ λ̂R1 , and the thicker section of the ensuing kink wave
solution would be centred at z = 0 instead.
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(b) Taking γ as the control parameter with λ fixed
An alternate approach is to subject the tube to a fixed axial stretch λ initially and then increase the
surface tension monotonically from zero. Varying the surface tension can be achieved chemically
by lowering the shear modulus of the material through temperature change, say. We set

γ = γcr + ε γ̃1, (4.39)

where γ̃1 is a constant of O(1) and the bifurcation values γcr satisfy (3.8) with λcr replaced by a
fixed λ on the right-hand side. Then, by applying the same solution procedure as presented in the
previous section, we obtain the amplitude equation

A
′′ = γ̃1 κ̃1 A+ κ̃2 A

2, (4.40)

whose solitary wave solution is A=−{(3γ̃1κ̃1)/(2κ̃2)} sech2(
√
γ̃1κ̃1s/2). Unlike its counterpart

κ1 in the previous loading scenario, κ̃1 is generally negative, and this can be explained as follows.
In this loading scenario, the non-trivial eigenvalues are ±α1 =±

√
γ̃1 κ̃1. Since for any fixed λ the

constant γ̃1 is negative (resp. positive) in the stable (resp. unstable) regime, we require that κ̃1 < 0

for the expected exponential (resp. periodic) behaviour to occur. It follows that the bifurcation is
sub-critical since the term

√
γ̃1κ̃1 in the solitary wave solution forces γ̃1 to be negative. Based on

the findings for a solid cylinder [37], we expect that the relation κ̃2 = λ2 κ̃1 dγcr/dλ holds true, and
we have verified this numerically for the Gent material model and explicitly for the neo-Hookean
model. The localised solution to (4.40) is therefore necking for κ̃2 > 0 and bulging for κ̃2 < 0.

λ

γ
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=
-
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2 λ 
1
2
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/
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1
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Figure 6: (a) If we fix λ̂1 > 0 and then increase γ gradually from zero, the initial bifurcation is into a
localised bulge, and this occurs sub-critically in the limit γ̂1→−κ̂2λ̂21/κ̂1 (as marked by the black
dot). A "snap-through" to the two red dots at λ= λL,R then occurs (i.e. the localised bulge "jumps"
to a kink-wave solution). (b) FEM simulations from [44] which verify the "jump" behaviour for
fixed λ 6= λmin. The black dots mark the bifurcation points given by (3.8). Exceptionally, no "jump"
occurs when λ= λmin, and a continuous, supercritical transition to a kink-wave solution occurs
instead (blue curve).

In the limit λ→ λmin, κ̃2 vanishes and the solitary wave solution to (4.40) diverges. Through
appropriate re-scaling of A, the amplitude solution (4.37) is found to be valid in this limiting case
also for −κ̂2λ̂21/(3κ̂1)< γ̂1 <−κ̂2λ̂21/κ̂1. To illustrate further, say we fix λ̂1 > 0 and increase γ
gradually from zero; see Fig. 6 (a). Then, with the aid of (4.25) and (4.30)− (4.31), we deduce that
the initial bifurcation occurs sub-critically in the limit γ̂1→−κ̂2λ̂21/κ̂1 (i.e. as γ→ γcr), and takes
the explicit form of a localised bulge (since λ̂1 > 0). Based on previous FEM simulations [44], we
expect that a "snap-through" to the two red dots at λ= λL,R = λmin ∓

√
3ελ̂1 will then occur; see
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Fig. 6 (a). In other words, a "snap-through" from localised bulging to a kink-wave solution will
take place. For the latter, the configuration consists of a thicker section with stretch λL centred at
z = 0 in between two thinner sections with stretch λR, with the overall average stretch remaining
fixed at λ= λmin +

√
ελ̂1.

In the special case λ= λmin, the solution (4.37) cannot capture the bifurcation behaviour since
the inequalities (4.35) cannot be satisfied at λ̂1 = 0. However, we may make the substitution
Â(ŝ) = 2−1λ−2min

√
−3 γ̂1κ̂1/κ̂2 h(t), with t=

√
−γ̂1κ̂1ŝ, to reduce the amplitude equation (4.27)

to h′′(t) = h(h2 − 1) in this limit. The latter equation has previously been derived by Xuan and
Biggins [35], and it admits the kink-wave solution h(t) = tanh(t/

√
2) that tends to±1 as t→±∞,

respectively. As we increase γ beyond the associated bifurcation value γmin, a continuous transition
to this kink-wave solution occurs, and the bifurcation is exceptionally super-critical as shown by
the blue curve in Fig. 6 (b).

5. Further insights into Case 3
In this section, we provide further insights into the bifurcation behaviours in Case 3. As an
illustrative example, we fix λ> 1−A2 and take γ as the control parameter. For the sake of
brevity, the neo-Hookean strain-energy is deployed here, but an extension to the Gent model
can be achieved as shown previously. By applying the same approach as in section 4 (b), the
corresponding amplitude equation is determined to be of the form (4.40). The counterpart of κ̃1
in Case 3 is still generally negative, and κ̃2 = λ2κ̃1 dγcr/dλ.
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Figure 7: (a) Plots of γcr against λ for A= 0.065 (red), A= 0.08567 (orange) and A= 0.11

(yellow). On the curve corresponding to A= 0.065, the black dots mark the two additional
local extrema of γcr with respect to λ which emerge in the large thickness regime. In the limit
A→ 0.08567−, these two extrema coalesce to form an inflection point (as shown by the arrow),
and above this threshold, γcr has a single minimum value. (b) A blow up of (3.10) in the large
thickness regime about λ= λmax. The red curve gives the bifurcation points γ̂1 =−κ̂2λ̂21/κ̂1 in a
small neighbourhood of γmax, whilst the orange region represents γ̂1 < κ̂2λ̂21/κ̂1, the domain of
existence of localisation in this limiting case.

Whilst the structure of the amplitude equation appears near identical to the Case 2
counterpart, there is a subtlety which alters the interpretation of the bifurcation solutions
somewhat, and this can be explained as follows. In Case 2, γcr as a function of λ has a single
minimum for any tube thickness, as was illustrated in Fig. 2. In Case 3 however, there exists a
threshold value for A below which two additional local extrema (i.e. a maximum and a minimum)
of γcr with respect to λ emerge. For the neo-Hookean strain energy, this threshold is A≈ 0.08567,
and in the limit A→ 0.08567− these two additional extrema of γcr coalesce to form an inflection
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point; see Fig. 7 (a). In the limit A→ 0, incompressibility may only be satisfied for λ= 1, and
the associated bifurcation point γcr/A→ 2 corresponds to localisation in a cylindrical cavity
surrounded by an infinite solid [22,45]. For values of A above 0.08567, the solitary wave solution
corresponds to a localised neck for 1−A2 <λ<λmin and a localised bulge for λ> λmin.

For A< 0.08567, we denote by λmax and λL,Rmin the values of λ at the maximum and the
left and right hand minima of γcr. Then, given the form of κ̃2, it follows that the localised
solution in this large thickness regime corresponds to necking for 1−A2 <λ<λLmin and λmax <

λ<λRmin, and bulging for λLmin <λ<λmax and λ> λRmin. Now, in the limit λ→ λL,Rmin , we find
that a Case 3 counterpart of the localised solution (4.37) and the associated post-bifurcation
behaviour is valid. However, in the limit λ→ λmax, a key difference lies in the fact that κ̂2
is no longer positive; see (4.31). This means that, given the expansions γ = γmax + ε γ̂1 and
λ= λmax + ε1/2λ̂1, and the form of Â±0 in (4.34), the inequality sign in the necessary condition
(4.35)2 for localisation is flipped. Therefore, in the vicinity of λmax, the localised solution (4.37)
instead exists for γ̂1 <−κ̂2λ̂21/κ̂1 < 0, and thus occurs sub-critically; see Fig. 7 (b). Also, on
flipping the inequality sign in (4.35)2, we see that (4.35) can be satisfied at λ̂1 = 0. Thus, the
Case 3 counterpart of (4.37) for A< 0.08567 is valid at λ= λmax, and reduces to the dark solitary
wave Â=−λ−2max

√
(−3γ̂1κ̂1)/(2κ̂2) sech(

√
γ̂1κ̂1ŝ).

6. Conclusion
If one lateral surface of a soft slender tube is in smooth contact with a rigid boundary such that
radial displacement and surface tension are prohibited, and the other lateral surface remains
traction-free and under surface tension, localised bifurcation solutions become widely favourable
over periodic axisymmetric modes. Contrary to our original thoughts, this statement is also true
when both lateral surfaces are traction-free, though in this case these localised solutions are
preceded by elliptic circumferential buckling modes [15]. Throughout this work, we have referred
to the latter scenario as Case 1, whilst Cases 2 and 3 pertain to the scenarios where the inner or
outer surfaces, respectively, are radially fixed.

Through a weakly non-linear analysis formulated in terms of a general material model, we
have explicitly characterised the localised solutions which initially bifurcate from the primary
state of axial tension in Case 2. These theoretical results pertain to two common scenarios of
loading: a fixed surface tension with monotonically varying axial stretch, or a fixed averaged axial
stretch with monotonically increasing surface tension. In the former scenario, the fixed surface
tension γ attains a minimum γmin at the critical axial stretch λcr = λmin, and there consequently
exists two bifurcation values λLcr <λmin and λRcr >λmin for any fixed γ > γmin. We explained how,
on assuming that the resultant axial forceN is zero initially and then increasing λ ("loading"), the
left bifurcation point λLcr is always encountered first, and the associated sub-critical bifurcation
solution is localised necking. In contrast, when applying a dead load to an end of the tube
initially and decreasing λ ("unloading"), the right bifurcation point λRcr is encountered first and
the associated localised solution is bulging. When fixing λ and increasing γ, the localised solution
was found to be necking for λ< λmin and bulging for λ> λmin. In Case 3, two additional local
extrema of the critical surface tension emerge in the regime of large tube thickness A< 0.08567,
meaning that necking and bulging can occur in several separate intervals of axial stretch.

In both loading scenarios, an appropriate rescaling reveals the existence of a small region
either side of λ= λmin wherein a variety of localised bifurcation behaviours exist. Based on
these theoretical results, we provided a complete interpretation of the expected post-bifurcation
behaviour which is supported by FEM simulations [44]. For fixed λ, we explained how the tube
will initially admit a localised necking or bulging solution which "jumps" to a final kink-wave
solution consisting of a bulged and depressed region with constant but distinct axial stretches λL
and λR, respectively. These stretches are given analytically in the vicinity of λmin. At λ= λmin,
the bifurcation is exceptionally supercritical, and the corresponding kink wave solution has been
derived explicitly.
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We conclude by noting that, as a first attempt, we have used the simplest liquid-like surface
model to describe surface effect. However, more sophisticated models that take area stretch into
account [63,64], or even surface stiffness into account [65], may be used.
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