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Sulfatase-Mediated Manipulation of the
Astrocyte-Schwann Cell Interface

Paul O’Neill,1 Susan L. Lindsay,1 Andreea Pantiru,1 Scott E. Guimond,2 Nitish Fagoe,3

Joost Verhaagen,3 Jeremy E. Turnbull,2 John S. Riddell,4 and Susan C. Barnett1

Schwann cell (SC) transplantation following spinal cord injury (SCI) may have therapeutic potential. Functional recovery is limit-
ed however, due to poor SC interactions with host astrocytes and the induction of astrogliosis. Olfactory ensheathing cells
(OECs) are closely related to SCs, but intermix more readily with astrocytes in culture and induce less astrogliosis. We previ-
ously demonstrated that OECs express higher levels of sulfatases, enzymes that remove 6-O-sulfate groups from heparan sul-
phate proteoglycans, than SCs and that RNAi knockdown of sulfatase prevented OEC-astrocyte mixing in vitro. As human
OECs are difficult to culture in large numbers we have genetically engineered SCs using lentiviral vectors to express sulfatase
1 and 2 (SC-S1S2) and assessed their ability to interact with astrocytes. We demonstrate that SC-S1S2s have increased
integrin-dependent motility in the presence of astrocytes via modulation of NRG and FGF receptor-linked PI3K/AKT intracellu-
lar signaling and do not form boundaries with astrocytes in culture. SC-astrocyte mixing is dependent on local NRG concen-
tration and we propose that sulfatase enzymes influence the bioavailability of NRG ligand and thus influence SC behavior. We
further demonstrate that injection of sulfatase expressing SCs into spinal cord white matter results in less glial reactivity than
control SC injections comparable to that of OEC injections. Our data indicate that sulfatase-mediated modification of the
extracellular matrix can influence glial interactions with astrocytes, and that SCs engineered to express sulfatase may be more
OEC-like in character. This approach may be beneficial for cell transplant-mediated spinal cord repair.
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Introduction

Schwann cells (SCs) are an attractive candidate for cell-

transplantation following spinal cord injury (SCI). They

effectively fill cavities, reduce tissue loss and promote regener-

ation and remyelination of CNS axons (Blakemore, 1977;

Duncan et al., 1981). Human SCs can be efficiently cultured

in vitro, meaning that large numbers of cells are available for

therapeutic use (Rutkowski et al., 1995). Used in isolation

however, SCs do not result in significant improvements in

functional outcome in experimental models of SCI (Martin

et al., 1996; Pearse et al., 2007). The limited functional suc-

cess of SC transplantation is due in part to limited SC migra-

tion and integration within the CNS and their inability to

survive and myelinated axons in astrocyte-rich regions

(Blakemore et al., 1986; Iwashita and Blakemore, 2000;

Iwashita et al., 2000). Astrocytes encountering SCs in the spi-

nal cord upregulate GFAP and eventually isolate the SCs

from the rest of the CNS (Shields et al., 2000).

This phenomenon can be mimicked in vitro to a certain

extent. When cultured SCs and astrocytes are seeded in close

proximity to one another they form distinct territories and do

not readily intermingle (Ghirnikar and Eng, 1994; Wilby

et al., 1999; Lakatos et al., 2000; Santos-Silva et al., 2007).

Olfactory ensheathing cells (OECs) have been proposed as an

alternative to SCs for transplantation into spinal injuries (Bar-

nett and Riddell, 2004). OECs are similar to SCs in many

ways: they originate developmentally from the neural crest

(Barraud et al., 2010), show SC-like molecular and cellular

characteristics (Franceschini and Barnett, 1996; Smith et al.,

2001) and can ensheath demyelinated large diameter axons
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and deposit functional peripheral myelin proteins (Franklin

et al., 1996; Imaizumi et al., 1998). The unique tissue niche

occupied by OECs, spanning the interface of the CNS and

PNS (Raisman, 1985), means that OECs are not restricted in

their interactions with astrocytes and can intermix freely

(Doucette, 1990; Lakatos et al., 2000).

Despite promising results following OEC transplanta-

tion into the injured spinal cord (Ram�on-Cueto et al., 1998;

Witheford et al., 2013), they are not ideal for clinical applica-

tion due to difficulties in culturing large numbers of human

OECs (Tabakow et al., 2014). An alternative therapeutic

strategy is to modify SCs to be more OEC-like; specifically,

to overcome the normal, inhibitory relationship between SCs

and astrocytes. Previously we demonstrated that OECs express

higher levels of the extracellular heparan sulfate (HS) 6-O-

endosulfatases Sulf1 (S1) and Sulf2 (S2) than SCs and that

these enzymes modulate OEC-astrocyte intermingling by

altering the sulfation of secreted HS proteoglycans (HSPGs)

(Higginson et al., 2012). HSPGs are major, ubiquitous com-

ponents of the extracellular matrix (ECM) which often act as

co-receptors, modulating signaling in growth factor-receptor

interactions (Gallagher, 2012). A core proteoglycan is linked

to multiple HS glycosaminoglycan side chains which can be

modified by deacetylation, epimerization, and the addition of

N- or O-sulfate groups (Bernfield et al., 1999; Turnbull

et al., 2001). Variations in the sulfation profile of HSPGs

directly influence the binding affinity of HSPGs to growth

factors or their receptors and subsequent signaling. Sulfatases

remove 6-O-sulphate groups from cell surface HSPGs and

modulate the activity of multiple signaling molecules includ-

ing FGFs, BMPs and Wnts by controlling ligand bioavailabil-

ity and facilitating ligand-receptor binding (Ai et al., 2003,

2007; Freeman et al., 2008; Otsuki et al., 2010; Wang et al.,

2004). Sulf1 and Sulf2 are unique in that they can specifically

hydrolyse glucosamine-6S groups of the HS chain at the cell

surface, and thus postsynthetically edit 6-0-sufation patterns

(Dhoot et al., 2001; Roop et al., 2016). This reduction in 6-

OH sulfation can promote specific cell signaling pathways

e.g. Wnt and GDNF but inhibits others such as tyrosine

kinase receptor mediated FGF1, HB-EGF and HGF path-

ways. In cancer biology Sulf1 is thought to act as a tumour

repressor but Sulf2 as a tumour enhancer (Roop et al., 2016).

Moreover it has been shown that the Sulfs can act coopera-

tively in vivo to modify HS sulfation patterns and regulate

development (Lamanna et al., 2006). Thus Sulf1 and Sulf 2

may have different functions in vivo. This view is supported

by recent work showing that they differentially regulate HS

sulfation during postnatal cerebellum development, resulting

in Sulf-specific interference in signaling pathways (Kalus

et al., 2015).

In this study we tested the effects of sulfatase transduc-

tion on in vitro and in vivo models of SC-astrocyte reactivity

and demonstrate that sulfatase over-expression in SCs may

positively influence the environment of SC grafts by minimiz-

ing local astrocyte reactivity.

Materials and Methods

Glial Cell Culture
Primary cells were prepared from Sprague Dawley (SD) or F344-

Tg(UBC-EGFP)F455Rrrc (RRRC, Rat Resource and Research Cen-

ter) rat pups according to methods modified from Higginson et al.

(2012). Astrocytes were generated from postnatal day one (P1) cor-

tex: tissues were digested with 5 mg/ml collagenase (Sigma-Aldrich)

for 20 min at 378C, triturated and seeded onto poly-L-lysine (PLL:

13 mg/ml Sigma-Aldrich) coated culture flasks and maintained in

DMEM medium containing 10% foetal bovine serum (DMEM-

FBS). Contaminating neural progenitors and fibroblasts were elimi-

nated by overnight treatment with cytosine arabinoside (AraC; 10

mM). SCs were purified from P7 sciatic nerve; approximately 12

nerves were finely chopped with a scalpel blade prior to digestion

with 5 mg/ml collagenase (Sigma-Aldrich) for 20 min, then 2.5 mg/

ml trypsin (Sigma-Aldrich) for 10 min. Digestion was stopped with

SD solution containing 0.52 mg/ml Soya bean trypsin inhibitor

(Sigma-Aldrich), 0.04 mg/ml DNAseI (Sigma-Aldrich) and 3 mg/ml

bovine serum albumin (Sigma-Aldrich). Cells were then plated onto

25cm2 PLL-coated flasks containing Schwann cell media [ScM;

DMEM-FBS supplemented with 0.5 mM forskolin (Sigma-Aldrich)

and 50 ng/ml heregulin b1 (R&D Systems)]. OECs were isolated

from P7 olfactory bulbs according to the methods of Barnett et al.

(1993). Briefly, olfactory bulbs were, digested with 5 mg/ml collage-

nase, triturated then plated on PLL coated flasks in DMEM contain-

ing 5% FBS, 10% astrocyte conditioned media, 35% DMEM-BS

(defined serum-free media, Bottenstein and Sato, 1979), 25 mg/ml

FGF2 (Peprotech), forskolin (0.5 mM) and heregulin (50 ng/ml).

After 7 days in culture, SCs and OECs were purified with magnetic-

beads cross-linked to p75NTR antibody (Abcam) using an EasySep

immunomagnetic positive selection kit (Stem Cell Technologies).

Generation of Lentiviral Vectors and Schwann
Infection
Second generation LV transfer plasmid pRRL-CMV-MCS-WPRE

containing a constitutively active human cytomegalovirus (CMV)

promoter, a multiple cloning site (MCS) and the woodchuck hepati-

tis virus post-transcriptional regulatory element (WPRE) were used

to insert the coding sequence of mouse Sulf1 or Sulf2 between the

CMV promotor and the WPRE using standard molecular cloning

techniques. The Sulf1 and Sulf2 genes were cut from plasmids

13008:pcDNA3.1/myc-His(-)-Msulf2 and 13007: pcDNA3.1/myc-

His(-)-Msulf-1, (Addgene). LV stocks were generated as previously

described (Dull et al., 1998; Hendriks et al., 2007; Naldini et al.,

1996). Briefly, for each batch of LV, two 15-cm Petri dishes contain-

ing 12.5 3 106 HEK293T in Iscove’s modified Dulbecco’s medium

(IMDM) containing 10% foetal calf serum (FCS), 1% penicillin/

streptomycin (P/S) and glutamax (Invitrogen, Carlsbad, CA) were
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prepared. Cells were maintained at 378C in a humidified atmosphere

of 5% CO2. A triple transfection with the LV transfer, packaging

(pCMVdeltaR8.74) and envelope (pMD.G.2) plasmid was per-

formed (ratio 3:2:1, total DNA 90 lg per plate) using branched pol-

yethylenimine (Sigma, St Louis, MO, USA). After 14 h, the

medium was replaced by Iscove’s modified Dulbecco’s medium con-

taining 2% FCS, 1% Pen/Strep and glutamax. After 24 h, the medi-

um was harvested, filtered through a 0.22-lM filter and

concentrated by ultracentrifugation at 20 000 r.p.m. for 2.5 h in a

SW32Ti rotor (Beckman Coulter BV, Woerden, The Netherlands).

Viral pellets were resuspended in PBS pH 7.4, aliquoted and stored

at 2808C until further use. Viral vector titers were determined by

first determining the amount of viral vector with a p24 ELISA in

the LV-GFP and LV-SULF1 and LV-SULF2 stocks. Subsequently the

titer of the LV-GFP stock in transgene expressing units (TU)/mL

was determined by counting GFP expression cells in 24-well plates

transduced with serial dilutions of LV-GFP. Since the LV-SULF viruses

do not contain a reporter gene the titers of these stocks were calculat-

ed by extrapolating the value of the LV-GFP stock to TU/mL. Titers

are 3.59E 1 09 TU/mL for LV-mSulf1 and 3.54E 1 09 for LV-

mSulf2. SCs were infected with lentivirus containing full length

mouse Sulf1 or Sulf2 sequence. Cells were seeded in 24-well plates at

1,000 cells/mL and cultured overnight in 500 mL ScM. 1 mL of Sulf1

or Sulf2 lentivirus supernatant (titre: 3.5 x 109 TU/mL) was applied

to each well and incubated for 48 h before cells were transferred to

25 cm2. PLL-coated flasks containing ScM. Double infected cells were

generated by applying S1 and S2 viruses at the same time.

PCR
The presence of introduced mouse sulfatase transcripts was con-

firmed by PCR using standard methods. Briefly, RNA from mono-

cultures of infected SCs was extracted using a Qiagen RNeasy Mini

FIGURE 1: Estimation of cell mixing by measurement of overlapping pixels. A: Boundary assays immunostained for p75NTR (green, SCs,
or OECs) and GFAP (red, astrocytes) were imaged using a 10X objective. Captured TIFFs were then processed using ImageJ software.
Images were split into red and green channels; these were then converted to binary black and white images using the threshold func-
tion. The pixel overlap of red and green images was then calculated, resulting in higher overlap measurements for mixed cell popula-
tions than for segregated cells. B: Image of gel showing the expression of mouse Sulf1 (samples 1 and 2) and Sulf 2 (samples 3 and 4) in
lentivirus-transfected rat SCs. C: Heparan sulfate disaccharides containing 6-sulfate moieties were identified from conditioned medium
from SC-WT, SC-S1, SC-S2, and SC-S1S2 cells. Data are presented as the percentage of the indicated disaccharides present in the trans-
fected cells with reference to the wild type SCs. Each disaccharide consists of one uronic acid and one glucosamine moiety, with struc-
tures defined by combinations of: UA, delta4,5-uronic acid; UA2S, 2-O-sulfated delta4,5-uronic acid; GlcNAc, N-acetylglucosamine;
GlcNAc6S, 6-O-sulfated-N-acetylglucosamine GlcNS, N-sulfoglucosamine; GlcNS6S, 6-O-sulfated-N-sulfoglucosamine. n 5 4 from 2 techni-
cal and 2 biological replicates; SD < 0.1% and are not visible on the figure. [Color figure can be viewed at wileyonlinelibrary.com]
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Kit (Qiagen) following manufacturer’s instructions. RNA quality and

integrity were checked using the Nanodrop 1000 (Thermo Fisher

Scientific). Following RNA extraction, cDNA was synthesized from

1 lg of RNA using the QuantiTect Reverse Transcription kit (Qia-

gen). PCR was performed with 100 ng of cDNA following manufac-

tures instructions (Qiagen). Experiments were performed in triplicate

for each sample using the Applied Biosystems 7500 real-time PCR

system. PCR cycle settings were 958C for 5 min, followed by 40

cycles of 958C for 10 s, then 608C for 30 s. GAPDH was used as

control. Three independent cell preparations were analyzed. In each

case; enzyme function was evaluated by analysis of 6-O-sulfation of

HS from conditioned SC culture media by HPLC chromatography

after BODIPY fluorescent labelling of disaccharides (Guimond et al.,

2009; Higginson et al., 2012, Fig. 1D).

Boundary Assay
Glial boundary assays were performed based on modifications to the

methods of Wilby et al. (1999) and Lakatos et al. (2000). Purified

SCs (2000 cells/mL) or OECs (1500 cells/mL) were pipetted onto

glass coverslips as a narrow 10 lL cell strip. A second parallel 10 lL

strip of astrocytes (1,000 cells/mL) was pipetted immediately adjacent

to the first; the meniscus of each cell droplet was then encouraged to

touch along the entire length of the cell front by gentle manipula-

tion with a pipette tip. This technique results in SCs or OECs being

brought into immediate proximity with astrocytes, but does not

result in cell mixing. Cells were allowed to settle for 1 h before the

removal of unattached cells by rinsing with 500 mL PBS and incuba-

tion with 500 mL of ScM. Within 2 days, distinct SC or OEC, and

astrocyte territories were visible; the breakdown of the boundaries divid-

ing these cellular territories forms the basis of our assay. Boundary

assays were fixed with 4% PFA after 1 week in culture. This assay is

distinct from our previous “confrontation” assays in several ways (Laka-

tos et al., 2000). In our original confrontation assay cells were placed in

strips opposing each other and allowed to grow towards each other for

7 2 10 days in DMEM containing 10% FBS (Lakatos et al., 2000). In

the modified assay the meeting of the cells is immediate, and the cul-

tures were carried out in ScM (i.e., DMEM-FBS containing 50 ng/mL

heregulin b1and 0.5 mM forskolin) to enhance SC viability. We found

SCs had a greater variability in viability when the SCs were cultured in

DMEM-10% alone. Moreover these modifications allows for a more

moderate throughput since timing for contact is faster. Lastly an objec-

tive macro was generated which could automatically measure green/red

pixel overlap to assess cells crossing boundaries.

Treatment of Boundary Assays
The following reagents were added to media: 25 ng/ml FGF2

(Peprotech); 25 ng/mL FGF9 (Peprotech); 5 mM GSK1059615

(phosphatidylinositol 3-kinase (PI3K) inhibitor, Sigma-Aldrich); 5

mM SU5402 (FGF-receptor blocker, Sigma-Aldrich); 10 mM Wort-

mannin (PI3K inhibitor, Sigma-Aldrich); 10 mM PD98059 (MAPK

inhibitor Sigma-Aldrich); 10 mM AKT1/2 kinase inhibitor (AKT

inhibitor, Sigma-Aldrich); 1 mM XAV939 (Wnt/b-catenin inhibitor,

Sigma-Aldrich); 0.5 mM DMH1 (BMP inhibitor, Sigma-Aldrich);

0.8 ng/mL EGFR/ErbB-2/ErbB-4 inhibitor (NRG/HRG blocker,

Calbiochem); 50 2 250 mg/mL Heregulin b1 (also known as

neuregulin b1; PeproTech, UK). All treatments were applied imme-

diately after boundary assays were set-up and were administered

every 2 days during routine culture feeding for 1 week.

Immunocytochemistry
Cultures were fixed in 4% paraformaldehyde (PFA) for 10 min at

room temperature (RT), then rinsed with PBS. Primary antibodies

(P75NTR IgG1, 1:1000, Abcam; GFAP anti-rabbit, 1:1000, DAKO)

were diluted in 0.1% Triton-PBS (PBST) containing 5% FBS and

applied overnight at 48C. Samples were washed three times in PBST

before incubation with fluorescently conjugated secondaries (Alexa-

488, Alexa-555, Life Technologies) for 1 h at RT. After three washes

with PBST, coverslips were mounted using an aqueous mounting

solution containing DAPI (FluoroshieldTM, Sigma-Aldrich). Speci-

mens were viewed under epifluorescence with an Olympus BX51

microscope; images were captured using a QImaging EXi Aqua cam-

era and Image-Pro software.

Measurement of Overlap for 2 Cell Populations in
Boundary Assays
In order to standardize images and allow meaningful comparisons to

be made, each field of view was required to comprise of approxi-

mately equal numbers of the cell types under investigation (i.e., at

the position of the initial boundary), and contain no empty acellular

spaces or patches of dead cells. All images were captured using a 10x

objective and exposure times were standardized for each experiment.

Each TIFF file was imported into ImageJ software where the image

was split into individual color channels. Next, the threshold of the

red and green color channels, representing GFAP and p75NTR

immunostaining respectively, was adjusted to generate a black and

white image; this was then inverted using the “Make Binary” func-

tion, resulting in a black signal on a white background (see Fig. 1A).

Care was taken during this procedure that the final binary image

faithfully represented the initial staining. The auto-threshold func-

tion using the “Default” setting reliably produced good results from

our images. Using “Image Calculator” function in ImageJ, we gener-

ated a third image representing the regions of overlap between the

binary green and red images. This was achieved using the “AND”

operation, resulting in positive output only in positions where black

pixels are present in both green and red binary input files. The num-

ber of overlapping pixels was established by counting total black pix-

el number in the new green-red overlap image using the Histogram

function (total number of pixels with value 255). This procedure

was repeated for each field of view from all coverslips. A minimum

of 4 images was taken from each stained coverslip, and each experi-

ment consisted of at least 3 independent coverslips. This data was

used to determine an average measurement of cell overlap for each

experimental condition; each experiment was repeated at least three

times with different cells (see figure legends for individual n-values).

Statistical significance was calculated using one-way ANOVA with

Dunnett’s multiple comparison test.

Cell Injections into the Spinal Cord
Twenty-four adult male Sprague Dawley rats (200–250g; Harlan

Laboratories, Loughborough, UK) were used in the study. Animals
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were housed under a 12 h light/dark cycle with ad libitum access to

food and water. All experimental procedures were performed in

accordance with the United Kingdom Animals (Scientific Proce-

dures) Act 1986. Animals were anesthetized with isoflurane and

placed in a head holder (Kopf, USA) on a homeothermic blanket.

The T2 dorsal process was exposed and clamped to stretch and sta-

bilize the cervical vertebrae and a laminectomy performed to expose

the spinal cord from the C3 to C7 segmental level. Cells (SCs or

OECs) prepared from RRRC GFP-rats and purified as above were

injected into the exposed spinal cord using a micropipette mounted

in a stereotaxic manipulator with a Microdrive. Immediately before

transplantation, cells were detached from flasks with 0.25% trypsin-

EDTA (Sigma-Aldrich), counted using a haemocytometer and resus-

pended at a concentration of 300,000 cells/ml in DMEM-FBS con-

taining DNAseI (10 mg/ml). Cells were kept on ice until being

drawn into a pulled glass pipette (GC 100T-100 capillaries, Harvard

Apparatus), with a bevelled tip of approximately 60-70 mm diameter.

For dorsal column (white matter) injections, pipettes were inserted

vertically at points 100 mm lateral from the midline, and to a depth

of 600 mm. Cells were slowly injected by application of brief (40

ms) pressure pulses (Picoinjector, WPI, Sarasota FL), as the pipette

tip was withdrawn from 600 to 300 mm. For dorsal horn (gray mat-

ter) injections, pipettes were inserted �550 mm lateral from the mid-

line and cells were injected as the needle was withdrawn from

800 2 500 mm depth. Each animal received 5 or 6 separate injec-

tions with a rostro-caudal separation of �2 mm. A 10-0 ethicon

suture was placed in the dura at a known distance from the most

rostral injection site to facilitate identification of injections sites

when removing the spinal cord for histological processing. The

wound was closed and animals recovered in warmed cabinets over-

night. Animals received analgesia (buprenorphine, 0.05 mg/kg and

carprofen, 5 mg/kg, s.c., at induction of anaesthesia and the morn-

ing after surgery).

Free Floating Immunostaining of Tissue Sections
Ten days following SC injection into uninjured spinal cords, animals

were injected intraperitoneally with 200 mg/mL sodium pentobarbi-

tal (Euthatal, Vericore, UK) to induce deep anaesthesia, then per-

fused though the left ventricle with �50 mL mammalian Ringer’s

solution (containing 0.1% lidocaine), followed by 1,000 mL of 4%

PFA in PBS. The cervical region of spinal cord was carefully

removed and post-fixed overnight in 4% PFA containing 30%

sucrose at 48C. 60 mm transverse sections were cut using a cryostat,

then incubated in 50% ethanol for 30 min at RT in 7 ml glass bot-

tles. After washing in PBS, sections were incubated for 72 h with

primary antibodies (GFAP, 1:1,000, DAKO; nestin, 1:500, Chemi-

con; anti-GFP, 1:1,000, Abcam) diluted in PBS containing 0.3%

Triton-X (PBST). Samples were then washed with 3 changes of PBS,

then incubated for 4 h with appropriate fluorescent secondary anti-

bodies (IgG1, anti-rabbit, anti-sheep or chicken respectively, Jackson

ImmunoResearch Lab) diluted in PBST. Finally sections were

washed 3 times in PBS, mounted onto glass slides with VectaShield

(Vector Laboratories), and stored at 2208C before imaging with a

Zeiss LSM 710 confocal microscope.

Analysis of Reactivity of Cell Injection Sites
Reactivity of surrounding spinal cord tissue was estimated by immu-

nostaining for GFAP and nestin proteins. Both are upregulated fol-

lowing spinal cord damage, although neither is limited uniquely to

the injury site. Overlap of GFAP and nestin, however, is entirely

restricted to reactive astrocytes surrounding the injury site and we

therefore based our reactivity measurements on this parameter. Maxi-

mum intensity projections derived from 2 x 2 confocal tiles (40X

objective) surrounding each injection site were saved as TIFF files

and imported into ImageJ. From this, imageJ was used to split chan-

nels and threshold GFAP and nestin signals (Fig. 7A). Overlap of

GFAP/nestin immunoreactivity was recorded for each tissue section;

a minimum of 3 tissue sections was imaged from each individual

injection site. At least 4 experimental animals were evaluated per

experiment; each animal received 5 or 6 separate spinal cord injec-

tions. Statistical significance was calculated using one-way ANOVA

with Dunnett’s multiple comparison test. Transplanted cells were

visualized using anti-GFP.

Results

Sulf Transduction Modulates Schwann Cell Motility
in Vitro
The interaction of transplanted glia and endogenous astro-

cytes can be modelled using in vitro boundary assays (Wilby

et al., 1999). These “boundaries” are a proxy for the SC-

astrocyte reactive response in vivo. For analysis, an ImageJ

macro was designed that examined the extent of SC/OEC

and cortical astrocyte mixing by calculating the degree of

overlap of GFAP and p75NTR immunolabeling across the

boundary region (Fig. 1A).

To test the hypothesis that altering the sulfation profile

of the local ECM environment may positively affect the out-

come of SC interacting with astrocytes, we infected GFP-

labeled SCs with a lentivirus containing full length mouse S1

or S2. The resulting cells were confirmed to express Sulf1

(S1), Sulf2 (S2), or both Sulf1 and Sulf2 (S1S2) using PCR

(Fig. 1B), and had elevated sulfatase activity as indicated by

analysis of HSPG 6-O-sulfation using HPLC. Control non-

transduced cells did not show any bands (data not shown).

Sulf1 and Sulf2 expression reduced the percentage of di-

(UA-GlcNS6S) and tri-sulfated (UA2S-GlcNS6S) disacchar-

ides containing 6-O-sulfate groups to 40% and 3% of levels

in wild type Schwann cells (SC-WT) (Fig. 1C). The double

S1S2 transfected SCs displayed near-complete elimination of

the di and tri-sulfated saccharides. Interestingly, the monosul-

fated saccharide UA-GlcNAc6S was slightly increased in the

HS of all transfected cells, indicating that the Sulf enzymes

preferentially desulfated the di- and tri-sulfated disaccharides.

Another possible but rare 6-sulfated disaccharide, UA2S-

GlcNAc6S was not detected in the wild type or any of the

transfected cells (data not shown). Moreover, although infec-

tion of SCs with S1 or S2 lentivirus individually did not
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affect cell behavior in boundary assays (Fig. 2Ai-iii), SC-WT

infected with both S1 and S2 resulted in significant mixing

of SCs and astrocytes (Fig. 2Aiv) such that mingling was sim-

ilar to that seen for OECs and astrocytes. Boundary assays

using OECs were used as a positive control, and also exhib-

ited significantly higher levels of mixing with astrocytes than

SC-WT (Fig. 2Av,B). Moreover, proliferation rates of SC-

S1S2 and SC-WT were found not to be significantly different

in medium used in boundary assays (data not shown).

Mechanisms of Schwann Cell-Astrocyte Mixing
We next applied chemical inhibitors of the FGF, BMP, Wnt,

and NRG/HRG receptors to boundary assays to evaluate the

importance of each signaling pathway in sulfatase-mediated

SC-astrocyte mixing. FGF receptor inhibitor SU5402 did not

increase cell mixing in SC-WT or SC-S1S2-astrocyte cultures,

but showed a trend towards reduced cell mixing (i.e., bound-

ary formation) although this was not statistically significant

(Fig. 3A,B). Indeed, treatment of OEC-astrocyte boundary

assays with SU5402 resulted in a significant reduction in cell

mixing and the formation of SC-like boundaries with

astrocytes (Fig. 3A,B). These findings implicate FGF activity

in glial mixing; this was investigated further by adding recom-

binant FGF protein to SC-astrocyte boundary assays. FGF2

or FGF9 application disrupted boundary formation, elevating

levels of cell mixing to levels similar to those of SC-S1S2 or

OECs (Fig. 3C). SC-S1S2-astrocyte cultures did not show

further elevation of cell mixing levels when treated with

FGF2 (data not shown), suggesting that the extent of mixing

may be at a maximum level. SU5402 effectively prevented

the activity of the recombinant FGFs, confirming that the

observed effect was FGF-receptor mediated (Fig. 3C). Chemi-

cal inhibitors of the BMP and Wnt signaling pathways were

also tested for activity in boundary assays, but had no statisti-

cally significant effect (Fig. 3A,B).

As HSPG-binding is required for neuregulin (NRG also

known as heregulin (HRG)) signaling via erbB receptors

(Sudhalter et al., 1996), and this interaction is affected by the

sulfation profile of HSPG glycosaminoglycan chains (Panko-

nin et al., 2005), we hypothesised that the increased motility

of SC-S1S2 may be caused by elevated sensitivity to NRG

protein. Treatment of boundary assays with an erbB receptor

FIGURE 2: Sulfatase transduction increases motility of Schwann cells in astrocytic environments. A: Cell mixing was measured in SC-WT-
astrocyte or OEC-astrocyte boundary assays immunostained with p75NTR (green) and GFAP (red). (i) Control SC-WT-astrocyte experi-
ments resulted in the formation of clear cellular territories with minimal cell mixing. SC-S1 (ii) or SC-S2 (iii) did not affect cell behavior:
strong boundaries were still formed with astrocytes. SC-S1S2 however did not form boundaries (iv), cell mixing was significantly greater
than controls and was comparable to levels of cell mixing seen in OEC-astrocyte boundary assays (v). Scale bar represent 100 lm in all
images. B) Quantification of cell mixing reveals a significant difference between control SC-WT and SC-S1S2 (n 5 6; P 5 0.001), and
between control SC-WT and OECs (n 5 6; P 5 0.019). [Color figure can be viewed at wileyonlinelibrary.com]
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inhibitor significantly reduced cell mixing in all cases (values

<5), with SC-S1S2 and OECs forming strong boundaries

comparable to those in control SC-WT experiments (Fig.

3A,B). Further boundary assays were performed with media

containing increasing concentrations of HRG to assess

whether media supplementation directly affected SC-

astrocyte mixing. In the absence of HRG, boundaries were

formed in SC-WT-astrocyte cultures, while SC-S1S2-

astrocyte cultures showed slightly more mixing although this

did not reach statistical significance (Fig. 3D,E). At HRG

concentrations typically used to maintain and grow SC in

culture (50 ng/ml) SC-WT form boundaries with astrocytes,

while SC-S1S2-astrocytes mix (Fig. 3D), and at elevated

HRG concentrations (100 ng/ml, 200 ng/ml, 250 ng/ml),

both SC-WT and SC-S1S2 mix freely with astrocytes (Fig.

3D). Interestingly the SC-S1S2 response was always greater

than SC-WT. These data suggest that HRG may be a key

determinant of SC-astrocyte mixing and that the sulfation

FIGURE 3: Signaling molecules in boundary formation. A: Boundary assays with SC-WT, SC-S1S2, and OECs were set up and treated
with a range of growth factor inhibitors and immunostained with GFAP (red) and p75NTR (green). The FGF receptor inhibitor SU5402 did
not affect the extent of cell mixing in control or SC-S1S2 experiments, but did block cell mixing in OEC-astrocyte cultures. BMP and
Wnt inhibition did not significantly affect cell mixing in all cases tested. Blockade of erbB receptor signaling resulted in the formation of
strong boundaries in SC-WT, SC-S1S2, and OECs with astrocytes. B: Quantification of cell mixing illustrated in (A). ErbB receptor inhibi-
tor significantly blocked cell mixing in SC-S1S2-astrocyte cultures (n 5 3; P 5 0.01). OEC-astrocyte mixing was inhibited by FGF-receptor
inhibitor (n 5 5; P 5 0.017) and by erbB inhibitor (n 5 4; P 5 0.002). C: Quantification of SC-astrocyte mixing after FGF treatments. FGF2
significantly elevated SC-astrocyte intermingling (n 5 4; P 5 0.0002), as did FGF9 (n 5 3; P 5 0.003). This mixing was blocked by the addi-
tion of the FGF blocker SU5402. D: Boundary assays immunostained with GFAP (red) and p75NTR (green) in the presence of varying con-
centrations of HRG. E: Increased concentrations of HRG promote cell mixing. Normal boundary assay concentrations of HRG (50 ng/mL)
and HRG concentrations of 100 ng/mL and 150 ng/mL resulted in significantly more SC-S1S2-astrocyte mixing (n 5 6), than in control SC-
WT-astrocyte mixing (n 5 4; P 5 0.001, P 5 0.005, and P 5 0.0181, respectively). Increasing concentration of HRG in both SC-WT and SC-
S1S2 caused a dose-dependent increase in cell mixing. Scale bar represents 100 lm in all images. [Color figure can be viewed at
wileyonlinelibrary.com]
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profile of the extracellular environment influences HRG bio-

availability and activity.

PI3 Kinase/AKT Activity Is Critical for Glial Cell
Mixing
To elucidate the potential downstream pathways through

which FGF or HRG signals may operate during SC-astrocyte

mixing, we treated boundary assays of the various glial cell

types with chemical inhibitors of the MAP kinase, PI3 kinase,

and AKT signaling pathways. MAPK and PI3/AKT cascades

are the two main transduction routes downstream of receptor

tyrosine kinases, such as FGF or erbB receptors. SC migration

and proliferation have been previously linked to MAPK activ-

ity (Kim et al., 1997; Meintanis et al., 2001), however in the

presence of the MAP kinase inhibitor PD98059, formation of

SC-astrocyte boundaries was unchanged (Fig. 4A,B). Similarly

the interaction of SC-S1S2 and OECs with astrocytes were

unaffected by PD98059 treatment (Fig. 4A,B).

PI3K/AKT signaling is important for SC survival and

myelination (Campana et al., 1999; Li et al., 2001, 2004). In

contrast to MAPK blockade, the PI3 kinase inhibitors

GSK1059615 and Wortmannin prevented FGF treated SC-

astrocyte cell mixing (Fig. 4A,B), as did the AKT inhibitor

(Fig. 4A,B). SC-S1S2-astrocyte, and OEC-astrocyte cell mix-

ing were also strongly blocked by PI3K or AKT inhibitor

treatments (Fig. 4A,B). These data suggest that the PI3K-

AKT signaling pathway is important in the breakdown of SC-

astrocyte boundaries mediated by FGF or S1S2 treatments,

and may also be active during OEC-astrocyte intermingling.

Integrins Are Important Mediators of Cell Mixing in
Boundary Assays
Integrins have been implicated in promoting SC migration

across inhibitory aggrecan substrates secreted by astrocytes via

PI3K/AKT activation (Afshari et al., 201). We therefore tested

whether integrins were similarly involved in the breakdown of

glia-astrocyte boundaries using integrin function-blocking

antibodies. Integrin blockade had no effect on control SC-

WT-astrocyte boundary assays (Fig. 5A,B), however alpha2

and beta1 integrin function-blocking antibodies significantly

reduced SC-S1S2-astrocyte mixing (Fig. 5A,B). OEC-

astrocyte cell mixing was also decreased in the presence of

alpha2 integrin function-blocking antibodies, although alpha1

and beta1 treatments had no effect (Fig. 5A,B).

FIGURE 4: PI3K/AKT-mediated signaling modulates Schwann cell and OEC interactions with astrocytes. A: Treatment of control SC-WT-
astrocyte cultures with inhibitors of the PI3 kinase signaling cascade (Wortmannin or GSK1059615), did not affect boundary formation.
However, PI3K inhibitors blocked cell mixing in SC-S1S2, SC-WT (in the presence of FGF2), and OEC-astrocyte boundary assays, reduc-
ing GFAP/p75NTR overlap to levels similar to control SC-WT experiments. Similarly, inhibition of AKT also blocked cell mixing in SC-
S1S2, SC-WT (in the presence of FGF2) and OEC-astrocyte cultures. Chemical inhibition of the MAPK pathway had no effect on cell mix-
ing in any of the cell types examined here. Scale bar represents 100 mm in all images. B: Quantification of boundary assays in the pres-
ence of the PI3K inhibitor Wortmannin shows a significant reduction in cell mixing compared to controls in FGF-treated SCs (n 5 4;
P 5 0.003), SC-S1S2 (n 5 3; P 5 0.008), and OEC (n 5 5; P < 0.0001). The PI3K inhibitor GSK1059615 has similar effects, blocking cell mix-
ing in FGF-treated SCs (n 5 3; P < 0.0001), SC-S1S2 (n 5 4; P 5 0.009), and OECs (n 5 7; P < 0.0001). Blocking AKT also affected SC-S1S2
(n 5 5; P 5 0.0017), and OECs (n 5 3; P < 0.0001). The MAPK inhibitor PD98059 did not reduce cell mixing in FGF-treated or SC-S1S2-
astrocyte assays, but did affect OEC-astrocyte mixing (n 5 6; P 5 0.039). [Color figure can be viewed at wileyonlinelibrary.com]
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Overall, these in vitro data support the hypothesis that

SCs engineered to express sulfatases display increased

integrin-dependent motility via modulation of NRG and

FGF receptor-linked PI3K/AKT intracellular signaling.

Sulfatase Reduces Astrocyte Reactivity in Vivo
A crucial aspect of cell transplantation into the injured spinal

cord is the extent to which the transplanted cells themselves

may cause an aggressive astrocytic response. Different cells

types are known to promote different reactions: injections of

fibroblasts or olfactory mucosa into normal spinal cord pro-

mote a more extensive upregulation of GFAP than injections

of SCs or OECs for example (Toft et al., 2013). After injec-

tion of cells into the white matter we observed that SC-S1

resulted in significantly reduced levels of astrocyte reactivity

compared to control SC-WT (Fig. 6). We measured the local

astrocyte reactivity surrounding each injection site by immu-

nostaining for nestin (an intermediate filament upregulated in

reactive astrocytes; Eliasson et al., 1999) and GFAP and calcu-

lating the degree of overlap in immunoreactivity. This method

effectively removed normal background levels of GFAP-IR

from our measurements allowing assessment of injected cell

induced changes (Fig. 6A). The introduction of sulfatase into

SC-WT reduced astrocyte reactivity to approximately the same

level as for OECs, which have been shown to promote less

astrogliosis than normal SCs in spinal cord white matter (Laka-

tos et al., 2003). Interestingly, SC-WT injections into grey

matter (dorsal horns) led to less reactivity than comparable

injections into white matter (Fig. 6B). As seen in white matter,

OECs injected into grey matter produced less nestin/GFAP-IR

upregulation than SC-WT in grey matter, although SC

infected with Sulf did not result in a significant reduction in

FIGURE 5: Integrins are required for sulfatase-mediated Schwann cell motility. A: Control SC-WT-astrocyte boundaries are not affected
by antibody mediated inhibition of alpha1, alpha2, or beta1 integrin function. SC-S1S2-astrocyte cell mixing is reduced in the presence
of alpha2 or beta1 integrin function-blocking antibodies, alpha1 integrin antibodies had no effect. OEC-astrocyte cell mixing was
blocked in the presence of alpha2 integrin function blocking antibodies only. B: Quantification of boundary assays treated with integrin
function blocking antibodies: alpha2 antibodies significantly reduce SC-S1S2-astrocyte (n 5 4; P 5 0.047) and OEC-astrocyte (n 5 5;
P 5 0.011) cell mixing, beta1 antibodies reduce SC1S2-astrocyte cell mixing (n 5 3; P 5 0.027). Scale bar represents 100 lm in all images.
[Color figure can be viewed at wileyonlinelibrary.com]
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SC reactivity (Fig. 6A,B). Injections of SC-S1S2 into the nor-

mal cord did not produce any different effects on GFAP/nes-

tin-IR when compared to SC-WT cells (data not shown).

Discussion

We have previously shown that OECs express higher levels of

sulfatases than SCs; leading to the hypothesis that differential

HSPG sulfation may underpin the different behaviors of

OECs and SCs in the presence of astrocytes. Supporting

functional evidence came from RNAi experiments showing

that knockdown of OEC sulfatases promoted the formation

of boundaries with astrocytes (Higginson et al., 2012). The

results described here strengthen the support for the hypothe-

sis, showing that SCs engineered to express sulfatases mix

with astrocytes more than untreated SCs and can be consid-

ered to be more OEC-like in character.

It is well documented that the growth and motility of

SCs is regulated by neuregulins (NRGs/HRG) in particular

NRG1 (Mahanthappa et al., 1996; Meintanis et al., 2001)

with an additional requirement for high intracellular cAMP

levels (Raff et al., 1978). During development, SCs require

axonally derived NRG1 for survival; this helps maintain the

one-to-one relationship between axons and SCs in the periph-

eral nervous system. Additionally, NRG1 is released by astro-

cytes following CNS injury (Tokita et al., 2001), and secreted

by cultured astrocytes into the media (Pollock et al., 1999),

so the astrocytes themselves are a likely NRG source. Interest-

ingly, it has been shown that NRGs bind to cell surface

HSPGs present on SCs and this interaction is essential for its

activity (Sudhalter et al., 1996). Indeed, removal of cell sur-

face HSPGs by inhibition of proteoglycan biosynthesis or

heparitinase treatment blocks NRG-mediated SC proliferation

(Ratner et al., 1985). However, high levels of HSPG can act

to inhibit NRG signaling, while the addition of exogenous

heparin or HS, sequesters soluble NRG in culture and blocks

SC proliferation (Sudhalter et al., 1996). In our experiments,

FIGURE 6: SC engineered to express sulfates reduces local astrocytic reactivity in spinal cord white matter. A: Levels of astrocytic reac-
tivity around injection sites were estimated by immunostaining for GFAP and nestin. Pixel overlap of GFAP/nestin was by splitting origi-
nal TIFFs into red and green channels, creating black and white binary images, then counting overlapping pixels. The combination of
GFAP and nestin provided a more accurate indication of local reactivity than either marker alone. B,C: SC-WT, SC-S1, or OECs were
injected into normal (uninjured) spinal cord white matter or gray matter. Astrocyte reactivity was measured by immunostaining for GFAP
(blue) and nestin (green). Confocal projections of injury sites analyzed for overlap of green and blue pixels using ImageJ. Control SC-WT
injections into white matter resulted in significantly more glial reactivity than SC-S1 injections (n 5 8; P 5 0.0002), or OEC injections
(n 5 7; P 5 0.0001) into white matter. SC-WT injections into white matter also induced more astrogliosis than SC-WT injections into grey
matter (n 5 8; P 5 0.0021). OEC injections into grey matter induced less astrocyte reactivity than SC injections into gray matter (n 5 4;
P 5 0.0164), although SC-S1 were not significantly different from SC 5 wt following gray matter injections. Scale bar represents 100 lm
in all images. [Color figure can be viewed at wileyonlinelibrary.com]
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we propose that tranduction with sulfatases may alter NRG-

HSPG binding, leading to potentiation of NRG activity by

release of ligand from extracellular reservoirs. The sulfation

profile of HSPG is an important determinant of NRG-HSPG

interactivity, since it has been shown that removal of N-

sulfate, 2-O-sulfate, or 6-O-sulfate groups results in reduced

NRG1-binding (Pankonin et al., 2005). It is possible that sul-

fatase, acting on soluble or membrane-associated HSPGs in

boundary assays, reduces the affinity of NRG-HSPG binding,

freeing the ligand to activate erbB receptors on the SC surface

(see schematic in Fig. 7). A similar model has been proposed

to describe the effects of sulfatase on Wnt signaling. It was

proposed that highly sulphated HSPGs sequester Wnt ligand

in the ECM, while sulfatase activity reduces the affinity of

Wnt-HSPG binding thus increasing Wnt bioavailability and

receptor activation (Ai et al., 2006). Moreover, it is known

that SC migration in scratch assays is predominantly mediat-

ed by MAP Kinase signaling downstream of NRG-erbB,

although PI3K is also important to a lesser extent (Meintanis

et al., 2001). Furthermore, PI3K is activated downstream of

NRG-erbB interaction during SC survival (Li et al., 2001).

Our findings that PI3K blockade prevented sulfatase-

mediated SC motility may therefore reflect an inhibition of

NRG signaling. Moreover, we demonstrate that the concen-

tration of NRG/HRG can have differential biological effects

on glia cells.

In contrast to our previous confrontation assay studies

(Lakatos et al., 2000), we report here that FGF signaling

promotes SC-astrocyte mixing in vitro; however, this may

reflect the modifications of the assay media to contain HRG

(for better survival of Schwann cells) and experimental timing

(e.g., shorter contact time before cell meeting). Although

some studies have suggested that FGF is mitogenic for SCs

(Ratner et al., 1985), particularly in the presence of serum

(Watabe et al., 1994), others have reported that FGF has no

effect (Raff et al., 1978) or is dependent on the presence of

forskolin (Davis and Stroobant, 1990). Our assays are con-

ducted in the presence of forskolin, so FGF-induced SC pro-

liferation may be occurring, although this is not required for

NRG-induced cell migration (Meintanis et al., 2001). Astro-

cytes are also influenced by FGFs as cultured astrocytes

express FGF receptors (Reilly et al., 1998), and FGF is

known to promote astrocyte survival, proliferation and migra-

tion (Hou et al., 1995; Petroski et al., 1991). Following CNS

injury, astrocyte FGF2 is upregulated (Logan et al., 1992)

and acts in an autocrine manner to further increase levels of

FGF2 and FGF receptor (Gomez-Pinilla et al., 1995). Astro-

cytes also secrete HSPGs (Johnson-Green et al., 1991), and

HS can modulate FGF-dependent astrocyte proliferation

(G�omez-Pinilla et al., 1995, 1996). Furthermore, HS levels

are upregulated in response to CNS injury (Leadbetter et al.,

2005). It has been demonstrated that sulfatases modulate this

response by limiting HSPG-FGFR interaction and thus

inhibit FGF signaling (Otsuki et al., 2010; Wang et al.,

2004). We can therefore propose a model in which our trans-

planted sulfatase-expressing SCs influence the local ECM,

FIGURE 7: Schematic illustrating possible mechanism for OECs and Sulf1/2 expressing SCs to mingle with astrocytes. A: The glial cells
expressing sulfatase on their cell surface can remove the heparin binding NRG from the HSPG in the ECM allowing the activation of the
erbB receptor leading to PI3K/AKT activation and movement of the cell into the astrocyte environment. B: Since SC-WT do not express
sulfatase they cannot release NRG into the environment and therefore stay in a boundary with astrocytes; however, on the application
of high levels of exogenous NRG (exNRG) SC-WT can be forced to mingle. The activity is dependent on integrins but not MAPK. Integ-
rins have been reported to associate with the erbB receptors which activates src family kinases (SFKs), e.g. fyn to activated cell move-
ment via PI3K/Ras. [Color figure can be viewed at wileyonlinelibrary.com]
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reducing the 6-O-sulfation levels of HSPG, and preventing

formation of FGF-HSPG-FGFR ternary complexes. This

blockade of FGF signaling would be predicted to reduce lev-

els of astrocytic proliferation and reactivity.

It is possible therefore that FGF-dependent SC-astrocyte

mixing may occur mainly by direct astrocytic effects, however

the regulation of this property is complex and it may be regu-

lated not just by FGF and HRG but also Eph/eprin (Afshari

et al., 2010).

Our results also confirm that integrins play an impor-

tant role during SC-astrocyte mixing. We show that alpha2

and beta1 function-blocking integrin antibodies block SC-

S1S2-astrocyte intermingling, suggesting that integrins regu-

late the SC-astrocyte interface and are affected by alterations

in extracellular HSPG sulfation. These finding are in agree-

ment with Afshari et al. (2010) who demonstrated that inhi-

bition of integrin function by the CSPG aggrecan reduces SC

motility on astrocytes, while integrin activation allows SCs to

overcome inhibitory astrocyte substrates. Beta1 integrin mod-

ulates SC migration on laminin substrates (Milner et al.,

1997), suggesting that laminin may be important during cell

mingling. Further evidence comes from experiments in which

heparin treatment blocked laminin-dependent SC spreading

in culture; this effect was synergistic with anti-integrin anti-

body treatment (Carey et al., 1990). Although the major role

of integrins has been thought to be in mediating the adhesion

between cells and the ECM increasing evidence suggest that

integrins can regulate signaling pathways (Soung et al., 2010).

Thus, it is also possible that integrins may play a more direct

role in controlling SC movement; integrins are directly

involved in NRG-signaling in some cancer cells, and influenc-

ing NRG-erbB signals (Ieguchi et al., 2010). Furthermore,

HSPGs and heparin can directly bind to integrin molecules

to influence cell behavior (Battaglia et al., 1993; Faye et al.,

2009). It has been suggested that integrin-ECM interaction

can significantly amplify growth factor-meditated signaling

events (Somanath et al., 2007) and that there is crosstalk

between integrin and the erbB receptor which then activates

fyn leading to cell movement via F-actin and PI3K/Ras

(Soung et al., 2010 see Fig. 7). Thus, we speculate that sulfa-

tase activity may also affect HSPG-integrin binding and thus

could influence integrin signaling in a direct manner.

Our data have therefore demonstrated an increase in SC

motility in vitro when engineered to overexpress sulfatase,

overcoming their default tendency to form boundaries with

astrocytes. De-sulfation of extracellular HSPGs by sulfatases is

likely to lower the binding affinity of HRG to ECM HSPGs,

resulting in release of HRG ligand and activation of erbB

receptors. PI3K/AKT-mediated transduction of the signal

then directs cell movement via integrin-dependent mecha-

nisms (Fig. 7).

To assess if the level of sulfatase secreted by the cells

would influence astrocyte reactivity in vivo we injected the

various glial cell types into white matter of the normal spinal

cord. Our data demonstrated that there was less upregulation

of nestin and GFAP, markers of reactivity, in sulfatase express-

ing SCs than control SC-WT. Moreover, astrocyte reactivity

surrounding the SC injection site was reduced to levels simi-

lar to that of OEC injections. Interestingly, when the same

panel of cells were injected in the grey matter of the normal spi-

nal cord we noted a previously undescribed difference in the

response of white and grey matter of the cells. We found there

was no difference in reactivity following injection of sulfatase-

expressing SCs and SC-WT into grey matter even though there

was still a difference in reactivity when compared to OEC injec-

tions. This may be due to the lower levels of reactivity seen in

grey matter in general, meaning that differences between cell

populations are more difficult to conclusively demonstrate.

Moreover, the differences seen in response to cell injections

between the white and grey matter may reflect regional differ-

ences between the astrocytes in the two tissues (Shannon et al.,

2007). Other reports have shown that white and grey matter dif-

fer in their remyelinating capacity after demyelination induced

by cuprizone, this effect was proposed to be due to differences

in microglial infiltration (Gudi et al., 2009). It is possible that

the regional differences in astroglia reactivity described here may

reflect similar differences in microglial infiltration.

The species orthologs of the Sulfs are highly conserved

with human and murine proteins showing 93-94% amino

acid identity and S1 and S2 are 63–65% identical within the

same species (Morimoto-Tomita et al., 2002). It has been

suggested that there may be some functional redundancy

between S1 and S2 although others have suggested that they

have different functions and can differentially regulate HS

sulfation (Kalus et al., 2009, 2015). Our data suggest both

Sulf1 and Sulf2 expression in SCs was required for cell min-

gling in vitro but not for the astrocyte response in vivo. This

could simply reflect that an increased level of sulfatase activity

in the double infected cells is necessary for affecting function

in vitro but works via a different mechanism when interacting

with astrocytes in vivo. This is possible as comparative studies

on the activity of Sulfs in vitro and in vivo show that there

was a highly restricted 6-0-sulfate substrate specificity for the

Sulfs in vitro which was in contrast to more dynamic effects

of Sulf loss on N-, 2-O-, and 6-O-sulfated moieties in vivo.

Thus the Sulfs may well behave differently when in the more

complex environment of the ECM (Dai et al., 2005; Ai

et al., 2006; Lamanna et al., 2008; Kalus et al., 2015). It is

apparent that Sulf1 and Sulf2 function is complex as seen

from studies by Lammana et al. who generated single and

double knock-out mice for the two murine endosulfatases

mSulf1 and mSulf2. Detailed structural analysis of HS from
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fibroblast of the msulf 2/2 KO mice showed that they had

a significantly higher increase in 6-O-sulfation, which was not

seen in the msulf22/2 KO mice fibroblasts. Even more

interesting was seen from data on the level of 6-O-sulfation

in the double mSulf12/2/22/2 HS showed it to be signifi-

cantly higher than that observed in the mSulf12/2 counter-

part. These data suggest that mSulf1 and mSulf2 are

functionally co-operative and that, although increased mSulf1

expression can compensate for loss of mSulf2 activity, mSulf2

is unable to fulfill the role of mSulf1 (Lamanna et al., 2006).

It has also been shown that there is a highly restricted 6-O-

sulfate substrate specificity for the Sulfs in vitro, which was

contrasted by dynamic effects of Sulf loss on N-, 2-O-, and

6-O-sulfated moieties in vivo (Lamanna et al., 2008).

Overall, our data demonstrate that specific enzymatic

modification of the HS content of the ECM can affect 2 dis-

tinct signaling pathways in ways potentially beneficial for

their interaction with astrocytes. Firstly, SCs expressing sulfa-

tase are able to overcome astrocytic barriers in vitro, a possi-

ble correlative prerequisite for effective integration into the

CNS. Second, local astrogliosis is reduced, possibly due to

inhibition of FGF-FGFR signaling (Kang et al., 2014)

The use of SCs modified to secrete sulfatases may there-

fore provide a strategy for minimizing astrocytic reactivity and

proliferation around a transplanted injury site. Minimizing the

molecular and physical barriers associated with reactive astro-

cytes should provide greater opportunity for axonal sprouting

and regeneration and may therefore enhance the effectiveness

of SC transplantation as a therapy for spinal cord repair. Col-

lectively these effects have the potential for exploitation in the

development of novel therapeutic strategies for CNS repair.
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