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Heterogeneous data fusion for the improved
non-destructive detection of
steel-reinforcement defects using echo state
networks
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Abstract
The degradation of roads is an expensive problem: in the United Kingdom alone, £27 billion was spent on road repairs
between 2013 and 2019. One potential cost-saver is the early, non-destructive detection of faults. There are many available
techniques, each with its own benefits and drawbacks. This paper builds upon the successful processing of magnetic flux
leakage (MFL) data by echo state networks (ESNs) for damage diagnostics, by augmenting ESNs with the depth of concrete
cover as part of a data fusion approach. This fusion-based ESN outperformed a number of non-fusion ESN comparators and
a previously used analytical technique. Additionally, the fusion ESN had an optimal threshold value whose standard
deviation was three times smaller than that of the nearest alternative technique, potentially prompting a move towards
automated defect detection in ‘real-world’ applications.
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Introduction

The degradation of transport infrastructure is an interna-
tional problem. For example, in 2013, a UK HM Treasury
policy paper stated that £10 billion would need to be spent
on repairs to roads by 2021.1 In the most recent statistics
released by the Department for Transport, the actual figure
for England alone up to 2019 was £26,651,000,000.2 De-
teriorating infrastructure in the United States is expected to
cost the US economy an average of 400,000 jobs per year up
until 2040.3

The detection of steel reinforcing bar (rebar) defects is a
particular area of difficulty. For example, the major concrete
repair project which began in 2017 on the UK’s busy M5
motorway saw significant delays due to an underestimation
of the extent of the damage to the rebar: 6000 repairs were
required, 4500 more than the original estimate.4 Van-
niamparambil et al.5 noted that many different modalities of
sensor are available for the assessment of the various aspects
of structural integrity, but there is no single monitoring
technique that can provide a comprehensive picture of the
state of a structure. Instead, they concluded that a data
fusion approach should be developed in order to better

detect deterioration signs, locate weak regions and assess
damage severity.

Based on past success in detecting rebar defects with the
artificial intelligence of echo state networks (ESNs), this
paper proposes an approach to detecting defects that uses
ESNs to fuse heterogeneous data obtained by the electro-
magnetic anomaly detector (EMAD) technique, which is a
form of magnetic flux leakage (MFL), and data regarding
the depth of concrete cover. This is the first time that these
two modalities have been combined, and has been able to
improve the detection of defects.

The EMAD technique is a non-destructive testing (NDT)
approach that uses remanent magnetism (RM) and MFL in
order to detect breaks in rebars. The idea of using RM in this
context was first proposed by Scheel and Hillemeier6 in
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1997. The EMAD technique, meanwhile, has been devel-
oped at Keele University over a number of years, and details
of the method were first published in 2006.7 It has since
been the subject of further publications, which have seen the
application of computational intelligence (CI) approaches to
the automated analysis of data captured by the technique,
most recently in 2018.8 The EMAD technique has been
applied commercially in order to assess structures such as
bridges, car parks and dual carriageways, with data pro-
cessed by using an analytical technique (AT) (introduced
fully in the Analytical Technique section). This requires a
skilled engineer to set a threshold on an arbitrary scale,
based on their insight and judgement. This, in turn, requires
time, and so an automated ESN data fusion approach was
conceived in order to capture some of this expertise and
move towards greater automation. The Magnetic Flux
Leakage section describes briefly the theory behind the
EMAD technique and how it is applied practically.

Statement of Problem

An example of some EMAD data, featuring two defects at
known locations, can be seen in Figure 1. The two defects
can be recognised by the characteristic shape of the plot-
lines, as the recorded Z component rises to reach a peak at
the centre of the defect, while the recorded X component
exhibits a slope with a negative gradient at this point.

There are a few possible confounding signals that are
inherent in using MFL to detect defects, evidence of which
can also be seen in Figure 1. The most prominent example of
this is the ‘end effect’, where a largemagnetic pole is created
at the ends of the rebar scan lines, more so at one end than
the other. Here, this can be seen from 3.5 m onwards. End
effects are usually much larger than defect signals, but the
two can still be easily confused. Also, in the case of some
rebar meshes, a small amount of flux leakage is observed at
points where the longitudinal and transverse rebars cross
over, leading to a ‘ripple’ effect. This effect can be seen in
the range 0–2.5 m. Since corrosion in rebar is usually
local – typically, there may be a few centimetres of cor-
rosion and a much longer section of clean steel9 – one of the
key challenges with any defect detection technique is the
accurate and precise location of such potential defects.

The AT that has previously been used for processing
EMAD data in commercial surveys could produce similar
outputs for both a minor magnetic anomaly scanned at a
close distance, and a major defect recorded from further
away. In a ‘real-world’ scenario, this could lead to signif-
icant defects being ignored, or repairs taking place to ad-
dress only minor anomalies. A more effective data
processing approach should be able to identify defects
clearly and unambiguously, preferably without the need for
further interpretation by experts in order to set appropriate
output threshold values.

Figure 1. A typical set of EMAD data, with the Z axis data shown beneath the X axis data. The characteristic signatures of the two
defects present in this particular dataset are highlighted.
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Based on the previous success enjoyed by ESNs in
comparison to the AT when presented with EMAD data
obtained from a constant cover depth,10 a data fusion ap-
proach that utilises both cover depth and the unique prop-
erties of ESNs is presented in this paper. The effectiveness of
this data fusion approach, in terms of both defect detection
and ‘real-world’ applicability, is demonstrated by comparing
the data fusion ESN to a number of non-fusion alternative
ESN architectures and the AT. The novel contribution of this
paper is the application of an ESN-based data fusion ap-
proach that combinesMFL data with cover depth data. While
the fusion of heterogeneous data for defect detection in rebar
has seen an increase in interest in recent years (see, e.g. Refs.
[11–13]), the automated fusion of MFL and cover depth data
has not been attempted prior to the current work.

There are two key requirements for a data fusion ap-
proach to be successful in this context:

1. Competitive performance across the range of cover
depths, such that there is a reasonable expectation
that a fusion-based approach will be at least as ac-
curate at detecting defects as the non-fusion ap-
proaches across the different cover depths.

2. There should be as little variation in the optimal
threshold as possible, so as to reduce the need for
expert interpretation of the data and allow for faster
interventions.

Point two is possibly less intuitive, but just as significant
as point one. In the datasets presented in this paper, the full
ground truth defect locations are known, making the task of
determining the optimal threshold for the output of each
technique relatively straightforward. In a ‘real-world’ set-
ting, the ground truth is unlikely to be known, and so expert
analysis of the raw data is usually required to help set this
threshold. This usually involves a recommendation to break
out the concrete to inspect the rebar at two or more locations
in order to calibrate the threshold. If the optimal threshold
value is very consistent across all possible cover depths,
then that would make the setting of the threshold much
easier, and hence, render the technique more readily ap-
plicable in the ‘real-world’. In short, high accuracy at the
optimal threshold is much less valuable if it is difficult to
find that optimal threshold without ground truth data.

Contribution of Paper

Since the AT currently used to analyse EMAD data on site
requires intervention by a trained engineer to set the
threshold for defect detection, one of the aims of using CI is
to automate that process. However, the use of ESNs, or any
other form of artificial neural network (ANN), leads to an
automated optimum range for the threshold after training,
rather than a single value. This leads to considerable

arbitrariness in the setting of the threshold for the network to
be used in the field if that range is too large. Use of EMAD
data alone does, indeed, leave the optimum threshold range
not closely defined. In this work, a fusion-based ESN ar-
chitecture was applied to the detection of rebar defects using
a combination of EMAD and cover depth data. In doing so,
it both outperformed a number of non-fusion ESN com-
parators and a previously used analytical technique in the
detection of defects per se, all of which used EMAD data
alone. Moreover, it was also found that the fusion ESN had
an optimal threshold value whose standard deviation was
three times smaller than that of the nearest alternative
technique, implying a large advantage over other techniques
in terms of real-world applicability. This is the first time that
cover depth data has been automatically fused with any kind
of MFL data in this context, while it is also the first time that
ESNs have been used for data fusion in NDT.

Structure of Paper

This paper is structured as follows. The data gathering and
data processing methodologies are reported in the Material
and Methods section. Here, the data fusion approach is
described, followed by an explanation of the AT and two
non-fusion ESN comparators. This is followed by the Re-
sults and Discussion section, where the experimental out-
comes are discussed, while concluding remarks are offered
in the Conclusions section.

Material and methods

Magnetic Flux Leakage

This subsection briefly discusses the procedure for per-
forming a survey using the EMAD technique. A more
detailed account of the physical and mathematical principles
behind MFL can be found in Sawade and Krause.14

At the beginning of any EMAD scan, the rebars are
magnetised by passing an electromagnet along their length.
In accordance with the principles of RM, the rebars then
remain in a magnetised state. A typical scan using the
EMAD technique will not be of one single bar, but several
bars arranged in a mesh. In this case, each bar in the mesh
must be magnetised. After magnetisation has been com-
pleted, the EMAD probe is then scanned along the surface
of the concrete to detect defects. The probe contains a
triaxial magnetic sensor which measures the three Cartesian
components of the magnetic flux, X, Y and Z. The probe is
passed over each rebar and records data every 4.71 mm. The
Z axis readings for the flux give the magnitude of the
component of the flux leakage in the direction of the scan
and the X axis readings provide the component normal to
the concrete surface. Although the Yaxis data are recorded,
they are rarely used in practice.
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Echo State Networks

ESNs are a form of recurrent neural network (RNN) in-
troduced in the early 2000s and were designed to be able to
process time-series data. Furthermore, they are efficient to
train and have been successfully applied in similar case
studies in the past (see, e.g. Refs. 15 and 16). They were
developed with an engineering perspective in mind, and
have proved to be more effective than traditional ANN
methods at predicting complex time-series data, while also
having a much shorter training time.17 For example, ESNs
have been shown to provide good performance and sig-
nificantly superior training times in comparison to state-of-
the-art long short-term memory networks (LSTMs),18,19

temporal expression tree classifiers and genetic program-
ming ensembles.20 One of the most useful aspects of ESNs
is their ability to recall past inputs through the presence of a
short-term memory, which can be influenced by a careful
tuning of the network parameters.21 These ESN architecture
features make them a particularly good fit for the kind of
heterogeneous data fusion required here. In recent times,
ESNs have been used for a wide range of applications, such
as traffic management,22 soil temperature modelling,23 power
grid voltage insulator damage classification,24 waterflood
performance prediction25 and wind speed forecasting.26

The general ESN architecture has three principal fea-
tures. The first of these is an input layer of neurons which,
via a fully connected weight matrix, projects into the second
feature, a typically much larger, high dimensional ‘kernel’
of sparsely interconnected reservoir neurons. Each of the
reservoir neurons is in turn fully connected to a layer of
output neurons. A schematic diagram of this architecture
can be seen in Figure 2.

Since their inception in 2001, ESNs have become
popular due to their modelling capacity, modelling accu-
racy, biologically plausible recurrence, extensibility and

ability to overcome the vanishing gradient problems tra-
ditionally associated with gradient descent RNN training
procedures.27 This is achieved by keeping most of the
weighted connections between neurons unchanged during
training, in contrast to other leading ANN approaches
(including deep learning long short-term memory net-
works), which require all of these connections to be trained.
For ESNs, only the weighted connections between the
reservoir neurons and the output neurons are trained; all
other weighted connections are randomly generated at
network initialisation and left unchanged throughout. Ridge
regression28 has been found to be a good approach to
training the weighted connections between the reservoir and
output neurons.29–31 In this work, ESNs were implemented
using the Reservoir Computing Toolbox for MATLAB.32

The carefully controlled degree of recurrence in the
reservoir gives ESNs a key characteristic: the echo state
property.21 This is simply defined as the state of the ESN, S,
at any time, t, depending not only on the input at t, but also
on the input at all previous time steps. The state of the
network at t is governed by an echo function,E, which maps
the history of the vector of network inputs, u, to the current
network state, as shown in equation (1)33,34

SðtÞ ¼ Eð…,uðt � 1Þ,uðtÞÞ (1)

Rather than having a fixed memory length, the sparsity of
the reservoir allows for a more flexible short-term memory.
Although ESN reservoir neurons were initially simple ad-
ditive units with sigmoid activation functions, most ESN
reservoirs now use leaky integrator neurons, first proposed
by Jaeger in 2007.35 The activation of a leaky integrator
neuron in an ESN reservoir is given by equation (2)36

xðtÞ ¼ f
�
ð1� δÞxðt � 1Þ þ δ

�
Wres

inpuðtÞ þWres
resxðt � 1Þ

��
(2)

Figure 2. A typical ESN topology. Only the weights between the reservoir neurons and the output units are trained.
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In equation (2), f is the activation function (typically
tanh)Wres

inp is the input layer to reservoir weight matrix, x(t)
is the vector of the activations of the reservoir neurons at t,
Wres

res is the reservoir weight matrix (drawn randomly from a
Z distribution) and δ is the leak rate, which determines the
extent to which ESN reservoir neurons’ activations decrease
over a period of time.

In all, four separate techniques were used:

· Fusion ESN: An ESN that combined X and Z
component data from the EMAD with cover depth
information and a bias input unit.

· ESNGD: An ESN that used the X and Z component
data from the EMAD and a bias input unit. This was
subject to the same training regime as the Fusion ESN
but without any cover depth information available.

· ESNDS: Seven different ESNs trained to use the X and
Z component data at specific cover depths, that is,
ESN42.5 trained to detect defects for cover depths of
42.5 mm, ESN289 trained to detect defects for cover
depths of 289 mm etc.

· The AT: A procedural algorithm that has been de-
veloped to exploit the characteristic defect signatures
in the X and Z axis data from the EMAD and which
has seen commercial use alongside expert
interpretation.

These are detailed more fully in the Data Processing
section.

Data Gathering

To test the ability of ESNs to fuse EMAD and cover depth
data, datasets were obtained in which systematic changes
to the cover depth were made. At this point, it is worth

re-emphasising one of the key considerations in this study:
any real-world survey would require a counter-plot
threshold to be applied to a data processing model output
before a usable contour plot could be produced. In this
academic study where ground truth data is available, we can
determine each technique’s optimal threshold based on the
proportion of known defects detected on each thresholded
contour plot. However, any technique which requires fewer
candidate thresholds to be used while delivering state-of-
the-art accuracy could reasonably be considered superior, or
at least ’more useful’, in day to day usage.

Data fusion testing mesh. A steel reinforcing mesh was set up
for the purpose of obtaining datasets that could be used for
data fusion. Seven different concrete cover depths were
simulated by using a stack of plastic grids to increase the
elevation of the EMAD above the mesh during seven
different scans. The covers depths ranged from 42 mm to
289 mm, the limit at which the EMAD probe can detect
anomalies. The experimental set-up of this mesh, with a
cover depth of 289 mm for just one portion of the mesh, can
be seen in Figure 3. The grids were moved across the mesh
to access different sections in turn. Figure 4 shows a scan
being performed at a cover depth of 251 mm. A schematic
view of the mesh’s layout, along with the ground truth
location of six manually inserted breaks, is given in
Figure 5.

Seven different cover depths were simulated by using
plastic grids to increase the elevation of the EMAD above
the mesh during seven different scans. The cover depths
ranged from 40 mm to 280 mm, the limit at which the
EMAD probe can detect anomalies.

Recording MFL data. The first part of the data gathering
process was to magnetise the mesh. This was done by

Figure 3. The data fusion testing mesh in-situ, with a simulated cover depth of 289 mm set up.
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passing the energiser over each longitudinal rebar in the
mesh at a cover depth of 42.5 mm in the direction indicated
in Figure 5. The rebars were each magnetised in turn from
right to left, such that the rebar located at 1.755 m in
Figure 5 was the first to be energised and the rebar located at
0 m the last. After magnetisation of the whole mesh, each
line was then scanned by the EMAD at seven different cover
depths: 42.5 ± 0.5 mm, 85.0 ± 0.5 mm, 124 ± 0.5 mm, 165 ±
0.5 mm, 205 ± 0.5 mm, 251 ± 0.5 mm and 289 ± 0.5 mm.
Each scan was performed twice – once each by two different
EMAD probes – so as to create two separate datasets. All of
the data were normalised between +1 and �1 before being
presented to the ESN variants considered here. The end
result was two EMAD datasets, with 70 scan lines in each.
These are henceforth referred to as datasets C1 and C2.

Although these datasets reflected the same physical re-
ality, they were separately obtained by different EMAD
probes, and therefore, varied slightly depending on each
device’s noise characteristics and calibration. However, in

order to fully develop and assess the generalisation capa-
bilities of the data processing techniques employed, a
further dataset obtained from an entirely different rebar
mesh, C3, was also used in training. This mesh was encased
in concrete and the ground truth condition was known. The
mesh then underwent multiple cycles of magnetisation in
different directions, before then being magnetised in the
same direction as the data fusion testing mesh and surveyed
to produce a fourth dataset, C4, which was used for testing.

Recording Concrete Cover. Recording the concrete cover
presented a challenge, since the maximum cover depth that
can be recorded by commercially available covermeters is
just 200 mm, 80 mm short of the EMAD’s maximum
scanning depth. While this would be less of an issue in the
‘real-world’, where the concrete cover should be well within
the range of the covermeter, it meant that commercially
available covermeters were not appropriate for the sys-
tematic experimental work that was intended here, since it is

Figure 4. An EMAD scan being carried out with a simulated cover depth of 251 mm.

Figure 5. The layout of the data fusion testing mesh. Lines represent rebar, while diamonds represent ground truth defect locations.
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important for the ESN to be able to model the full range of
signals that could be obtained by the EMAD probe. Con-
sequently, the cover depth was entered into the data file as a
third parameter which, in this case, was simply recorded for
each point in the scan as the height to which the probe had
been raised above the mesh.

In order to reflect further the margin of error seen in data
obtained by a covermeter, Gaussian white noise equivalent
to variation in the range ± 2 mm was added to the data.

Summary of datasets: In summary, the four datasets used
in this study were as follows:

· C1: data taken from an EMAD device with varying
cover depth, used for training.

· C2: data taken from a different EMAD device with
varying cover depth, used for testing.

· C3: data taken from a different, noisier mesh, used for
training the Fusion ESN and ESNGD.

· C4: data taken from the noisier mesh after a series of
different energisation cycles, used for testing.

Data Processing

A data fusion methodology was formulated and applied to
the recorded EMAD and cover depth data. Since each data
point in each dataset was registered with a corresponding
cover depth, ESNs can simply accept the cover depth as an
additional input. In addition, some alternative ESN ap-
proaches were designed for comparison with this data fu-
sion approach. These were ESNGD (‘General Depth’),
which was trained on data obtained from all cover depths,
and ESNDS (‘Depth Specific’), a collection of ESNs that
were trained to work on data obtained at specific cover
depths. The details of these are recorded below.

Fusion Approach. The data fusion approach that was used
here was a relatively simple one. An ESN was created with
three inputs: X axis component of the magnetic flux, Z axis
component of the magnetic flux and cover depth. This ESN
had one output unit, which was trained to give a value of�1
when no defect was present and +1 when a defect was

present. An additional ‘bias’ input unit was also used, since
it was found that repeatedly feeding the network with an
input of +1 improved performance. There is some precedent
for this in the literature, with Jaeger suggesting that such
‘bias’ input units improve training effectiveness when the
mean value of the desired output is not zero, by increasing
the variability of individual neurons’ dynamics.33,34

Datasets C1 and C3 were used for training, which was
performed using ridge regression, and then, C2 and C4 were
used as unseen testing datasets. This meant that the ESN
was trained on data from seven different cover depths,
including lines both with and without defects.

Before the performance of the data fusion ESN approach
could be measured, the best performing ESN configuration
had to be found. The parameters that were varied, the range
over which they were varied and the optimal values that
were found can be seen in Table 1.

Once the best performing ESN configuration had been
found, 500 ESNs were trained and their average perfor-
mance on the testing dataset recorded. This was done in
order to account for the fact that an ESN’s weights are
randomly generated at initialisation. Different approaches to
analysing the data were then used for comparison with this
data fusion technique, and these are detailed in the sub-
sections below.

Analytical Technique. In past commercial use, EMAD data
were processed using a combination of expert interpretation
and a procedural algorithm, referred to here as the AT. This
AT has been described previously,10 and so, a lengthy
explanation is not required here. A summary of the AT is
given by equation (3)

O0 ¼

����P ×G

�
z0 × dx

dd

�����
O

(3)

For any given data point, the value of the Z component
data, z0, is multiplied by the magnitude of the slope in the X
component data at that point, dx

dd, where the second d in the
denominator denotes the distance along the scan. A

Table 1. The optimal values of the ESN parameters for the data fusion approach, along with the range that these parameters were varied
over.

Parameter Range varied over Optimal value

Spectral radius 0–2 0.1
Input scaling 0–2 1.25
Leak rate 0–1 0.1
Adaptation epochs 0–10 9
Reservoir size 1–500 82
Reservoir connectivity factor 0.1–1 0.45
Activation function Tanh, Lorentzian, triangular basis function, radial basis function, Fermi Tanh
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Gaussian smoothing function, G is then applied to this. The
smoothed function is multiplied by the peak-to-peak am-
plitude between the nearest peak and trough that the data
point sits between. Finally, the output is divided by the mean
output for the entire length of the scan, O, which acts as a
scaling factor.

Since it is the usual technique for processing EMAD
data, the AT was applied to C2 and C4. If the data fusion
approach could not outperform the AT, then it would not
have shown any improvement over this existing method.

Depth-Specific ESN (ESNDS). One alternative approach to the
problem of different cover is to have a suite of pre-trained
ESNs, each of which has been specially trained to process
data recorded at a specific cover depth. In the ‘real-world’,
cover measurements could be taken and then the most
appropriate ESN selected for the recorded cover depth,
bearing in mind that in practice cover can vary considerably
across a large area of mesh.

In order to explore this potential scenario, seven separate
ESN architectures were trained, one for each different level
of simulated cover. As before, 500 ESNs of each config-
uration were trained and their average testing performance
measured. Although there was a relative paucity of training
data for these ESNs, the fact that these depth-specific ESNs
would only ever be exposed to data recorded at one cover
depth compensates for this. Each ESN had two input units
(X axis and Z axis components), and a single output unit,
which was trained using ridge regression to give values
of �1 for no defect and +1 for a defect. The addition of a
bias input unit, as used in the fusion ESN and ESNGD, did
not yield improved performance during training, and so was
not included in the final model. Dataset C2 was used as an
unseen testing dataset, while the ESN trained on data ob-
tained at a cover depth of 42.5 mm was also tested on C4,
where the cover depth was approximately 41 mm.

The best performing ESN parameters that were deter-
mined for each ESNDS are given in Table 2. The lack of a
consistent pattern of changes in each parameter reflects one
of the potential problems with this type of approach. Having
access to such a small amount of training data, which is an

inevitable consequence of using data obtained only at
specific depths, could expose the depth-specific ESNs to
overtraining and poor generalisation.

General Depth ESN (ESNGD). A further alternate approach to
the problem of different cover depths that does not involve
the fusion of data is to train a single ESN on EMAD data
from all cover depths, without providing any information
about the cover depth itself. This ‘general depth’ approach
led to ESNGD, which was trained on the entirety of C1.
Since it was exposed to defect signals recorded at a range of
cover depths, it was expected to be able to detect the
presence of defects at any depth. Again, the ESNGD net-
works were trained on dataset C1 and C3 with an output unit
that would give a value of +1 for a defect and �1 for no
defect. The network had three input units, one each for the X
and Z components and one which supplied a constant bias
value of ‘+1’. 500 ESNs were trained using this topology
and then presented with C2 and C4 as unseen testing da-
tasets. The overall average performance of these 500 ESNs
was then used for comparison with the other techniques.

The optimal parameters that were found for ESNGD after
a grid search are given in Table 3.

Performance Measures

All of the data processing approaches were trained using
datasets C1 and C3, and tested using datasets C2 and C4.
Since this is a two-class (‘defect’ and ‘no defect’) problem,
performance was assessed using a Receiver Operator
Characteristic (ROC) curve.

The area covered underneath this curve, referred to as the
area under curve (AUC), is equivalent to the probability that
a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance.37 In
machine learning, the AUC has been found to be a better
tool for the analysis of two-class classifier performance than
a simple calculation of classifier accuracy38,39 and has
previously been used for assessing performance in NDT.40

In the ‘real-world’, the processed EMAD data are normally
presented on a thresholded contour plot, so an evaluation

Table 2. The optimal parameters for each different implementation of ESNDS. The range varied over for each parameter is the same as
in Table 1.

Parameter ESN42.5 ESN85.0 ESN124 ESN165 ESN205 ESN251 ESN289

Spectral radius 0.3 0.9 0.8 0.5 0.9 0.9 0.5
Input scaling 1.9 0.9 0.7 0.7 0.4 0.4 0.1
Leak rate 0.9 0.6 1.0 0.2 0.2 0.3 0.1
Adaptation epochs 0 0 5 6 4 10 0
Reservoir size 300 300 90 120 140 340 20
Reservoir connectivity factor 0.2 0.2 0.4 0.6 0.3 0.5 0.99
Activation function Radial basis Radial basis Radial basis Radial basis Radial basis Radial basis Lorentz
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method that considers performance at different thresholds is
particularly useful. The average AUC for the ESN ap-
proaches was, therefore, compared to the AUC for the ATon
both of the unseen test datasets.

One practical consideration for the use of any technique
in the ‘real-world’ is the consistency of the optimal
threshold, which can be found by determining the point on
the ROC curve that had the smallest Euclidean distance
to the point that would represent perfect classification.
When the ground truth is known, as in this case, finding the
threshold that produces the clearest contour plots is trivial.
However, the ground truth is not usually known, meaning
that expert analysis is often required to select the best
threshold. If the calculated threshold is consistent across
different datasets, then expert analysis is not as important.
For each technique, the optimal threshold was calculated
and recorded at each different cover depth. A smaller
standard deviation of the optimal threshold at each different
cover depth would indicate smaller variation in optimal
threshold values at different cover depths, and would
suggest that the technique would rely less on costly and
time-consuming expert interpretation.

Results and Discussion

Results

Table 4 shows the results at each different cover depth. The
standard deviation for the average optimal thresholds at
each depth, meanwhile, is given in Table 5. Figure 6 shows
ROC curves at each cover depth for examples of each of the
data processing approaches. For each approach, the exact
classifier depicted was the one whose performance was
closest to the overall average performance.

Discussion

It can be seen in Table 4 that the Fusion ESN provided
competitive performance at all of the different cover depths
with the exclusion of 289 mm, where the signals were so
obscure that all of the techniques struggled to produce a
usable output. Indeed, the Fusion ESN was the best

performing architecture for depths of 85.0 mm, 124 mm,
165 mm and C4. However, the main advantage of using a
fusion ESN, and hence, providing the additional context of
cover depth, is best seen in Table 5.

In Table 5, it can be seen that the optimal threshold’s
standard deviation for the Fusion ESN is three times smaller

Table 3. The optimal parameters found for ESNGD.

Parameter Range varied over Optimal value

Spectral radius 0–2 0.1
Input scaling 0–2 1.3
Leak rate 0–1 0.1
Adaptation epochs 0–10 0
Reservoir size 1–500 70
Reservoir connectivity factor 0.1–1 0.6
Activation function Tanh, Lorentzian, triangular basis function, radial basis function, Fermi Tanh

Table 4. The average AUC and average optimal threshold for the
AT, ESNDS, ESNGD and the fusion ESN across each dataset. The
standard deviation for the ESNs is given in brackets.

Cover depth Classifier AUC Optimal threshold

42.5 mm AT 0.988 2 0.639 6
ESN42.5 0.997 6 (0.000 8) �0.124 1 (0.072 9)
ESNGD 0.998 4 (0.000 2) �0.412 6 (0.035 6)
Fusion ESN 0.992 2 (0.005 0) �0.593 2 (0.049 3)

85.0 mm AT 0.974 2 0.937 2
ESN85.0 0.994 3 (0.005 4) �0.120 3 (0.154 7)
ESNGD 0.990 2 (0.002 2) �0.594 2 (0.018 7)
Fusion ESN 0.996 3 (0.003 1) �0.546 6 (0.033 9)

124 mm AT 0.912 8 1.427 9
ESN124 0.972 6 (0.015 6) �0.226 8 (0.090 4)
ESNGD 0.974 2 (0.002 6) �0.676 6 (0.012 6)
Fusion ESN 0.985 7 (0.002 3) �0.572 4 (0.003 4)

165 mm AT 0.903 4 2.129 3
ESN165 0.980 2 (0.021 9) �0.307 9 (0.097 5)
ESNGD 0.974 9 (0.001 9) �0.677 7 (0.011 4)
Fusion ESN 0.982 0 (0.002 4) �0.531 2 (0.034 1)

205 mm AT 0.808 3 0.124 0
ESN205 0.885 1 (0.032 6) �0.183 2 (0.100 2)
ESNGD 0.921 6 (0.005 9) �0.715 2 (0.009 0)
Fusion ESN 0.912 7 (0.014 9) �0.623 3 (0.047 9)

251 mm AT 0.733 5 0.075 8
ESN251 0.929 6 (0.034 0) �0.268 1 (0.096 1)
ESNGD 0.889 6 (0.007 8) �0.734 7 (0.009 0)
Fusion ESN 0.859 6 (0.014 7) �0.523 6 (0.035 6)

289 mm AT 0.750 4 0.087 6
ESN289 0.859 7 (0.051 9) �0.662 5 (0.063 5)
ESNGD 0.853 1 (0.012 6) �0.724 1 (0.010 4)
Fusion ESN 0.691 2 (0.020 4) �0.483 2 (0.044 1)

C4 AT 0.957 8 4.346 8
ESN42.5 0.888 8 (0.048 1) �0.128 0 (0.167 9)
ESNGD 0.944 1 (0.006 9) �0.370 5 (0.091 9)
Fusion ESN 0.966 5 (0.009 2) �0.506 8 (0.050 0)
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than the same measure for ESNGD and over 30 times smaller
than for the AT that has previously been applied com-
mercially. A smaller standard deviation indicates that only
very small variation in threshold is required to produce an
accurate plot of the data from a survey. Indeed, the variation

is so small that, regardless of the cover depth, the optimal
threshold can almost be left at a constant value, reducing the
opportunity for human error.

It is, therefore, possible to envisage how the fusion ESN
could be applied in a ‘real-world’ survey. After the initial
survey, the average cover depth could be reported to an on-
site engineer, who could then select a threshold based on
Table 4, but variations around the average depth would then
not significantly degrade the analysis. This does not just
mean that the fusion ESN can be applied in the ‘real-world’,
but that it holds a major advantage over the AT and takes an
important step towards more fully automating the analysis
process.

In contrast, while the other ESN architectures offered
good performance, obtaining this good performance in
practice would require an engineer to be able to determine
the optimal threshold. This is much more difficult to

Figure 6. ROC curves for typical examples of each data processing approach at each different cover depth. For each approach, the exact
classifier depicted was the one whose performance was closest to the overall average performance. In each of the plots, the false
positive rate is given on the x-axis and the true positive rate on the y-axis.

Table 5. The standard deviation of the average optimal
thresholds for AT, ESNDS, ESNGD and the fusion ESN at each
different cover depth. A smaller standard deviation indicates a
more consistent threshold as cover depth changed.

Classifier Optimal threshold’s standard deviation

AT 1.456 8
ESNDS 0.194 1
ESNGD 0.142 6
Fusion ESN 0.046 4
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perform in near real-time on site when the ground truth is
not known and may necessitate breaking out sections of
rebar in order to get a baseline to help calibrate the
threshold. This would add both time and expense to any
survey, limiting applicability of the other techniques in
‘real-world’ settings and not guaranteeing that the optimal
threshold will actually be found. By simply incorporating
cover depth information into a data fusion model, all of this
can be avoided.

The ‘real-world’ applicability of the Fusion ESN is also
demonstrated through its performance on dataset C4, which
was much noisier than C2. This noisy data is potentially
more representative of ‘real-world’ surveys and shows that
the Fusion ESN is not just capable of working on ‘clean’
data. The ability of the fusion ESN to process usefully this
noisy data points to another ‘real-world’ benefit. If none of
the techniques were capable of processing the noisier data,
then it is possible that the EMAD technique would need to
be modified to include additional expensive equipment to
provide a saturating field capable of suppressing all con-
flicting magnetic signals, which would increase the cost of
the technique in terms of both time and money.

Taken in combination, all of this suggests that the fusion
ESN would be well suited to processing EMAD and cov-
ermeter data in the ‘real-world’.

Conclusions

In summary, this paper presented a data fusion approach to
the NDT of reinforced concrete that significantly improved
upon the AT that has been used hitherto.

The fusion ESN gave competitive AUC values when
applied to datasets taken across a range of cover depths.
Additionally, the architecture would be a plausible option
for systematic application in ‘real-world’ surveys, showing
the best performance on noisy data and with the standard
deviation of the optimal threshold across all of the cover
depths only 0.0464, compared to 0.1426 for the nearest
alternative technique. In practice, this would make selection
of the optimal threshold and, hence, obtaining the most
accurate results much easier in surveys where the ground
truth is not known.
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