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The Gaia-ESO Survey: Chemical tagging in the thin disk?

Open clusters blindly recovered in the elemental abundance space

L. Spina1, L. Magrini2, G. G. Sacco2, G. Casali3, 4, A. Vallenari1, G. Tautvaišienė5, F. Jiménez-Esteban6, G. Gilmore7,
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ABSTRACT

Context. The chemical makeup of a star provides the fossil information of the environment where it formed. Under this premise,
it should be possible to use chemical abundances to tag stars that formed within the same stellar association. This idea - known as
chemical tagging - has not produced the expected results, especially within the thin disk where open stellar clusters have chemical
patterns that are difficult to disentangle.
Aims. The ultimate goal of this study is to probe the feasibility of chemical tagging within the thin disk population using high-quality
data from a controlled sample of stars. We also aim at improving the existing techniques of chemical tagging and giving some kind
of guidance on different strategies of clustering analysis in the elemental abundance space.
Methods. Here we develop the first blind search of open clusters’ members through clustering analysis in the elemental abundance
space using the OPTICS algorithm applied to data from the Gaia-ESO survey. First, we evaluate different strategies of analysis (e.g.,
choice of the algorithm, data preprocessing techniques, metric, space of data clustering), determining which ones are more performing.
Second, we apply these methods to a data set including both field stars and open clusters attempting a blind recover of as many open
clusters as possible.
Results. We show how specific strategies of data analysis can improve the final results. Specifically, we demonstrate that open clusters
can be more efficaciously recovered with the Manhattan metric and on a space whose dimensions are carefully selected. Using these
(and other) prescriptions we are able to recover open clusters hidden in our data set and find new members of these stellar associations
(i.e., escapers, binaries).
Conclusions. Our results indicate that there are chances of recovering open clusters’ members via clustering analysis in the elemental
abundance space, albeit in a data set that has a very high fraction of cluster members compared to an average field star sample.
Presumably, the performances of chemical tagging will further increase with higher quality data and more sophisticated clustering
algorithms, which will likely became available in the near future.

Key words. Astrochemistry – Methods: statistical – Stars: abundances – Galaxy: abundances – Galaxy: open clusters and associa-
tions: general – Galaxy: disk

1. Introduction

The idea of chemical tagging originated about 20 years ago from
the work of Freeman & Bland-Hawthorn (2002), in which it was
suggested that destroyed clusters could be found by means of
their unique chemical signatures. Thus, the global star forma-
tion history of the Galactic disc could be reconstructed, also de-
? Based on observations collected with the FLAMES instrument at

VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-
ESO Large Public Spectroscopic Survey (188.B-3002, 193.B-0936,
197.B-1074).

tecting possible debris of satellite systems. The first principle of
the theory is based on the observational evidence of the chemi-
cal homogeneity of open clusters and moving groups (De Silva
et al. 2006; Sestito et al. 2007; Bovy 2016; Poovelil et al. 2020).
The second axiom is about the uniqueness of the chemical pat-
tern of each cluster, and therefore the possibility, using a suffi-
cient number of elements, to find stars born in the same clus-
ter, although it no longer exists (Bland-Hawthorn et al. 2010).
Thus, the feasibility of chemical tagging relies on the presence
and magnitude of cluster-to-cluster differences (inter-cluster, see
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Reddy et al. 2020) and on the intra-cluster homogeneity. The
chemical tagging based only on the use of chemical informa-
tion is often called strong chemical tagging, and aims at recov-
ering each unique site of star formation. A weak version of the
chemical tagging aims at recovering broader stellar populations,
like the thin and the thick discs, the halo, and their substructures
(Martell & Grebel 2010; Hawkins et al. 2015; Wojno et al. 2016;
Schiavon et al. 2017; Recio-Blanco et al. 2017).

Progress in recent years has shown that reality is more com-
plex than anticipated. On the one hand, the advent of large
spectroscopic surveys, such as Gaia-ESO (Gilmore et al. 2012;
Randich et al. 2013), APOGEE (Majewski et al. 2017) and
GALAH (De Silva et al. 2015), which have devoted significant
fractions of their time to observe star clusters, has shown that
there can be measurable differences in the abundances of mem-
bers of clusters in different phases. Those differences can be due
to physical reasons, as, e.g., diffusion (see, for instance Bertelli
Motta et al. 2018; Souto et al. 2018; Liu et al. 2019), internal
dredge-up (e.g Charbonnel 1995; Charbonnel & Zahn 2007; La-
garde et al. 2012), planet engulfment events (e.g Maia et al.
2019; Spina et al. 2015, 2018, 2021), or due to analysis tech-
niques (see, e.g. Casali et al. 2020a).

On the other hand, the question of the uniqueness of the
chemical pattern of each cluster is still a matter of debate (see,
e.g. Blanco-Cuaresma et al. 2015; Price-Jones & Bovy 2018).
The most plausible way to test it is definitely by trying to re-
find members of known clusters, mixed between themselves and
with stars belonging to the field. In addition, the uniqueness is
closely linked to the elements chosen to characterise the chem-
ical pattern. Indeed, not all elements work equally well: in par-
ticular those produced at short scale times by massive stars, such
as the α elements, and that have enriched the disk mostly in re-
mote times, vary in similar way in all open clusters, making them
of little use as diversity tracers (see. e.g. Ness et al. 2022). On
the other side, elements released only recently in the interstellar
medium (ISM) by low-mass stars and with a strong metallicity-
dependence of their yields (see, e.g. Casali et al. 2020b; Magrini
et al. 2021), such as slow neutron capture elements, contribute
differently to the chemical composition of the clusters of various
ages and located in diverse parts of the disc, and might be better
tracers.

There have been several attempts in recent years to recover
known stellar associations through clustering analysis in the el-
emental abundance space or to find the birth sites of stars born
in disrupted open clusters. These works have shown disadvan-
tages and advantages of the various types of approach (see, e.g.
Mitschang et al. 2014; Ting et al. 2015; Ness et al. 2018). How-
ever, some works showed encouraging results. Hogg et al. (2016)
were able to identify (by the k-means algorithm) known globular
clusters (such as M13 and M5), stellar streams, and other unde-
termined overdensities of stars in the 15-dimensional chemical-
abundance space delivered by The Cannon (Ness et al. 2016).
Globular clusters were also recovered by Chen et al. (2018)
with the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN; Ester et al. 1996) algorithm. However, while
Hogg et al. (2016) only used the chemical abundance informa-
tion, Chen et al. (2018) carried out the clustering analysis in a
chemical-velocity space. Furthermore, both these works are not
“blind”, meaning that known members of stellar clusters were
used to tune the parameters of the clustering algorithms. Finally,
Hogg et al. (2016) highlighted that it is easier for clustering anal-
ysis to find structures at low metallicity (e.g., in the Galactic
halo) than at solar metallicity (e.g., the Galactic disk). In fact,

abundance-space features are more prominent at the edges of the
distribution than in the center (see. e.g. Ting et al. 2016).

Nevertheless, strong chemical tagging has been tested in the
Galactic disk as well. Blanco-Cuaresma & Fraix-Burnet (2018)
performed a phylogenetic analysis to recover members of known
star clusters, reconstructing most of the original open clusters us-
ing differential abundances with respect to M 67, and discussing
the best set of elements to recover clusters. Price-Jones & Bovy
(2019) identified groups of stars in a synthetic set of birth clus-
ters using DBSCAN and their percentage of clusters with more
than 10 members recovered is 40% using only abundances. In
a following paper, Price-Jones et al. (2020) repeated the exper-
iment on the APOGEE data set identifying in the abundance
space 21 candidate stars clusters, but they were not able to re-
cover any known open cluster. Garcia-Dias et al. (2019) carried
out a test on eight clustering algorithms and with four dimen-
sionality reduction strategies applied on a data set composed by
members of both open and globular clusters. This work shows
how different data analysis strategies must be carefully evalu-
ated before attempting chemical tagging. Finally, Casamiquela
et al. (2021) used abundances of member stars in open clusters
from high-resolution spectroscopy to recover them with HDB-
SCAN: they could recover about 30% of the analysed clusters
in groups containing at least 40% of the actual cluster members.
Notably, these attempts of chemical tagging in the thin disk are
non-blind searches of stellar associations within a data set ex-
clusively composed by known members of open clusters. The
unique exception in the literature is the study from Price-Jones
et al. (2020), which used a sample of 182,538 stars belonging to
all the Galactic components. Their inability of recovering any of
the known open clusters present in their data set clearly demon-
strates the difficulty of the task. This is especially true when
noisy data significantly blur the clusters we wish to recover. In
fact, Price-Jones et al. (2020) noted how real members of known
open clusters have a larger dispersion in the abundance space
than those of the 21 groups they identified.

1.1. Outline of the paper

Inspired by the study of Price-Jones et al. (2020), in the present
work we devise an experiment that simulates a realistic attempt
of strong chemical tagging in the thin disk, attempting to im-
prove the existing methodology and giving some kind of guid-
ance. Our full data set is composed by both field stars and mem-
bers of 40 open clusters. This data set - described in Section 2 -
is smaller than the APOGEE sample used by Price-Jones et al.
(2020), but it constitutes a very controlled set of abundances de-
rived through higher-resolution spectra.

In the first part of the paper (Section 3), we use a subset of
our data composed exclusively by members of 13 open clus-
ters. The overarching aims of this Section are i) considering
all the most common methods used so far to tackle the prob-
lem of chemical tagging, ii) identifying their pros and cons,
ii) ultimately selecting the one we consider to be the most ap-
propriate for our problem. Firstly, we discuss the rationale be-
hind the choice of the OPTICS algorithm and behind impor-
tant preprocessing techniques of our data set. Another impor-
tant point we address is that of the choice of metric, which
is often overlooked, assuming the Euclidean one (Hogg et al.
2016; Blanco-Cuaresma & Fraix-Burnet 2018; Price-Jones et al.
2020; Casamiquela et al. 2021), but which can give important
improvements in the identification of stars belonging to com-
mon formation regions. The choice of the Manahattan metric,
which ensures the best contrast in distance between the different
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points, is perfectly suited to highlight the contrast between clus-
ters and field stars. Then, we focus on defining the abundance
space, by tackling the issue of number of elements vs quality
of measurement, and especially the choice of elements based
on their uniqueness in terms of nucleosynthesis channels (see,
e.g. Adibekyan et al. 2015; Blanco-Cuaresma & Fraix-Burnet
2018). Initial work on chemical tagging considered that between
10 and 15 elements were needed to guarantee uniqueness across
populations (Bland-Hawthorn & Freeman 2004; De Silva et al.
2007). We aim at demonstrating with our experiment that we
can have some advantage in reducing the overall dimensionality
to only the strongest variant dimensions. As already pointed out
by Mitschang et al. (2014), one might think that increasing di-
mensionality would bring improvements. However, in practice,
adding elements that are difficult to measure (with few or weak
lines, uncertain atomic data, etc.) or elements which duplicate
the information since they have a common origin, can only lead
to increased uncertainties and scatter.

In the second part of the paper (Section 4) we apply the most
performing strategies of data analysis to the full data set. First we
identify the best set of algorithm’s hyper-parameters that max-
imise the number of stellar associations that are recovered in the
abundance space among the 13 open clusters analysed in Sec-
tion 3. The resulting model is then applied to the rest of the data
set with the aim of recovering the other known open clusters
and other eventual groups of stars of potential interest. With this
approach, the algorithm is going to identify in the abundance
space a number of clusters, some of which are real stellar asso-
ciations, while others are just spurious overdensities. Thus, we
further investigated only the groups with the highest density in
the space of orbital actions. Interestingly, a few of these latter
coincide with open clusters that are blindly recovered through
our analysis. We also recover new stellar members of open clus-
ters that were lost from the membership analysis. Finally, we
identify groups of stars clustering both in the abundance space
and in orbital actions, which should be further investigated with
follow-up observations.

Finally, in Section 5 we provide a summary of our main re-
sults and we discuss future perspectives of strong chemical tag-
ging.

In order to avoid confusion with the terminology, in the fol-
lowing sections we will refer to “open cluster” or “stellar asso-
ciation” as an ensemble of stars sharing the same origin and for-
mation site, regardless of whether they are still physically bound
or dispersed. Instead, with “cluster” or “group” we will refer to
a group of stars identified by the clustering algorithm in the ele-
mental abundance space, regardless of whether they are all part
of a real “stellar association” or not.

2. Data set

In this paper we make use of the sixth internal data release
(iDr6) of the Gaia-ESO survey (Gilmore et al. 2012; Randich
et al. 2013). More specifically we use the catalog of the tar-
gets observed in the high resolution mode with the spectrograph
UVES (resolving power, R=47,000, and spectral range 480.0-
680.0 nm). The catalog includes parameters and abundances for
6,917 stars. From this initial sample we only consider the stars
with a radial velocity determination, and analysed by the work-
ing group (WG) in charge for the analysis of stars with spectral
type F-G-K, WG 11 (see Smiljanic et al. 2014). The selected tar-
gets are identified with REC_WG equal to “WG11”. Furthermore,
in the data set that we are going to analyse in this paper we only
include evolved stars as their abundances are not affected by

either atomic diffusion (Souto et al. 2018; Bertelli Motta et al.
2018) or by planet engulfment events (Spina et al. 2021), there-
fore we select only the stars with surface gravity log g ≤ 3.5
dex and effective temperature 4500 < Teff ≤ 5500 K. Also,
given that for our analysis we require a controlled sample of
very high-quality abundance determinations, we only consider
the stars with microturbulence ξ < 2.0 km s−1, with the number
of nodes that provided estimations of iron abundances N_FEH >
1, and signal to noise ratio SNR ≥50 pixel−1. In fact, chemical
abundances of these stars are more reliable than those derived
for the rest of the sample. Since our study is focused on the thin
disk population, we consider only the stars with a distance above
the Galactic midplane |z|<1.5 kpc (derived using Gaia edr3 dis-
tances). In addition to that, we only include stars having abun-
dance determinations of all the following elements: Fe I, Na I,
Mg I, Al I, Ca I, Sc II, Ti I, V I, Cr I, Mn I, Co I, Ni I, Cu I,
Zn I, Ba II, Y II, Nd II, and Eu II. Finally, we discarded the stars
whose parameters had convergence problems in at least one of
the analysis nodes. We also discarded the entries for which one
node provided results which differs from the all Nodes mean by
more than 500 K in Teff , or 0.5 dex in log g, or 0.5 dex in [Fe/H].
The list of these low quality results is provided in an internal re-
port of wg11, and are flagged in the final table. Thus, our final
sample is composed of 937 stars that fulfill all these criteria.

Our data set still contains a number of stars in globular
clusters. Since our experiment is about chemical tagging in the
thin disk, we want to remove such objects. Therefore, assuming
the membership probabilities PGCs from Vasiliev & Baumgardt
(2021) we reject all the stars with PGCs >0.9. This reduces the
data set to 800 stars which are either in open clusters or in the
field.

With this study we want to evaluate our capability of recov-
ering stars in open clusters hidden in our data set. Therefore,
before starting with the clustering analysis, it is of fundamental
importance to establish the membership of stars to these associ-
ations. In a recent study, Jackson et al. (2022) made use of the
Gaia astrometric solutions and Gaia-ESO radial velocities to de-
termine 3D membership probabilities P3D of several stars in our
data set. When available, here we use these membership proba-
bilities to infer whether or not each single star is member of an
open cluster. When these probabilities are not available, which
is the case for clusters with few observed stars, we use mem-
bership probabilities computed as in Magrini et al. (2021) that
consider as members stars within 2-σ from the average radial ve-
locity, proper motion and parallax of the cluster. The first from
Gaia-ESO iDR6 and the others from Gaia edr3. Given these
probabilities, we consider members of open clusters all the stars
with P≥0.9. From these cluster members we discard the stars in
clusters younger than 500 Myr. This is necessary because chem-
ical abundances in younger clusters suffer of low accuracy as
their metal content appears significantly lower than what it ac-
tually is depending on the level of stellar chromospheric activity
(Yana Galarza et al. 2019; Baratella et al. 2020, 2021; Spina et al.
2020; Zhang et al. 2021). Therefore, after this further selection
we count 306 stars in open clusters. There are 40 open clusters
in our data set. Among these, 13 include at least 10 stars: these
cluster members will be used to choose the best strategies of
data preprocessing and clustering analysis (see Section 3) and to
select the best set of hyperparameters for the algorithm (see Sec-
tion 4.1). Thus, hereafter we will refer to this sample that counts
190 stars as the optimization sample. In addition to that, there
are 23 open clusters with a number of members ranging between
2 and 9. These are the clusters that are hidden in our data set
and that we want to “recover” through our analysis. Hereafter
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we will refer to this sample of 112 stars as the hidden clusters
sample. Finally, there are four open clusters with only one mem-
ber. For practical reasons these four stars will be considered as
field stars along with all the other stars without an estimation of
membership probability to any cluster or with P≤0.1. The result-
ing sample of field stars counts 456 objects. All the stars with
membership probability P∈(0.1,0.9) are excluded from our data
set. The removal of stars with an indefinite membership is nec-
essary to maximise the accuracy of the metrics used to evaluate
our ability to recover open clusters through chemical tagging.

3. Methods

The search for clusters in a multidimensional space relies on
some fundamental decisions that have to be taken. These de-
cisions, which can significantly improve or deteriorate the ef-
ficiency of chemical tagging (see Garcia-Dias et al. 2019), are
about the choice of the clustering algorithm, the criteria to set its
hyperparameters, the techniques of data preprocessing, and the
choice of the space of parameters that needs to be analysed. Un-
fortunately there is no a general method of data clustering nor
a rule of thumb that ensure good results for a reasonably broad
range of cases or situations. Instead, the best course of actions
is strongly influenced by the data set one has at hand and by the
type of cluster one aims to recover. For that reason it is necessary
to think very carefully to each step of the analysis and evaluate
whether or not it can boost the performances of the clustering
algorithm.

In this Section we want to explore different approaches for
clustering in the abundance space. Our aim is to identify the em-
pirical and conceptual criteria that should drive our choices, and
to outline - when possible - general strategies that can improve
the efficiency of chemical tagging.

3.1. The algorithm

Cluster is a tricky concept in data science which varies depend-
ing on the type of problem that is tackled. For instance, a data set
may be formed only by clusters or instead it may contain clus-
ters plus scattered data. Clusters may have the same density pro-
files or be significantly different from each other. In some cases
we may also be interested in detecting sub-clusters within the
same agglomerate of data points. Given all this diversity, various
techniques of cluster searches have been developed and several
clustering algorithms are now available to us. Clusters found by
one algorithm will definitely be different from clusters found by
another algorithm, however there is no best algorithm for cluster-
ing analysis because their outcomes can be evaluated with very
different criteria and under various points of view. The best way
to get oriented in the vast panorama of machine learning algo-
rithms is always understanding the type of problem that we need
to solve and the data set that we have at hand.

First, for practical reasons we restrict the choice of the al-
gorithm to the several clustering techniques that are already im-
plemented in Python. Second, our specific problem - chemical
tagging - implies the search of clusters in a data set containing
points that do not belong to any agglomerate. Thus, we must
exclude the algorithms that are unable to process scattered or
noisy instances, such as affinity propagation, agglomerative clus-
tering, K-means, mini-batch K-means, spectral clustering, Gaus-
sian mixing models, Ward, and the balanced iterative reducing

and clustering using hierarchies (BIRCH)1. Third, as we will
demonstrate in Section 3.7, open clusters can have different den-
sities in the abundance space when they are seen by large spec-
troscopic surveys. Therefore, we must also exclude DBSCAN as
it assumes that all clusters have the same density. This leaves our
choice to two algorithms: OPTICS and HDBSCAN.

The philosophy behind OPTICS and HDBSCAN is very
similar. Both these algorithms work by detecting areas where
points are concentrated more than other areas that are empty or
sparse. These algorithms start the analysis with the first point of
the data set and keep expanding to the neighbours points. While
considering a specific point in a data set, the algorithm assigns to
it a value called reachability distance, which can be understood
as a measure of the average density of the neighbourhood around
the point under consideration. The complete description of OP-
TICS and HDBSCAN and how they work is beyond the scope of
this paper, but it can be found in the seminal papers by Ankerst
et al. (1999); Campello et al. (2013). What is important to high-
light here is that both OPTICS and HDBSCAN do not produce a
clustering of a data set explicitly, but instead they create an aug-
mented ordering of the data points representing its density-based
clustering structure. In practice, all the points of the data set
are (linearly) ordered such that spatially closest points become
neighbors in the new linear ordering. In addition, the reachabil-
ity distance assigned to each point gives a measure of the density
of its neighbourhood. Therefore, since a cluster can be defined
as a region of high density separated by regions of low density,
two points that are adjacent in the new linear ordering and that
have very different reachability distances can be seen as the “be-
ginning” or the “end” of a cluster. That explains why the new in-
dices of the reordered data set and the reachability distance are
the fundamental information used by both OPTICS and HDB-
SCAN to extract clusters and sub-clusters. Once this informa-
tion is reached, the two algorithms differ in the technique used
to identify these agglomerates.

For our analysis we decide to use the OPTICS algorithm.
This choice is driven by a few reasons. First, the OPTICS code
that is implemented in Python as part of the scikit-learn
package allows the user to visualize in a very simple and intuitive
way the information that is at the basis of the cluster extraction.
This information is fully represented in the reachability plot that
shows the reachability distance of every point in the database -
with the exception of the starting point for which the reachability
distance is not defined - as a function of the new index assigned
by the algorithm (see an example in Fig. 2). The clusters are
identified as the valleys or dips in the reachability plot, while
the saddles are cluster boundaries or noise. Thus, the reachabil-
ity plot represents a stand-alone tool to get key insights into the
distribution of a data set, very useful to evaluate how different
data preprocessing steps and different strategies for clustering
analysis can improve (or not) the efficiency of the clustering al-
gorithm. This is a very precious piece of information because,
as we will see in the following sections, the many insights that
we will learn from the reachability plots are directly applicable
also to HDBSCAN and other algorithms as well. Furthermore,
the OPTICS algorithm is simpler than HDBSCAN. As we will
show in Section 3.3, OPTICS mostly relies on one important hy-
perparameter that is unknown a priori. Instead HDBSCAN has
more parameters that have to be tuned. Finally, HDBSCAN has
been already used in other studies (e.g. Garcia-Dias et al. 2019;
Casamiquela et al. 2021). Instead, there are no experiments of

1 For more details on these different methods of clustering analysis,
see Rokach & Maimon 2005.
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chemical tagging with OPTICS. Thus, we want to take advan-
tage of the present study as an opportunity to fill this gap.

3.2. The hyperparameters

The OPTICS algorithm relies on the following hyperparameters:

– min_samples. This parameter is strictly related to the reach-
ability distances. In particular, it defines how large a neigh-
bourhood of a specific point is. A small min_samples value
will result in small neighbourhoods, thus the resulting reach-
ability distances will be more sensitive to noise. Instead, a
large min_samples value generates large neighbourhoods,
with a reachability distance that is more stable against noise,
but is also less sensitive to data sparsity. Therefore a “good”
value of the min_samples is the one that can capture the
sparsity of our data set while filtering the noise out. This is
the only hyperparameter that we do not set to a fixed value, as
it is unknown a priori. Every time that we use OPTICS, we
will search for the “best” min_samples across the integer
interval between 2 and 30. The “best” min_samples value
is determined accordingly to the evaluation metrics defined
in Section 3.3.

– max_eps. The maximum distance between two samples for
one to be considered as in the neighborhood of the other.
We assign ∞ to this parameter, so that OPTICS can identify
clusters across all scales.

– metric. Metric to use for distance computation. In our anal-
ysis we use the Manhattan metric. The reason of this choice
is explained in Section 3.6.

– xi. Determines the minimum steepness on the reachability
plot that constitutes a cluster boundary. In other words, the
xi parameter can be intuitively understood as a contrast pa-
rameter that establishes the increase in density expected for
a cluster relatively to the noise. This parameter directly con-
trols the number and the types of clusters we will obtain. A
higher xi value can be used to find only the most signifi-
cant clusters and it could be used to separate - for instance
- the thin and thick disk populations in the chemical space.
Instead, a lower xi value is better suited find less signifi-
cant clusters, such as open clusters. Given that open clusters
are the smallest building blocks of our Galactic disk and that
they should be perfectly homogeneous except for the noise
intrinsically present in the abundance determinations, we set
xi to the smallest value that it can take. Namely, we empir-
ically find that any xi≤0.001 does not affect the results of
the clustering analysis applied to our data set. Instead, any
xi>0.001 can reduce the number of clusters found by the
algorithm. Therefore we set xi = 0.001.

– min_cluster_size. Describes the number of points re-
quired to form an OPTICS cluster. Thus, the value of this
parameter depends on the type of clusters the user is look-
ing for. When evaluating the different strategies of clustering
analysis, we will aim at extracting at least half of the mem-
bers of open clusters composed by 10 members or more.
Therefore, in this case we will set min_cluster_size =
5. Instead, in Section 4, when we attempt the proper ex-
periment of chemical tagging, the number of members of
each stellar association is unknown, therefore we will set
min_cluster_size = 2, which is the lowest value it can
take.

3.3. The evaluation metrics

The consequence of setting max_eps =∞ and xi = 0.001 is that
OPTICS finds a hierarchical structure of clusters encompassing
from extremely large clusters that include almost all the points
in our data set down to very small clusters composed only by
few objects. The min_cluster_size = 5 filters out the clus-
ters with less than 5 points. We also remove the clusters formed
by >100 points. We define as Ng the number of the remaining
groups found by OPTICS. Below we also define the evaluation
metrics that we use to search the “best” min_samples value and
to assess different strategies of data analysis.

– Entropy. Let {idx}i be the indices assigned by OPTICS to
the ni stellar members of the ith open cluster OCi (e.g., among
the 13 open clusters of the optimization sample). Let [1..ni]
be the integer interval between 1 and ni. The entropy score
of the ith open cluster is defined as

Ei =
σ({idx}i) − σ([1..ni])
σ({idx}i) + σ([1..ni])

, (1)

where σ is the standard deviation. The entropy score ranges
within [0,1]. A low Ei value indicates that OPTICS has effec-
tively reorganized the data set in a way that members of OCi
are neighbors in the reachability plot. Instead, a high Ei value
implies that OPTICS has not efficiently recognised the sim-
ilarity of the members of OCi. The median of the Ei derived
for all the open clusters defines the global entropy score E.

– Homogeneity and completeness. Given a group g found
by OPTICS, the homogeneity score is defined as

Hi =
number of OCi members included in g

number of components of g
. (2)

Instead the completeness score is defined as

Ci =
number of OCi members included in g

number of members of OCi
. (3)

These scores are derived only for the open clusters with Hi
and Ci ≥ 0.5. These are the open clusters that - we say - have
been recovered by OPTICS. The median of these two scores
of the open clusters for which they are defined respectively
give the global homogeneity score H and the global com-
pleteness score C.

– V measure. It is the harmonic mean of two the desirable
aspects of clustering: homogeneity and completeness. It is
defined as it follows:

Vi =
2 × Hi ×Ci

Hi + Ci
. (4)

The V measure is defined only for the open clusters with Hi
and Ci ≥ 0.5. The median of Vi gives the global V measure
V.

– Number of recovered OCs. This is the number Nrec of
open clusters that have been recovered by OPTICS. An open
cluster OCi is "recovered" when both Hi and Ci are ≥ 0.5.

– Clustering Efficiency. This score is defined as the ratio
between the number of clusters that have been recovered and
the number of groups found by OPTICS:

CE =
Nrec

Ng
. (5)
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Clustering algorithms are extremely sensitive to the choice
of their hyperparameters. As we have discussed in Section 3.2,
we fix them all with the only exception of min_samples. This
is a very delicate parameter that has a great impact on the final
results. When min_samples is too high, the algorithm does not
detect any variation in density across the data set. As a conse-
quence, the distribution of points in the reachability plot is flat,
and the algorithm does not find any group. On the other hand,
when min_samples is too low, the reachability plot would show
a significant level of granularity. Therefore, the code would prob-
ably find the real clusters along with a myriad of other groups
in the noise. Thus, tuning the min_samples parameter to very
low values would give the idea that the algorithm is able to re-
cover a large fraction of clusters, however that may happen be-
cause the algorithms is generating several possible combinations
of groups (e.g. Casamiquela et al. 2021) and not because it is
able to efficiently recognize patterns in the data set. It is not de-
sirable a model that detects several clusters, many of which are
noise and just a few are real. That model is unable to properly
generalise when applied to a real data set. Therefore, in order
to avoid overfitting, when evaluating the response of OPTICS to
the variation of min_samples we only consider the cases where
CE is above a certain threshold. Among these cases alone we
select the min_samples value that maximises Nrec. When the
clustering analysis is applied to the optimization sample, we im-
pose CE>0.5. In other words, we consider only the cases when
more than half of the groups identified by OPTICS correspond
to real open clusters. Instead, when analysing the extended data
set which also includes field stars and the hidden clusters, it is
reasonable to assume a lower threshold because the number of
stellar associations that one can possibly recover is larger than
the number open clusters that we use for the optimization (for
more details see Section 4).

3.4. Reproducibility

The distance- and density-based algorithms - such as k-means,
DBSCAN, HDBSCAN and OPTICS - are not entirely determin-
istic. The sequence of points in the linearly re-ordered data set,
thus also the stars belonging to each group, slightly depend on
how the data set is initially ordered. Therefore, to obtain results
that are fully reproducible and objective it is strictly necessary to
define a criterion that unequivocally pre-orders the data set be-
fore it is fed to the clustering algorithm. All that also implies that
there must be a way to pre-order the data set that can make the
algorithm more efficient than just analysing a random sequence
of instances.

In Fig. 1 we show the distribution of the entropy coefficients
obtained by repeating 1000 times the clustering analysis on a
randomly ordered data set (in blue), and on a data set sorted as
a function of [Fe/H] (in green). At each iteration, the cluster-
ing analysis is carried out following the recipe detailed in Sec-
tion 3.3 and using all the 19 elemental abundances as the input
features. When the data set is randomly ordered the resulting en-
tropy spans a large range of values between 0.55 and 0.80. How-
ever, when we sort input data set as a function of Fe abundance,
the entropy distribution is mostly restricted between 0.6 and 0.7.
Finally, when we sort the data set as a function of [Fe/H] and of
all the other abundances [X/H], we always obtain the same en-
tropy of 0.62 (see red line). This last entropy is one of the lowest
value that we have obtained across all the previous iterations.
Therefore, pre-ordering the data set as a function of [X/H], start-
ing with [Fe/H] and followed by all the other elements, is a good
strategy to improve the performances of the algorithm. In light

0.55 0.60 0.65 0.70 0.75 0.80
Entropy

100

101

102

103

N

Random dataset
Sort Fe
Sort all elements

Fig. 1. The entropy values resulting from the 1000 trials of clustering
analysis carried out by OPTICS on a data set that is randomly ordered
(blue histogram), and on a data set that was sorted as a function of
[Fe/H] (green histogram). Finally the red vertical line shows the entropy
that is obtained when the data set is sorted as a function of the [X/H]
abundances, starting with [Fe/H] followed by all the other elements.

of these results, we will apply this data preprocessing step in the
following analysis.

3.5. Standardization

Standardization is a scaling technique in which a variable’s dis-
tribution is transformed in order to have its mean equal to zero
and a unit standard deviation. Data standardization makes data
dimensionless. By standardizing one attempts to give all vari-
ables an equal weight, in the hope of achieving objectivity. In
fact, if one feature has a range of values much larger than the
others, clustering would be completely dominated by that sin-
gle feature. Therefore, standardizing data is recommended be-
cause otherwise the range of values in each feature will act as a
weight when determining how to cluster data, which is undesired
in most cases. However, in practice standardization is not always
strictly necessary.

In Fig 2 we compare the effects of standardization in the
analysis of our data set. Points are color coded depending on
the open cluster they are member of. In the first panel, we show
the reachability plot derived by OPTICS which has searched for
clusters in the abundance space [Fe/H]-[Si/H]-[Ni/H]-[Co/H]-
[Ba/H]. No standardization is applied to the data set before the
analysis. Instead, the second panel shows the reachability plot
obtained through the same analysis, but on the standardised data
set. On top of each panel we list the metrics and coefficients,
while the colored bands highlight the clusters that have been re-
covered by OPTICS.

Solely based on the number of recovered open clusters and
the other metrics and coefficients, standardization does not pro-
duce a significant improvement in the performances of the clus-
tering algorithm. This is because all the features in the abun-
dance space that we have used span similar ranges of values and
have similar distributions. Therefore the OPTICS will give them
similar weights even without standardization. However, from a
more careful analysis of the reachability plots it is possible to
notice that standardization allows us to detect smaller density
variations within each cluster. This is particularly evident for
Trumpler 20, whose members mostly share the same reachability
distance when no standardization is applied. Instead, when data
are standardized the densest region of the cluster, corresponding
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Fig. 2. The panels show the reachability plots resulting from clustering with different strategies of standardization. The points are color coded
depending on the cluster they are member of. Vertical colored strips indicate the groups associated to the recovered open clusters. The relevant
coefficients and scores are listed on top of each panel. Top panel. Reachability plot obtained from clustering analysis in the [Fe/H]-[Si/H]-
[Ni/H]-[Co/H]-[Ba/H] space without standardization. Second panel. Reachability plot obtained from clustering analysis in the [Fe/H]-[Si/H]-
[Ni/H]-[Co/H]-[Ba/H] space with standardization. Third panel. Reachability plot obtained from clustering analysis in the [Fe/H]-[Si/Fe]-[Ni/Fe]-
[Co/Fe]-[Ba/Fe] space without standardization. Bottom panel. Reachability plot obtained from clustering analysis in the [Fe/H]-[Si/Fe]-[Ni/Fe]-
[Co/Fe]-[Ba/Fe] space with standardization.
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to the points with a lower reachability distance, is more easily
identifiable.

In order to make the benefits of standardization appear more
evident we use the following features: [Fe/H]-[Si/Fe]-[Ni/Fe]-
[Co/Fe]-[Ba/Fe]. In this case [Fe/H] spans a much larger range of
values than all the other features. In fact, when we apply OPTICS
without any standardization, we obtain much worse results (see
the third panel): the algorithms is able to recover only four open
clusters instead of the six of the previous analysis. In this case
standardization can significantly improve the efficiency of the
algorithms (see the fourth panel).

In conclusion, although there are cases when standardization
would not produce significant improvements in terms of the met-
rics that we are using to evaluate our results, this preprocessing
technique will always positively contribute in finding overdensi-
ties in the abundance space. Therefore, it should always be ap-
plied even when features have very similar distributions. These
conclusions apply for OPTICS, and many other clustering algo-
rithms (e.g., K-means, DBSCAN, HDBSCAN, etc...).

Hereafter, we always standardize the data set before the clus-
tering analysis.

3.6. The metric

The metric is another critical ingredient in clustering analysis.
The metric determines how distances between points are esti-
mated. Therefore the contrast in distance between points in a
dataset heavily depends on which metric is chosen. All previous
experiments on chemical tagging through cluster analysis in the
abundance space have used the Euclidean metric (Hogg et al.
2016; Blanco-Cuaresma & Fraix-Burnet 2018; Price-Jones et al.
2020; Garcia-Dias et al. 2019; Casamiquela et al. 2021), which
is certainly the most familiar one and for that reason it could ap-
pear as the most natural choice. However, there are cases where
the Manhattan metric may be preferable to Euclidean distance.
In fact, the Euclidean metric is much more sensitive against to
noise than the Manhattan metric. That is readily evident when
considering how the two distances between points p and q is
calculated. The Euclidean distance is defined as

d(p,q)E =

√∑
i

(pi − qi)2, (6)

while the Manhattan distance is

d(p,q)M =
∑

i

|pi − qi|. (7)

Because of the square exponent, the Euclidean metric gives
more emphasis to the outliers regardless of whether they are just
noisy data or not. Instead, the Manhattan is more stable against
noise.

Certainly there are applications where a high sensitivity to
noise is desirable, for instance when the features are measured
with a precision that is much higher than the typical separation
of clusters. Unfortunately, this is not our case. Chemical abun-
dances from spectroscopic surveys are obtained through auto-
matic pipelines built to analyse, in a reasonable amount of time,
thousands of spectra with very different signal-to-noise ratios
and from stars having a broad range of atmospheric parame-
ters, rotational velocities, and compositions. Thus, Galactic sur-
veys typically prioritise large statistics over precision and accu-
racy. Therefore, given the unavoidable presence of noise, the Eu-
clidean metric blurs clusters in the abundance space more than

the Manhattan metric. On top of that, when we are working in
a space that has more than a few dimensions - which is exactly
our case - the Manhattan metric is the one that ensures the best
contrast in distance between the different points (Aggarwal et al.
2001), hence also the best density contrast between clusters and
empty regions.

In Fig. 3, we compare the results obtained though the two dif-
ferent metrics. The abundance space considered here is defined
by the [X/H] abundances of all the 19 elements (Fe, Na, Mg, Al,
Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ba, Y, Nd, and Eu). We
notice some key differences between the outcomes of the two
analysis. First, the Manhattan distance gives a smaller entropy
score E, meaning that with this metric the data set is more ef-
ficiently ordered. This is expected as Manhattan is less affected
by noisy data than the Euclidean metric. Second, the reachability
distance in the Manhattan metric spans a wider range of values
than in the Euclidean metric. As a result of this higher contrast
in the distances between points, dips and valleys in the reach-
ability plot obtained with the Manhattan metric will be deeper
than those derived with the Euclidean distance. When dips and
valleys are deeper, it is easier to identify clusters in the data set.

In conclusion, the Manhattan metric is a better option than
the Euclidean for our specific application. This conclusion holds
even for other distance- or density-based clustering algorithms,
such as K-means, DBSCAN, HDBSCAN, etc... Therefore, in the
rest of this paper we will always use Manhattan distance.

3.7. The elemental abundance space

The definition of the elemental abundance space is one of the
most important decisions that has to be taken before applying
the clustering analysis. The option that seems the most obvious
and natural is to use all the elemental abundances that one has in
hand to define the space where to look for clusters. That strategy
is the one typically used in the past (Hogg et al. 2016; Chen et al.
2018; Price-Jones et al. 2020; Casamiquela et al. 2021).

The first panel in Fig.4 shows the results obtained with all
the 19 elemental abundances that have been measured in our
sample. As we notice, the results are not entirely satisfactory as
only three open clusters out of 13 have been recovered. Instead,
when we decrease the dimensionality of the abundance space to
the abundances [X/H] of only five elements (i.e., Fe, Si, Ni, Co,
and Ba), the algorithm is able to recover up to six open clus-
ters (see second panel). This significant difference in the perfor-
mance is due to some common difficulties arising when attempt-
ing clustering analysis in a high-dimensional space. These issues
are known as “the curse of dimensionality” (Bellman 1957).

First, when we increase the number of dimensions, our data
becomes more sparse: every new dimension increases the vol-
ume of the abundance space, giving our data a higher differenti-
ation chance. As a result, it is also more difficult to find groups
of stars sharing a common chemistry.

Second, as we increase the number of dimensions, the aver-
age distance between two points of our data set increases as well.
Therefore, the relative distances between points get blurred.
These two effects are visible by comparing the first two pan-
els in Fig. 4. For instance, while the distribution of members of
the cluster Ruprecht 134 is flat in the first panel, it clearly shows
a dip in the second panel. Meaning that in a lower-dimensional
space the algorithm is more efficient in recognizing overdensi-
ties.

Third, as we increase the number of dimensions, we likely
introduce features that do not add much value to our model.
When this is the case, the model will learn from noisy or ir-
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Fig. 3. The panels show the reachability plots resulting from clustering with different metrics. The points are color coded depending on the cluster
they are member of. The relevant coefficients and scores are listed on top of each panel. Top panel. Reachability plot obtained with the Euclidean
metric. Bottom panel. Reachability plot obtained with the Manhattan metric.

relevant features. This can lead to a reduction in performance
of the clustering algorithm, especially when abundances are de-
rived with a limited precision such as in the case of those pro-
duced by large spectroscopic surveys.

On top of the “the curse of dimensionality”, there are two
other aspects that they should always be considered, although
they do not affect algorithms’ performance. Namely, working in
a higher-dimensional space can significantly increase the time
of the analysis and also lead to more complex models that are
harder to interpret.

In conclusion, the abundance space defined by all the 19 ele-
ments contains a redundant number of dimensions. The simplest
way to define a space with a smaller number of dimensions is
to identify which elements that are the most meaningful among
those that we have detected. To do so, we calculate for each el-
ement the Calinski-Harabasz score (Caliński & Harabasz 1974),
which is defined as the ratio of the sum of between-cluster dis-
persion and of within-cluster dispersion for all clusters. These
scores are calculated on all stars belonging to the optimization
sample. The values are listed in the second column of Table 1.
The higher is the Calinski-Harabasz score and the more the
[X/H] abundance can differentiate between members of differ-
ent clusters. Note that this score is also influenced by the typ-
ical uncertainty of abundance determinations for each element.
In fact, under the assumption that stellar association are chemi-
cally homogeneous, a small within-cluster dispersion implies a
high precision in the abundance determination. In other words, a

chemical element with very uncertain abundance determinations
is expected to have a low Calinski-Harabasz even though it is
highly distinctive of different stellar associations. Thus, the ele-
mental abundances with the highest Calinski-Harabasz score are
expected to be the most distinctive of stellar associations and the
most precisely determined.

However, considering the elements with the highest
Calinski-Harabasz score is not enough. In fact, two elements
with an equally high score might have been produced from the
same nucleosynthetic channel (e.g., see Mg and Si), therefore the
inclusion of both of them would not add much information to the
system (Ness et al. 2022). Since each element has its own story
to tell, in addition of using the Calinski-Harabasz score, we also
want elements mostly produced though different nucleosynthetic
processes (Ting & Weinberg 2022). The main nucleosynthetic
origin of each element is inferred from Kobayashi et al. (2020)
and they are listed in the third column of Table 1: Core Collapse
supernovae (CC), Type Ia supernovae (Type Ia), HyperNovae
(HNe), and Asymptotic Giant Branch stars (AGB). Given the
CH score and the nucleosynthetic channel, we can select the five
most meaningful elements among the 19 available: Si, Fe, Co,
Ni, and Ba. By reducing the dimensions of the abundance space,
from 19 to five, the performances of the OPTICS algorithm sig-
nificantly increase, as it is evident from Fig. 4-mid panel. Note
that these five elements are not necessarily the best ones to re-
cover the largest number of clusters from our data set, however,
they certainly produce better results than just simply taking all
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Fig. 4. The panels show the reachability plots resulting from clustering on different abundance spaces. The points are color coded depending on
the cluster they are member of. The relevant coefficients and scores are listed on top of each panel. Top panel. Reachability plot obtained from the
19-dimensional space defined by the chemical abundances of Fe, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zns, Ba, Y, Nd, and Eu. Mid
panel. Reachability plot obtained from the 5-dimensional space defined by the chemical abundances of Fe, Si, Ni, Co, and Ba. Bottom panel.
Reachability plot obtained from the 5-dimensional space found by PCA and LDA.

the elements. Although our choice of the most meaningful ele-
ments is driven by some objective criteria, one could also adopt a
more heuristic approach increasing or decreasing the number of
features, testing different combinations of elements and empiri-
cally verifying how the result change. What we want to highlight
here is just that, for our specific problem, we observe a signif-
icant improvement in performance when we select fewer more
meaningful features.

There are other techniques specifically designed to automat-
ically reduce the dimensionality of a data set. The most popular
one certainly is the Principal Component Analysis (PCA; Pear-
son 1901). PCA projects the original space of norig parameters

onto a new set of nPCA ≤ norig features which captures the maxi-
mum variation in the data set. In other words, while the original
data set may contain variables that are not particularly meaning-
ful because they are highly correlated, the PCA finds a new space
of parameters where these correlations are minimized. However,
capturing the direction of maximum variation in the data set does
not necessarily lead to a larger separation of groups in the new
space of parameters and, therefore, to better results.

There are other algorithms for dimensionality reduction that
are better suited than PCA for clustering analysis, such as the
Linear Discriminant Analysis (LDA; Fisher 1938). By analysing
the distribution of known groups (or classes) of points in the

Article number, page 10 of 21



L. Spina et al.: Chemical tagging

Table 1. Criteria used to select the most meaningful elements

Element CH score Nucleosynthetic
origin

Na I 205 CC
Mg I 232 CC
Al I 156 CC
Si I 379 CC
Ca I 101 CC and Type Ia
Sc II 136 CC
Ti I 69 CC
V I 142 CC and Type Ia
Cr I 170 CC and Type Ia
Mn I 189 Type Ia
Fe I 390 CC and Type Ia
Co I 173 HNe
Ni I 303 Type Ia
Cu I 27 HNe
Zn I 141 HNe
Y II 59 AGB
Ba II 81 AGB
Nd II 29 CC
Eu II 20 CC

original space of parameters, LDA finds a new set of nLDA ≤ norig
features that maximizes the ratio between class variation and
within-class variation and that can best characterize all the dif-
ferent classes. As a result, the different classes will be more sep-
arated in this new space of parameters. That is exactly what can
boost the performances of a clustering algorithm.

The main difference between PCA and LDA is illustrated
in the example of Fig. 5. The top panel shows the distribution
of points belonging to three different classes in a 2D space. We
also overplot the projection axis found by the PCA (in red) and
LDA (in blue). While PCA projects data on the axis with the
highest variation, LDA projects on the axis that ensures a better
separation of the three classes. The results of the two different
approaches for dimensionality reduction are shown in the pan-
els below: while there is a significant overlap between the three
classes in the 1D space produced by PCA (mid panel), LDA has
found a new space that is much better suited for classification
problems and clustering analysis (bottom panel). However, we
also stress that there are two possible difficulties in using LDA
instead of PCA. First, while PCA is an unsupervised technique,
LDA needs to be trained on a set of points whose classes are pre-
viously known. In principle this is not always possible. However,
in practice, to train LDA here we can use the known members of
the open clusters that have been excluded from optimization data
set. The second difficulty is due to the fact that LDA very easily
tends to overfit the data especially when applied on a large num-
ber of highly correlated variables. One way to tackle this issue
is to use PCA to reduce dimensionality first and then apply LDA
only to the principal components. Here we test this latter strategy
and we demonstrate that it can further improve the performances
of the clustering analysis.

First, we apply the PCA in order to reduce the dimensions
of the abundance space from norig = 19 to nPCA = 8. Second,
we apply the LDA to further reduce the dimensions to nLDA = 5.
The LDA is trained on the 18 open clusters of the hidden data
set and that are older than 0.8 Gyr. Note that these open clus-
ters have ages up to 7 Gyr and Galactocentric distances roughly
between 6 and 15 kpc. For each of these open clusters we cal-
culate the mean abundances and standard deviations relative to
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Fig. 5. Top panel. Distribution of points belonging to three different
classes in a 2D space. The lines represent the projection axis found by
PCA (in red) and LDA (in blue). Middle panel. Distribution of points
in the 1D space found by the PCA. Bottom panel. Distribution of points
in the 1D space found by the LDA.

all the 19 elements. Given this information, we randomly drawn
1000 points from the multivariate Gaussian distribution defined
for each open cluster in the 19-dimensional abundance space.
These 18,000 points are those used to train the LDA. However,
before that, we have applied the same standardization and PCA
models used on the optimization data set. This is necessary in
order to ensure that the training set is preprocessed in exactly
the same way as the data set what we want to analyse. Once
this latter has been transformed by the LDA model, we apply
the standard clustering analysis whose results are shown in the
bottom panel of Fig. 4. This technique of reducing the number of
dimensions of the abundance space through PCA + LDA outper-
forms all our previous tests. Now we are able to recover 9 open
clusters out of 13. This result is extremely satisfactory, as it also
outperforms similar attempts of recovering open clusters in the
abundance space (e.g. Casamiquela et al. 2021).

4. Blind chemical tagging in the thin disk

The analysis of the optimization sample carried out in the previ-
ous section has allowed us to determine the best strategies and
preprocessing steps that can improve chances of chemical tag-
ging. Instead, in this Section we perform a completely new study
using the full data set described in Section 2. The overarching
aim of this additional analysis is to conduct an experiment that
simulates - to the extent possible - a realistic attempt of strong
chemical tagging in the thin disk. There is no need to say that
all the lessons learnt in the previous Section are applied and ex-
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ploited here with the objective of achieving higher performances
from the clustering analysis. In practice, i) we make use of the
OPTICS algorithm, ii) we pre-order and standardize the data set,
iii) we use the Manhattan metric, and iv) we reduce the abun-
dance space dimensions with PCA+LDA.

A typical data set that one could use for chemical tagging
is composed by a number of known members of open clusters,
plus a number of stars with no association to any open cluster.
The first serve as a control sample, necessary for tuning the algo-
rithm’s hyperparameters and testing the efficacy of the analysis.
Instead, the stars with unknown association include field stars
and members of the hidden associations that we wish to recover.
Our data set, as it is described in Section 2, includes 190 stars
from the optimization sample which are members of the 13 open
clusters. These stars will be our control sample. Furthermore, our
data set also includes 112 stars from the hidden cluster sample
which are members of 23 open clusters. These will be the asso-
ciations that we will try to identify in the elemental abundance
space. These cluster members will be “diluted” in a sample of
456 field stars, also included in our data set.

Therefore, the goal of this new analysis is to recover as many
stellar associations as possible among those of the hidden cluster
sample. This will be a blind search, as the information on the
stellar membership to the open clusters that we wish to recover
is never used during the analysis. The only information we are
going to use is the one related to the membership of the stars
from the optimization sample, which will be useful to set the
algorithm’s hyperparameters.

4.1. Searching the hyperparameters

There are three hyperparameters that need to be tuned:
min_samples, nPCA, and nLDA. They are searched within the
following intervals: min_samples ∈ [2..30], nPCA ∈ [5..15], and
nLDA ∈ [5..nPCA]. All the other hyperparameters are set to the val-
ues listed in Section 3.2. Before applying the clustering analysis
we follow the preprocessing steps described above. Namely, we
sort and standardize the data set, we train the LDA on the opti-
mization sample and then we apply the dimensionality reduction
algorithms PCA + LDA similarly to the procedure described in
Section 3.7. One significant difference from our previous analy-
sis is that LDA is now trained on the optimization sample. The
OPTICS algorithm is then applied to the whole data set of 767
stars including the field stars, the hidden cluster sample, and the
optimization sample. Given the fact that this data set contains
four times the number of stars used for the analysis in Section 3,
here we relax the CE threshold considering all the solutions with
CE≥0.05. Therefore, we tune the hyperparameters in order to
maximize the number of recovered open clusters among those
of the optimization sample in a data set which includes also
the field stars and the hidden cluster sample. The hyperparame-
ters satisfying this criterion are the following: min_samples=3,
nPCA=11, and nLDA=8.

Specifically, using these hyperparameters we are able to re-
cover four open clusters at H≥0.5 and C≥0.5 from the optimiza-
tion sample. These are NGC 2420, NGC 2141, NGC 2425, and
Trumpler 5. The resulting reachability-plot is shown in Fig. 6
from which we can observe that other open clusters from opti-
mizing sample - such as Berkeley 32, Ruprecht 134, M 67, and
Trumpler 20 - are correctly ordered by OPTICS although they
are not fully recovered at the H≥0.5 and C≥0.5 threshold. In
fact, the inclusion of field stars and members of other open clus-
ters into this data set, which is much larger than that analysed in
Section 3, is a factor of ”confusion“ for the clustering algorithm,

which is thus able to recover a smaller number of open clusters.
On the other hand, we also notice that there are dips and valleys
filled by stars that are either field stars or members of the hidden
cluster sample. This indicates that the algorithm is able to detect
other overdensities among the rest of the data set.

4.2. Clustering analysis

Once we have found the best set of hyperparameters, we proceed
with the clustering analysis on the data set exclusively composed
by the 456 field stars plus the 112 stars from the hidden clusters
sample. In fact, our goal is to recover as many open clusters as
possible from those of the hidden clusters sample. Therefore,
there is no need of further considering the optimization sample
which is then removed from the analysis.

The preprocessing steps are the same of Section 4.1, includ-
ing the LDA which was trained on the 13 open clusters from
the optimizing sample. Also, the hyperparameres are those found
in Section 4.1: min_samples=3, nPCA=11, and nLDA=8. The
reachability-plot resulting from this analysis is shown as a whole
in the top panel of Fig. 7, while the four panels below show
smaller windows of 150 stars each. In these latter, the actual
members of the open clusters we wish to recover are clearly in-
dicated as colored circles. This information is not used in the
analysis, but it helps the reader to distinguish the stars we are
targeting from the field stars represented as black points. In fact,
in Fig. 7 we notice that stars have been ordered in a way that
members of the same open cluster are - in many cases - aligned
to adjacent positions. This is mostly evident for open clus-
ters such as Berkeley 31 (index∼45), NGC 3960 (index∼110),
Trumpler 23 (index∼200), NGCC 4337 (index∼210), and Berke-
ley 21 (index∼515). The reachability plot also shows several
dips and valleys, indicating the presence of overdensities in the
abundance space. As expected, some of these overdensities are
mainly formed by members of the same open cluster, such as in
the cases of the stellar associations mentioned above. However,
we also notice that other dips in the reachability-plot are mostly
- or even entirely - composed by field stars. Therefore, our data
set may contain other interesting groups of stars characterised
by a similar chemistry. On the other hand, it is also possible that
these latter groups are just overdensities detected in the noise.

4.3. Analysis of the overdensity groups found by OPTICS

Though our analysis we identify 122 groups of stars clustered
in the abundance space. Some of them may be possibly related
to real stellar associations. However, there must also be several
other groups that are actually spurious clusters due to noise. Fur-
thermore, given that OPTICS identifies clusters in a hierarchical
structure, some of the groups produced by the algorithm must
be too high in this hierarchy and be composed by two or more
subclusters. For instance, stellar associations sharing a similar
origin within the disk are likely to be very close to each other
in the reachability plot and eventually form a unique big valley.
Eventually these big valleys are then further divided in smaller
dips, which represent the actual open clusters. For instance, al-
though NGC 2420 and NGC 2425 are two individual open clus-
ters, they are enclosed within the same valley in the reachability
plots of Fig. 5. That happens because they share a similar com-
position, probably because they formed at similar RGC and have
similar ages (Cantat-Gaudin et al. 2020). However, the aim of
our analysis is to identify the smallest groups of stars sharing
the same identical origin. We are not aiming at more generalized
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Fig. 6. The figure shows the reachability-plot resulting from the clustering analysis of the data set comprising the 190 stars of the optimizing
sample, 112 stars of the hidden cluster sample, and the 465 stars of the field stars sample. The open cluster members of the optimizing sample are
shown with coloured points. All the other stars are represented as gray points. The solution represented here corresponds to the one that maximises
the number of recovered clusters from the optimizing sample (Ncl). The overdensities found by OPTICS corresponding to the recovered open
clusters are highlighted with vertical coloured bands.

stellar populations, such as the thin and thick disk, or the inner
and outer disk. Therefore, we need some criteria to separate the
groups of potential interest from those that are just spurious or
not relevant.

In order to do so, we first carry out a selection based on
the number of stars included in each groups found by OPTICS.
Thus, among the initial 122 groups, we consider only those com-
posed by a number of members smaller than 20. This allows us
to reject all the groups that are too high in the hierarchy. In fact,
given the extent and the nature of our data set, it is extremely
unlikely that it contains by chance more than 20 members of a
single stellar association. This criterion reduces our sample to 77
groups. A further selection is made by studying how the mem-
bers within each of the remaining groups are distributed in the
space of orbital actions LZ-JR-JZ. Namely, the groups that are
denser than a certain threshold will be considered as possible
stellar association, while all the others will be discarded.

A potential issue in studying the dispersion of different
groups in the space of actions is due to the fact that the distribu-
tions of stars in JR and JZ are strongly peaked at low values (see
top panels in Fig. 8). That poses a problem when using simple
measures of spread, such as the standard deviation or the median
absolute deviation (MAD), which take a symmetric view of the
dispersion giving equal importance to negative and positive de-
viations from the centre of the distribution. Therefore, in order
to alleviate this problem we apply a Yeo-Johnson power trans-
formation (Yeo & Johnson 2000) to the JR and JZ variables us-
ing the PowerTransformer function from the Scikit-learn
Python library. As we can observe in Fig. 8-mid panels, the
transformed JR and JZ distributions are now more similar to Nor-
mal distributions, although they are not entirely Gaussian. Fi-
nally, we standardize the three variables using RobustScaler
from scikit-learn. The resulting distributions are shown in
Fig. 8-bottom panels. These new variables define the space of

actions L∗Z-J∗R-J∗Z that we use to discriminate whether a group
found by OPTICS contains a potential stellar association or not.

For each i−group we calculate the MADs in the three vari-
ables {MAD(L∗z,i), MAD(L∗z,i), MAD(L∗z,i)}. The same quantities
are derived for each of the 13 open clusters from the optimization
sample. Then, we define a metric Di that we use to discriminate
between groups of interest and those that will be rejected, based
on the typical internal dispersion that we observe within the open
clusters of the optimization sample. Namely, Di is defined as it
follows:

Di =

√( MAD(L∗Z,i)

TLZ

)2

+

( MAD(J∗R,i)

TJR,i

)2

+

(
MAD(J∗Z)

TJZ

)2

, (8)

where TX are threshold values for each action coordinate.
They are defined as the average of the MADs calculated for the
13 open clusters in the optimization sample plus three times the
standard deviation:

TX = 〈{MAD(XOC j opt)}〉 + 3 × σ({MAD(XOC j opt)}), (9)

where XOC j opt can be one of the coordinates L∗Z, J∗R, J∗Z ob-
served for the members of the jth open clusters of the optimiza-
tion sample. In other words, we use the {Di} metric to rank the
dispersion observed in the L∗Z-J∗R-J∗Z space for each of the 77
groups based on what is observed in the optimization sample.
All groups with Di >1 are rejected, while the 14 groups with
Di ≤1 are considered as groups of interest or potential stellar
associations. The location of these 14 groups is indicated in the
reachability plots of Fig. 7 with vertical shaded bands.

The number of sigmas used to define Tx is arbitrary. A very
small number would allow one to recover in the abundance space
only the stellar associations that are still physically bound. A
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Fig. 7. The panels show the reachability plots resulting from the blind clustering analysis of the data set composed by field stars and hidden open
clusters. The top panel shows the entire reachability plot across the full data set. The following panels show smaller portions of the reachability
plot of 150 instances each. Stellar members of the 23 open clusters of the hidden sample are shown as coloured points. The gray points correspond
to the field stars. The shaded vertical bands highlight the location of the 14 groups of interest identified as in Section 4.3.

very large number would allow one to discover stellar associ-
ations that are now fully disrupted, but it would also produce
several spurious groups. Here we opt for 3-sigmas, which is an
intermediate value.

4.4. The 14 groups of interest

Here we provide a detailed analysis of the stellar content of the
14 groups identified through our method. Our main aim is test-
ing whether or not we are able to recover known clusters hidden
among the field stars. We are also interested in identifying even-
tual escapers or binary members of open clusters. These stars
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Fig. 8. Top panels. Distribution of stars (field stars + optimizing sample
+ hidden cluster sample) as a function of the orbital actions LZ, JR,
and JZ. Middle panels. The orbital action distributions after that the
Yeo-Johnson power transformation is applied to the JR and JZ orbital
actions. Bottom panels. The orbital actions distributions after the power
transformation and standardization.

may have been classified as non-members because of kinematics
that are discrepant than that of the open cluster. Finally, our data
set may also contain disrupted stellar associations that one could
potentially recover in the abundance space.

In Figures 9, 10 and 11, we show the location of the 14
groups in three planes: JR versus LZ (left-side panels), JZ versus
LZ (central panels), and z versus RGC (right-side panels). The
first two columns of panels tell us the kinematic similarity of the
stars, while the last column indicate the spatial relation between
them.

The [C/N] abundance ratio is an excellent proxy of stellar
age that can be used for giant stars (Salaris et al. 2015). In fact,
carbon and nitrogen produced into the stellar interior are brought
up to in the stellar surface during the first dredge-up in quanti-
ties that depend on the stellar age. In the [C/N] VS age relation
calibrated by Casali et al. (2019), the abundance ratios can vary
from -1.0 for a 100 Myr old star to -0.2 for a 10 Gyr old star.
Therefore, given that carbon and nitrogen have not been used in
the clustering analysis, we use this chemical clock when avail-
able to provide fundamental and independent information on the
real nature of the stellar groups we have identified. The [C/N] ra-
tios are computed from Gaia-ESO DR6 abundances as in Casali
et al. (2019). We also use their [C/N] VS age relation to estimate
the stellar ages. Note that this relation can be used only for stars
that have already passed through the first dredge-up.

Group 1 It contains two stars, one belonging to one of the
CoRoT field and one to the K2. Although they share the same
chemical composition, the two stars are not spatially close, be-
ing about 2 kpc apart. No information about their ages, nor [C/N]
is available.

Group 2 It contains four members, one in Melotte 71 and three
in NGC 2355. The two clusters are similar for RGC, close to
10 kpc, and age. The group contains also two field stars. Inter-
estingly, the star with CNAME=07162986+1344207 is in the
field of NGC 2355. Although it has radial velocity (70.9±0.4

km s−1) and proper motions (µα=-0.665±0.014 mas/yr, µδ=-
0.324±0.011 mas/yr) that are different from those of NGC 2355
(36±1 km s−1, -3.80±0.0.14 mas/yr, and -1.09±0.0.13 mas/yr;
Cantat-Gaudin et al. 2020), the parallax is consistent within
the uncertainties (0.486±0.012 mas). In addition, the star has a
[C/N]=-0.54±0.10 dex that is consistent with that of the open
cluster (i.e., -0.51±0.04 dex). All these features combined with
their chemical similarity suggest that 07162986+1344207 is a
true member of NGC 2355 which is escaping from the open clus-
ters. The star was disregarded as part of the open cluster due to
the discrepant kinematics, however we assign it to NGC 2355
through strong chemical tagging.

Group 3 It is composed by a mixture of members of NGC 2660,
NGC 3960, NGC 6281 and two field stars. The NGC 3960 clus-
ter is recovered within this group with completeness C=0.80,
homogeneity H=0.50 and V-value V=0.62. The three clusters
whose members have been identified are located at RGC from
7.7 to 8.9 kpc and with log(age) from 8.7 to 9 (Cantat-Gaudin
et al. 2020).

Group 4 Members of three clusters with similar ages
(NGC 3960, NGC 6633, Pismis15), but a slightly different lo-
cation in the disc (RGC=7.6, 8.6, 8.0 kpc). In addition, the group
contains three field stars. There is not an evident kinematic con-
nection between all these objects.

Group 5 We have correctly re-identified two members of
NGC 2477, together with other two field stars. These latter do
not show any evident connection to NGC 2477.

Group 6 It contains three stars located in the inner disc, towards
the bulge. They have similar RGC and z. Two of them (CNAMEs
18101550-3147076 and 18161182-3339161) are also very sim-
ilar in their actions and they have similar abundance ratios
between carbon and nitrogen, [C/N]=-0.50±0.04 and [C/N]=-
0.61±0.03. They can be candidate member of a possible com-
mon site of star formation. The third star has a very different
[C/N]=-0.27±0.06.

Group 7 We have re-identified three members of Trumpler 23.
The group also contains two field stars located in the inner disc,
towards the bulge. These latter share the same RGC of Trum-
pler 23, but different z. Between them the two field stars have
similar height in the plane and kinematic properties (possible
common site of formation).

Group 8 We have re-identified three members (out of 4) of
NGC 4337. The cluster is recovered with C=0.75, H=1.0, and
V=0.86.

Group 9 The group contains members of Melotte 71 (2/5) and
of NGC 2353 (2/8). It also contains two stars in the field of
Melotte 71 (possible escapers for evaporation or binary stars,
with difference in radial velocity within 20 km s−1 from the
mean cluster velocity) and an interesting star in the inner disc,
with the same composition, but without any kinematic connec-
tion with the clusters’ members. The radial velocities of the two
stars in the field of Melotte 71 measured in Gaia-ESO idr6
and in Gaia edr3, thus at two different epochs, indicate varia-
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tions, favouring the hypothesis of binarity. Among the two can-
didate members of Melotte 71 - CNAMES 07372506-1202241
and 07373561-1202542 - only the first has a determination of
[C/N]=-0.73±0.09, which is consistent with that of the open
cluster, [C/N]=-0.63±0.07.

Group 10 The group contains two members (2/5) of
NGC 6253. The cluster is recovered within this group at C=0.40,
H=0.67, and V=0.50. The group also includes one field star that
is spatially and kinematically unrelated to NGC 6253.

Group 11 It is composed by two stars in one of the CoRoT
fields observed by Gaia-ESO, which share similar kinematic
properties, location and chemistry. They may have originated
from the same star-formation site.

Group 12 The group contains two field stars with similar RGC,
but different z.

Group 13 The group contains two members (2/8) of Berke-
ley 81. The cluster is recovered within this group at C=0.33,
H=1.0, and V=0.5.

Group 14 We have re-identified four members of NGC 2324.
The cluster is recovered within this group at C=0.80,
H=0.80, and V=0.80. The group also includes one star
(CNAME=07040822+0105185) located in the field of
NGC 2324. It has a radial velocity 34.9±0.4 km s−1, and
proper motion (µα=-0.27±0.02 mas/yr, µδ=-0.06±0.02 mas/yr)
that are consistent with those of the open cluster (-0.31±0.11
mas/yr, and -0.09±0.09 mas/yr). Only parallax is marginally
inconsistent: 0.0284±0.018 mas for the star and 0.19±0.06 mas
for the cluster. Unfortunately the [C/N] ratio is unavailable.
However, the high similarity in kinematics strongly suggests
that 07040822+0105185 is a member of NGC 2324 that we
recovered through strong chemical tagging.

Finally, some general remarks on the nature of the groups
identified:

i) the chemical homogeneity of each group is in the range
0.01-0.1 dex. If there are members of known star clusters, they
are usually more homogeneous than the other stars; ii) in some
cases, groups contain members of stars in known clusters and
field stars, which are chemically similar, but there are no evi-
dent connections in terms of their location in the disc and kine-
matic properties; iii) there are some groups (or sub-groups within
groups) composed by GE_BL stars (meaning stars located to-
wards the bulge, in the inner disc). They share chemistry and
often also RGC, being possible candidate members of disrupted
clusters. Although this result is important, we must also remem-
ber that we have a bias towards the inner disc when selecting
field giants (see group 6, and sub-group 7) because of the Gaia-
ESO selection function(Stonkutė et al. 2016); iv) groups with
members of more than one cluster usually contain members of
clusters located at the same RGC. This may be due to a bias in-
troduced the metric D used to select the groups of interest. How-
ever, it may also indicate the major role played by the position
in the disc for chemical evolution; v) we find stars in the field of
clusters which are not classified as members, but whose chem-
ical composition is similar to the other members (see groups 2,
9, and 14). They can be binary stars (SB1) or cluster escapers

(Moyano Loyola & Hurley 2013), vi) we find a possible signa-
ture of a disrupted cluster in one of the CoRoT fields (group 11).

5. Summary and conclusions

The goal of this study is performing an experiment on strong
chemical tagging, testing whether or not we are capable of
blindly recovering members of open clusters through cluster-
ing analysis in the abundance space. For this experiment we use
a controlled sample of giant stars observed with UVES by the
Gaia-ESO survey. The sample contains both members of open
clusters and field stars.

5.1. Practical tips for clustering in the elemental abundance
space

The success of clustering analysis relies on some particular deci-
sions that the scientist has to take about the pre-processing tech-
niques and the hyper-parameters’ values. Unfortunately, there is
no rule of thumb, nor a general strategy that works well for all
types of problems. Instead, the correct strategy strongly depends
on the type of problem one has to tackle and the type of data
set one has at hand. Therefore, as a first step of our analysis, we
carry out a preliminary study specifically designed to explore
different strategies of analysis. The aim is to identify the best
procedure for recovering members of open clusters within our
data set. For this study we use a sample of 13 different open
clusters, containing at least 10 members each. Given its function
in our work, the sample is called optimization sample and it com-
prises 190 stars in total. From the preliminary study we learn a
few lessons that are valid for any chemical tagging problem:

– Open clusters have different densities in abundance space.
The algorithms already implemented in Python that can pro-
cess a data set containing both clusters and noisy data and
that can capture groups of different densities are OPTICS
and HDBSCAN. Specifically, we decide to use OPTICS be-
cause of its simplicity and versatility (it has a smaller number
of hyper-parameters to be tuned than HDBSCAN) and also
because there are no chemical tagging experiments with OP-
TICS in the literature yet.

– The distance- and density-based algorithms - such as k-
means, DBSCAN, HDBSCAN and OPTICS - are not en-
tirely deterministic. Their outcomes slightly depend on how
the data set is initially ordered. Therefore, with the aim of
boosting the performances of the clustering algorithms and
of ensuring the reproducibility of our results, we pre-order
our dataset sorting as a function of chemical abundances,
stating with [Fe/H].

– Standardization is always recommended as it gives all di-
mensions an equal weight.

– The Manhattan metric should be preferred over the Eu-
clidean metric. This is especially important if we are working
with a noisy data set and on a high-dimensional space.

– Using all the chemical abundances that one has at hand is
a strategy that does not pay. Instead, the clustering analysis
should be carried out using only the most relevant features.
The choice of the best elements for chemical tagging de-
pends on the chemical information they carry, but also on the
typical precision of their abundance measurements. There-
fore, there we expect that the best set of elements could vary
from survey to survey. The most relevant features can be cho-
sen by the scientist using criteria such as i) the nucleosyn-
thetic history of each specific element, and ii) the Calinski-
Harabasz score. There are other methods for an automatic
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Fig. 9. Location of the groups 1-5 in three planes: JR versus LZ (left-side panels), JZ versus LZ (central panels), and z versus RGC (right-side panels).

dimensionality reduction, such as the PCA, the LDA, and
many others.

– PCA alone is not the most convenient strategy to reduce
the dimensionality for chemical tagging problems. This is
demonstrated in Fig. 5. Instead, better results are expected
by applying in sequence PCA and LDA, where LDA can be
trained on a set of known cluster members.

By putting these lessons into practice we are able to re-
cover 9/13 open clusters into groups at the 50% of completeness
and homogeneity. This result outclass previous studies attempt-
ing non-blind chemical tagging on samples solely composed by
open clusters’ members (e.g. Blanco-Cuaresma & Fraix-Burnet
2018; Garcia-Dias et al. 2019; Casamiquela et al. 2021).
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Fig. 10. Location of the groups 6-10 in three planes: JR versus LZ (left-side panels), JZ versus LZ (central panels), and z versus RGC (right-side
panels).

5.2. Blind chemical tagging

One of the main goals of this study is testing whether clustering
analysis in the abundance space can recover the building blocks
of the thin disk. To do this, we carry out an experiment of blind

chemical tagging aiming at the identification of open clusters
hidden in our data set.

Thus, following the strategy outlined above, we analyse the
data set composed by 456 field stars and 112 members of 23
open clusters. These latter are the hidden clusters that we aim
to recover in the abundance space. The analysis is completely
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Fig. 11. Location of the groups 11-14 in three planes: JR versus LZ (left-side panels), JZ versus LZ (central panels), and z versus RGC (right-side
panels).

“blind”, meaning that we never use information of the stellar
membership to reconstruct the hidden clusters. In fact, the algo-
rithm’s hyperparameters are optimised exclusively on the optimi-
sation sample. Nevertheless, the actual membership of each sin-
gle star from the hidden clusters sample is known and is used to
evaluate our results. The clustering analysis identifies 122 over-
densities in the abundance space. We consider only the groups
with a number of stars ranging between 2 and 20 and with a dis-
persion in the space of orbital actions below a certain threshold.
We think that these 14 groups are those with the highest chances
of coinciding with some of the hidden clusters.

Interestingly three of the 14 groups coincide with open clus-
ters recovered at the C≥0.5 and H≥0.5 threshold. These are
the groups #3, #8, and #14. The open clusters are NGC 3960,
NGC 4337, and NGC 2324, respectively. There are other two
groups coinciding with open clusters recovered at the threshold
of V≥0.5. These are the group #10 for NGC 6253 and the group

#10 for Berkeley 81. In addition, we identify four stars that are
possibly escapers or binary members of NGC 2355 (group #2),
Melotte 71 (group #9), and NGC 2324 (group #14). These stars
were initially classified as field stars, due to the marginal dis-
crepancy between their kinematics and that of their open cluster.

In conclusion, based on the knowledge that is currently
available to us, 7/14 groups carry real information around stars
formed within the same stellar association. The other seven
groups candidate stellar associations which should be further in-
vestigated with follow-up observations.

5.3. The OPTICS execution time

The algorithm execution time is a very important aspect of data
clustering. This is especially true when the data set is composed
by a large number of instances and features. Our data set is
extremely small and the clustering analysis described in Sec-
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tion 4.2 (i.e., 568 instances and 8 features) has taken 0.4 seconds
with a 3.1 GHz dual-core processor.

Given that the time complexity2 of the OPTICS algorithms
scales with the square of the number of instances, a data set of
10,000 instances would take around 20 seconds. Such a data set
is more similar to those that could be employed by future spec-
troscopic surveys. Tuning the hyper-parameters under these con-
ditions - e.g., running the algorithms ∼100 times - would be still
feasible with our computing resources. Instead, a data set com-
posed by 100,000 instances would easily take around 30 minutes
to run and would require a much faster machine.

However, the OPTICS algorithm includes the max_eps
hyper-parameter which describes the maximum distance be-
tween two points for one to be considered as in the neighbor-
hood of the other and that can be tuned in order to reduce the
execution time. The max_eps hyper-parameter is set to infinity
by default. However, reducing its value reduces the volume con-
sidered around each point to find its neighbours, thus it can also
speeds up the execution time.

5.4. Concluding remarks

Strong chemical tagging - if fully feasible - would allow us to
disentangle the spatial distribution of stars from their radial mi-
gration within the disk and would allow us to reconstruct the
building blocks of the thin disk. The results outlined above are
very promising for the prospect of using chemical abundances
to tag stars to their birth clusters. On the other hand, we are still
far from being fully satisfied, as the recovery fraction of open
clusters in the blind analysis tends not to be particularly high. It
is still unclear whether this recovery fraction is intrinsically low
due to the small chemical diversity of stellar associations within
the thin disk, or instead it is due to other limiting factors that
we can overcome with a more performing algorithm and more
precise data.

One should also notice that the data set used in our experi-
ment is strongly unbalanced compared to what one would expect
under real circumstances. In fact, about 1/4 of the stars in our
data set are members of the hidden clusters, which has certainly
made easier the recovery of open clusters. Nevertheless, open
clusters have been recovered, as well as new members that were
lost from the membership analysis. This certainly leaves a door
open to feasibility of strong chemical within the thin disk.

In this regard, one should also consider which is the prospect
of stellar astronomy and data science for the next decade.
The forthcoming large spectroscopic surveys and facilities (e.g.,
4MOST, WEAVE, MOONS; Cirasuolo et al. 2014; Dalton et al.
2016; de Jong et al. 2019) are expected to provide huge data sets,
but - given their limited spectral resolution - they will probably
provide abundance determinations that are similar or even more
noisy than those used here. Likely, this is a big limitation for
future attempts of chemical tagging. However, it is conceivable
that after 2030 we will see the first large high-resolution spectro-
scopic survey of our Galaxy, which will increase our chances of
finally using this technique.

Finally, one should not forget that data science is a disci-
pline that is currently progressing at high speed. This momentum
is due to the constant acquisition of data from states, multina-
tionals, industries, etc... It is a practice that will further increase
during the next years. Thus, the current techniques of clustering
analysis will be certainly improved and other algorithms will be

2 Time complexity is the amount of time taken by an algorithm to run,
as a function of the length of the input.

developed. For instance, new techniques of clustering analysis
are being developed to deal with noise, outliers, and data sets
with missing values (Song et al. 2021; Yan et al. 2021). These
are the same limitations that cripple our efforts of chemical tag-
ging. Therefore, we must not lose hope of effective and complete
chemical tagging in our Galaxy: the refinement of techniques
combined with the big databases that will be available in the
next future, will allow us to study the star formation history of
the Galactic disk in great detail.
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