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Abstract 

Background:  Describe and evaluate the methodological conduct of prognostic prediction models developed using 
machine learning methods in oncology.

Methods:  We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, 
for studies developing a prognostic prediction model using machine learning methods in oncology. We used the 
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, 
Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for 
systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included 
publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine 
learning models.

Results:  Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two mod-
els were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals 
(IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 
3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for 
developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 
3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). 
Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models 
reporting predictor selection before modelling used univariable analyses, and common method across all modelling 
types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was 
the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than 
half of models were reported or made available.

Conclusions:  The methodological conduct of machine learning based clinical prediction models is poor. Guidance 
is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular 
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Background
Many medical decisions across all clinical specialties are 
informed by clinical prediction models [1–7], and they 
are often used in oncology, for example to assess risk 
of developing cancer, inform cancer diagnosis, predict 
cancer outcomes and prognosis, and guide treatment 
decisions [8–13]. Clinical prediction models use individ-
ual-level data, such as demographic information, clinical 
characteristics, and biomarker measurements, to esti-
mate the individualised risk of existing or future clinical 
outcomes.

However, compared to the number of prediction 
models that are developed, very few are used in clinical 
practice and many models contribute to research waste 
[14–17]. This problem has been further exacerbated with 
the rapidly growing use of machine learning to develop 
clinical prediction models as a class of models perceived 
to provide automated diagnostic and prognostic risk 
estimation at scale. This has led to the production of a 
spiralling number of models to inform diagnosis and 
prognosis including in the field of oncology. Machine 
learning methods include neural networks, support vec-
tor machines and random forests.

Machine learning is often portrayed to offer more flex-
ible modelling, the ability to analyse ‘big’, non-linear and 
high dimensional data, and modelling complex clinical 
scenarios [18, 19]. Despite this, machine learning meth-
ods are often applied to small and low dimensional set-
tings [20, 21]. However, many perceived advantages of 
machine learning (over traditional statistical models like 
regression) to develop prediction models have not mate-
rialised into patient benefit. Indeed, many studies have 
found no additional performance benefit of machine 
learning over traditional statistical models [22–27].

A growing reason and concern resulting in their lack 
of implementation in clinical practice leading to patient 
benefit is the completeness of reporting, methodological 
quality and risk of bias in studies using machine learning 
methods [22, 25, 26, 28, 29]. Similarly, many regression-
based prediction models have also not been implemented 
in clinical practice due to incomplete reporting and fail-
ure to follow methodological recommendations, often 
resulting in poor quality studies and models due to using 
sample sizes that are too small, risk of overfitting and lack 
of external validation of developed models [14, 30–35].

However, there is a lack of information about the 
methodological conduct of clinical prediction models 

developed using machine learning methods within oncol-
ogy. We therefore aim to describe and evaluate the 
methodological conduct of clinical prediction mod-
els developed using machine learning in the field of 
oncology.

Methods
We conducted a systematic search and review of prog-
nostic model studies that use machine learning meth-
ods for model development, within the oncology clinical 
field. We excluded imaging and lab-based studies to focus 
on low dimensional, low signal and high noise clinical 
data settings. Machine learning was defined as a subset of 
artificial intelligence allowing for machines to learn from 
data with and without explicit programming.

The boundaries between machine learning and statis-
tical, regression-based methods of prediction is often 
unclear and artificial, often seen as a cultural difference 
between methods and fields [36]. We therefore included 
studies that typically identify as machine learning, such 
as random forests and neural networks, and included any 
study in which the modelling method was declared as 
machine learning by authors of the included studies. For 
example, we included studies using logistic regression if 
they were explicitly labelled by the authors as machine 
learning, otherwise it was excluded.

Protocol registration and reporting standards
This study is reported using the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guideline [37]. We registered this umbrella 
review with PROSPERO (ID: CRD42019140361) [38] that 
comprises of four distinct studies to evaluate (1) com-
pleteness of reporting, (2) risk of bias, (3) methodological 
conduct, and (4) spin over-interpretation.

Information sources
We searched the MEDLINE (via OVID) and Embase (via 
OVID) medical literature databases for published clinical 
prediction modelling studies that use machine learning 
methods for model development, within the oncology 
clinical field. We searched for publications from 1 Janu-
ary 2019 to 5 September 2019, the date the searches were 
executed.

The search strategy comprised of three specific groups 
of search terms specific focussing on machine learn-
ing models, cancer, and prediction. Relevant Mesh and 

focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is 
available for independent validation, to improve quality of machine learning based clinical prediction models.
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EMTREE headings were included as were free-text terms, 
searched in the title, abstract or keyword fields. We used 
general and specific machine learning model search 
terms such as “machine learning”, “deep learning”, “neural 
networks”, “random forest” or “support vector machine”. 
Cancer search terms included “cancer”, “tumour” or 
“malignancy”. General prediction and specific model per-
formance search terms included “prediction”, “prognosis”, 
“discrimination”, “calibration” or “area under the curve”. 
The three specific groups of terms were combined with 
‘AND’ to retrieve the final results set. The search was lim-
ited to retrieve studies published in 2019 only to ensure 
that a contemporary sample of studies were assessed in 
the review. The Embase search strategy was also limited 
to exclude conference abstract publications. No other 
limits were applied to the search and we also did not limit 
our search to specific machine learning methods so we 
could describe the types of models being used to develop 
prediction models in low dimensional setting and using 
clinical characteristics. Search strategies for both data-
bases were developed with an information specialist (SK). 
The full search strategies for both included databases are 
provided in Supplementary Tables 1 and 2.

Eligibility criteria
We included published studies developing a multivari-
able prognostic model using machine learning methods 
within oncology in 2019. A multivariable prognostic 
model was defined as a model that uses two or more pre-
dictors to produce an individualised predicted risk 
(probability) of a future outcome [39, 40]. We included 
studies predicting for any patient health-related out-
come measurement (e.g., binary, ordinal, multinomial, 
time-to-event, continuous) and using any study design 
and data source (e.g., experimental studies such as ran-
domised controlled trials, and observational studies such 
as prospective or retrospective cohort studies, case-con-
trol studies or studies using routinely collected data or 
e-health data).

We excluded studies that did not report the develop-
ment of a multivariable prognostic model and stud-
ies that only validated models. We excluded diagnostic 
prediction model studies, speech recognition or voice 
pattern studies, genetic studies, molecular studies, and 
studies using imaging or speech parameters, or genetic 
or molecular markers as candidate predictors. Prognos-
tic factor studies primarily focused on the association 
of (single) factors with the outcome were also excluded. 
Studies were restricted to the English language and to 
primary research studies only. Secondary research stud-
ies, such as reviews of prediction models, conference 
abstracts and brief reports, and preprints were excluded.

Study selection, data extraction and management
All retrieved publications were imported into Endnote 
reference software where they were de-duplicated. Publi-
cations were then imported into Rayyan web application 
(www.​rayyan.​ai) where they were screened [41, 42].

Two independent researchers (PD, JM) screened the 
titles and abstracts of the identified publications. Two 
independent researchers, from a combination of five 
reviewers (PD, JM, GB, BS, CAN) reviewed the full text 
for potentially eligible publications and extracted data 
from eligible publications. One researcher screened and 
extracted from all publications (PD) and four researchers 
collectively screened and extracted from the same articles 
(JM, GB, BS, CAN). Disagreements were discussed and 
adjudicated by a sixth reviewer (GSC), where necessary.

To reduce subjectivity, the data extraction form to 
assess the methodological conduct was developed using 
formal and validated tools: the Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) guideline, the CHecklist for crit-
ical Appraisal and data extraction for systematic Reviews 
of prediction Modelling Studies (CHARMS) and the Pre-
diction model Risk Of Bias ASsessment Tool (PROBAST) 
[39, 40, 43–45]. We then added specific machine learning 
items at the study design and analysis levels.

The form was piloted among all the five reviewers 
using five eligible publications [46]. Results of the pilot 
were discussed, and data extraction items were clarified 
amongst all reviewers to ensure consistent data extrac-
tion. All reviewers had expertise in the development, val-
idation, and reviewing of prediction model studies using 
regression-based and machine learning methods. The 
data extraction form was implemented using Research 
Data Capture (REDCap) software [47].

Data items
Descriptive data was extracted on the overall publica-
tion, including items for cancer type, study type, data 
source/study design, target population, type of prediction 
outcome, number and type of machine learning models 
used, setting, intended use and aim of the clinical pre-
diction model. The TRIPOD, CHARMS and PROBAST 
guidance informed methodological items for extraction, 
including sample size calculation or justification, sam-
pling procedure, blinding of the outcome and predictors, 
methods to address missing data, number of candidate 
predictors, model building strategies, methods to address 
censoring, internal validation methods and model perfor-
mance measures (e.g. discrimination, calibration) [39, 40, 
43–45].

Items for the results of each developed model were also 
extracted, including sample size (and number of events), 

http://www.rayyan.ai
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and model discrimination and calibration performance 
results. For discrimination, we extracted the area under 
the receiver operating characteristic curve (AUC), i.e. 
the c-index (or c-statistic). For calibration, we extracted 
how this was evaluated (including whether the calibra-
tion slope and intercept were assessed), and whether a 
calibration plot with a calibration curve was presented. 
Items were extracted for the development and external 
validation (where available) of the models. We included 
additional items to capture specific issues associated with 
machine learning methods, such as methods to address 
class imbalance, data pre-processing, and hyperparam-
eter tuning.

Summary measures and synthesis of results
Findings were summarised using descriptive statistics 
and visual plots, alongside a narrative synthesis. Sam-
ple size was described using median, interquartile range 
(IQR) and range. The number of events reported in stud-
ies was combined with the reported number of candidate 
predictors to calculate the events per predictor. Analysis 
and synthesis of data was presented overall and by mod-
elling type (regression-based, non-regression based and 
ensemble machine learning models). Ensemble mod-
els were defined models using a combination of differ-
ent machine learning methods, including models where 
bagging or boosting was applied to a machine learning 
model (e.g., random forests, boosted random forests 
and boosted Cox regression). As we wanted to identify 
themes and trends in the methodological conduct of 
machine learning prediction models, we did not evalu-
ate the nuances of each modelling approach and kept our 
evaluations at the study design and analysis levels.

Results for discrimination (AUC) and calibration (cali-
bration slope and intercept) were summarised for the 
developed and validated machine learning models. Data 
was summarised for the apparent performance, internal 
validation performance, optimism-corrected perfor-
mance, and the external validation performance.

All analyses were carried out in Stata v15 [48].

Results
Two thousand nine hundred twenty-two unique publica-
tions published between 1 January 2019 and 5 Septem-
ber 2019 were retrieved from MEDLINE and Embase. 
Title and abstract screening excluded 2729 publications 
and full text screening excluded a further 131 publica-
tions that did not meet the eligibility criteria. Sixty-two 
publications were included in our review, of which 77% 
(n = 48) were development only studies and 23% (n = 14) 
were development and external validation studies (Fig. 1). 
Study characteristics of included studies are presented in 
Supplementary Table 3.

Model characteristics
A total of 152 prediction models were developed in the 
62 publications. 115 (76%) models were from develop-
ment-only studies and 37 (24%) were from development 
and validation studies. Overall, a median of two predic-
tion models were developed per publication [range: 
1–6] (Table  1). Classification trees (classification and 
regression trees and decision trees) (n = 28, 18%), logis-
tic regression (n = 27, 18%), random forest (including 
random survival forest) (n = 23, 15%), neural networks 
(n = 18, 12%) and support vector machines (n = 12, 8%) 
were the most prevalent machine learning methods 
used. Thirty-nine models were developed using ensem-
ble methods. Rationale for choice of machine learning 
method was provided for fewer than half of the models 
(n = 66/152, 43%).

Study design features
Data source, sampling, treatment details and blinding
Models were mainly developed using registry data 
(n = 21/62, 34%) and validated using retrospective 
cohorts (n = 4/14, 29%). Consecutive sampling was 
specified in only eight studies (13%) [49–56], random 
sampling was used in one study [57] and one study 
sampled individuals by screening their entire database 
for eligible individuals [58]. For most studies, however, 
sampling methods were not reported (n = 52/62, 85%). 
Details of treatments received by patients at baseline 
were described during development in 53% of stud-
ies (n = 33/62), compared to 36% during validation 
(n = 5/14).

Blinding of predictor assessment to the outcome 
is needed to ensure predictors are not influenced by 
assessors and is especially important for predictors 
with subjective interpretation (e.g., patient reported 
outcome measures). However, only seven studies 
reported blinding predictor assessment to the outcome 
during model development (n = 7/62; 11%) [59–65] and 
two reported for model external validation (n = 2/62; 
3%) [61, 63]. No studies reported blinding predictors 
assessment from other predictors during development 
and validation.

Candidate predictors and sample size
Nine studies provided rationale for their choice of can-
didate predictors (e.g., based on previous research) [60, 
61, 63, 66–71] and one study forced a-priori predictors 
during model development [72] (Table 2). Fifty-six stud-
ies (90%) clearly reported their candidate predictors and 
a median of 16 candidate predictors were considered 
per study (IQR: 12 to 26, range: 4–33,788). Continuous 
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candidate predictors were included in all studies, except 
one study for which it was unclear.

Categorisation of continuous predictors results in a 
loss of information and is discouraged for prediction 
modelling research [73]. However, all continuous pre-
dictors were categorised before modelling for nearly a 
third of models from 24 studies (n = 44/152 models, 29%; 
n = 24/62 studies, 39%). For 35 models from 25 studies 
continuous predictors were implicitly categorised based 
on the modelling method used (e.g., random forests, 
CART) (n = 35/152 models, 23%; n = 25/62 studies, 40%).

A more acceptable approach to handle continuous pre-
dictors (for approaches that are not inherently based on 
categorisation as part of the method) is to assess the lin-
earity assumption with the outcome and to model them 
non-linearly. Investigation into nonlinearity of predic-
tors was explicitly reported in the methods for only two 
models (one study), a logistic regression model which 
included ‘interactions between variables and non-lineari-
ties’ and a support vector machine that included ‘different 
kernels (linear, polynomial and radial) and hyperparam-
eters’ in its grid search to ‘fine tune the model’ [74]. For 

33 models from 23 studies, nonlinearity of continuous 
predictors was considered implicit to modelling method 
used (e.g., neural networks, support vector machines and 
ensemble models), unless categorisation before model-
ling was specified (n = 33/152 models, 22%; n = 23/62 
studies, 37%). A further eight models (three studies) also 
implicitly handled nonlinearity of continuous predictors 
in addition to some continuous predictors being cat-
egorised before modelling. For 28 models from 19 stud-
ies, continuous predictors were assumed to have a linear 
relationship with the outcome (n = 28/152 models, 18%; 
n = 19/62 studies, 31%). A further two models (one study) 
also categorised some predictors before modelling.

Methods to categorise predictors were also often 
unclear (n = 65/85, 80%). Methods for categorisation 
included clinically informed cut points (n = 3 studies) [6, 
75, 76], percentiles (n = 4 studies) [6, 63, 70, 77], arbitrary 
dichotomisation (n = 3 studies) [63, 78, 79] and other data 
driven methods that included classification and regres-
sion trees, Monte Carlo simulation (authors report that 
‘Monte Carlo simulation [was used] to evaluate multiple 
parameters by accounting for all possible dichotomous 

Fig. 1  PRISMA flow diagram of studies included in the systematic review
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cut-offs and interactions between the inputted variables’) 
and fuzzification (n = 3 studies) [67, 80, 81].

Five studies calculated or provided rationale for their 
sample size for model development and were all based on 
flawed methodology [82]. This included, one study used 
10 events per variable when developing a logistic regres-
sion model and a neural network [49], and another study 
used estimation of a relative hazard ratio between prog-
nostic groups to calculate their sample size [83]. Two 
studies considered their sample size restricted by the 
size and availability of the existing data they were using 
(one randomised controlled trial [84] and one cohort 
study [66]) and one study justified sample size based on 
a time interval (e.g., consecutive adult patients over a 
2-year period to allow a sufficient sample size for rand-
omization to the training and validation data sets) [54]. 
One study reported traditional statistical sample size cal-
culations are not applicable as ‘CART analysis generates 

nonparametric, predictive models’ [70]. Two studies cal-
culated or provided rationale for their sample size for 
model validation. One study considered their sample size 
restricted by the size and availability of existing data they 
were using (randomised controlled trial [84]), and one 
study based their sample size on a power calculation (but 
details were not provided) [49].

Overall, a median of 647 individuals (IQR: 203 to 
4059, range: 20 to 582,398) and 195 events (IQR: 38 to 
1269, range: 7 to 45,979) was used for model develop-
ment, and 553 individuals (IQR: 69 to 3069, range: 11 
to 836,659) and 50 events (IQR: 17.5 to 326.5, range: 7 
to 1323) for model validation. The study size inform-
ing model development was lower in development-only 
studies (median: 155 events, IQR: 38 to 392, range: 7 
to 10,185), compared to development with validation 
studies (median: 872 events, IQR: 41.5 to 18,201, range: 
22 to 45,797). A higher proportion of individuals with 

Table 1  Model type of the 152 models developed in the 62 included publications

CART​ Classification And Regression Tree, LASSO Least Absolute Shrinkage and Selection Operator
a Other includes voted perceptron; fuzzy logic, soft set theory and soft set computing; hierarchical clustering model based on the unsupervised learning for survival 
data using the distance matrix of survival curves; Bayes point machine

Model characteristics All models (n = 152)
n (%)

Regression-based models 42 (28)
  Logistic regression 26

  Cox regression 7

  Linear regression 3

  LASSO (Logistic regression) 1

  LASSO (Cox regression) 1

  LASSO (model not specified) 3

  Best subset regression with leave-out cross-validation 1

Non-regression-based models 71 (47)
  Neural network (including deep learning) 18

  Classification tree (e.g., CART, decision tree) 28

  Support vector machine 12

  Naive Bayes 6

  K nearest neighbours 3

  Othera 4

Ensemble models 39 (26)
  Random forest (including random survival forest) 23

  Gradient boosting machine 8

  RUSBoost - boosted random forests 1

  Bagging with J48 selected by Auto-WEKA 1

  CoxBoost - boosted Cox regression 1

  XGBoost: exTreme Gradient Boosting 1

  Gradient boosting machine and Nystroem, combined using elastic net 1

  Adaboost 1

  Bagging, method not specified 1

  Partitioning Around Medoid algorithm and complete linkage method 1

Median number of models developed per study [IQR], range 2 [1–4], 1–6
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the outcome event were found in the development of 
regression-based models (median: 236 patients, IQR: 
34 to 1326, range: 7 to 35,019), compared to non-
regression-based machine learning (median: 62, IQR: 
22 to 1075, range: 7 to 45,797) and ensemble mod-
els (median: 37, IQR: 22 to 241, range: 8 to 35,019) 
(Table 3).

Combining the number of candidate predictors 
with number of events used for model development, a 
median 7.4 events were available per predictor (IQR: 
1.7 to 15.2, range: 0.2 to 153.6) for development only 
studies and 49.2 events per predictor for development 
with validation studies (IQR: 2.9 to 2939.1, range 1.0 to 
5836.5). A higher number of events per predictor was 

used for developing regression-based models (median: 
8, IQR: 7.1 to 23.5, range: 0.2 to 5836.5), compared to 
alternative machine learning (median: 3.4, IQR: 1.1 
to 19.1, range: 0.2 to 5836.5) and ensemble models 
(median: 1.7, IQR: 1.1 to 6, range: 0.7 to 5836.5). The 
distribution of the events per predictor, by modelling 
type, is provided in Supplementary Figs. 1 and 2.

Validation procedures
When internally validating a prediction model, using the 
random split sample is not efficient use of the available 
data as it reduces the sample size available for developing 
the prediction model more robustly [39, 44]. However, 
a split sample approach was the most popular method 

Table 2  Methods for predictor selection before and after modelling and hyperparameter tuning for 152 developed clinical prediction 
models, by modelling type

RPA Recursive partitioning analysis, LASSO Least Absolute Shrinkage and Selection Operator
a Modelling approaches include support vector machine, logistic regression, Cox regression, best subset linear regression, decision tree, meta-transformer (base 
algorithm of extra trees)
b Other includes change in unspecified performance measure, stochastic gradient descent, function, aggregation of bootstrapped decision trees and Waikato 
Environment for Knowledge Analysis for development-only studies, and hyperbolic tangent function, greedy algorithm for all models and using final chosen 
predictors from comparator model

All (n = 152) Regression-based 
models (n = 42)

Non-regression-based 
models (n = 71)

Ensemble 
models 
(n = 39)

n (%) n (%) n (%) n (%)

Predictor selection (before modelling) reported 52 (34) 20 (48) 23 (32) 9 (23)
  A-priori 5 3 1 1

  No selection before modelling 3 1 2 –

  Univariable 24 12 8 4

  Clinically relevant and available data 1 – 1 –

  Dropout technique at input layer 1 – 1 –

  Random forest with RPA 9 1 6 2

  Other modelling approacha 9 3 4 2

Predictor selection (during modelling) reported 63 (41) 25 (59) 27 (38) 11 (28)
  Stepwise 6 4 2 –

  Forward selection 6 5 – 1

  Backward elimination 5 3 2 –

  Full model approach (no selection) 11 4 5 2

  Feed forward/backpropagation 5 – 5 –

  Recursive partitioning analysis 7 – 7 –

  LASSO 5 5 – –

  Gini index (minimised) 7 1 4 2

  Cross validation 4 2 – 2

  Otherb 7 1 2 4

Hyperparameter tuning methods reported 31 (21) 4 (10) 15 (23) 12 (31)
  Cross validation 19 4 7 8

  Grid search (no further details provided) 6 – 4 2

  Max tree depth 2 – 1 1

  Adadelta method 2 – 2 –

  Default software values 2 – 1 1
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to internally validate the developed models (n = 25/62, 
40%).

Resampling methods, such cross-validation and boot-
strapping are preferred approaches as they use all the 
data for model development and internal validation 
[39, 44]. Bootstrapping was used in seven studies (11%) 
[61, 63, 77, 79, 85–87] and cross-validation in 15 stud-
ies (24%) [49–51, 53, 57, 71, 74, 76, 88–94]. Four studies 
used a combination of approaches; one study used split 
sample and bootstrapping [95], two studies used split 
sample and cross-validation [64, 96], and one study used 
cross-validation and bootstrapping [97]. For 11 studies, 
internal validation methods were unclear (18%) [65, 70, 
75, 80, 83, 84, 98–102].

Of the 14 development with validation (external) stud-
ies, two used geographical validation [49, 90], three 
used temporal validation [63, 71, 103] and 9 used inde-
pendent data that was geographically and temporally 
different from the development data to validate their 
models [58, 61, 69, 75, 80, 84, 86, 93, 95]. Seven studies 
(50%) reported differences and similarities in definitions 
between the development and validation data [58, 61, 69, 
71, 75, 84, 90].

Analysis methods
Missing data and censoring
Handling of missing data was poor. The assumed 
mechanism for missingness was not reported in any 
study. Using a complete case analysis to handle missing 

data, not only reduces the amount of data available 
to develop the prediction model but may also lead to 
biased results with an unrepresentative sample of the 
target population [104–106]. However, nearly half of 
studies performed a complete case analysis (n = 30/62, 
48%), of which 87% of studies (n = 26/30, 87%) excluded 
missing data (outcome or predictor) as part of study 
eligibility criteria. For 12 of the studies reporting the 
amount of missing data excluded as part of the study 
eligibility criteria (n = 12/62, 19%), a median of 11.1% 
(IQR: [4.0–27.9], range: 0.5–57.8) of individuals were 
excluded from the data prior to analysis [65, 71, 76–78, 
81, 83, 89, 99, 102, 107, 108].

For six studies (n = 6/62, 10%), mean, median, or 
mode imputation was used (for three studies this was 
in addition to exclusion of missing data as part of the 
study eligibility criteria) [51, 56, 58, 76, 102, 108]. For 
five studies (n = 5/30, 17%) multiple imputation was 
used (of which one was used in addition to exclusion of 
missing data as part of the study eligibility criteria) [50, 
60, 66, 96, 107], including one study using missForest 
imputation [96]. Procedure methods for multiple impu-
tation was not appropriately described. An imputa-
tion threshold was specified in two studies, which only 
imputed data if missing data was less than 25 and 30%, 
respectively [60, 96]. One study specified the number of 
repetitions for the multiple imputation [50]. Two stud-
ies used subsequent follow up data and another study 
used a k-nearest neighbour algorithm [65, 95].

Table 3  Sample size and number of candidate predictors informing analyses for 152 developed models, by modelling type

a Combines all internal validation methods, e.g., split sample, cross validation, bootstrapping
b Events per predictor for model development

Regression-based models (n = 42) Non-regression-based models 
(n = 71)

Ensemble models (n = 39)

Reported, n (%) Median [IQR], range Reported, n (%) Median [IQR], range Reported, n (%) Median [IQR], range

Total sample size
  Model develop-
ment

42 (100) 561 [203 to 2822], 20 
to 582,398

70 (99) 447 [156 to 11,901], 
20 to 582,398

39 (100) 768 [203 to 1599], 20 to 
582,398

  Internal validationa 20 (48) 122 [82 to 228], 47 to 
291,200

35 (49) 145 [90 to 492], 47 to 
291,200

24 (62) 162 [97 to 1510], 67 to 
291,200

  External validation 12 (29) 511 [67 to 2300], 11 
to 836,659

14 (20) 793 [59 to 1675], 11 
to 836,659

11 (28) 313 [229 to 836,659], 11 
to 836,659

Number of events
  Model develop-
ment

20 (48) 236 [34 to 1326], 7 to 
35,019

37 (52) 62 [22 to 1075], 7 to 
45,797

10 (26) 37 [22 to 241], 8 to 
35,019

  Internal validationa 2 (5) 41 [21 to 61], 21 to 61 3 (4) 61 [21 to 62], 21 to 62 1 (3) 61

  External validation 8 (19) 81 [18 to 327], 7 to 
513

11 (15) 19 [7 to 513], 7 to 
1323

5 (13) 81 [81 to 81], 7 to 513

No. candidate 
predictors

38 (90) 21 [15 to 34], 6 to 
33,788

64 (90) 16 [12 to 25], 5 to 
33,788

36 (92) 25 [14 to 37], 4 to 
33,788

Events per predic-
torb

20 (48) 8.0 [7.1 to 23.5], 0.2 to 
5836.5

35 (49) 3.4 [1.1 to 19.1], 0.2 to 
5836.5

10 (26) 1.7 [1.1 to 6.0], 0.7 to 
5836.5
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Missing data in the development data was presented by 
all or some candidate predictors in 13 studies (n = 13/62, 
20%). Two studies (out of 14) presented missing data for 
all predictors during validation.

Information regarding loss to follow up and censor-
ing was rarely reported. Only 14 studies explicitly men-
tioned methods to handle loss to follow-up (n = 14/62 
studies, 17%), of which six studies excluded patients that 
were lost to follow up [63, 77, 86, 89, 98, 107], and one 
study reported that the ‘definition of treatment failure 
does not capture patients lost to follow-up due to future 
treatments at other institutions or due to the cessation 
of treatment for other reasons’ [56]. For the remaining 
seven studies, patients who were lost of follow up were 
included in the study and outcome definition [53, 65, 67, 
83, 90, 100, 109]. For example, Hammer et  al. reported 
that ‘if no event of interest had occurred, patients were 
censored at the time of last documented contact with the 
hospital’ [83].

Eleven studies developed 24 models for a time to 
event outcome(n = 11/62 studies, 18%; n = 24/152 mod-
els, 16%); these were seven Cox regression models, one 
logistic regression model, one linear regression model, 
two neural networks, three random forests (including 
two random survival forests), four gradient boosting 
machines, one decision tree, two naïve bayes algorithms, 
one hierarchical clustering model based on the unsuper-
vised learning for survival data using the distance matrix 
of survival curves, and two ensemble models (CoxBoost 
and Partitioning Around Medoid algorithm). Of these, 
only 10 models explicitly accounted for censored obser-
vations (n = 10/24, 42%).

Data pre‑processing, class imbalance
Only two studies assess collinearity between predic-
tors (3%) [65, 69]. Nine studies used data pre-processing 
techniques. One study reduced data variables using auto-
mated feature selection [56] and seven studies trans-
formed and/or standardised their predictors (including 
normalisation) [49, 57, 58, 84, 92, 95, 110] . One used 
one-hot coding to transform categorical data and create 
dummy predictors in addition to predictor standardisa-
tion [58]. One study inappropriately used propensity 
score to obtain comparable matched groups between 
events and non-events [111].

Class imbalance was examined in 19 models (from six 
development-only studies). One study used Synthetic 
Minority Oversampling TEchnique (SMOTE) to generate 
synthetic samples on the minority (positive) class using 
K-nearest neighbourhood graph [88], another study also 
used oversampling on the minority (dead) class to bal-
ance the number of ‘alive and ‘dead’ cases [107]. Under-
sampling was used in two studies [92, 102]. For two 

studies, methods to address class imbalance was unclear 
and only described ‘addressing class imbalance dur-
ing hyperparameter tuning’ [72] and using ‘5-fold cross 
validation’ [51]. The four studies using oversampling and 
undersampling methods to address class imbalance failed 
to then examine calibration or recalibrate their models 
which would be miscalibrated given the artificial event 
rate created using these approaches.

Predictor selection, model building and hyperparameter 
tuning
Univariable and multivariable predictor selection before 
model building can lead to biased results, incorrect pre-
dictor selection for modelling and increased uncertainty 
in model structure [112–115]. However, methods for 
predictor selection before modelling were not reported 
for 66% of models (n = 100/152), and of the 52 models 
that did report predictor selection before modelling, 24 
used univariable screening selection to select predictors 
(46%), and for 18 models, predictors were selected before 
modelling by using other modelling approaches (35%), 
for example a multivariable logistic regression was devel-
oped, and predictors retained in this model were then 
entered into a random forest.

Methods for predictor selection during modelling were 
reported for 41% of developed models (n = 63/152). For-
ward selection, backward elimination and stepwise meth-
ods were most commonly used (n = 17/63, 27%) and were 
predominantly for regression-based machine learning 
models, with only five non-regression machine learning 
and ensemble model using them. Seven non-regression 
machine learning models used recursive partitioning 
and seven models (overall) were based on minimising 
the Gini index (13%). Only seven models (three regres-
sion based, three non-regression based machine learn-
ing models and one ensemble model) explicitly planned 
assessment of interactions [65, 74, 80, 93].

Thirty-two models reported hyperparameter tuning 
methods. Most of these models (n = 19/32, 59%) used 
cross-validation (14 used k-fold, two used repeated 
k-fold and for three models it cross-validation type was 
unclear), including four regression-based machine learn-
ing models. Six non-regression machine learning and 
ensemble models used grid search for hyperparameter 
tuning but did not provide any further details (e.g., one 
study stated that ‘an extensive grid search was applied to 
find the parameters that could best predict complications 
in the training sample’ [78]).

Model performance
Overall fit of the developed model was reported for 
three studies (two used the Brier Score and one used 
R-squared). Model discrimination was reported in 76% 
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(n = 47/62) of all studies. Discrimination (i.e., c-statistic, 
c-index) was reported in all studies predicting a binary or 
time-to-event (survival) outcome. Three studies predict-
ing a time-to-event outcome (n = 11 models) incorrectly 
calculated discrimination and used an approach which 
does not account for censored observations. The root 
mean square log error was reported for the one study 
predicting a continuous (length of stay) outcome.

Model calibration was only reported in 18% (n = 11/62) 
of studies. Of these, 10 studies presented a calibration 
plot, including four studies that also reported estimates 
of the calibration slope and intercept. One study reported 
the Hosmer Lemeshow test, which is widely discouraged 
as a measure of calibration as it provides no assessment 
of the direction or magnitude of any miscalibration [39].

Of the 11 studies reporting calibration, three studies 
modelled for a time to event outcome. One study pre-
sented 3- and 5-year survival calibration plots [86], one 
study presented a linear regression and plot of the pre-
dicted and actual survival time [52], and one study pre-
sented a 1-year calibration plot [77].

Other performance measures were reported in 69% of 
studies (n = 43/62), which predominantly included classi-
fication measures such as sensitivity, specificity, accuracy, 
precision and F1 score (n = 35/43, 81%). For these clas-
sification measures, seven reported the associated cut-off 
values.

Three studies reported results of a net benefit and 
decision curve analysis, and one study reported the net 
reclassification index and integrated discrimination 
improvement. Measures of error were reported in four 
studies and included mean per class error; absolute rela-
tive error, percentage difference between observed and 
predicted outcomes; root node error; applied root mean 
square error.

Model performance results
Apparent discrimination (AUC) was reported for 89 
models (n = 89/152, 59%), optimism corrected AUC was 
reported for 26 models (n = 26/152, 17%) and exter-
nal validation AUC results were reported for 26 mod-
els (n = 26/37, 70%). The median apparent AUC was 
0.75 (IQR: 0.69–0.85, range: 0.54–0.99), optimism cor-
rected AUC was 0.79 (IQR: 0.74–0.85, range: 0.56–0.93), 
and validation AUC was 0.73 (IQR: 0.70–0.78, range: 
0.51–0.88).

Both apparent and optimism corrected AUC was 
reported for eight models, in which we found a median 
0.05 reduction in AUC (IQR: −0.09 to −0.03, range: 
−0.14 to 0.005). Both apparent and validation AUC was 
reported for 11 models, in which we found a median 0.02 
reduction in AUC (IQR: −0.04 to −0.002, range: −0.08 
to 0.01).

Risk groups and model presentation
Risk groups were explicitly created in four studies, of 
which three provided cut-off boundaries for the risk 
groups. Two studies created 3 groups, one created 4 
groups and one created 5 groups. To create the risk 
groups, three studies used data driven methods including 
one study that used a classification and regression tree, 
and for one study it was unclear.

Two development with validation studies created risk 
groups, both provided cut-off boundaries and created 3 
groups. To create the risk groups, one study used data 
driven methods and for the other it was unclear.

Presentation or explanation of how to use the predic-
tion model (e.g., formula, decision tree, calculator, code) 
was reported in less than half of studies (n = 28/62, 45%) 
of studies. Presentation of the full (final) regression-based 
machine learning model was provided in two studies 
(n = 2/28, 7%) [61, 87]. Decision trees (including CART) 
were provided in 14 studies (n = 14/28, 50%). Code or a 
link or reference to a web calculator was provided in six 
studies (n = 6/28, 21%), and a point scoring system or 
nomogram was provided in four studies (n = 4/28, 14%). 
Two studies provided a combination of a point scor-
ing system or code, with a decision tree (n = 2/28, 7%). 
Thirty-six studies (n = 36/62, 58%) developed more than 
2 prediction models, and a the ‘best’ model was identi-
fied in 30 studies (n = 30/36, 83%). Twenty-eight studies 
identified the ‘best’ model based on model performance 
measures (i.e., AUC, net benefit, and classification meas-
ures), one study model based it on model parsimony, and 
for one study it was unclear.

Discussion
Summary of findings
In this review we assessed the methodological conduct 
of studies developing author defined machine learning 
based clinical prediction models in the field of oncol-
ogy. Over a quarter of statistical regression models were 
considered machine learning. We not only found poor 
methodological conduct for nearly all developed and vali-
dated machine learning based clinical prediction models, 
but also a large amount of heterogeneity in the choice of 
model development and validation methodology, includ-
ing the choice of modelling method, sample size, model 
performance measures and reporting.

A key factor contributing to the poor quality of these 
models was unjustified, small sample sizes used to 
develop the models. Despite using existing data from 
electronic health records and registries, most models 
were informed by small datasets with too few events. 
Non-regression-based machine learning and ensemble 
models were developed using smaller datasets (lower 
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events per predictor), compared to regression-based 
machine learning models. Use of smaller datasets for 
non-regression and ensemble machine learning models is 
problematic and increases their risk of overfitting further 
due to increased flexibility and categorisation of predic-
tion inherent to many machine learning methods [116, 
117].

The risk of overfitting in the included studies and mod-
els was further exacerbated by split sample internal vali-
dation approaches, exclusion of missing data, univariable 
predictor selection before model building and stepwise 
predictor selection during model building. Few mod-
els also appropriately handled complexities in the data, 
for example, methods for censoring were not reported 
in many studies and was rarely accounted for in models 
developed for a time for event outcome.

Model performance measures were often discrimina-
tion and classification performance measures and were 
not corrected for optimism, yet these measures were 
often used to identify the ‘best’ model in studies devel-
oping and comparing more than one model. Under and 
over sampling methods were used to overcome class 
imbalance, however this results in distortion of the out-
come event rate resulting in poorly calibrated models.; 
however, calibration was rarely reported in studies.

Over half the developed models would not be able to 
be independently validated, an important step for imple-
mentation of prediction models in clinical practice, as 
they were not reported or available (via code or web cal-
culator) in their respective studies.

Literature
Our review supports evidence of poor methodological 
quality of machine learning clinical prediction models 
which has been highlighted by cancer and non-cancer 
reviews [22, 26, 118, 119]. Methodological shortcomings 
have also been found in prediction modelling reviews 
focussed on only regression-based cancer prediction 
models. Our findings are comparable to these reviews 
which highlight inappropriate use of methods and lack of 
sufficient sample size for development and external vali-
dation of prediction models [120–123].

Li et  al. reviewed machine learning prediction mod-
els for 5-year breast cancer survival and compared 
machine learning to statistical regression models [118]. 
They found negligible improvement in the performance 
of machine learning models and highlighted low sample 
sizes, lack of pre-processing steps and validation meth-
ods and problematic areas for these models. Christo-
doulou et  al. conducted a systematic review of studies 
comparing machine learning models to logistic regres-
sion and also found inconclusive evidence of superior-
ity of machine learning over logistic regression, a low 

quality or indeed high risk of bias associated to model 
and a need to further reporting and methodological 
guidance [22].

Insufficient sample size when developing and validat-
ing machine learning based clinical prediction models 
is a common methodological flaw in studies [22, 23, 26]. 
However, it may be a bigger problem for machine learn-
ing models with lower events per variable observed, 
compared to regression-based models and studies have 
shown that much larger sample sizes are needed when 
using machine learning methods and so the impact and 
risk of bias introduced from these insufficient sample 
sizes may be much larger [117, 124].

Strengths and limitations
This review highlights the common methodologi-
cal flaws found in studies developing machine learn-
ing based clinical prediction models in oncology. 
Many existing systematic reviews have focussed on 
the quality of models in certain clinical sub-specialties 
and cancer types, and we provide a broader view and 
assessment that focusses on the conduct of clinical pre-
diction model studies using machine learning methods 
in oncology.

We calculate the event per predictor, instead of the 
events per predictor parameter as the number of pre-
dictor parameters was not possible to ascertain due to 
the ‘black box’ nature of machine learning models. This 
means that the sample size may be more inadequate than 
is highlighted in our review.

Though we searched MEDLINE and Embase, two 
major information databases for studies that developed 
(and validated) a machine learning based clinical predic-
tion model, we may have missed eligible publications. 
Our studies are also restricted to models that were pub-
lished during 01 Jan 2019 and 05 Sept 2019 resulting in 
missing models published since our search date. How-
ever, our aim for this review was to describe a contem-
porary sample of publications to reflect current practice. 
Further, as our findings agree with the existing evidence, 
it is unlikely that additional studies would change the 
conclusion of this review.

We included a study by Alcantud et al. [81] which used 
fuzzy and soft set theory, traditionally an artificial intel-
ligence method that resembles human knowledge and 
reasoning, as opposed to a machine learning method 
that learns from data. This was a result of using a broader 
search string to describe the types of models being used 
to develop prediction models in low dimensional set-
ting and using clinical characteristics. Removing this 
study from our review does not change our findings and 
conclusions.
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Future research
Methodological guidance, better education, and 
increased awareness on the minimum scientific 
standards for prediction modelling research is 
urgently needed to improve the quality and con-
duct of machine learning models. The Transpar-
ent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) 
collaboration has initiated the development of a 
TRIPOD statement and PROBAST quality assess-
ment tool specific to machine learning (TRIPOD-
AI and PROBAST-AI) to improve reporting conduct 
and evaluation of these models [39, 125]. Both this 
review and a sister review of diagnostic and prog-
nostic models have been conducted to inform these 
guidelines (PROSPERO ID: CRD42019161764).

These guidelines need to be complemented with 
methodological guidance to support researchers 
developing clinical prediction models using machine 
learning to ensure use better and efficient model-
ling methods. There is a primary need for sample size 
guidance that will ensure informed and justified use of 
data and machine learning methods to develop these 
models.

Development of machine learning based clinical pre-
diction models in general and in oncology is rapid. Peri-
odic reviews and re-reviews are needed so evidence 
reflects current practice. These reviews should both focus 
on individual clinical domains and be cancer specific but 
should also focus on machine learning based clinical pre-
diction models.

Conclusions
The methodological conduct of machine learning 
based clinical prediction models is poor. Reporting 
and methodological guidance is urgently needed, with 
increased awareness and education of minimum pre-
diction modelling scientific standards. A particular 
focus is needed on sample size estimation, develop-
ment and validation analysis methods, and ensuring 
the developed model is available for independent vali-
dation, to improve quality of machine learning based 
clinical prediction models.
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