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We study the propagation of a bridge crack in
an anisotropic multi-scale system involving two
discrete elastic chains that are interconnected by
links and possess periodically distributed inertia.
The bridge crack is represented by the destruction
of every other link between the two elastic chains,
and this occurs with a uniform speed. This process
is assumed to be sustained by energy provided
to the system through its initial configuration,
corresponding to the alternating application
of compression and tension to neighbouring
links. The solution, based on the Wiener–Hopf
technique and presented in Ayzenberg-Stepanenko
et al. (Ayzenberg-Stepanenko et al. 2014 Proc. R.
Soc. A 470, 20140121 (doi:10.1098/rspa.2014.0121))
is used to compute the profile of the medium
undergoing failure. We investigate when this solution,
representing the steady failure process, is physically
acceptable. It is shown that the analytical solution
is not always physically applicable and can be
used to determine the onset of non-steady failure
regimes. These arise from the presence of critical
deformations in the wake of the crack front at the
sites of the intact links. Additionally, we demonstrate
that the structural integrity of the discrete elastic
chains can significantly alter the range of speeds
for which the bridge crack can propagate steadily.
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This article is part of the theme issue ‘Wave generation and transmission in multi-scale
complex media and structured metamaterials (part 2)’.

1. Introduction
The investigation of dynamic failure regimes in a structured medium—their type, average speed
and how they manifest—is important in improving the resilience of the medium’s response to
static loading and vibration. In turn, the associated studies have the potential to lead to, for
instance, enhanced materials and civil engineering structures.

Analytical models characterizing so-called steady fracture processes in lattice materials have
been the focus of a growing number of articles in the literature. The first of these models
appeared in [1,2] in the study of a Mode III crack steadily propagating through an isotropic
elastic lattice due to remote oscillations and constant loads. There the crack evolves as a result
of the sequential disintegration of links located between two neighbouring rows of the lattice.
Physically, the process may be regarded as the analogue of the domino effect, studied analytically
in [3]. Mathematically, using the Fourier transform, the problem of steady lattice fracture can
be reduced to a Wiener–Hopf equation [4], embedding a function which describes the dynamic
behaviour of the medium when it fails. The work of [1,2] has been further developed in [5] to
handle the propagation of Mode I and II cracks in discrete elastic structures.

Owing to recent trends in advanced materials, the approach has subsequently initiated a
range of works investigating how different physics and mechanical elements influence steady
failure regimes for the purpose of designing new elastic media. We mention the investigation
of anisotropic [6,7] or dissimilar elastic properties in promoting steady failure processes [8–10],
lattices with embedded high-contrast interfaces undergoing separation due to the action of highly
localized waves [11] and the failure of materials with non-local elastic interactions [12].

Steady elastic lattice fracture has also been considered to be driven by shearing [13] and
moving point forces [14]. Different mechanisms leading to steady failure processes, including
those with time-incubation periods, have also been studied in [15].

There also exist other types of steadily propagating regimes, where the disintegration of lattice
links can occur at a constant speed, but without the requirement that the failure happens to
neighbouring lattice connections. One such process, which is the focus of the current study, is the
bridge crack regime investigated in [16], where the crack propagation is due to the presence of an
initial amount of internal energy stored in the system. The propagating bridge crack is represented
by the sequential removal of every other lattice link between two lattice rows. Here, we study
a bridge crack advancing through an elastic chain, where the internal energy is provided by a
prestress. The chain is constructed from elastic links having a small contrast in length, and this
contrast brings prestress to the system. An example of the bridge crack failure mode is shown in
figure 1. There, the crack propagates through a chain, whose transverse connections are composed
of an alternating arrangement of two types of links having slightly different lengths. The crack
is formed from the removal of vertically aligned links, whose locations are associated with even
integers in the medium (see horizontal axis in the figure). In figure 1a,b, this has already happened
for the positive even integers located in the wake of the crack front.

The failure of beam-made systems at a uniform speed has also been treated using the Wiener–
Hopf technique with a view to potential applications in designing bridges and buildings with
enhanced strength. With regard to these models, we mention [18], where the failure of a bridge
is sustained by gravity loading; [19,20], where the influence of thermal loads on the collapse
of bridges is studied; and [21,22], where the role of vibration in promoting both steady and
non-steady regimes in flexural media is analysed. We note that static cracks [23,24] and quasi-
static damage propagation [25–27] in beam-made lattice systems also have great importance
in improving the lattice strength in the low-frequency regime. The Wiener–Hopf problems
encountered in the studies [1,2,5–16,18–22] of dynamic lattice fracture involve scalar equations
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Figure 1. Bridge crack propagating with speed (a) 0.8 and (b) 1.395 through an isotropic chain. In this structure, the transverse
links located at even and odd values ofη ≤ 0 have a length contrast of 9.16% and 11.68% in (a) and (b), respectively. The colour
map represents the displacement in the structure and η is a moving coordinate used to trace the movement of the crack front.
Trajectories (red curves) taken by the odd-numbered nodes (black dots) along the upper row of the medium during the failure
process are shown in (c) and (d) for the speeds 0.8 and 1.395, respectively. All computations are based on the solution describing
a bridge crack moving through the chain [17] that is examined here. (Online version in colour.)

whose solution is well known. However, matrix Wiener–Hopf equations, whose general solution
is not known, may appear in the study of more complex fracture processes such as models for
Mode III static fracture of continuous materials involving process zones [28].

The solutions to the Wiener–Hopf problems encountered in [1,2,5–16,18–22] allow one to
determine the profile of the medium for any considered speed. However, as already well
established in the literature, this does not necessarily mean that such a profile can physically exist
[29] or is observable in simulations. In association with this, we note that numerical studies can
highlight the existence of other failure regimes not covered by the above theoretical models [17].
We also refer to the vibration-induced failure of an elastic lattice, studied both analytically and
numerically in [30]. There, clustering regimes for crack growth, where a crack can grow in bursts,
can be observed between any pair of consecutive stable fracture regimes. Further, regimes that
mimic void nucleation and coalesence ahead of a propagating crack can be found in continuous
[31] and discrete beam [32] systems.

On the other hand, the analytical solution to the Wiener–Hopf equations found in lattice
fracture problems can be used to ascertain when stable regimes for crack growth exist. Those
solutions failing all criteria required for this steady phenomenon to be sustained indicate the
possibility of non-steady failure regimes. With this in mind, the stability of Mode III crack growth
in a square cell lattice was recently revisited in [33]. Such an analysis, however, cannot reveal the
type of irregular crack growth achieved, and one must resort to a transient study of the crack
growth to determine this.

Here, we consider an alternative steady fracture regime that occurs within an anisotropic
chain. In this special fracture regime, the failure is not sustained by the presence of an external
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load. It is initiated by the presence of a critical level of internal energy supplied to the system by
an initial self-equilibrated static stress [34]. Under specific conditions, the energy the medium
possesses can initiate and sustain the motion of a bridge crack with a uniform speed. The
mathematical analysis of this phenomenon presented here may help to describe the properties
and forms of travelling waves propagating through so-called ‘stick bombs’ [35], which are
popular fun devices formed from initially prestressed chains of woven sticks that rapidly
untangle when released.

The dynamic motion of a bridge crack in an anisotropic chain was studied analytically in
[36], where the solution to the problem was obtained via the Wiener–Hopf method. Our goal
in the present article is to use that solution to investigate when a bridge crack propagating with
a uniform speed is realizable. Further, we extend the scope of [36] by considering the structural
integrity of all links composing the medium. In doing so, we are able to establish the onset of
non-steady fracture regimes in addition to obtaining information on the existence of bridge crack
regimes.

As an example, figure 1 shows the response of an isotropic chain undergoing failure with
certain speeds. The solution from [36] allows one to reconstruct the profile at the moment of
fracture. This is assumed to occur at the crack front represented by the vertical link at η = 0 in
figure 1. In [36], the solution is developed assuming that only those vertical links located at even
values of η may fail. The features of the two profiles shown in figure 1a,b look similar, and under
these assumptions both regimes are physically realizable.

However, if one accounts for the behaviour of all vertical links in the system, the conclusions
change dramatically. In figure 1c,d, we display the trajectories of the nodes located at odd η behind
the crack front. These nodes are connected to the tips of the intact vertical links located there.
Here, as shown by figure 1c, the displacement of these nodes remain below the critical value
corresponding to the failure of the vertical links. On the other hand, figure 1d shows that the
node at η = 23 (located at point A) behind the tip can also reach the critical displacement. As
shown by point B there, this node will follow the red curve as the crack advances to the left in
the medium until it reaches the critical displacement at point C. At this point, the vertical link
associated with the node at η = 23 fails. Thus, for the case shown in figure 1b, there are two sites
within the structure that can fail, and this violates the conditions under which the bridge crack
can propagate steadily. In fact, as we show below, if one also considers the elongation of the
horizontal links in this isotropic medium, depending on their strength, one can show that none of
these regimes is physically acceptable.

The structure of the article is as follows. In §2, we introduce the problem and the governing
equations of a discrete elastic chain separating as a result of the propagation of a bridge crack. In
§3, we use the dynamic Green’s function for the intact system to represent the solution to the main
problem. This is exploited in §4 to obtain a Wiener–Hopf equation that allows one to fully solve
the considered problem and determine the profile of the medium undergoing failure. In §5, we
use the analytical solution to determine physically acceptable solutions connected with a steadily
propagating bridge crack. Additionally, we introduce some aspects that allow us to take into
account the structural integrity of the entire medium when undergoing failure. We show that this
leads to a maximum speed for bridge crack regimes and sheds further light on whether these
regimes are physically acceptable. Lastly, in §6, we give some discussion and future perspectives
on the study presented.

2. Description of the problem

(a) Description of the geometry
We consider two identical elastic chains, formed from links of length 2h and having stiffness μ that
interconnect periodically placed point nodes with mass M at x = 2hm, m ∈ Z (figure 2a). The chains
are attached to each other in parallel via two types of transverse links, all having stiffness � at
x = 2hm, m ∈ Z. The transverse links attaching nodes associated with an even index m have length
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Figure 2. (a) The pre-constructed chain. (b) The deformed initial state. (c) An illustration of the bridge fracture process.

2h. Those attaching odd-numbered nodes are slightly longer and have length 2h + 2�, where
�/h � 1.

(b) The initial configuration of the structure
When the elastic chains are connected, the contrast in the lengths of the vertical links induces
statically self-equilibrated stresses in the system. The stresses are applied symmetrically with
respect to y = 0 (figure 2b) and contribute to forming the initial configuration of the medium.
Correspondingly, the stresses produce the following initial displacements:

um(0) = (−1)mU0, m ∈ Z, (2.1)

where um(t), t ≥ 0, describes the displacement of the mth node along the upper elastic chain in
time and U0 is the magnitude of the initial displacement. The latter can be determined in terms of
the extension � as

U0 = �

2 + α
, where α = �

μ
; (2.2)

see [34,36].

(c) The fracture process
We are interested in the existence of a particular steady-state failure regime caused by this
initial deformation and represented by removal of sequential vertical links associated with even-
numbered nodes inside the structure, forming the so-called bridge crack. The removal of these links
occurs when a critical displacement uc is reached at the tip of the bridge crack located at 2hm∗,
where m∗ is the index associated with the bridge crack tip moving with speed v in the medium.
Here, m < m∗ corresponds to the intact region, whereas m > m∗ is associated with the bridge crack.
We use the moving coordinate

η = t − τm, (2.3)

where τ = 4h/v, to trace the position of the crack tip, corresponding to η = 0. In figure 2c, the
bridge crack is located at η > 0, whereas η ≤ −1 corresponds to the intact part of the chain
structure during this special failure regime. When the steady bridge fracture process is fully
established, we also assume that all generalized coordinates describing the motion of the system
are functions of η only; see figure 2.

Additionally, in [36], the theoretical model is developed under the assumption that

u2m(t) < uc, m < m∗, m ∈ Z, t ≥ 0, (2.4)

which is analogous to the Marder–Gross condition [29]. This implies that the even-numbered
vertical links do not meet the failure criterion during the propagation of the bridge crack. Of
course, physically, and as shown numerically in [36], such a condition cannot be guaranteed to be
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satisfied for every possible crack speed v. A solution to the problem we study here that satisfies
(2.4) is considered to be admissible and realizable in, for instance, transient studies of this problem.

(d) Energetic considerations
In studying the bridge fracture process, it is useful to compare the energy Ec required to sustain
the growth of the crack in the manner described above, i.e. the energy required to break the link
at η = 0, with the energy E0 stored in this link in the initial configuration. They are given by

Ec = h�

∫ 2h

0
(W′(ỹ))2 dỹ = 2�u2

c and E0 = h�

∫ 2h

0
(W′

0(ỹ))2 dỹ = 2�U2
0 ,

where W(ỹ) = uch−1ỹ − uc and W0(ỹ) = U0h−1ỹ − U0, 0 ≤ ỹ ≤ 2h, are the displacements along the
vertical link at the failure front during the fracture process and in the vertical links associated
with even-numbered nodes in the initial state, respectively. To describe the comparison between
these energies, later we use the contrast parameter

γ = E0

Ec
= U2

0

u2
c

(2.5)

to understand how the initial state of the system promotes this specific failure process.
Before moving on, we note that the considered failure regime and associated analysis do not

completely describe how the medium would fail. Indeed, during the bridge crack advancement,
only the integrity of the vertical links in the medium is considered at prescribed points, and
these links fail within fixed time periods. In general, several non-steady or non-regular failure
processes can occur, where the critical displacement may be achieved at any time and location
corresponding to the position of intact vertical links. Additionally, the strength of the horizontal
links will play a role in the material’s failure, providing new potential regimes of possible fracture.
Some of these regimes are discussed below in connection with the computations presented here
that are based on the analytical procedure of [36].

(i) Governing equations of the medium

During the bridge fracture process, the junctions along the upper row of the system are assumed
to undergo motion according to the following equation from [36]:

Müm(t)−Qm(t) = μ(um+1(t) + um−1(t)) − 2(μ + �)um(t), (2.6)

where Qm(t), m ∈ Z, is an internal forcing term taking into account the fact that behind the crack
tip only the vertical links associated with odd-numbered nodes supply longitudinal forces to the
masses along the upper row. This term has the form

Qm(t) =
{

2�um(t), m > m∗, m even,

0, otherwise.
(2.7)

Here, m∗ denotes the position of the failure front. Additionally, the form of Qm(t) follows from the
assumption that the system’s displacements are symmetric relative to y = 0. The displacements
um(t) are assigned the following representation, which depends on the node location in the
medium:

um(t) = Um(t) + (−1)mU0, m ∈ Z. (2.8)

The function Um(t) describes the perturbation of the displacements of even- and odd-numbered
nodes from their initial state in (2.1). Recall that the time-independent terms in the above satisfy
the static equations of equilibrium (compare with (2.6) with a zero left-hand side). Going forward,
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we assume that Um(t) takes the form

Um(t) =
{

U(η) for m = 0, ±2, ±4, ±6, . . . ,

V(η) for m = ±1, ±3, ±5, . . . ,

where U and V are two separate functions depending on the moving coordinate η. In addition,
owing to this change of variable, we have

Qm(t) = Q(η) =
{

2�(U(η) + U0), η > 0, η even,

0, otherwise.
(2.9)

3. Intermediate solution in terms of dynamic Green’s functions
The displacements U(η) and V(η) are determined via a double convolution with respect to m and t,
which uses the transient Green’s function for the dynamic problem of the intact chain. Following
[36], we have

U(η) =
∑

m̃=0,±2,...

G(m − m̃, t) ∗ Q(t − τ m̃) for m = 0, ±2, ±4, . . . (3.1)

and

V(η) =
∑

m̃=0,±2,...

G(m − m̃, t) ∗ Q(t − τ m̃) for m = ±1, ±3, . . . , (3.2)

with the ∗ denoting convolution in time. Here, we recall that τ represents the time period between
the removal of even-numbered vertical links in the medium (see (2.3)). Additionally, G solves (2.6)
with Qm(t) replaced by δ(t)δm,0, where δ(t) is the delta function in time and δm,0 is the Kronecker
delta

δm,n =
{

1 if m = n,

0 otherwise.
(3.3)

One can then apply the Fourier transform with respect to η, denoted by a superscript F,
to representations (3.1) and (3.2). Using the fact they involve convolution-type integrals and
summation operations, they can decomposed into a product of transforms with respect to t and
m. As such, via appropriate changes of variable one obtains that the transformed functions have
the forms

UF(k) = QF(k)Geven(k) and VF(k) = QF(k)Godd(k). (3.4)

Here, the transformed functions are defined as

{UF(k), VF(k), QF(k)} =
∫∞

−∞
{U(η), V(η), Q(η)} eiηk dη,

and we have

Geven(k) = c2

μ

(0 − ik)2 + 2c2(α + 1)
[(0 − ik)2 + 2c2(α + 1)]2 − 4c4 cos2(τk)

and

Godd(k) = c4

μ

2 cos(τk)
[(0 − ik)2 + 2c2(α + 1)]2 − 4c4 cos2(τk)

,

with c = √
μ/M. Note that GFmFt (−τk, k) = Geven(k) + Godd(k), where Fm and Ft denote the discrete

and continuous Fourier transforms with m and t, respectively.
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4. The Wiener–Hopf equation and its solution
The relation (3.4)1 is independent of (3.4)2. Consequently, this can used to identify UF(k) and then
VF(k). By using (2.9), we have

QF(k) = 2�

(
UF(k) + U0

0 − ik

)
, (4.1)

and upon insertion of this into (3.4)1 one arrives at a scalar Wiener–Hopf equation for UF,

U−(k) + L(k)U+(k) = [1 − L(k)]
U0

0 − ik
, (4.2)

where
L(k) = 1 − 2�Geven(k)

and the standard representation for UF,

UF(k) = U+(k) + U−(k), (4.3)

has been used, with the subscript + (−) indicating a function that is analytic in the upper (lower)
half of the complex plane for k ∈ C. The kernel function L(k) corresponding to this equation
possesses the following split:

L(k) = lim
Im k→0

L+(k)L−(k), with L±(k) = exp
(

± 1
2π

∫∞

−∞
ln L(ξ )
ξ − k

dξ

)
, ±Im k > 0.

Here, the functions L±(k) satisfy the conditions

lim
k→±i∞

L±(k) = 1 and L±(0) = R±1
√

α + 2
, where R= exp

(
1
π

∫∞

0

Arg L(ξ )
ξ

dξ

)
. (4.4)

Following [36], (4.2) is then readily solvable and one has

U+(k) = U0

0 − ik

[
1

L−(0)L+(k)
− 1

]
and U−(k) = U0

0 − ik

[
1 − L−(k)

L−(0)

]
. (4.5)

Note that as in [36], one can compute particular limits of the preceding functions that provide
information about the physical response of the medium at selected points. In particular,

U(0) = lim
k→−i∞

ikU−(k) = lim
k→i∞

(−ik)U+(k) = U0

(
1

L−(0)
− 1

)
,

and recalling (2.8), we deduce that the critical displacement achieved at η = 0 during the bridge
crack advancement is uc = u(0) = U0/L−(0). Thus, using (2.2) and (2.5) provides a relationship
linking the crack speed v with the energy contrast ratio γ :

γ = (L−(0))2 = 1
(2 + α)R2 , (4.6)

where (4.4) was employed in deriving the last equality. As shown in [36] and discussed below, for
a given γ , the preceding relation can be satisfied for several values of the speed v, and only some
of these speeds correspond to a bridge fracture process that is admissible. The combination of (4.5)
through (4.3) and the use of the result in (3.4) together with (4.1) leads to explicit expressions for
the functions UF and VF. The actual displacements are then computed using the inverse transform
on k as

U(η) = 1
2π

∫∞

−∞
UF(k) e−ikη dk and V(η) = 1

2π

∫∞

−∞
VF(k) e−ikη dk. (4.7)

5. Numerical computations: admissibility of identified regimes
Here, we investigate the behaviour of the analytical solution (see (2.8), (4.7), (3.4), (4.3) and (4.5))
and use this to ascertain information concerning the admissible bridge crack regimes.



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210395

...............................................................

u(
h)

h
–40 –30 –20 –10 0 10 20 30 40

h h
–40 –30 –20 –10 0 10 20 30 40 –40 –30 –20 –10 0 10 20 30 40

0.07

0.06

0.05

0.04

0.03

0.02

0.01

–0.01

–0.02

0

0.06

0.08

0.10

0.04

0.02

–0.02

0

0.15

0.20

0.25

0.10

0.05

–0.05

0

(a) (b) (c)

Figure 3. Node trajectories for v = 1.1 and (a) α = 0.2 (� = 0.0409), (b) α = 1 (� = 0.0539) and (c) α = 5.5 (� =
0.1368). The trajectories of the even-numbered nodes (shown as red circles) are depicted by blue curves, whereas the odd-
numbered nodes (blue crosses) will follow the trajectories shown as red curves. (Online version in colour.)

(a) Numerical settings and admissibility criteria
(i) Computational configuration

We consider three different structures formed from nodes of mass M = 1 kg and links of length
1 m (h = 0.5 m), with horizontal links having stiffness μ = 1 Pa. The vertical members have
different stiffnesses characterized by α = 0.2, 1 and 5.5. The propagation of the bridge crack is
assumed to occur when the vertical link at the front of this process reaches a critical elongation
defined through uc = 0.02.

For a given structure, we perform a parametric study of the influence of v on the behaviour
of the structure’s profile, defined via (2.8) and (4.7). The speed v is used to calculate the values
of γ and �, through (2.2) and (2.5), needed to sustain the propagation of the bridge crack. We
recall that � defines the initial configuration for the system through the displacement U0 (see
(2.1) and (2.2)) that leads to a bridge crack propagating with speed v in the steady-state regime.
Additionally, the quantity U0 is needed for the computation of the structure’s profile via (2.8),
which is based on (4.7) together with (3.4), (4.3) and (4.5). We note that the numerical inversion
of the Fourier transform is performed in (4.7). Figures 3 and 5–7 below present an analysis of the
medium’s profile during the fracture process, and this has been constructed for the nodes within
the interval |η| ≤ 40.

Note that the procedure outlined above has been used to compute the profiles in figure 1,
which are admissible under the framework described in [36], but based on the analysis presented
below these regimes may not be physically realizable.

(ii) Admissibility conditions: failure of even-numbered vertical links

We recall that for a given speed v, as in [36], an admissible failure regime is defined in accordance
with condition (2.4), which takes into account the elongation of even-numbered vertical links
ahead of the failure front only. Following the computation of the profile, we will apply this
admissibility condition to deduce ranges of the speed v for which the bridge crack can propagate
steadily.

(iii) Failure of horizontal links and odd-numbered vertical links

Further, as mentioned earlier, the structure can fail in several other ways. In addition to the
possible failure mechanism incorporated into the admissibility condition (2.4), potential sites of
failure could occur with the horizontal links and vertical links associated with odd indices. The
analytical solution (see (2.8) and (4.7)) is not applicable to describing the resulting dynamic failure
regimes, but it can be used to predict the instances where these regimes initiate. Consequently, we
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Figure 4. The energy ratio γ as a function of the bridge crack speed for a structure withα = 0.2, 1 and 5.5. Computations are
based on (4.6). Red segments of each curve indicate intervals of the speedv for which the analytical solution (see (2.8) and §4)
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(Online version in colour.)

introduce some quantities to study these alternative failure mechanisms. These quantities include

β = max
η∈R

−U0 + V(η)
uc

and � = 1
2uc

max
η∈R

(√
(αU0 + V(η) − U(η))2 + 4h2 − 2h

)
, (5.1)

which enable us to check the structural integrity of the chain at odd-numbered vertical links
(see (2.8)) and of the horizontal links, respectively. Here, the expression to be maximized in �

is the expression for the extension of the horizontal links that connect the tips of links having
two lengths 2h and 2h + 2�. Additionally, note that β and � are independent of the strengths of
the odd-numbered vertical links and the horizontal links. The values of the parameters β and �

should be compared with the ratios

β0 = uo
c

uc
and �0 = uh

c
uc

(5.2)

involving the strengths of odd-numbered vertical links uo
c and horizontal links uh

c to ascertain
whether a steady bridge fracture regime is physically feasible or not. In a majority of the
computations below, we will assume β0 = 1 and �0 = 1, implying that all links have the same
strength. However, it is realistic to consider links with contrasting strengths, and below we also
show that this can influence the admissibility of steady failure regimes.
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Figure 5. The dependency of the parameter β in (5.1) and mβ on the bridge crack speed v for (a,b) α = 0.2, (c,d) α = 1
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β = 1 is reached for the first time as v is increased, correspond to those shown in figure 4. (Online version in colour.)

To compute β and � , we combine the above definitions with the displacements of individual
nodes found with (2.8) and (4.7) during the steady-state failure regime. In connection with (5.1)1
we also introduce the index mβ , which represents the index of the node where β occurs.

(b) Trajectories of the nodes based on the analytical solution
Here, we give some examples of the trajectories taken by the nodes of the medium during the
bridge failure process. The trajectories are based on the solution (2.8) that uses (4.7), (3.4), (4.3)
and (4.5). We determine the trajectories as functions of the continuous variable η. The profiles
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(5.1). In each diagram, the horizontal dashed lineβ = 1 corresponds to the failure of odd-numbered vertical links and the upper
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obtained allow us to accurately capture when and where the structure can fail as time elapses in
the steady-state failure process for a given bridge crack speed.

First, we discuss the features of a typical admissible failure mode according to (2.4). The
profiles of these admissible regimes for α = 0.2, 1 and 5.5 are shown in figure 3. There, the
trajectories of the even- and odd-numbered nodes are shown as continuous curves. During a
single time period τ of the bridge crack propagation, all nodes will move along these trajectories
two lattice units to the right. As a result, we note that the maximal displacement of each
node may be achieved at some time during the movement of the node along these curves. An
example includes the node indexed as η = 3 along the red curve in figure 3a, whose maximum
displacement occurs for a non-integer value of η.

As expected, figure 3a–c shows that all displacements for η < 0 do not exceed uc, represented
by the horizontal dashed lines in these plots. In fact, the displacements of even nodes are
approximately uniform along the upper horizontal row of the chain when η < 0. The same is true
for the odd-numbered nodes, which have displacements of approximately the same magnitude
but with opposite sign. The result implies that the structure possesses an alternating strain
deformation ahead of the bridge crack front [36]. In all admissible regimes computed below, this
behaviour located at η < 0 is typical during the bridge fracture process. In fact, in the next sections,
we demonstrate that it is the behaviour of the structure within the bridge crack zone at η > 0 that
provides an upper speed limit for this failure regime.
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Additionally, the analytical model developed above assumes u(0) = uc, which is the case for
all trajectories shown in figure 3. For η ≥ 1, the trajectories undergo oscillations. This results
from the release of waves during the bridge fracture process that travel outward to the right of
the front. In relation to this, as demonstrated in figure 3, for η > 0 the displacement amplitude
of even-numbered nodes can increase with increasing α, whereas the displacement amplitude
of the odd-numbered nodes will decrease. Physically, this observation corresponds to the fact
that stiffer vertical links will prohibit the odd-numbered nodes for η > 0 from undergoing large
displacements, whereas the less constrained even-numbered nodes in this region will be more
prone to excitation.

(c) Energy ratio dependency on the bridge crack speed
In figure 4, we show the dependency of the energy ratio γ on the bridge crack speed that has been
computed using (4.6) for the three structures considered.

The behaviour of γ can be described with two distinct regimes: (i) a regime where γ grows
monotonically with increasing v and approaches unity when v → ∞; and (ii) a regime occurring at
low speeds, where the value of γ can oscillate rapidly with increasing v. For regime (i), indicated
in figure 4 by red segments of the curves, the analytical solution generates an admissible profile
for the bridge crack failure regime as described by (2.4). The low-speed regime (ii) widens with
increasing α, and we note that the admissibility of failure modes in this regime is seldom or not
possible. These conclusions are also supported by the numerical simulations presented in [36].

The blue dots shown in figure 4 represent the upper bound for the bridge crack regime within
the admissible speed interval. The speeds associated with the upper limits are in good agreement
with those obtained in [36] via a numerical transient analysis of the system and its failure. These
maximal speeds have been determined by computing the profiles for the chain structure with the
analytical solution and observing the behaviour of those vertical links not taken into account by
(2.4). The role of these links in the bridge fracture process is discussed in next section.

(d) Maximum speed for the bridge fracture regime
The odd-numbered vertical links, having the same material properties as the other vertical links
in the chain, are important in determining the maximum possible speed for a bridge crack
propagating in the chain. Thus we turn to analysing β for this purpose, assuming that odd-
numbered links and even-numbered links have the same strength. In this case, as discussed below,
the value β = β0 = 1 reflects a crucial scenario in which an odd-numbered link may also fail within
the system.

Figure 5a,c,d shows the parameter β of (5.1) as a function of the failure speed v. The results
are presented for speeds v associated with an admissible profile of the medium in accordance
with (2.4). Hence the horizontal axes in these figures have also been selected based on this (see
also figure 4). The computations in figure 5a,c,e show that β is a continuous function of v and
that for large α, i.e. when the vertical links are much stiffer than the horizontal ones, β behaves
monotonically with respect to v. In the cases of α = 0.2 and 5.5, the minimum of β occurs at the
lowest admissible bridge crack speed. On the other hand, β possesses a global minimum for α = 1
within the range of admissible speeds (figure 5c).

If we assume β0 = 1 (see (5.2)), figure 5a,c,e shows that increasing the crack speed causes β to
increase up to and beyond β0 at a specific v. For a given speed, when β0 is reached or when β > 1,
this indicates that there exists at least one odd-numbered vertical link in the medium that achieves
an elongation equal to or greater than the critical elongation. Thus, this link will fail during the
propagation of the bridge crack. This implies that the steadily propagating bridge crack is no
longer feasible. The points where β reaches unity in figure 5a,c,e are used to define the points of
the maximum speeds vc for the bridge crack regime, indicated by blue dots in figure 4.

Note that it follows that if the strength of the odd vertical links differs from the strength
of the even vertical links, i.e. β0 �= 1, the β = 1 case no longer indicates the moment when an



14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210395

...............................................................

odd-numbered link can fail inside the medium. Consequently, the horizontal dashed lines in
figure 5a,c,e would also have different locations corresponding to the value of β0. The shift in the
value of β0 influences the interval size of the admissible speeds for steady bridge crack failure.
In the cases where α = 0.2 and 5.5, the global minimum of β occurs at the smallest admissible
failure speed, and subsequently decreasing β0 only adjusts the upper bound for the bridge crack
regime. In the case of α = 1, figure 5c shows that one can decrease β0 until the lower bound for
the admissible speed regime can be increased. This result is based on the presence of the global
minimum of β, achieved around v = 0.9 in figure 5c. Interestingly, if β0 is below the global minima
shown in figure 5a,c,e, then we can conclude that the steady bridge crack is never realizable for
those structures considered.

In all cases, the parameter β is monotonic as a function of v in the vicinity of β = 1. When
α = 0.2 and 1, β possesses several minima. Interestingly, in the case of α = 0.2 (figure 5a), beyond
the critical speed located at approximately v = 1.22 where β = β0 = 1, there is a local minimum
near v = 1.5, and in the vicinity of this point we have β < 1. The appearance of this local minimum
seemingly indicates that beyond the maximum speed for the bridge crack, there may exist some
narrow speed range where this failure phenomenon will propagate steadily. We note that for
α = 0.2, after reaching β = 1 at around v = 1.22 it is clear that the steady bridge failure regime
ceases to exist. After this point, the analytical model does not indicate what non-steady failure
mechanisms develop from the initial strained state and their behaviour with increasing �. As a
result, it is not evident from our analysis if one can realize those possible stable states observed in
figure 5a in the vicinity of v = 1.5. However, such states may be possible if the associated profile
deformations are used to provide the initial strains to the system.

We also report the behaviour of the index mβ , where the maximum of β occurs, in figure 5b,d,f.
There, the upper bound for the bridge crack regime is shown as a vertical blue dashed line.
The plots demonstrate that the index mβ , where the maximum elongation for an odd-numbered
vertical link occurs, is always behind the bridge crack tip. This is expected on physical grounds,
as in this region the even-numbered vertices are less constrained owing to the formation
of the bridge crack, and this allows the bridge crack zone to achieve larger displacements.
Additionally, below the maximum bridge crack speed (indicated by a blue vertical dashed line),
the position where β occurs can rapidly fluctuate behind the crack front if α is sufficiently
low, e.g. see figure 5b,d. There, we observe that there exist narrow speed intervals where
mβ is fixed. When the solution is no longer physically acceptable, the index mβ does not
undergo rapid changes with increasing v and can remain constant for large intervals of the
crack speed.

To further corroborate the conclusion that when β = β0 = 1 for a given critical failure speed vc

the steady bridge fracture process is not possible, in figure 6 we have computed the trajectories of
the odd-numbered nodes in the medium as a function of η. There, for α = 0.2, 1 and 5.5, it is clear
that when v < vc these nodes never reach the critical displacement. However, when v = vc, the
trajectory contains points where this can happen, e.g. see the red curve of figure 6a for α = 0.2 at
approximately η = 2.7. One can also find similar points in figure 6b,c for α = 1 and 5.5, respectively,
along the red curves where v = vc. Subsequently, as the bridge crack advances a single unit
(or two lattice spacings), the node located at η = 1 in figure 6a moves along the corresponding
trajectory to the right. In following this trajectory the node will reach the critical displacement. It
is important to note that this situation, in general, can occur at a completely different time from
the failure event expected to occur at the crack front. The approach developed in [5,36] allows
one to accurately capture the time shift between these events. At the point where the critical
displacement is reached at additional sites other than the crack front, the solution describes the
emergence of a non-steadily propagating crack. The beginning of this new regime signifies the
end of the bridge fracture regime at v = vc.

Additionally, beyond this critical speed the analytical solution suggests that the structure of the
bridge crack may be very different. Indeed, with the presence of extra sites of fracture, a bridge
crack may propagate with a structure different from that observed in figure 1 and possibly formed
from a larger macro-cell of periodicity. The bridge crack is formed from a collection of periodically
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placed gaps behind the crack front, but beyond the maximum speed for these regimes the size
and periodicity of these openings could be more complex, leading to what we term the macro-
cell bridge crack. We note that the apparent structure of the openings could possibly be obtained
from figure 5, which shows how the location of the maximum displacement at odd-numbered
links migrates through the medium with increase of the failure speed. There, for β ≥ 1, whenever
this position changes, we obtain information about the new regions behind the crack that can
reach the critical displacement. This could be connected with new openings within the medium
and different bridge crack regimes with larger macro-cells. Note that within this regime, what
we refer to as a fracture macro-cell is formed. By this we mean a sequence of fracture events
involving a collection of vertical links that repeats in time. The structure of the finite bridge crack
can then vary with increasing γ . Further, the sequence of fracture events can be non-monotonic
with respect to the index m. The average speed of such a failure mode is directly related to the
length of the fracture macro-cell and the times associated with the fracture of each link. In other
words, the average macroscopic fracture speed is determined by the movement of the fracture
macro-cell. Moreover, the sites of failure may accumulate within the medium to the point where
a fully open crack regime can occur.

(e) Failure within the horizontal links
In considering realizable fracture regimes, one must also take into account the deformations
that the horizontal links within the medium can undergo. Using � in (5.1), we can get a better
understanding of their tensile motion during the propagation of the bridge crack. Once more, we
focus on the case where the links in the structure have the same strength and indicate possible
outcomes associated with when this is no longer assumed to be the case. Consequently, here
� being equal to unity will indicate a regime where horizontal links in the medium can fail in
addition to even-numbered vertical links in the medium.

In figure 7, we plot β as a function of the parameter � for α = 0.2, 1 and 5.5 and for only those
speeds v where the bridge crack propagation is admissible according to (2.4). We note that β is a
continuous function of � but not injective in some regions of the curves shown.

As β approaches unity in figure 7, we see that � also increases. Consequently, we can conclude
that increasing the speed of the bridge crack brings increasing stresses to the entire region located
behind the crack front.

In addition, the magnitude of � is much smaller than that of β. This is expected on physical
grounds, as the horizontal links respond to the linear vertical deformation of the transverse links,
which have a small contrast in length dictated by �. A small vertical deformation therefore
does not produce a large extension in the horizontal links. Also, as the anisotropy parameter
α increases, figure 7 shows that the magnitude of � increases. This result is due to the fact that
increasing α corresponds to a softening of the lateral links in the medium, enabling the horizontal
links to undergo greater axial deformations.

It can also be clearly seen from figure 7 that for all admissible speeds of bridge crack failure the
parameter � is less than 1. As a consequence, if the horizontal links inside the chain are assumed
to have the same strength as the vertical links, all admissible bridge crack regimes are realizable
in the structures considered.

Here, our conclusions are based on the fact that all links in the structure possess the same
strength. The results leading to these evaluations use the solution from [36], which gives
the profile of the chain during steady bridge failure regimes. These profiles are obtained
independently of any information on the behaviour of vertical odd-numbered links and
horizontal links through, for instance, β and � , respectively. Of course, it is immediately clear
that in all cases considered, assuming that the horizontal links have a much lower strength
than the even-numbered vertical links would reduce the possibilities for potential steady
bridge crack regimes to exist. Figures 5–7 then become essential in identifying the existence
of the emerging failure regimes when stable bridge crack regimes are no longer supported by
the system.



16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210395

...............................................................

semi-infinite
bridge crack 

macro-cell
bridge crack 

semi-infinite
open crack 

finite bridge crack
full

destruction
of chain

complex
failure  

v (g )

b (g )

v1v0

b0

b1

open crack 

macro-cell 

bridge crack 

bridge crack 

finite bridge crack 

semi-infinite chain 
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We discuss these possible regimes with the help of the illustration in figure 8. There, β and
� being equal to unity represents the failure of the medium at vertical odd-numbered links and
horizontal links, respectively, in the case where the strength in the structure is uniform. However,
when the strength of these links differs from the strength of the even links, we obtain new values
β0 and �0 where failure can occur (see also (5.2)). It is clear then that if β0 > 1, we can extend the
admissible range of speeds for which the bridge failure regime studied here is possible. Likewise,
a similar effect can be achieved if �0 > 1. These values therefore define a rectangle (in general) in
β–� space within which a semi-infinite bridge crack regime can be found.

Outside this region, non-steady failure regimes can be encountered. Assuming 0 < � < �0,
i.e. horizontal links in the medium remain intact, for β > β0, based on the analysis of figure 6 in
§5d, it can be conjectured that the crack propagates with a more complex bridge fracture regime
which we term the macro-cell bridge crack regime (figure 8). This fracture regime involves a
bridge crack whose structure and periodicity change with increase of the initial stored potential
energy in the system. This results from the fact that the increase in this energy allows more odd-
numbered vertical nodes behind the crack to surpass the threshold for failure. The accumulation
of this process, owing to the increase in stored initial energy, would allow transition to the regime
where a semi-infinite open crack can propagate in the structure at a second critical value of β that we
denote by β1 (figure 8).

In a similar way, one can also consider regimes where 0 < β < β0 and � > �0. Analogously,
we obtain descriptions of new fracture regimes. Possible candidates include

(i) a finite bridge crack regime for �0 < � < �1. Here, the bridge crack is accompanied by the
appearance of failure sites along the horizontal chains. This causes the chain to partition
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at some point behind the crack front, leaving a semi-infinite chain in which there exists
a finite bridge crack (figure 8). Note that within this regime, the macro-cell forming the
finite bridge crack can vary with increasing γ .

(ii) the complete failure of all horizontal links behind the fracture front when � > �1, owing
to the increase of initial stored energy in the system. Here, the mechanism for failure
would be akin to that observed in the untangling of the so-called stick bomb [35], where
the transition front in the medium creates a completely destroyed region behind it, with
the fully intact region ahead of this point.

These regimes and potential β–� subdomains are illustrated in figure 8, which, together with
the blue curve presented there based on the analytical solution of [36], give us a way to
predict possible steady and non-steady failure regimes. Finally, we note that for � > �0 and
β > β0 (figure 8), one could encounter a range of complex failure regimes, possibly involving
combinations of mechanisms already discussed above.

6. Conclusion
In this article we have studied the spontaneous failure of a discrete elastic chain [36] that occurs
as a result of an initial stress imposed on the system. The failure mode considered involves a
propagating bridge crack represented by the removal of every other vertical member of the system
at a uniform speed. We have used the analytical solution from [36] characterizing this failure
response to determine whether the considered steadily propagating regime can be realized. This
solution, by construction, assumes that the medium will fail at the crack front. However, as shown
in [36], this assumption is not valid for all crack speeds.

We have used the analytical solution to perform a study of the behaviour of horizontal
and vertical links assumed to remain intact during the propagation of the bridge crack. As a
consequence, we have shown that the solution serves to indicate regimes where links outside
the location of the crack front can fail. This helps to determine limits on the speed for the bridge
crack regime. Simultaneously, these limits represent the emergence of non-steady regimes, whose
behaviour in time cannot be revealed by the solution that can accurately predict its onset.

Interestingly, these non-steady regimes appear as a result of critical elongations achieved by
the lattice links behind the crack front. The physical reasoning behind this is that the bridge
crack area is formed by periodically placed sites that are less constrained than the remaining
regions of the medium. Nodes at these locations are therefore capable of larger displacements
that are promoted by the release of waves into the structure as the bridge crack advances. In turn,
these nodes promote greater displacements for their nearest neighbours, which are connected to
intact vertical members of the structure. This allows such nodes to achieve the required critical
displacement for failure.

In all regimes considered, the initiation of these non-steady regimes was never observed
to occur as a result of unfeasible deformations ahead of the crack front. However, it is worth
mentioning that waves propagating ahead of the crack may promote non-steady regimes. We
note that this scenario typically occurs for low crack speeds that are seldom admissible but not
impossible to realize [36]. In the analysis of non-steady failure processes, figure 8, which takes
into account the structural integrity of the entire system, becomes important in identifying the
potential structure and type of these regimes.

Our analysis also leads to new perspectives on possible novel non-steady regimes of failure
within the chain. Simultaneously, it raises open questions about how newly identified regimes
propagate. For instance, can one identify the strength ratio β for which a bridge crack can
propagate that is formed from a sparse distribution of intact links in its wake? Additionally, what
value of the strength ratio � is required to promote the propagation of the failure phenomenon
akin to the transition process observed in stick bombs [35]?

The tools developed here can be extended to study the influence of dynamic processes and
loading on the failure of elastic structured systems through a range of complex mechanisms.
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Further, this work can be extended to the study of other multi-scale systems described by
additional degrees of freedom, such as beam-made structures where rotations and moments
play a role in their motion in addition to displacements and forces. We envision that the
study presented here will have applications in the development of advanced materials
and engineering assemblies and help to enhance their resilience to dynamic and static
processes.
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