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We present formal asymptotic approximations of
fields representing the in-plane dynamic response of
elastic solids containing clusters of closely interacting
small rigid inclusions. For finite densely perforated
bodies, the asymptotic scheme is developed to
approximate the eigenfrequencies and the associated
eigenmodes of the elastic medium with clamped
boundaries. The asymptotic algorithm is also adapted
to address the scattering of in-plane waves in infinite
elastic media containing dense clusters. The results are
accompanied by numerical simulations that illustrate
the accuracy of the asymptotic approach.

This article is part of the theme issue ‘Wave
generation and transmission in multi-scale complex
media and structured metamaterials (part 2)’.

1. Introduction
Vibration is a phenomenon that can promote a range
of undesirable effects in engineering structures and
materials, compromising their durability. Understanding
this is a crucial in the industrial application of
materials that may contain flaws or have a rationally
designed microstructure formed from inhomogeneities,
as found in composite materials. When these materials
possess numerous closely situated small impurities, the
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associated stress concentrations can be amplified, further compromising the material integrity
when vibrations propagate through them. Thus, methods for quickly and efficiently establishing
the dynamic response of such media in design processes are of vital importance.

Here, we aim to develop an asymptotic approach to describe in-plane waves propagating
in elastic materials that contain clusters of closely interacting small impurities having various
shapes. In particular, our focus is to illustrate how the approach is effective in capturing the
cluster’s influence on vibration processes, including (i) the scattering of waves in infinite elastic
media and (ii) vibration modes for finite elastic media, when the shape and size of inclusions
become important.

Analytical methods that aid in identifying how large collections of defects or obstacles scatter
waves in a medium have been the subject of intensive research effort. The classical work of
Foldy [1], appearing in the middle of the twentieth century, led to the description of effective
wavenumbers and wavefields propagating through random arrays of N sound-soft isotropic
scatterers. Lax [2] later developed this theory to handle anisotropic and inelastic scatterers.
The theory provides an effective description of the scattering properties of media with dense
microstructures not characterizable without, for instance, an extensive use of microscopy imaging
techniques. Corrections to the effective wavenumbers in [1,2] for sparse random arrays of
scatterers have been justified in [3]. Effective wavenumbers for elastic wavefields interacting with
random arrays of cylinders were tackled with the T-matrix method in [4,5] and for inclusions
in plates with the multipole method [6]. Multiple waves have been shown to be supported by
random particulates in [7,8]. A comprehensive overview of mathematical approaches developed
for treating scattering problems is presented in the monograph [9].

On the other hand, vibration is a fundamental component in the non-destructive evaluation of
materials. In connection with this, special attention has been given to solving inverse problems in
scattering theory to characterize defects in elastic materials, including clusters of point scatterers
[10,11], finite-sized obstacles [12,13] and inclusions with unknown surface conditions in [14].

Analytical procedures for modelling the influence of inclusions on dynamic properties of
materials are also useful in designing composites for practical applications. Amenable to a range
of approaches such as Floquet–Bloch theory, transfer matrix methods and hybrid approaches
involving multiple scattering techniques and the Wiener–Hopf method [15], the associated
models also shed light on possible designs of new devices with exotic properties including
energy amplification [16], wave guiding [17–19], shielding [20,21], neutrality [22], localization
[23] and cloaking [24,25]. Further, in this direction, at specific frequencies approximate theories
such as homogenization [26,27] can be applied to capture the effective response of composites
with periodic or statistically determined microstructures [28].

For finite media, one seeks eigenvalues and eigenfunctions of partial differential operators
to determine how a material vibrates. The method of compound asymptotic approximations,
developed in [29,30], provides highly accurate approximations of these dynamic quantities for
the Laplacian for various boundary value problems in media with dilute arrangements of small
impurities [31–35]. We refer to [36–39] for alternative asymptotic expansions for eigenvalues
and eigenfunctions of the Laplacian in domains with a single cavity and [40] for membranes
with impedance-type inclusions. Boundary layer approaches have been used in [41] to provide
complete asymptotic expansions of eigenfrequencies for a three-dimensional elastic medium with
a small void.

Compound asymptotic approximations [29,30] require the appropriate combination of model
problems that describe (i) infinite domains with an individual inclusion and (ii) problems in
the finite domain without inclusions. The approximations are accurate up to and including the
boundaries of the medium and are efficient in the low-frequency regime, where the frequency
of vibration does not compete with the defect size. Configurations with several moderately
close holes have also been analysed with the so-called functional analytic approach [42]
in [43,44].

The method of meso-scale asymptotic approximations [45] was developed in [46,47] to handle
problems for media with large clusters of closely interacting small impurities. The approximations
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require the computation of appropriate weights of model solutions. The weights solve an
inhomogeneous algebraic system representing the leading errors induced in the boundary
conditions by the proposed asymptotic scheme. This system captures the interaction of the
inclusions, taking into account their separation and the individual size and shape of the inclusion.
Thus, large data sets obtained via scans or micrographs, which can be executed quickly owing to
recent technological advances, are easily used by meso-scale approximations in capturing a range
of microscale phenomena. This approach also becomes important in, for instance, determining
stress concentrations near particular inclusions within a composite that could otherwise be missed
in homogenization models.

Meso-scale approximations have also been shown to be effective in modelling the response
of elastic solids with rigid and free clouds of impurities [48,49], low frequency acoustic
problems involving rigid defect clusters [50] and steady-state heat conduction in densely
packed composites [51]. The approximations have also proven to be useful in modelling flows
involving fluids interacting with many small obstacles within narrow spaces [52], important for
understanding CO2-sequestration processes.

More recently, meso-scale approximations have been produced to model vibration in both
finite or infinite membranes containing clusters of rigid movable masses distributed along
a contour [53]. There, the scheme developed uses functions acting as solutions to suitable
model problems of the Helmholtz operator, moving away from the low-frequency boundary
layers previously applied in [29,30,50]. In fact, this provides a way to address modes at higher
frequencies, which we demonstrate here in modifying the approach of [53] to develop asymptotic
models for in-plane elastodynamic problems for densely perforated media.

In §2, we describe the problem for in-plane vibration modes of a finite elastic medium
containing many inclusions. Sections 3 and 4 are dedicated to developing an approximation
for eigenfrequencies and eigenfunctions of the elastic body and serve to introduce the model
problems used and to develop the associated asymptotic algorithm, respectively. Numerical
simulations demonstrating the efficiency of the asymptotic approach of §4 are then given in
§5 for elastic solids containing a range of configurations of perforations. These illustrations
use Green’s tensor for the interior of the disc, presented in electronic supplementary material,
appendix A. Further examples of the effectiveness of the approach are also given in electronic
supplementary material, appendix B. In §6, we show that the boundary layers of §3 can be
adapted to approximate the scattering response produced by a cluster of inclusions in an infinite
planar elastic body. This section also contains a homogenization approximation for the cluster
that is derived in electronic supplementary material, appendix C. Accompanying §6 is also a
numerical simulation demonstrating the accuracy of the approach when compared with the
finite element method. Data for this numerical example is given in electronic supplementary
material, appendix D. In §7, we provide some conclusions and future perspectives on the
work presented.

2. Formulation of the problem
We consider a two-dimensional elastic material occupying the set Ω , assumed to have a smooth

boundary. Contained inside this elastic medium are small rigid obstacles F(j)
ε , j = 1, . . . , N. Here,

N is large and ε is a small parameter governing the nominal size of these inclusions. Each

obstacle F(j)
ε has a centre O(j), 1 ≤ j ≤ N. The obstacles either occupy a domain or are located

on a contour F contained inside Ω and separated by a finite distance from ∂Ω (figure 1). The
minimum separation between the centres of two neighbouring obstacles in F is denoted by d,
where dnN = O(1) where n = 1 for a contour F and n = 2 for a domain F. We are concerned with
the dynamic response of the elastic medium in ΩN :=Ω\ ∪N

j=1 F(j)
ε . Some example configurations

of the domains ΩN , considered here, are shown in figure 1.
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Figure 1. Examples ofΩN . (a) The inclusions, having smooth boundaries, are distributed inside a subdomain F ofΩ . (b)
Inclusions positioned along a contour F in the domainΩ .

The eigenmodes of ΩN are solutions of

μ�UN(x,ωN) + (λ+ μ)∇(∇ · UN(x,ωN)) + ρω2
NUN(x,ωN) = 0, x ∈ΩN , (2.1)

UN(x,ωN) = 0, x ∈ ∂Ω (2.2)

and UN(x,ωN) = 0, x ∈ ∂F(j)
ε , 1 ≤ j ≤ N, (2.3)

with ωN being the eigenfrequency of the medium and UN(x,ωN) the corresponding mode.
Additionally, ρ is the material density and λ and μ are the Lamé parameters. Here, components of
the eigenmodes represent complex displacements. First we will approximate the eigenfrequencies
and the associated modes. Their direct applications include eigenfunction expansions for
solutions to transient problems and Green’s tensors in sufficiently low-frequency regimes.

3. Model problems
To construct approximate representations of the eigenmodes (see (2.1)–(2.3)), we will use model

problems associated with Ω and the small inclusions ω(j)
ε , j = 1, . . . , N.

(a) Singular solution for the infinite body subjected to point forces
Let x, y ∈ R

2 and Γ (x, y,ω) be a 2 × 2 matrix satisfying

μ�xΓ (x, y,ω) + (λ+ μ)∇x(∇x · Γ (x, y,ω)) + ρω2Γ (x, y,ω) + δ(x − y)I = O,

where I is the 2 × 2 identity matrix and O is the 2 × 2 zero matrix. The jth column of this matrix
corresponds to the response of an infinite body subjected to an oscillating point force aligned with
the xj-axis, j = 1, 2, at y of unit amplitude and radian frequency ω. The matrix Γ has the form

Γ (x, y,ω) = 1
μ

[
ψ(|x − y|)I + χ (|x − y|) (x − y) ⊗ (x − y)

|x − y|2
]

, (3.1)

where ks =
√
ρω2

N/μ, kp =
√
ρω2

N/(λ+ 2μ), represent the wavenumbers for shear and pressure
waves, respectively,

ψ(r) = i
4

(
H(1)

0 (ksr) −
{

H(1)
1 (ksr)
ksr

−
(

kp

ks

)2 H(1)
1 (kpr)
kpr

})

and

χ (r) = i
4

(
H(1)

2 (ksr) −
(

kp

ks

)2

H(1)
2 (kpr)

)
.
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(b) Dirichlet problem for an inclusion in the infinite planar body
By U(j)

ε (x,ω) we denote another 2 × 2 matrix satisfying the following elastodynamic Dirichlet
problem

μ�xU(j)
ε (x,ω) + (λ+ μ)∇x(∇x · U(j)

ε (x,ω)) + ρω2U(j)
ε (x,ω) = O,

where x ∈ R
2\F(j)

ε , and

U(j)
ε (x,ω) = I, x ∈ ∂F(j)

ε . (3.2)

In addition, at infinity U(j)
ε has the asymptotic representation

U(j)
ε ∼ U(s,j)

ε (ks|x|) + U(p,j)
ε (kp|x|), (3.3)

where the vector functions U(s,j)
ε (ks|x|) and U(p,j)

ε (kp|x|), corresponding to the far-field shear and
longitudinal motions of the medium, respectively, satisfy the Sommerfeld radiation conditions

∂

∂|x|U(m,j)
ε (km|x|) − ikmU(m,j)

ε (km|x|) = O
(

1
|x|3/2

)
, m = s, p. (3.4)

The first and second columns of U(j)
ε (x,ω) give the wave field produced by harmonically

displacing the inclusion in the x1- and x2-directions, respectively. For the circular inclusion, with

centre O(j) and radius r(j)
ε , the matrix function U(j)

ε (x,ω) takes the form

U(j)
ε (x,ω) = c(j,1)

ε Γ (x, O(j),ω) + c(j,2)
ε �xΓ (x, O(j),ω) (3.5)

with the constants c(j,m)
ε , m = 1, 2, incorporating information about the boundary conditions and

the inclusion size, being given by

c(j,1)
ε = ks(ksc

(j,2)
ε + 8μB(j)

ε ) and c(j,2)
ε = 8μksB

(j)
ε

k2
s − k2

p

⎧⎨
⎩
(

ks

kp

)2 H(1)
2 (ksr

(j)
ε )

H(1)
2 (kpr(j)

ε )
− 1

⎫⎬
⎭ ,

and

B(j)
ε = − iH(1)

2 (kpr(j)
ε )

ks{H(1)
2 (ksr

(j)
ε )H(1)

0 (kpr(j)
ε ) + H(1)

0 (ksr
(j)
ε )H(1)

2 (kpr(j)
ε )}

.

(c) Green’s tensor for the finite planar body without holes
The last model field we require is Green’s tensor G(x, y,ω) for the planar body Ω , which solves
the boundary value problem

μ�xG(x, y,ω) + (λ+ μ)∇x(∇x · G(x, y,ω)) + ρω2G(x, y,ω) + δ(x − y)I = O,

for x, y ∈Ω and
G(x, y,ω) = O, x ∈ ∂Ω , y ∈Ω . (3.6)

The regular part R(x, y,ω) of Green’s tensor is then defined as R(x, y,ω) = Γ (x, y,ω) − G(x, y,ω).
The components of the matrix function R can be computed easily for simple geometries. If Ω
is a circular plate, Helmholtz’s decomposition and Graf’s addition theorem can be applied to
compute the matrix R. The corresponding solution is given in electronic supplementary material,
appendix A.

4. Formal approximation of eigenfrequencies and eigenmodes

(a) Approximation of the eigenfunction
We develop the asymptotic algorithm for the case when the small rigid inclusions are circular. We
note a similar algorithm can be carried out for rigid inclusions with arbitrary shapes.



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210392

...............................................................

For circular inclusions, the approximation to the complex vector function UN is sought as

UN(x,ωN) =
N∑

j=1

W(j)
ε (x,ω0)β(j) + rN(x) (4.1)

with
W(j)
ε (x,ω0) = U(j)

ε (x,ω0) − c(j,1)
ε R(x, O(j),ω0) − c(j,2)

ε �yR(x, O(j),ω0), (4.2)

and β(j) are constant vectors to be determined. The matrix functions W(j) are constructed in such
a way that they satisfy

μ�W(j)
ε (x,ω0) + (λ+ μ)∇(∇ · W(j)

ε (x,ω0)) + ρω2
0W(j)(x,ω0) = 0,

for x ∈Ω\F(j)
ε , 1 ≤ j ≤ N. Additionally, the terms that use the regular part of Green’s tensor in

Ω in (4.2) ensure the trace of W(j)
ε , 1 ≤ j ≤ N, on ∂Ω is zero (see (3.5) and (3.6)). For inclusions

with general shapes, these terms are based on the individual representations of U(j)
ε , 1 ≤ j ≤ N, at

infinity and are constructed to ensure a small error is produced on ∂Ω by W(j)
ε , 1 ≤ j ≤ N.

We note that on ∂F(j)
ε , W(j)

ε is non-zero for j = 1, . . . , N, and therefore their presence in
(4.1) seemingly creates a difficulty in satisfying the boundary conditions (2.3) on the interior
boundaries. However, we have freedom to choose the vector coefficients β(j), 1 ≤ j ≤ N, in (4.1)
that later enables these conditions to be satisfied to a high order of accuracy.

Hence, it follows from the above, §3 and (4.1) that

μ�rN(x) + (λ+ μ)∇(∇ · rN(x)) + ρω2
NrN(x) = ρ(ω2

0 − ω2
N)

N∑
j=1

W(j)
ε (x,ω0)β(j),

for x ∈ΩN and rN(x) = 0 for x ∈ ∂Ω . Further, (2.3) and (3.2) together with (4.1) imply that for
x ∈ ∂F(k)

ε , 1 ≤ j ≤ N, the remainder satisfies

rN(x) = −S(k)(x, O(k),ω0)β(k) −
∑

1≤j≤N
j�=k

T (j)(x, O(j),ω0)β(j),

with
S(k)(x, y,ω0) = I − c(k,1)

ε R(x, O(k),ω0) − c(k,2)
ε �yR(x, O(k),ω0)

and
T (j)(x, y,ω0) = c(j,1)

ε G(x, O(j),ω0) + c(j,2)
ε �yG(x, O(j),ω0).

Next, the Taylor expansion about x = O(k) gives for x ∈ ∂F(k)
ε , 1 ≤ k ≤ N,

rN(x) ∼ −S(k)(O(k), O(k),ω0)β(k) −
∑

1≤j≤N
j�=k

T (j)(O(k), O(j),ω0)β(j).

The last conditions provide an opportunity to obtain the unknown vector coefficients β(j), 1 ≤ j ≤
N, and to remove the leading-order discrepancy in the right-hand side. Thus, setting

0 = S(k)(O(k), O(k),ω0)β(k) +
∑

1≤j≤N
j�=k

T (j)(O(k), O(j),ω0)β(j), (4.3)

for 1 ≤ k ≤ N, provides a homogeneous system for the required coefficients.

(b) Approximation of eigenfrequencies
The degeneracies of the system (4.3) allow for the leading-order approximation ω0 to ωN to be
determined, while simultaneously ensuring the sought coefficients β(j), 1 ≤ j ≤ N, are non-trivial.
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With this in mind, (4.3) can be written in the matrix form

D(ω0)β = 0 with D(ω0) = I2N + G(ω0). (4.4)

Here, 0 represents the 2N-dimensional zero vector and I2N is the 2N × 2N identity matrix. In
addition, G(ω0) = [Gij(ω0)]N

i,j=1 is a 2N × 2N matrix with matrix entries

Gij(ω0) =
{

−c(i,1)
ε R(O(i), O(i),ω0) − c(i,2)

ε �yR(O(i), O(i),ω0), for i = j

c(j,1)
ε G(O(i), O(j),ω0) + c(j,2)

ε �yG(O(i), O(j),ω0), otherwise,

for 1 ≤ i, j ≤ N. Additionally, β = ((β(1))T, . . . , (β(N))T)T is the non-trivial solution of system (4.4).
Note in the case of a single inclusion, i.e. N = 1, the required matrix D(ω0) is simply

D(ω0) = I − c(1,1)
ε R(O(1), O(1),ω0) − c(1,2)

ε �yR(O(1), O(1),ω0) (4.5)

following directly from the above asymptotic algorithm with obvious modifications. The non-
trivial vector coefficients found in (4.4) are then obtained from the roots ω0 of det(D(ω0)) = 0.

5. Numerical illustrations for finite elastic media
Here, we demonstrate numerically the accuracy of the method developed by determining
eigenfrequencies and eigenmodes for elastic bodies with circular inclusions. We begin with the
case of a single inclusion to illustrate the main ideas before tackling clusters in elastic media.
Below, Ω is the disc of radius R = 5 m and centre at the origin and occupied by an elastic material
characterized by the Lamé constants λ=μ= 1 Nm−2 and density ρ = 1 kg m−3. The boundary
layers for Ω required by the asymptotic approximation are easily retrievable (see electronic
supplementary material, appendix A).

(a) A disc containing a single inclusion
(i) Prediction of eigenfrequencies

Here Ω contains a small circular hole of radius 0.1 m, with centre (0.5 m, 0.5 m). Approximations
ω0 of the eigenfrequencies of this elastic body are traceable from the roots of det(D(ω0)) = 0, which
uses (4.5). In figure 2a, |det(D(ω0))| is shown as a function of f , the frequency of vibration in Hertz
(f =ω0/2π ), within the frequency range 0.1 ≤ f ≤ 0.2. There, degeneracies of D(ω0) occur for seven
values of the frequency parameter f . In particular, figure 2b indicates that the eigenfrequencies of
the system can appear very close to each other.

The values of the first 10 eigenfrequencies for the considered system, based on the solution
of det(D(ω0)) = 0 are shown table 1. Accompanying these are the predictions for these
eigenfrequencies based on a finite-element analysis of the problem performed in COMSOL
Multiphysics 5.3 using the Structural Mechanics module (further details of the computation are
found in figure 3). The relative error between the analytical predictions and those based on the
finite-element method is also given. Based on this comparative analysis, it is clear this condition
allows for an excellent prediction of the eigenfrequencies. In electronic supplementary material,
appendix B, we present further computations of modes associated with several eigenfrequencies
found in table 1 to illustrate the effectiveness of the method presented here.

(ii) High-frequency eigenmode for the disc with a small hole

As an example showing the robustness of the asymptotic scheme for higher frequencies, we
present in figure 3a the 105th eigenmode of the considered system. This wave mode has three
preferential directions for oscillations in the radial direction. Note here, these oscillations are
almost comparable to the size of the small hole. Nevertheless, the approximation produces
an excellent match with the result of COMSOL in figure 3b. Additionally, based on the
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Figure 2. Behaviour of |det(D(ω0))| as a function of the frequency of vibration. (a) The plot of |det(D(ω0))| for 0.1≤ f ≤
0.2. (b) Magnification of the plot in (a) within the dashed box. Eigenfrequencies are given by the zeros of |det(D(ω0))| shown
in table 1.

Table 1. The first 10 eigenfrequencies (f in Hz) for a disc of radius 5 m and centre (0 m, 0 m) containing a small circular inclusion
with radius 0.1 m and centre (0.5 m, 0.5 m).

mode f from (4.4) COMSOL relative error mode f from (4.4) COMSOL relative error

1 0.11852 0.1186 0.064% 6 0.17863 0.17869 0.039%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.12348 0.12348 0.007% 7 0.18198 0.18185 0.019%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.12842 0.12847 0.039% 8 0.21237 0.21259 0.105%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.16702 0.16725 0.134% 9 0.21544 0.21551 0.034%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.16721 0.16743 0.134% 10 0.21556 0.21562 0.028%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

theory developed here, the prediction for the associated eigenfrequency as 0.61169 Hz, whereas
COMSOL predicts this to be 0.61236 Hz.

(b) Dynamics of composites with clusters of small inclusions
Here we highlight the effectiveness of the asymptotics in predicting the dynamic behaviour of
multiscale elastic composites with clusters of small inclusions occupying a domain or located
along a contour.

(i) Inclusions distributed within a subdomain of an elastic medium

We consider an elastic disc Ω containing N = 16 circular inclusions that form a rhomboidal
doubly periodic cluster (figure 4). The inclusions in the rhomboid have the centres given
by 0.3{(−3, −2)T + 2pv1 + qv2}, for 0 ≤ p, q ≤ 3, where v1 = (1, 0)T, v2 = (1,

√
3)T and radii equal

to 0.04 m if p + q is even and 0.06 m otherwise. COMSOL predicts this medium has the
first eigenfrequency 0.13442 Hz, whereas the asymptotic scheme predicts the value of this
eigenfrequency to be 0.1343 Hz. For the sake of brevity, we do not report the associated first
eigenmodes here.

Figure 4 shows the asymptotic approach accurately captures the dynamic response of an elastic
medium containing a cluster of inclusions at higher eigenfrequencies. The third mode for the
medium is presented figure 4a according to the asymptotic formulae, which predict the associated
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Figure 3. The total displacement for the 105th eigenmode corresponding to the eigenfrequency f = 0.61169 Hzgivenby (a) the
asymptotic approximation (4.1) and (b) COMSOLMultiPhysics. The finite element solution, involving the computation of 112 288
d.f., was computed on a mesh with 27 898 triangular elements, 348 edge elements and eight vertex elements. The average
absolute error between (a,b) is 2.04 × 10−2. (Online version in colour.)
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Figure 4. The total displacement associated with the third eigenmode for a disc containing a doubly periodic cluster of 16
circular rigid inclusions arranged in a rhomboid. Here, we present results obtained from (a) the asymptotic approximation (4.1)
and (b) COMSOL MultiPhysics where 260 082 d.f. were solved for on a mesh involving 64 614 triangular elements, 828 edge
elements and 68 vertex elements. Average absolute error between (a,b) is 1.7 × 10−3. (Online version in colour.)

eigenfrequency as 0.1584 Hz. In figure 4b the computation based on the finite element approach in
COMSOL is shown. COMSOL identifies the associated eigenfrequency as 0.15855 Hz. The visual
difference between (a) and (b) is again indistinguishable.

(ii) Inclusions distributed along a contour in an elastic medium

Here, we consider N = 10 rigid inclusions with centres distributed in Ω according to O(j) =
(Re(z(j)), Im(z(j)))T, z(j) = p(j) e−iπ/4 + i with p(j) = cos(2π (j − 1)/N) + 3

2 i sin(2π (j − 1)/N) for j =
1, . . . , N. The inclusion centres represent points located along the ellipse with centre (0 m, 1 m),
having semi-major and semi-minor axes 1.5 m and 1 m, respectively, and that is also rotated by
π/4 clockwise. Each circular inclusion has the radius 0.05 m. The described medium has a first
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Figure 5. The total displacement associated with the third eigenmode for a disc containing a cluster of 10 inclusions arranged
along an elliptical contour. The boundaries of the medium are clamped. Here, we present results obtained from (a) the
asymptotic approximation (4.1) and (b) COMSOLMultiPhysics. The finite-element solution is composed of 221 022 d.f., computed
on a mesh with 54 942 triangular elements, 636 edge elements and 44 vertex elements. Average absolute error between (a,b)
is 1.6 × 10−3. (Online version in colour.)

eigenmode at the eigenfrequency 0.13049 Hz, according to COMSOL, whereas the asymptotic
procedure predicts this to be 0.13059 Hz.

The third eigenmode for the elastic medium is presented in figure 5. This reveals that the
elliptical cluster helps to block the effects of external disturbances within its interior. Similar
effects have also been identified for infinite media for membranes and electrostatics [20]. At this
frequency, the cluster acts as an elastic analogue to the Faraday cage, which redistributes electrical
charge along its surface to suppress the effect of the electrostatic field inside. Once more, the
computations related to the asymptotics in (a) provide an excellent agreement with those based
on COMSOL, with the eigenfrequency corresponding to this mode being 0.1643 Hz and 0.1641 Hz
in figure 5a,b, respectively. The example discussed above shows the asymptotic scheme is efficient
in identifying special dynamic phenomena for finite non-periodic composites, while taking into
account the interactions between internal and exterior boundaries.

6. Scattering of elastic waves by clusters of inclusions
Next we adapt the tools developed in the previous sections to create asymptotic approximations
for fields associated with the scattering of elastic waves by rigid clusters.

(a) Governing equations for the problem of elastic wave scattering
We look for the approximation to the displacement field UN(x,ω) that is a solution to the problem

μ�UN(x,ω) + (λ+ μ)∇(∇ · UN(x,ω)) + ρω2UN(x,ω) = f(x), x ∈ R
2\ ∪N

j=1 F(j)
ε (6.1)

and

UN(x,ω) = 0, x ∈ ∪N
j=1∂F(j)

ε ,

with f representing the body force applied to the elastic medium that generates an incident field
with frequency ω on the cluster. In what follows, we approximate the field UN by making use of
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model fields defined in §3b, and the solution to an inhomogeneous algebraic system that appears
when satisfying the boundary conditions on small inclusions to a high order of accuracy.

We briefly mention that if the cluster is dense, periodic and the inclusion size is exponentially
small compared with their separation, then in the low-frequency regime the approximation
developed in the next section yields an effective equation for the cluster F. Indeed, for circular
inclusions, let ε= exp(−cd−2), with d being the separation of individual inclusions and c being
a parameter determining the inclusion radius ε when compared with d inside a unit cell of the
cluster. Then inside the cloud of rigid inclusions, waves are governed by the equation

μ�U eff(x,ω) + (λ+ μ)∇(∇ · U eff(x,ω)) +
(
ρω2 − 4π

c
μ(λ+ 2μ)
λ+ 3μ

)
U eff(x,ω) = f(x), x ∈ F, (6.2)

where U eff is the effective wavefield in F. This result is derived in electronic supplementary
material, appendix C.

(b) Asymptotic algorithm
Note it is standard to represent the total field UN as

UN(x,ω) = U i(x,ω) + U s
N(x,ω), (6.3)

where U i(x,ω) is the field that is incident on the cluster and produced by the load f. This field is
assumed to be known and regular in the vicinity of the cluster. It is a solution of

μ�U i(x,ω) + (λ+ μ)∇(∇ · U i(x,ω)) + ρω2U i(x,ω) = f(x), x ∈ R
2. (6.4)

In (6.3), U s
N(x,ω) is the scattered field produced by the interaction of the incident wave and the

cluster and it remains to provide the approximation to this vector function. With this in mind, we
note the scattered field solves

μ�U s
N(x,ω) + (λ+ μ)∇(∇ · U s

N(x,ω)) + ρω2U s
N(x,ω) = 0, x ∈ R

2\ ∪N
j=1 F(j)

ε

and

U s
N(x,ω) = −U i(x,ω), x ∈ ∂F(j)

ε , 1 ≤ j ≤ N.

Far from the cluster, U s
N(x,ω) satisfies analogous radiation conditions to (3.3) and (3.4), except

that here ks =
√
ρω2/μ and kp =

√
ρω2/(λ+ 2μ). We look for the scattered field in the form

U s
N(x,ω) =

N∑
j=1

U(j)
ε (x,ω)C(j) + RN(x), (6.5)

where U(j)
ε is defined in §3b and C(j) are constant vectors now to be determined as solutions of an

inhomogeneous system. The remainder RN then is a solution of the equation

μ�RN(x) + (λ+ μ)∇(∇ · RN(x)) + ρω2RN(x) = 0, x ∈ R
2\ ∪N

j=1 F(j)
ε ,

and on the boundary of small inclusions, i.e. when x ∈ ∂F(j)
ε , 1 ≤ j ≤ N, we have

RN(x) = −U i(x,ω) − C(j) −
∑
k �=j

1≤k≤N

U(k)
ε (x,ω)C(k),

where (6.5) and (3.2) have been used. We then apply the Taylor expansion about x = O(j) to obtain:

RN(x) ∼ −U i(O(j),ω) − C(j) −
∑
k �=j

1≤k≤N

U(k)
ε (O(j),ω)C(k), x ∈ ∂F(j)

ε , 1 ≤ j ≤ N.
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Figure 6. Scattering of waves produced by a non-periodic circular cluster. Total displacement field based on computations
in COMSOL is shown in (a,b) and involve 855 346 d.f. An adaptive absorbing layer (AAL) is included on the exterior of the
computational domain, indicated by white dashed lines to reduce reflections. The mesh used to compute the finite-element
solution consists of 213 194 triangular elements, 1902 edge elements and 69 vertex elements. Here (b,c) show a magnification
of the results in (a) in the neighbourhood of the point source and the circular cluster, with (c) based on the asymptotics (6.5)
with (6.6). (Online version in colour.)

Here, the leading-order term in the right-hand side can be removed by appropriately choosing
the coefficients C(j), 1 ≤ j ≤ N. Hence, for 1 ≤ j ≤ N, we prescribe that these coefficients satisfy

C(j) +
∑
k �=j

1≤k≤N

U(k)
ε (O(j),ω)C(k) = −U i(O(j),ω). (6.6)

(c) Numerical example: scattering of waves by a circular cluster
As a final illustration of the theory developed in §6b, we consider scattering of in-plane elastic
waves due to a cluster of inclusions. The cluster has N = 14 small circular defects of varying
radius, from 0.08 m to 0.16 m, distributed along a circular contour of radius 2.5 m and centre
(0 m, 0 m)T (see electronic supplementary material, appendix D for the data describing the
inclusions). The medium is subjected to a horizontally acting sinusoidal force of unit amplitude
and frequency f = 1/π Hz, located at y = (−8, 0)T outside the cluster. Here, f = −δ(x − y)(1, 0)T

in (6.1) and, mathematically, the field UN represents the first column of Green’s tensor for

R
2\ ∪N

j=1 F(j)
ε . To employ our asymptotic scheme, we require the incident field U i

N(x,ω) (see (6.4)),
which is taken as the first column of the matrix Γ in (3.1). The scattered field U s

N(x,ω) is then
given by (6.5), (6.6) together with (3.5).

Figure 6 shows that shear waves produced by the load, whose wavelengths are comparable
to the spacing of the inclusions, interact with the cluster and are scattered. Clear preferential
directions of the scattered waves can be seen at approximately 45◦ and 135◦ from the base of the
cluster defined relative to the positive x1-direction. There are also pressure waves to left and right
of the load that interact with the waves reflected by the cluster. As in §5b, the cluster helps to
suppress the influence of the external vibrations within its interior. It also produces a shielding
effect illustrated by the shadow behind the cluster relative to the load. A magnification of the
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phenomenon encountered by the source interacting with the cluster is shown in figure 6b. The
corresponding result based on the asymptotic approximation is shown in figure 6c. Once more,
we have an excellent agreement between the results in figure 6b,c.

7. Conclusion
Here, we have developed an asymptotic algorithm to model the in-plane dynamic behaviour
of both finite and infinite elastic media with clusters of small rigid inclusions. The approach
uses boundary layers constructed from functions naturally associated with the partial differential
operator embedded in the underlying boundary value problems. As a result, this allows for
a greater the range of applicability of the asymptotic results when compared with previous
asymptotic approximations [46–51] for quasi-static problems that use boundary layers well suited
to static problems. The boundary layers introduced here also take into account the size and shape
of small inclusions and, for finite elastic media, account for the influence of the exterior boundary
in the considered dynamic processes.

Another key ingredient in constructing the asymptotic approximations are the solutions to
certain finite algebraic systems that arise when attempting to satisfy the boundary conditions to a
high degree of accuracy. These systems incorporate information about the types of individual
inclusions, their size and distribution. The corresponding solutions allow the asymptotic
formulae to accurately capture the interaction between the inclusions up to and including the
boundaries of the medium. It is important to note that the approximations do not require strict
assumptions on the distribution of inclusions within clusters, such as periodicity, or probabilistic
conditions on their arrangement that are often easily treated with homogenization techniques.

Further, the asymptotic scheme may provide an efficient alternative to techniques such as the
multipole method and T-matrix method used in the analysis of elastic scattering. They require the
handling of infinite algebraic systems in capturing the interaction of obstacles that, as mentioned
in [9], can lead to numerical problems in their application. In general, the meso-scale technique
developed here only requires the multipole expansion of fields for inclusions in isolation, and the
subsequent use of these fields in solving finite systems which are easily handled computationally.

The formal asymptotic algorithms presented are also extendable, with modifications, to
problems involving defects of different types, e.g. voids, soft inclusions and inertial inclusions
such as masses and resonators, and different dynamic problems for elastic media useful in the
construction of novel waveguides and structured metamaterials.

Potential applications of the proposed methods include civil engineering, the non-destructive
testing of materials and the modal analysis of structures found in, for instance, civil engineering,
aerospace and naval architecture where stratified solids are often used. Additionally, the method
may open new directions in the design of novel composites that use an embedded microstructure
to achieve unconventional macro-level responses for practical purposes.
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