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Abstract

We examine long-term evolution of a random wind wave field generated by constant forcing, by

comparing numerical simulations of the kinetic equation and direct numerical simulations (DNS)

of the dynamical equations. While integral characteristics of spectra are in reasonably good agree-

ment, the spectral shapes differ considerably at large times, the DNS spectral shape being in

much better agreement with field observations. Varying the number of resonant and approxi-

mately resonant wave interactions in the DNS numerical scheme, we show that when the ratio of

nonlinear and linear parts of the Hamiltonian tends to zero, the DNS spectral shape approaches

the shape predicted by the kinetic equation. We attribute the discrepancies between the kinetic

equation modelling, on one side, and the DNS and observations, on the other, to the neglect of

non-Gaussianity in the derivation of the kinetic equation.

Introduction.—Long-term nonlinear evolution of random wave fields is described by wave

turbulence theory, which links ensemble averaged quantities of the field to spectral density

nk = n(k, t), a function of wavevector k and time t [1]. This quantity, proportionate to the

Fourier transform of two-point averages, is called the particle number, power or waveaction

density in various contexts. Often, there is an inverse cascade of this quantity towards large

scales, leading to emergence of long waves due to resonant interactions of shorter waves.

Within the wave turbulence theory, the process is described by the kinetic equation (KE),

which expresses time derivatives of the density in terms of this density only [1, 2]. Analytical

and numerical solutions of this equation form the core of our understanding of random wave

fields evolution on large timescales.

By far the most studied example of this evolution is provided by oceanic wind waves.

The corresponding KE is known as the Hasselmann equation [3], and is routinely simulated

numerically for operational wave forecasting. From the theoretical perspective, the wind

wave example stands out due to the continuous world wide testing of the forecasting against

observations, which gives a unique chance to verify the assumptions underlying the wave

turbulence theory.

While there is a consensus that the KE does capture main features of wave field evolution

[4–8], there are major discrepancies between the KE based predictions and observations. The

inherent property of the KE is the homogeneity of the wave interaction term as a function

of spectral energy density [8]. This property leads to self-similarity of the solutions in a
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wide range of wave generation conditions [9] and allows to formulate the basic laws of wind-

wave growth independently of wind speed [8]. In the idealized situation when a wave field

is generated by constant wind, the KE predicts that the solution tends to a permanent

self-similar shape, with a characteristic enhanced peak and steep nearly straight spectral

front, which evolves towards large scales following the known asymptotic laws (e.g., [9]).

As long as the consideration is confined to integral characteristics of a wave field (such

as significant wave height, total energy, frequency of the spectral peak), the self-similar

picture of wind wave development predicted by the KE is generally supported experimentally

[5, 6, 8]. However, a closer look at spectral shapes reveals a major discrepancy: the observed

spectral shapes of young and mature sea states essentially differ (JONSWAP and Pierson-

Moskowitz spectra respectively) [10]. As waves mature, a decrease in the spectral peakedness

is observed [7, 11–13]. The parametrization of spectral shape of fully-developed sea, proposed

in [14], confirmed in later reanalysis [15] and at present widely accepted to be well assured

statistically [11], is different from the shape of the self-similar KE solutions, having a more

rounded spectral front and peak with no pronounced enhancement. Evolution of the spectral

shape with fetch with a decrease of peakedness and a continuous transition to the Pierson-

Moskowitz spectrum has been described in a number of measurement-based studies [7, 11–

13]. At this stage of wave field development, the spectral peak is no longer under direct wind

forcing, and the probability of breaking events for dominant waves is low [15, 16], so that the

shape of the peak should be determined primarily by nonlinear interactions. Therefore, the

fact that the KE is unable to reproduce this spectral shape represents a major fundamental

challenge.

Until recently, the KE as the model of long-term wind wave field evolution did not have

an alternative (a generalization proposed by [17], although useful, in the large time limit

tends to the KE and, hence, does not resolve the contradiction). This situation was changed

when a direct numerical simulation (DNS) algorithm capable of long-term simulations of

random wave field was proposed [18–20]. The algorithm is based on the Zakharov equation,

from which the KE is derived, and performs simulations with ensemble averaging without

any statistical assumptions. DNS simulations without wind showed, in particular, that in

contrast to the KE predictions, the DNS spectra have less steep, more rounded spectral

front and considerably wider and lower peak [20]. At the same time, no apparent reason

to question the basic assumptions underlying the wave turbulence theory (e.g., smallness of
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non-Gaussianity, wide separation of timescales) has been found, and an explanation of the

discrepancies remained outstanding.

In this work, we identify the origin of the discrepancies as the neglect of small but finite

non-Gaussianity in the derivation of the KE itself, rather than in the underlying theory. In

order to get a closed equation in terms of nk, one has to express the six-point correlator

in terms of two-point ones only, neglecting the four-point cumulants in the expansion [21].

This approximation, equivalent to the assumption of random initial phases [22], leads to the

aforementioned homogeneity property, absent in the primitive equations, and contradicts the

established picture of weak turbulence, according to which the wave field evolution is due

to nonlinear regeneration of non-Gaussianity [23]. Thus, the KE takes into account finite

nonlinearity (the asymptotic expansion in powers of nonlinearity retains cubic terms), but

assumes infinitesimal non-Gaussianity. Crucially, according to the KE the spectral shape

is the same for all levels of nonlinearity, including infinitesimal nonlinearity. In this sense,

the neglect of finite non-Gaussianity does not allow to properly capture the effects of finite

nonlinearity either.

To consider the effects of finite non-Gaussianity on the long-term evolution of a random

wave field, we examine by DNS the evolution of a wave field generated by constant wind,

and compare it with the KE results. In both models, the evolution tends to self-similarity,

and integral characteristics of the spectra are close to each other. However, the shape

of the DNS spectra is quite different, with a lower, less pronounced peak. Introducing

an integral characteristics of the non-Gaussianity linked to the coarse-graining parameter

of the numerical scheme, we find the wave spectrum dependence on non-Gaussianity, and

demonstrate that the DNS spectral shape converges to the KE one when the non-Gaussianity

tends to zero. This enables us to attribute the origin of the discrepancy to the neglect of

non-Gaussianity in the KE derivation.

Theoretical background and numerical methods.—We consider gravity waves on the sur-

face of deep fluid governed by the Zakharov equation [1]

i
∂b0
∂t

= ω0b0 +

∫

T0123b
∗

1b2b3δ0+1−2−3 dk123. (1)

Here, b(k) is a canonical complex variable in Fourier space, k is the wavevector, k = |k|,

ω(k) = (gk)1/2 is the linear dispersion relation. The compact notation used designates

arguments by indices, e.g., T0123 = T (k,k1,k2,k3), δ0+1−2−3 = δ(k+ k1 − k2 − k3), asterisk
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means complex conjugation, and t is time.

For wave fields with the 2 ↔ 2 type dominant resonant process (1) is often taken as

the primitive equation (thus, higher-order resonances are neglected). Then the statistical

description of a wave field can be obtained in terms of correlators of b(k, t) as [17]

∂n0

∂t
= 2Im

∫

T0123J
(1)
0123δ0+1−2−3 dk123. (2)

where n0 is the second-order correlator, 〈b∗0b1〉 = n0δ0−1, J
(1)
0123 is the four-point cumulant.

In the next order ([21]),

(

∂

∂t
− i∆ω

)

J
(1)
0123 = 2i

∫

{

T0456δ0+4−5−6I156234 (3)

+T1456δ1+4−5−6I056234 − T2456δ2+4−5−6I014356 − T3456δ3+4−5−6I014256

}

dk456,

where ∆ω = ω0 + ω1 − ω2 − ω3, and I012345 is the six-point correlator. Since the six-point

cumulant is neglected, I012345 is reduced to a lengthy expression containing pair correlators

and four-point cumulants. Thus, the system of equations for two- and four-point correlators

is closed. However, to obtain the closed equation for nk, we must neglect all four-point cu-

mulants in the expansion for I012345, retaining only the leading-order term. Such a reduction

is equivalent to the Gaussianity assumption. The resulting KE is

∂n0

∂t
= 4π

∫

T 2
0123f0123δ0+1−2−3δ(∆ω) dk123, (4)

where f0123 = n2n3(n0 + n1) − n0n1(n2 + n3). Equivalently, the KE can be derived by

assuming initial random phases [22].

The neglect of weak non-Gaussianity in the derivation of the KE makes its right-hand

side a homogeneous function of n(k) [8]. Basically, this means that the shape of the solutions

for spectra provided by the KE corresponds to the case of infinitesimal amplitude. Thus

the role of finite amplitude effects remains unknown. As the first attempt to study these

effects, we compare numerical simulations based on the KE and the Zakharov equation

(1). The Zakharov equation is simulated using the original algorithm, described in [20].

All parameters of the algorithm are the same as in [20], except for three modifications.

First, in contrast to the simulations of swell in [20], we add wind forcing according to [24],

for all k < 4.84. Second, to accommodate the wider angular distribution of wind wave

spectra, we increase the range of angles, retaining the same angular resolution. Thus, the
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FIG. 1. Development of wave action spectrum n(k) under the constant wind U = 2c1, shown in

steps of approximately 300τ1, where c1 and τ1 are characteristic phase speed and period, corre-

sponding to k = 1. (a) KE, WRT algorithm (b) DNS, with λk = 0.03 on 161×71 grid. Wavenumber

ranges of forcing and dissipation are indicated by arrows

computational grid contains 161 logarithmically spaced wavenumbers in the range 0.25 ≤

k ≤ 9 and 71 angles in the range −7π/9 ≤ θ ≤ 7π/9. Third, a DNS algorithm with wind

forcing can only be functional if a certain parameterization of wave breaking is employed.

Here we do not attempt to model the physical process of wave breaking, but intermittency

in individual realisations makes it necessary to limit the growth of some wind amplified

harmonics. To this end the following empirical rule is introduced: if non-dimensional value

εk = 0.5
√

2ωnk/g/πk exceeds εc, where nk is the discrete wave action of a harmonic under

forcing, then the forcing is changed to damping until εk ≤ 0.1εc, when it is resumed. For the

simulations with the 161×71 grid, εc is set to 0.01, resulting in a small number of “breaking
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events”, usually between 0 and 5 for each realisation at every timestep. A detailed discussion

of the structure of the DNS algorithm and the role of parameters λk and εc, with a number

of additional simulations, is provided in the Supplemental material [25].

For the KE simulations, we use the standard WRT algorithm, provided by G. van Vledder,

and 101 × 51 grid with the same range of wavenumbers and full circle of directions. Wind

forcing is identical for both models, dissipation is applied to k ≥ 6.25.

Results.—First, we perform simulations of the wave field development from zero initial

condition under forcing by constant wind with speed U = 2c1, where c1 is the phase speed

corresponding to k = 1, close to the peak wavenumber at the end of the evolution. The DNS

simulation is performed with averaging over 100 realizations. Development of the wave action

spectrum n(k) with time for both numerical methods is shown in Fig. 1. Comparison of the

panels shows that both solutions tend to self-similar behaviour, and that the asymptotics

of duration-limited wave growth under constant wave action flux, known from the analysis

of the KE [9], are respected in both cases. However, the spectral shapes, which are initially

close, differ considerably at later stages of the evolution. Although the spectral slope in

both cases corresponds to the theoretical value for the inverse cascade of wave action k−23/6

[21], the DNS spectra have less steep, more rounded spectral front and considerably wider

and lower peak. Similar differences were reported earlier for simulations of wave evolution

without wind forcing [20]. In the present case, the KE evolution also demonstrates a slightly

faster downshift rate.

Due to the homogeneity property of the KE, the self-similar spectral shape is the same for

all levels of nonlinearity, and the downshift rate has a simple scaling law [8]. If the discrep-

ancies between the KE and the DNS are due to the effects of non-Gaussianity unaccounted

for by the KE, they are expected to decrease at lower levels of nonlinearity. Simulations

with lower wind forcing indeed show that the difference in downshift rate decreases, but the

difference in spectral shapes persists. Our aim to compare the DNS and the KE evolution

in the small nonlinearity limit cannot be done by simply decreasing the wind speed, since

wind-generated waves always have a certain finite steepness.

Here we use another approach, which is helped by the particular design of the DNS al-

gorithm. The algorithm is based on the idea of coarse-graining of a wave field [20], which

relaxes the resonance condition into k0 + k1 − k2 − k3 = ∆k. In contrast to the stan-

dard condition ∆k = 0, the wavevector and frequency mismatches satisfy ∆ω/ωmin < λω,
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FIG. 2. Non-Gaussianity as measured by µ, the ratio of statistically averaged nonlinear and linear

energy as function of the coarse-graining parameter λk. µ is averaged over 600 characteristic periods

of the final stage of evolution before the spectral peak reaches kp = 1.

|∆k|/kmin < λkω̄/ωmin, where ωmin and kmin are the minimum values of frequency and

wavenumber in the quartet, ω̄ is the mean frequency, and λω and λk are the detuning pa-

rameters. The crucial role is played by the coarse-graining parameter λk. If λk = 0, the wave

field in the canonically transformed space, in which both the Zakharov equation and the KE

operate, is free (Gaussian) regardless of the amplitude, since a logarithmically spaced grid

with λk = 0 allows no nontrivial wave interactions and, hence, no evolution. When λk is

increased, the number of approximately resonant interactions (with fixed λω = 0.01) grows

approximately quadratically with λk, while the rate of spectral evolution, measured by the

rate of change of various integral parameters, quickly increases, until it reaches saturation

at a certain value λk, dependent on grid resolution. Since in [20] the value λk = 0.03 was

found to be optimal for the 161 × 71 grid, this value was used while computing the DNS

evolution shown in Fig. 1. For the purpose of this study, it is convenient to use λk as a

way to create wave fields with the same level of nonlinearity ε, but different levels of non-

Gaussianity. In order to avoid discreteness artefacts at low number of interactions, we use,

along with the 161 × 71 grid, the refined grid 321 × 71, setting εc = 0.0075 and λk in the

range 0.003 ≤ λk ≤ 0.03. Non-Gaussianity can be measured as the ratio of the nonlinear

part of the ensemble averaged Hamiltonian H̄ [19]

H̄NL =
1

2

∫

T0123〈b
∗

0b
∗

1b2b3〉δ0+1−2−3 dk0123, (5)
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FIG. 3. Self-similar shape function U(ξ), ξ = kt6/11, extracted from the numerical solutions at the

last 1000 wave periods of evolution. Shapes at every 100 periods are shown in light colours, the

final curve is in darker colour of the same hue, normalized for U(1) = 1. Numerical models used

are the KE and the DNS on 161 × 71 (DNS161) and 321 × 71 (DNS321) grids for different values

of λk

and its linear part H̄L =
∫

ω0n0 dk0.

Evolution of all wave fields is traced by the DNS with the same wind forcing as above,

until the peak of wave action spectrum n(k) reaches kp = 1. Under the wind forcing, linear

and nonlinear parts of the Hamiltonian both grow with time, but their ratio µ = H̄NL/H̄L

is approximately constant at the self-similar stage of evolution. The non-zero value of µ,

although very small, is a prerequisite for spectral evolution. Figure 2 shows the value of

µ averaged over the last 600 periods of evolution before reaching kp = 1 for both grids,

as function of λk. Non-Gaussianity quickly grows with the increase of λk, approaching

saturation at λk ≥ 0.03. Meanwhile, the spectral evolution, as described by various integral

parameters, does converge for both grids, and is very close between them. Formally, the

value of λk required for the simulation can be made smaller by further refinement of the grid,

although in practice this is limited by the available computational resources. In particular,

on the refined 321×71 grid the number of wave interactions exceeds 109 already for λk = 0.01.

We are mainly interested in the shape of the spectrum. At the self-similar stage of

evolution the spectral shape is characterized by the self-similar function U for the duration-

limited evolution: n(k) = at23/11U(bkt6/11), where a and b are constants [9]. The simulated
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values of λk vs the KE simulation

self-similar spectral shapes U(ξ) are shown in Fig. 3. While the spectral slope depends on the

parameterization of breaking more than on λk, the shape of the spectral front demonstrates

a clear dependence on λk. For small λk, the wave field has relatively few wave interactions

(about 108 on the 321 × 71 grid at λk = 0.003), and the evolution is very slow, although

the self-similar state is eventually reached, with the spectral front of the shape function

U(ξ) close to the KE shape function. With the increase of λk from zero, the shape function

quickly approaches a different form, with a more rounded front and wider peak, resembling

the Pierson-Moskowitz spectral shape.

For many applications, the evolution and prediction of integral charateristics of spectra,

such as significant wave height, is of particular importance [4]. The key question is whether

the evolution of integral characteristics can be affected by the effects of finite non-Gaussianity

for realistic wind speeds. To clarify this point, we plot in Fig. 4 the evolution of significant

wave height Hs obtained with the KE and the DNS for various values of λk. Figure 4

demonstrates that with the increase of λk the DNS evolution of Hs converges, remaining

slightly slower than that predicted by the KE, but following the same asymptotic rate of

increase known for the KE in the case of constant action flux [9]. The difference between

the KE and the DNS is mostly manifested in the spectral shape, while the difference in

significant wave height is relatively small and appears to be due to breaking that effectively

reduces the forcing. Simulation of the KE with wind forcing reduced by 5% makes the
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difference insignificant.

Duscussion.—Studies of wave kinetics based on the KE rely on the homogeneity of the

right-hand side of the equation with respect to the spectrum. This property is an artefact of

the neglect of non-Gaussianity effects. In this work, we show that although non-Gaussianity

is weak, in the long term it leads to considerable discrepancy in the spectral shape. At the

same time, integral parameters of a wave field appear to be much less affected, with the error

remaining within the uncertainty introduced by wave breaking, which the DNS modelling

has to take into account. The spectral shape obtained by the DNS appears to be in much

closer agreement with observations of mature sea states than the KE spectral shape.

The present study and its findings have numerous important implications. First, they are

of crucial importance for all applications where the shape of the wave spectrum is significant,

rather than just its integrated description, in particular for probability estimates of extreme

wave events, design or coastal hazard risk assessments, sediment transport models, etc.

Second, it is well known that the wind wave models based on the KE are optimized for

certain frequency and directional resolutions against the available measurements. Knowledge

of systematic errors in models can drastically improve the quality of such optimizations, and

thus improve the quality of wind wave modelling. Third, the findings of this study provide,

for the first time, an insight on the role of non-Gaussianity in kinetic models, which is

significant for a wide context of wave turbulence in various branches of physics.
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