

 Int. J. Web Engineering and Technology, Vol. X, No. Y, xxxx 1

 Copyright © 20XX Inderscience Enterprises Ltd.

Web applications testing techniques:
a systematic mapping study

Samer Hanna*
Department of Software Engineering,
Faculty of Information Technology,
Philadelphia University, Jordan
Email: shanna@philadelphia.edu.jo
*Corresponding author

Amro Al-Said Ahmad
School of Computing and Mathematics,
University of Keele, UK
Email: a.al-said.ahmad@keele.ac.uk

Abstract: Due to the importance of web application testing techniques for
detecting faults and assessing quality attributes, many research papers were
published in this field. For this reason, it became essential to analyse, classify
and summarise the research in the field. To achieve this goal, this research
conducted a systematic mapping study on 98 research papers in the field of web
applications testing published between 2008 and 2021. The results showed that
the most commonly used web applications testing techniques in literature are
model-based testing and security testing. Besides, the most commonly used
models in model-based testing are finite-state machines. The most targeted
vulnerability in security testing is SQL injection. Test automation is the most
targeted testing goal in both model-based and security testing. For other web
applications testing techniques, the main goals of testing were test automation,
test coverage, and assessing security quality attributes.

Keywords: web applications testing techniques; systematic mapping study;
SMS; testing purposes; model-based testing; security testing; test automation;
test coverage.

Reference to this paper should be made as follows: Hanna, S. and
Al-Said Ahmad, A. (xxxx) ‘Web applications testing techniques: a systematic
mapping study’, Int. J. Web Engineering and Technology, Vol. X, No. Y,
pp.xxx–xxx.

Biographical notes: Samer Hanna is an Associate Professor and currently the
Head of both the Software Engineering and the Web Engineering Departments
at the Faculty of Information Technology at Philadelphia University in Jordan.
He obtained his PhD in Computer Science (Software Engineering) in 2008
from Durham University in England. His current research interests include:
assessing the security and dependability of web applications and mobile
applications using different testing techniques, and enhancing software
engineering curricula by comparing courses with the industrial needs.

Amro Al-Said Ahmad is a Lecturer in Computer Science at the School of
Computing and Mathematics at Keele University, UK. He completed his PhD
in Cloud Computing at the School of Computing and Mathematics of Keele

 2 S. Hanna and A. Al-Said Ahmad

University, UK. His main research interest is focused on the technical
scalability of cloud-based services and the delivery of such services from a
technical perspective. His other research interests address the research areas of
software engineering, software testing, software metrics, and agile
methodology. In relation to web engineering, he is interested in the testing and
evaluation of web/cloud systems and applications.

1 Introduction

Due to the importance of web applications in many domains, such as healthcare and
banking, it is crucial to test these applications to assess their quality attributes, such as
security, reliability, and performance. The field of web applications testing had thrived in
the past years, and numerous research studies covering many techniques, methods, or
approaches for testing web applications were published in the main journals and
conferences related to software testing and software engineering in general. For this
reason, it became important to analyse, categorise and classify published research papers
to help researchers and practitioners to identify the main testing techniques used with
web applications and the gaps in the research in this field. This allows researchers to
focus on the areas that are not receiving the required attention in this field.

The main goal of this research is to analyse and classify the studies in the field of web
applications testing to find out the main testing techniques used for test data generation
for web applications and the main testing targets or goals for these techniques or
approaches.

Systematic reviews and mapping studies aim to collect evidences on specific research
questions (RQs) or subjects of interest (Kitchenham et al., 2015). To reach the goal of
analysing web application testing techniques, this research conducted a systematic
mapping study (SMS) that addresses the testing techniques, approaches or methods used
with web applications and the goals or purposes of each of these testing techniques.

To conduct the SMS in this paper, 98 research papers published between 2008 and
2021 in the field of web applications testing were reviewed, analysed and classified based
on the testing technique used and the testing goal in each paper.

The research papers in the field of web applications testing have proposed different
testing techniques, approaches or methods for assessing a variety of quality attributes of
web applications. Examples of the testing techniques used by researchers in this field are
model-based testing, security testing, mutation testing, and performance testing.

The SMS results revealed that the most commonly used web applications testing
techniques are model-based and security testing. For this reason, these testing techniques
are given more attention in this paper by categorising the research papers related to the
model-based testing techniques according to the model used to generate test data and
categorising the research papers related to security testing according to the targeted
vulnerability.

The result also showed that the most commonly used models in model-based testing
are finite state machines (FSM) and the main investigated vulnerability in security testing
is structured query language (SQL) injection. It was also concluded that test automation
is the most commonly targeted testing goal for model-based testing and security testing.

 Web applications testing techniques 3

The testing goals of all of the reviewed papers in the field of web applications testing are
specified in Section 11.

Model-based web applications testing (MWAT) (Section 8) have special importance
in web applications since these applications are complicated and built using many
different programming languages and technologies, such as HTML, CSS, JavaScript,
XML, PHP, ASP.NET, Java, and Python. Therefore, modelling web applications will
make them more understandable by testers and will simplify the process of test data
generation based on the resulted models. Different models or graphs, such as FSM and
page flow graph (PFG), can be used to generate test cases for web applications.

In security-based web applications testing (SWAT) (Section 7), test case generation is
based on the specific vulnerability targeted by the testing, such as SQL injection or
cross-site scripting (XSS). In such testing, HTTP requests that include input values
related to the targeted vulnerability are sent to the web application under test. The HTTP
response from this application is analysed to determine whether such malicious inputs
were detected by the application under test or not. In this case, test data include inputs
that are related to the specific vulnerability to be detected. On the other hand, if we
consider model-based testing as another example, test data in this case can be generated
based on the paths specified by the model used in testing. Therefore, test data generation
is based on the testing technique that is used to test a web application, which, in turn, is
based on the targeted quality attribute specified by the requirements for this application.

This research provides a classification schema (Section 6) for the research papers in
the field of web applications testing techniques to achieve the following main targets.

a To help researchers and practitioners in this field by providing an overview of the
current trends in the field.

b To help researchers in this field to discover the areas that had been thoroughly
studied by researchers and the areas that still require further investigation.

This will help researchers to focus on the areas of web applications testing that had not
been fully explored and hence will lead to covering the different aspects or attributes of
web applications by software testing.

The inclusion criteria for the papers in this SMS are as follows: for a paper to be
included in this SMS, it must:

a Tackle a specific testing technique, approach or method for web applications testing.

b It must specify the goal or purpose of testing, such as assessing a certain quality
attribute or covering all the inputs of a web application.

The main quality attributes found in literature are security, performance, and usability.
Inputs to a web application can be login, personal, financial, or any other input depending
on the purpose of the application under test.

The contributions of this research are:

 Building a classification schema for the research in the field of web applications
testing that can be used to categorise every research in this field.

 Identifying the current state-of-the-art and trends in the field of web applications
testing techniques and testing goals.

 4 S. Hanna and A. Al-Said Ahmad

 Determining the mostly targeted testing goals for web applications testing
techniques.

The remainder of this paper is organised as follows; Section 2 outlines the background of
the field of web applications testing. Section 3 describes the related work to this paper.
Section 4 describes the research method followed by this research. Section 5 classifies
reviewed studies according to the publication year. Section 6 provides a classification
schema for the research in the field of web applications testing techniques. Section 7
provides details about security-based web application testing techniques together with the
targeted vulnerabilities, Section 8 presents details about model-based web application
testing techniques together with the models used for test case generation, Section 9
explains the other testing techniques used in web applications testing. Section 10
provides a classification of the primary studies based on the testing technique or approach
used, while Section 11 classifies the primary studies based on testing goals. Section 12
classifies the studies based on the evaluation method used in each study. Finally,
Section 13 presents the conclusion and discusses future work.

2 Background

Because this study aims at analysing the research in the field of web applications testing
and testing techniques, traditional software testing will be discussed in Subsection 2.1
and web applications testing will be discussed in Subsection 2.2. The aim is to describe
these terms in detail and to explain the differences between testing traditional
applications versus testing web applications.

2.1 Software testing

The software development life cycle includes the following main phases: requirements
specification, architecture, design, coding, testing, and maintenance. Each of these phases
has its own process and activities. Testing is considered as one of the most important
phases of a software application’s development life cycle since it consumes
approximately 40% of the total time needed to build an application (Li et al., 2014).

Software testing can be used for detecting faults and assessing quality attributes, such
as security, performance, and reliability. It is important to detect faults in a system as
early as possible because the cost of correcting these faults will be much higher after the
delivery of the system to the client. Besides, it is important to check that a system can
accomplish all the required functionality and in a reliable, dependable and secure manner.

Software testing involves generating test cases that include both test data and the
expected output. The software application is executed with test data to check that the
actual output obtained when executing the application is equal to the expected output
specified by each test case.

Software testing can be time-consuming and labour-intensive when performed
manually; therefore, researchers and practitioners are doing their best to find approaches
and tools that can be used to automate or at least semi-automate this process.

 Web applications testing techniques 5

2.2 Web applications testing

Testing web applications is essential since we rely on these applications in many areas of
our daily lives. Testing web applications can be used for ensuring that these applications
fulfil the required functionality and are secure, well-performed, and dependable.

As web applications have peculiarities that did not exist before the inception of
HTML in late 1989, testing these applications is different from software testing of
traditional applications. One of these peculiarities is that more than one user can use a
web application simultaneously and at any time, besides, any user around the world can
insert any input into a web application. Traditional testing techniques must be modified to
cope with such peculiarities of web applications.

A web application testing includes:

a Generating test data based on the different web applications testing techniques, such
as model-based testing and security testing.

b Sending an HTTP request to the web application under test using the different test
data, and comparing the HTTP response of this application with the expected
response to each of the test data.

Web application testing techniques such as security testing (Section 7) and model-based
testing (Section 8) can be used to assess different quality attributes of web applications.
These techniques can have different goals, such as automating the testing process or
covering all the paths of the web application under test, Section 11 describes all of the
testing goals of the reviewed research in this SMS. Determining the required quality or
other test goals depends on the web application’s specified requirements.

Test data can be determined based on either the targeted quality attributes such as
security or performance, or the test goal, or targets such as reducing test time or
increasing test coverage. For example, suppose the targeted quality is security. In this
case, the security-based testing technique must be performed to achieve this target. The
test data, in this case, would be the inputs related to the top vulnerabilities of web
applications, such as SQL injection and XSS. However, suppose the targeted quality is
performance, in that case, the testing technique related to assessing the performance
quality attribute must be performed, and the test data would be concluded based on
increasing the load of users to determine the effect of this on performance. In short, web
application’s different qualities or test targets require different test data and testing
techniques.

Web application testing techniques such as security and model-based testing can be
used to assess different quality attributes of web applications. These techniques can have
different goals, such as automating the testing process or covering all the paths of the web
application under test. Determining the required quality or other test goals depends on the
web application’s specified requirements.

Because of the great importance of web applications, many research studies had been
published in the field of testing these applications. The main objective of this research is
to analyse and classify these studies in order to help researchers to find out the current
trends in the field and the areas that require further investigation.

The research papers in the field are categorised into three main categories:
model-based testing, security testing, and other types of testing. It must be emphasised
here that these categories are not independent, for example, model-based testing can be

 6 S. Hanna and A. Al-Said Ahmad

used for testing the security quality attribute, besides, many of the testing techniques in
the ‘other types of testing’ category are also used for testing security and also these
techniques can use models in the testing process.

In the case of model-based testing of web applications, research papers are classified
according to the model used for test data generation, while the research papers in the field
of web applications security testing are classified according to the targeted vulnerability.

More than one testing technique can be used in combination to assess a certain quality
attribute of web applications. For example, model-based testing can be used with security
testing, such as SQL injection testing, to model the SQL injection attack and describe
how this attack can be performed. Another example is using mutation testing with
security testing.

3 Related work

Because of the importance of web applications testing, it is crucial to conduct mapping
studies and literature reviews for the research in this field in order to identify the current
trends in the field and highlight the areas that require further investigation by researchers
and practitioners.

Below are examples of the mostly related studies in this field of SMS or review for
web application testing given that these studies are considered secondary research papers
to this SMS.

The systematic review conducted by Garousi et al. (2013) reviewed and categorised
the body of knowledge related to web applications testing techniques. The study analysed
79 papers in this field that were published between the 2000 and 2011. It explained in
detail emerging trends in the field and the areas that require more attention from the
research community. Doğan et al. (2014) conducted a systematic literature review of 95
studies in the area of web applications testing that were published between 2000 and
2013. Dadkhah et al. (2020) presented a systematic literature review of semantic web
enabled testing, in which semantic-based technologies are used.

Li et al. (2014) presented a survey of web application testing advances during two
decades. They specified each web application testing technique’s goal, target, input/
output, and stopping criteria. They also discussed the strengths and weaknesses of these
techniques. Van Deursen et al. (2015) reviewed the research in the field of crawling and
testing of web applications during a five-year period. They identified several future
research directions in this field.

Some studies conducted reviews and SMS on a specific type of web application
testing, such as security testing; an example of such studies is Aydos et al. (2021).

Table 1 summarises the related secondary studies by specifying the type of each
study, the number of reviewed papers, and the covered years.

The research in this paper is different in that it analyses the relations between web
applications testing techniques in literature and the most commonly used testing purposes
targeted in each of these techniques between 2008 and 2021. The research classifies the
reviewed papers in the field of web applications testing, not only based on the used
testing technique(s) in each paper but also based on the goal or target of testing.

To enhance the credibility of our study, the primary studies discussed in this study are
compared with the related secondary studies. All of the primary studies were included
based on our inclusion criteria or excluded based on our exclusion criteria.

 Web applications testing techniques 7

Table 1 Secondary research papers in the field of web applications testing’ literature reviews,
mapping studies, and reviews

Study type Field Number of
reviewed papers

Covered
years Reference

SMS Web application
testing

79 2000 to
2011

Garousi et al.
(2013)

Systematic literature
review (SLR)

Web applications
testing

95 2000 to
2013

Doğan et al.
(2014)

Survey Web applications
testing

Not specified 1993 to
2013

Li et al. (2014)

SMS Security testing of
web applications

80 2005 to
2020

Aydos et al.
(2021)

SLR Semantic web enabled
software testing

52 2005 to
2019

Dadkhah et al.
(2020)

Review Crawling and testing
of web applications

Not specified Not
specified

Van Deursen
et al. (2015)

Review Web applications
testing tools and

techniques

Not specified Not
specified

Lakshmi and
Mallika (2017)

There are many research papers that conducted literature reviews and mapping studies on
web services and cloud services which are very related to web applications, example of
such research is Al-Said Ahmad et al. (2017) who conducted an SMS on the software
testing techniques that are used with cloud-based services and applications. The research
identified the common testing techniques and directions in the field of cloud testing
methods.

4 Research method

This section describes the method that was used in this paper to conduct a SMS in the
field of web applications testing techniques and testing goals or purposes. The method is
based on the systematic mapping methodology discussed in Kitchenham et al. (2015).
The main activities of this SMS are shown in Figure 1.

Figure 1 The mapping study process (see online version for colours)

Systematic mapping study

Data extraction

Inclusion and exclusion criteria

Initial decision based on title

Screening of papers

Conduct search

Definition of research questions

 8 S. Hanna and A. Al-Said Ahmad

The activities in Figure 1 will be discussed in more details in Subsections 4.1, 4.2 and
4.3.

4.1 Definition of RQs

The main goal of this research is to identify and classify the current web applications
testing techniques used and how the testing techniques are related to the testing purposes.
To achieve this goal, this research addresses the following RQs in each primary study.

RQ1 What is the testing technique, method or approach used to test web applications?

Web applications testing can be accomplished using different testing techniques, such as
model-based testing, penetration testing, fuzz testing and mutation testing. This RQ
specifies the testing technique used in a certain research paper. According to Li et al.
(2014), the main testing techniques that are used to assess the functionality and quality of
web applications are model- and graph-based testing, mutation testing, search-based
testing, scanning and crawling, random testing, fuzz testing, concolic testing, and user
session-based testing. Section 10 categorises the primary studies in this SMS according to
the technique, method, or approach used in testing.

There can be different categories of the same testing technique; for example, for
model-based testing, different models can be created for the web application under test,
such as class diagram, FSM, data dependencies, and control dependencies. Security
testing techniques can be crawler-based, scanner-based or penetration-based. This RQ
aims to identify both the main testing technique used for test data generation and the
category of this technique, for example, model-based testing using FSM.

RQ2 What is the goal or purpose of testing?

This RQ specifies the goal, target or purpose of the testing technique specified by RQ1,
such as test coverage, test automation, assessing security or performance, and improving
the fault detection rate.

The main testing goals or purposes considered by the papers in this mapping study
are: test automation, test coverage, obtaining higher vulnerabilities exploitation rate,
reducing false positive, reducing false negative, detecting security vulnerabilities,
reducing test time or effort, reducing test suite or number of test cases, evaluation of
sanitisation process or user input validation, assessing usability, assessing performance,
test suite prioritisation, maximising test suite diversity, failure mitigation, examining
database updates, testing the navigation behaviour, testing dynamic web applications, and
detecting duplicate web pages. A research paper can target one or more of these testing
goals; for example, a paper can target assessing performance quality and test automation.
Section 11 explains testing goals in detail.

For some web applications testing techniques, such as security or performance
testing, the goal of testing is clear. For example, in security testing or crawling and
scanning-based testing, the targeted quality attribute is security. This goal or quality can
be assessed by checking whether a web application under test accepts inputs related to
injection vulnerabilities such as SQL injection, XSS and buffer overflow. However, for
other web applications testing techniques, different testing goals can be targeted such as
test automation and/or increasing the application coverage and/or reducing the test cost.
Some testing techniques and hence research papers can have more than one goal, such as
assessing the security quality attribute and increasing coverage. This research analyses

 Web applications testing techniques 9

and categorises the research papers in the field of web applications testing according to
the testing goals of the testing technique(s) adopted in each paper or study. Section 11
categorises the primary studies according to the testing purpose.

RQ3 What is the method of evaluation used by a research paper?

This RQ specifies the approach or method that was used by a research paper for the
purpose of evaluation. Studies in the field of web applications testing can use different
approaches for evaluating the proposed testing approach, such as case studies,
experiments on real or experimental web applications, or prototypes and tools. Section 12
categorises the primary according to the evaluation method.

RQ4 What is the venue and year of the research paper?

This RQ determines the venue of the paper such as conference location, year, etc.
Answering the RQs above is important to specifying the recent techniques,

approaches or trends adopted by researchers in the field of web applications testing
techniques and goals. This can help researchers to find out the current trends in this field
and direct their research to the less covered areas accordingly.

4.2 Search process

The search for the research papers in the field of web applications testing techniques and
purposes was an automatic search that was performed using the following libraries
(research databases):

 IEEE Xplore

 ScienceDirect

 SpringerLink

 Google Scholar

 ACM digital library

 CiteSeerX.

The targeted publication period was 2008 to 2021. An automatic search had been
performed in the above libraries for both conference papers and journal articles. For each
selected primary paper, a search was conducted in the references of that paper. This
process is called snowballing. The search strings used in this research are:

 Web or web application or applications and testing, evaluation, validation, test case
or data generation.

 AJAX or JavaScript and test or testing or test case or data generation.

 SQL injection or XSS and test or testing or test case or data generation.

 Web application or applications and user input validation or test case or data
generation.

 10 S. Hanna and A. Al-Said Ahmad

The first search string means that for a paper to be included in the mapping study the title
of this paper must contain any of the words in the list (web or web application or
applications) and also any of the words in the list (testing or test or evaluation or
validation or test case or data generation). Similar discussion can be made for the other
search strings.

4.3 Paper inclusion and exclusion criteria

For a research paper to be included in the mapping study, it must be published from the
year 2008 to 2021. It must have at least five pages, it must specify a testing technique for
web applications, clearly specify the testing purpose or target, and include a method for
evaluating the proposed testing approach, such as an experiment or case study. Any paper
that does not satisfy any of the above conditions was excluded from the mapping study.

4.4 Data extraction

Data extraction aims to produce well-designed systematic mapping by clustering the
primary papers in one area into mapping categories (Petersen et al., 2008). The data had
been extracted to answer the RQs outlined in Subsection 4.1. During the data extraction
stage, the full text of each paper was read, and the extracted data were stored in an
independent spreadsheet. Both standard information and specific information extracted
from each study are listed in Table 2.

Table 2 Data extraction values

Data item Description/value Relevant RQ

Study ID Study ID –

Paper title Article title –

Authors Authors’ names –

Year Year of publication RQ4

Venue Publication source and type (journal, conference) RQ4

Testing methods Testing methods, approaches, or techniques used in the
studies

RQ1

Goals The testing goal, purpose or testing requirement RQ2

Evaluation methods The method of evaluation implemented in the studies RQ3

Figure 2 illustrates the methodology adopted in this study; first, we inducted an informal
search to identify the most relevant libraries; based on this, we identified the years
(2008–2021) for the targeted primary studies. Following that, we create the search string
presented in Subsection 4.2, which allows us to collect primary studies in the targeted
area. Next, the inclusion and exclusion criteria (see Subsection 4.3) have been applied to
the collected study, a primary scan based on the papers abstract, objectives, and
conclusion. Finally, each selected primary study’s reference list has been examined to
locate relevant papers.

 Web applications testing techniques 11

Figure 2 The methodology of searching for relevant studies in web applications testing

5 Distribution of studies according to the publication year

We identified 98 studies in the field of web applications testing published between 2008
and 2021. The search was conducted using the method described in Section 4 and fully
described in Figure 2. Among the 98 studies, 50 studies were from conference
proceedings, and 48 from journals. Figure 3 shows the distribution of primary studies by
year of publication.

 12 S. Hanna and A. Al-Said Ahmad

Figure 3 Distribution of primary studies by year of publication (see online version for colours)

0

2

4

6

8

10

12

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

It is noticed in Figure 3 that the years 2008 and 2015 are the years with the highest
number of publications in the field of web application testing according to the reviewed
papers in this SMS.

6 Classification of web application testing techniques

The extracted studies in the field of web application testing techniques were analysed and
structured to answer the RQs in Subsection 4.1. In this section, we analyse the primary
studies and the extracted data related to the RQs. After reviewing the research studies it
was concluded that these studies could be classified according to the schema in Figure 4.

The main categories in the schema are security-based testing, model-based testing,
and other types of testing. These specific categories were determined after analysing the
research in the field and concluding that most of this research is related to either SWAT
or MWAT.

The schema in Figure 4 can help researchers in the field of web application testing to
conclude the main testing techniques used with web applications and how these
techniques can be categorised. It must be emphasised though that the schema is resulted
from analysing the 98 primary studies only.

The security-based testing techniques in Figure 4 are classified according to the
technique that is used for assessing the security of a web application and the vulnerability
targeted by this technique. On the other hand, the model-based testing techniques are
classified according to the model or graph that is used for test data generation.

The abbreviations in Figure 4 are as follows, FSMs, state flow graph (SFG), state
transition diagram (STD), extended FSM (EFSM), FSM for web (FSMWeb), page
navigation graph (PNG), PFG, page transition graph (PTG), page flow diagram (PFD),
screen transition graph (STG), domain-specific model (DSM), data flow model (DFM),
data dependency model (DDM), control flow model (CFM), control flow graph (CFG),
control dependency model (CDM), validation flow graph (VFG), event flow graph
(EFG), document object model (DOM), graphical user interface (GUI), event sequence

 Web applications testing techniques 13

graph (ESG), failure mitigation model (FMM), platform independent test model (PITM),
sequence diagrams (SD), and web diagram (WD).

Figure 4 Classification schema of web applications testing techniques

Web applications
testing techniques

Security-based testing techniques
(Section 7):

- Bypass testing
- Penetration testing
- Scanning and crawling
- Fuzz testing

Vulnerabilities:

- SQL injection
- XSS injection
- XML injection

Model-based testing techniques
(Section 8):

- FSM, SFG, STD, EFSM, FSMWeb
- PNG, PFG, PTG, PFD, STG
- DSM
- DFM, DDM
- CFM, CFG, CDM
- VFG
- EFG
- Threat model, attack model, secure model,

safe model, vulnerability model
- DOM
- GUI
- FMM
- Use case description
- PITM
- WD

Other types of web applications
testing techniques (Section 9):

- Mutation testing
- Semantic-based UIV testing
- Performance testing
- Search-based testing
- Random testing
- Combinatorial testing
- User session-based testing
- Regression testing
- Concolic testing
- Metamorphic testing
- User acceptance testing
- Keyword-driven testing
- Requirement testing

Section 7 will provide details about SWAT techniques together with the targeted
vulnerabilities, Section 8 will present details about MWAT techniques together with the
models used in test case generation, and Section 9 will explain the other testing
techniques used in web applications testing. Section 10 will provide a classification of the
primary studies based on the testing approach used, while Section 11 will classify the
primary studies based on testing goals.

7 SWAT techniques and targeted vulnerabilities

Since most web applications do not take security threats into consideration (Li et al.,
2010a), web application security testing is of great importance. In security-based testing

 14 S. Hanna and A. Al-Said Ahmad

techniques, the aim is to determine whether a web application under test can handle
invalid, malicious, perturbed or unsanitised inputs related to known vulnerabilities, such
as SQL injection and XSS.

7.1 Testing techniques

The security-based testing techniques depicted in the concluded classification schema in
Figure 4, are discussed below.

7.1.1 Bypass testing

This testing is based on sending invalid data to a web application under test, bypassing
the client-side user input validations to evaluate this application’s behaviour when the
user input is invalid (Offutt et al., 2014).

7.1.2 Penetration testing

This testing is based on simulating an attack on a web application under test to detect
vulnerabilities in this application (Halfond et al., 2011). Similar to bypass testing, invalid
or malicious input is sent to the application, and the application’s response is analysed to
ascertain whether the attack was successful (Halfond et al., 2011).

7.1.3 Scanning and crawling

In some research papers, security testing is called scanning and crawling since scanning
and crawling techniques are mainly used to assess or test the security of web applications
(Li et al., 2014). In such testing techniques (similar to bypass testing and penetration
testing), the web application under test is injected with invalid, malicious, perturbed or
unsanitised input that can result in unauthorised modification of a database (Li et al.,
2014). The differences between crawling and scanning are described in Li et al. (2010b).
Crawling can also be used to achieve high coverage of the web application under test,
such as in Dallmeier et al. (2013).

7.1.4 Fuzz testing

User input validation testing can also be called fuzz testing (Li et al., 2014). This testing
is also based on sending invalid inputs as test data to the web application under test to
determine whether this application includes the required validation to reject such inputs.
If the invalid inputs belong to the malicious inputs related to the well-known web
applications vulnerabilities, such as SQL injection, this type of testing will also belong to
security testing.

7.2 Targeted vulnerabilities in security-based testing techniques

The vulnerabilities detected by the reviewed web application security testing techniques
are briefly explained below.

 Web applications testing techniques 15

7.2.1 Lack of user input validation vulnerability

Lack of user input validation vulnerability (Offutt et al., 2014) occurs when a web
application accepts input from a user without checking whether this input is valid or not.
Therefore, web applications must include client-side and server-side validations that can
reject invalid, unsanitised, manipulated or perturbed user inputs to ensure security quality
attributes.

Examples of user input validations are:

 Ensure that the user inserted name length does not exceed 20 characters.

 Ensure that the user inserted phone number is ten digits.

 Ensure that the user e-mail contains the @ symbol.

 Ensure that an input is not empty.

 Ensure that the user inserted age is between 18 and 120.

User input validation in web applications can be implemented using the methods outlined
below.

a HTML attributes that can be used with input-related HTML elements, for example,
‘input’ and ‘select’, are used to receive input from a user. Examples of such
attributes are:

 ‘Required’ is used to ensure that an input is not empty.

 ‘Maxlength’, is used to specify the maximum number of characters an input can
have. This attribute can be used for the name validation in the above example.

 ‘Pattern’, which is used to ensure that input must follow a certain pattern or
regular expression. For example, this attribute can be used for e-mail validation
in the above example.

b Client-side JavaScript or other scripting languages:

Scripting languages can manipulate the HTML DOM tree and extract the input
inserted by a user in an HTML form. Subsequently, validation is applied to this
input, such as ensuring it is within a certain range, as in the age example above or
any other client-side user input validations.

c Server-side languages:

The previous examples of user input validations can also be accomplished at the
server side using languages such as PHP, ASP.NET, and JSP.

The absence of user input validation at the client side or server side is considered the
main vulnerability in web applications since the top vulnerabilities, such as SQL injection
and XSS, result from invalidated user inputs. Scholte et al. (2012) reported that the
absence of user input validation causes most vulnerabilities in web applications.

7.2.3 SQL injection vulnerability

SQL injection is one of the most devastating vulnerabilities that affect a business (Clarke,
2009). This vulnerability is among the top 10 vulnerabilities in web applications specified
by the open web applications security project (OWASP) (Anon., 2020). SQL injection

 16 S. Hanna and A. Al-Said Ahmad

vulnerability occurs when a user sends a crafted malicious input to a web application.
This input causes illegal execution of an SQL query and thereby gains access to a
database and performs many unauthorised actions, such as stealing sensitive data.

7.2.4 XSS injection vulnerability

XSS injection vulnerability is also caused by the absence or the inappropriateness of user
input validation of a web application. Malicious users or hackers can inject an input that
contains a JavaScript or HTML form into a web application that does not include a
proper input validation. When a victim uses this vulnerable web application, the
malicious user can disclose their data, such as cookies or any other sensitive data. Web
applications must include validation to ensure that user input does not include a script to
solve these likely problems.

7.2.5 XML injection vulnerability

This vulnerability happens when an XML document is manipulated by injecting
malicious content into the document and then injecting this XML document as an input
into an application (Jan et al., 2019). Similar to SQL injection and XSS, this vulnerability
is also caused by the absence of user input validation. The aim of injecting a manipulated
XML document is to compromise the web application under test itself or other
applications that process this XML message. This vulnerability can cause major
problems, such as denial-of-service (DoS) and data breaches (Jan et al., 2019).

8 MWAT technique

This technique is based on creating a model for the web application under test and then
generating test data based on this model. The models that are used for web applications
testing found in the reviewed papers are discussed below.

8.1 FSMs, SFG, STD, EFSM, or FSMWeb

FSM (Ran et al., 2009) or SFG (Qi et al., 2017) or STD are used to model a web
applications behaviour without the details related to the code or implementation of this
application. Such models or diagrams show how users navigate pages of a web
application (Ran et al., 2009).

EFSM (Song et al., 2011) is used to formalise the navigation model of a web
application. A web navigation model together with a web browser’s interaction can be
formally described using EFSM (Song and Miao, 2009).

FSMWeb models web inputs, navigation between web application pages, and
behavioural characteristics (Boukhris et al., 2017).

FSM or the other related models help in exploring the web application under test by
finding out all the states, pages, user interface elements, etc. that this application includes.
Test cases can be generated afterwards to force the application to go from one state to
another for the purpose of covering all the states of the applications. Qi et al. (2017) used
STG to dynamically explore user interface elements and then generate test cases
accordingly.

 Web applications testing techniques 17

8.2 PNG, PFG, PTG, PFD, or STG

Navigation of a web application can be defined as the sequence of pages that a user visits
to accomplish the required functionality (Sabharwal et al., 2013). Navigation models of
web applications can be described as EFSM. Such models aim to specify both
navigations among the pages of the modelled web application and the interaction of these
pages with the browser (Song and Miao, 2009). In PFG (PNG, PTG or PFD) (Tkachuk
and Rajan, 2011), the nodes of the graph represent a page of the modelled application,
and the edges describe the navigation between the source and destination pages of the
application (Polpong and Kansomkeat, 2015). Syntax models that are created based on
PFG can also be used in web applications testing (Polpong and Kansomkeat, 2015). For
Example, in STG, a screen of the modelled web application is represented as a node in
the graph, in contrast, screen transition caused by a user’s interaction, such as clicking a
button, is described as an edge of the graph between the source and destination screen
(Zhang and Tanno, 2015).

Detecting all the pages or screens of the web application under test and the navigation
structure between these pages, can help software testers to make sure that all the pages or
screens of the application had been tested by at least one test case (depending on the
coverage criteria). Besides, test data can be used based on the inputs that can force the
application under test to go for a certain page.

8.3 Domain-specific model

Domain-specific languages are based on EFSM (Törsel, 2013). DSM can be used to
automatically generate test cases for web applications testing. The advantages of DSM
notation are that it can be tailored depending on the requirement, making it more
understandable than generic modelling notation (Törsel, 2013).

It should be noted that all the previous models that are used in MWAT are based on
FSM. Therefore, generating test cases for web applications based on these models is
accomplished based on exploring the different states of the web application under test to
make sure that testing had covered all of the states of the application besides the
transition between these states.

8.4 DFM or DDM

DFM or DDM describes how data are transferred from a source page in a web application
to a target or destination page (Tung et al., 2010). Data dependencies for web
applications occur when a variable is defined in a statement of a certain page in a web
application and then used in a statement on another page of this application (Tung et al.,
2010). Knowing the structure of the web application under test helps in automatically
generating the test case for this application.

8.5 CFM, CFG or CDM

CFM, CFG or CDM is extracted from the source code of a web application. It is based on
control statements that cause an application to navigate from a source page in this
application to a target or destination page (Tung et al., 2010). Test cases are based on

 18 S. Hanna and A. Al-Said Ahmad

inputs that can cause a control statement to produce a true or false output in order to test
the different pages of the web application under test.

8.6 Validation flow graph

VFG (Liu and Tan, 2008) is a variant of CFG that gives a higher-level view of the UIV
feature in a web application. Test coverage criteria can be concluded based on the input
validation features determined by the model.

8.7 Event flow graph

EFG or event functional graph (Habibi and Mirian-Hosseinabadi, 2015) consists of nodes
representing events and edges showing the order of occurrence of the two attached
events.

8.9 Threat model, attack model, secure model, safe model, and vulnerability
model

These models are all security related models that is the reason they were put in the same
category. Each of these models will be explained below:

 The threat model describes how attacks can be performed against a web application
under test. It describes how a malicious user may perform attacks to violate a
security goal (Xu et al., 2012). All the attack paths for a web application under test
can be generated from the threat model of this application (Xu et al., 2012).

 Attack model (Tian et al., 2012) used an attack mode to model SQL injection attacks
using an attack tree to describe the attack behaviour. In this research, the attack
models of SQL injection are used to describe the types and regularity of this attack.

 Secure model (Buchler et al., 2012) used a formal model for the specification of the
web application under test. The model is considered secure in that it does not violate
the specified security goals.

Mallouli et al. (2008) used a formal language called nomad to specify or model
security rules in a context that includes time constraints.

 Safe model can describe the structure of the response expected by a web application
under test when the input inside the request is safe to input (Avancini and Ceccato,
2012). An attack occurs when an input causes the violation of the structure of the
safe model.

 Vulnerability test case generation model (Lei et al., 2013) proposed a formalised
SQL injection vulnerability test case generation model that is used to test different
types of SQL injection. Tian et al. (2012) proposed a model for generating
penetration test case inputs to detect SQL injection vulnerability.

In all of the previous security related models, test case are created based on inputs that
resembles those used by malicious users and that can be concluded based on these
models. The goal is to check whether the web application under test can handle such
inputs or not.

 Web applications testing techniques 19

8.10 Document object model

DOM is an application programming interface (API) for valid HTML documents (W3C,
2004). DOM defines the logical structure of an HTML document. DOM can access and
manipulate the elements inside HTML documents of web applications (W3C, 2004).

Due to the interaction between DOM and JavaScript in a web application, DOM can
generate test cases for JavaScript-based web applications (Mirshokraie et al., 2016). Test
coverage is based on covering all the paths in a DOM tree related to an HTML page of a
web application under test.

8.11 GUI test models

Testing web applications depending on a GUI test model is based on the fact that many
web applications are built using a common user interface pattern (Nabuco and Paiva,
2014). Accordingly, tests of web applications with the same user pattern can be reused.
Furthermore, test data can be generated from the modelled business processes (Heinecke
et al., 2011).

8.12 Event sequence graph

This graph describes the path in a web application where input data is to be inserted.
Therefore, it can be used for modelling and testing the interaction between a user and a
web application under test (Krüger and Linschulte, 2012). Both valid and invalid input
data constraints can be modelled using ESG. The test sequence is combined with input
data in ESG. Krüger and Linschulte (2012) provide an example for creating ESG for a
web application login page.

8.13 Failure mitigation model

FMM can be used to determine an application’s test paths that can be affected by a
failure, such as network outages (Boukhris et al., 2017); these paths are used to create
mitigation test paths.

8.14 Use case description

A use case description describes user interactions and a web application under test
(Zhang and Tanno, 2015). Both normal and exceptional scenarios can be described using
use cases (Zhang and Tanno, 2015).

Testing a web application based on a use case model includes making sure that each
user of the application can accomplish all the required functionality specified by the use
cases of this application.

8.15 Platform independent test model

Liu et al. (2010) proposed using model-driven architecture (MDA) for automating the
process of test data generation for web applications. In this approach, the platform

 20 S. Hanna and A. Al-Said Ahmad

independent model (PIM) is converted to the PITM, and the latter model is converted to
test cases.

8.16 Sequence diagrams

SD can be used to describe the behaviour of a web application under test by specifying
the state changes in response to each operation in this application (Suhag and Bhatia,
2014). SD can describe the navigation between the web pages in the web application
under test; hence, test cases can be generated in a similar approach described with PNG.

8.17 Web diagram

WD describes the functional requirements of a web application under test (Suhag and
Bhatia, 2014). It describes the elements of a web application, such as server pages,
HTML pages, and links (Suhag and Bhatia, 2014). When using such model in testing, test
coverage is based on every required function by test cases.

9 Other types of web applications testing

In addition to security-based and model-based testing techniques discussed in Sections 7
and 8 above, the testing techniques below were used by the researchers in the field of
web applications testing for test data generation for web applications.

 Mutation testing (Habibi and Mirian-Hosseinabadi, 2015): This testing technique is
based on deliberately making minor changes in the code of the web application under
test, where the resulted application is called mutant, to determine whether test cases
can detect such changes or not. The aim is to make sure that the test cases can be
used to detect faults that usually exist in web applications.

There are different approaches for mutation testing and one of these approaches is a
model-based approach where the mutating operators are based on state machine
model such as intentionally adding or removing an edge to this model (Habibi and
Mirian-Hosseinabadi, 2015). This is an example that shows that the testing
techniques categories in Figure 4 are not mutually exclusive, where testing
techniques in the other types of testing category of this figure can also be
model-based testing.

 Semantic-based UIV testing (Li et al., 2010b): UIV testing is security-related testing
which aims to determine whether the web application under test has a required user
validation that can be used to detect user inputs related to security vulnerabilities
such as SQL injection. Semantic-based UIV testing is used to check that an
application has the required validation for detecting semantically invalid or perturbed
input, such as inserting ‘xyz’ as a user e-mail or a birth year of ‘5000’ or any
semantically invalid value.

Semantic-based UIV testing of a web application is to insert semantically invalid
inputs by a tester and then determine if this application can handle such input
gracefully or not.

 Web applications testing techniques 21

 Performance testing (Ahmad et al., 2018): In this type of web applications testing,
the load of users is increased to an application under test to determine whether this
will affect the application’s performance. If a web application has poor performance,
users will stop using it; therefore, this type of testing is crucial for web applications.
Ahmad et al. (2018) defined performance testing as evaluating the response time and
the scalability of an application under test when this application is under a certain
workload.

Software testers can simulate using a web application under test by many users to
assess the effect in response time as the number of users increase.

 Search-based testing (Marchetto and Tonella, 2009): The main target of this testing
is to cover the majority of the branches in the web application under test and thereby
improve the test coverage. Marchetto and Tonella (2009) proposed an algorithm for
search-based testing of a web application based on exploring interaction sequences in
this application with the purpose determining the most promising interactions based
on test case diversity.

 Random testing (Artzi et al., 2011): Random invalid inputs are passed to the web
application under test to ascertain whether this application can handle such inputs.
This is a basic testing where test inputs are chosen randomly from the input space of
the different inputs of the web application under test.

 Combinatorial testing (Nie and Leung, 2011): This testing technique depends on
generating test data based on the interaction between input parameters. This type of
testing can detect faults caused by the interactions of parameters in the web
application under test. It is called combinatorial testing test input are based on
parameters combinations. For example, a web application under test may be affected
by many parameters such as the used web browser or the operating system, number
of users, etc. Combinatorial testing checks if any combination of such parameters
can cause failure in the web application under test.

 User session-based testing (Quan and Lu, 2010): This type of web applications
testing is based on gathering user session data or usage data to help in generating test
cases for the web application under test. User-session data can be used in other types
of testing such as performance testing as done in Quan and Lu (2010).

 Regression testing (Tarhini et al., 2008): This testing focuses on selecting a subset of
the test case used to test a web application to cover the changes made to this
application. When we modify a web application by adding or removing a certain
functionality, software tester must determine the parts of the application that were
affected by the modifications to test only these parts and not the whole application.
This is called regression testing.

 Concolic testing (Sen, 2007): This testing is based on automating the process of test
input generation based on combining the concrete and symbolic (or concolic)
execution of the code under test. The aim is to test as many branches as possible of
the web application under test (Li et al., 2014).

 Metamorphic testing (Aruna and Prasad, 2014): This testing is based on obtaining
useful information from a test case, even if this test case has not been successful in

 22 S. Hanna and A. Al-Said Ahmad

detecting a fault. This testing technique is used to verify an application output
without a complete testing (Aruna and Prasad, 2014). Although a test case did not
succeed in detecting a fault, it can still have important information for a software
tester.

 User acceptance testing (Otaduy and Díaz, 2017): This testing is based on using a
web application by the actual users of this application to ensure that the application
meets these user’s requirements or needs. It is important to test a web application by
software tester but it is even more important that this application being tested by the
actual users of this application to make sure that it match their expectations.

 Keyword-driven testing (Gupta and Bajpai, 2014): This type of testing includes
creating test components and then assembling these components into test scripts.
There are two types of keywords: base keywords and user keywords. Gupta and
Bajpai (2014) described the different type of keywords and how these keywords can
be combined to generate test data for a web application under test.

 Requirement testing: Sengupta and Dasgupta (2015) presented a framework for
performing formal specification and testing on the web applications’ functional and
interface requirements. This type of testing is used to assess the functional as well as
interface requirements of a web application under test. Models such as FSM can be
used for the specification of the tested application’s requirements. So this type of
testing can also be used with model-based testing explained in Section 8.

The research in the field of web applications testing and test case generation for web
applications in this mapping study had used all of the above-mentioned testing
techniques.

10 Categorising web applications testing techniques based on the approach
applied in testing (RQ1)

The most relevant papers in the field of web applications testing were searched for in the
libraries specified in Section 4 using the search strings specified in the same section.
Subsequently, the inclusion and exclusion criteria were applied to the selected papers.

The data extracted from each paper were

1 the applied web applications testing technique, method or approach

2 the testing purpose

3 the method of evaluation

4 the year of publication as explained in section 4.

After reviewing all the primary research papers in this study, it was decided to classify
web applications testing techniques into three categories: model-based testing, security
testing, and other types of testing (see Section 6). The reason for this categorisation is
that after reviewing the 98 primary research papers in this study, it was concluded that
most of the selected research in this field was conducted in the model-based testing and
security testing fields. Subsection 10.1 categorises the research papers in the field of
SWAT based on the targeted vulnerability, and Subsection 10.2 categorises the research

 Web applications testing techniques 23

in the field of MWAT based on the model used for test data generation. Finally,
Subsection 10.3 classifies other types of testing used with web applications depending on
the investigated studies.

10.1 Classifying research papers in the field of SWAT according to the
targeted vulnerability

In SWAT faults are detected by injecting malicious or unsanitised inputs in user forms
(Li et al., 2014). SWAT techniques attempt to inject such malicious inputs into a web
application under test to determine whether these inputs are accepted or rejected by this
application. The web applications security-based testing techniques found in the reviewed
research papers are SQL injection testing (Lei et al., 2013), XSS testing (Bozic et al.,
2015b), XML injection testing (Jan et al., 2019), bypass testing (Offutt et al., 2014), and
penetration testing (Tian et al., 2012). Table 3 classifies the reviewed research papers
according to the targeted vulnerability in each paper.

Table 3 Classifying research papers in the field of swat according to the targeted vulnerability

Vulnerability Research papers

SQL injection Shahriar and Zulkernine (2008), Dao and Shibayama (2009, 2010), Huang
et al. (2011), Tian et al. (2012), Lei et al. (2013), Akrout et al. (2014),

Bozic and Wotawa (2020) and Muzaki et al. (2020)

XSS McAllister et al. (2008), Huang et al. (2011), Buchler et al. (2012),
Avancini and Ceccato (2012), Bozic et al. (2015a, 2015b), Bozic and

Wotawa (2020), Muzaki et al. (2020) and Leithner et al. (2021)

Lack of user input
validation or
sanitisation

Balzarotti et al. (2008), Liu and Tan (2008), Li et al. (2010b), Avancini
and Ceccato (2012), Offutt et al. (2014) and Hanna and Munro (2018)

XML injection Jan et al. (2019)

Figure 5 summarises the results of Table 3 by specifying the number of papers that
targeted each of the security vulnerabilities in this study.

Figure 5 Targeted vulnerabilities for the research in the field of SWAT (see online version
for colours)

0 2 4 6 8 10

SQL injection

XSS

Lack of user input validation or
sanitization

XML injection

number of papers

It must be emphasised here that a research paper can include methods to test more than
one vulnerability; therefore, the studies in Table 3 are not mutually exclusive. However,
it can be concluded from Figure 5 that based on the reviewed studies, the research in the

 24 S. Hanna and A. Al-Said Ahmad

field of security testing of web applications mainly targets the XSS, SQL injection and
lack of user input validation vulnerabilities.

10.2 Classifying web applications model-based testing techniques according to
the model used in testing

One of the most commonly used web applications testing techniques is model-based
testing. This research categorises the research in this field based on the models used for
test data generation and also based on the testing goals. The main aim of this
categorisation is to help researchers and practitioners to understand the current trends in
this field.

The primary studies in the field of MWAT in this SMS used different models or
graphs for test data generation, such as the FSM model or PFG. The studies in this
category created a model for the web application under test and then generated test cases
based on this model. Table 4 summarises the models or graphs used in each of the
primary research papers in the category of model-based testing.

This research study classified the research in the field of MWAT based on the model
used in each paper to identify the models used the most by the researchers in this field for
test data generation. Another focus of this study was to identify the aims of each research
paper in this field. The aim of a paper can be test automation, test coverage, or assessing
a specific quality attribute, such as security.

Figure 6 Models and graphs used in MWAT with the number of papers that used each of them
(see online version for colours)

0 5 10 15 20 25 30

FSM, FSD, EFSM, FSMWeb, SFG, PFG, PTG, NG, STD,
DSM or ESG

DFM or data flow graph, DDM or data dependency
graph, CFM or CDM or graph

Security-related models: threat model, attack model,
safe model, secure model, and vulnerability model

GUI test models

DOM

Markov chain workload model

ESG, EFG or event functional graph

VFG

Failure mitigation model

Use case description

PITM

SD

Analysis model that represents the web pages and
their relationships

 Web applications testing techniques 25

Table 4 Classifying web applications model-based testing techniques based on the model used
in testing

The model or graph used in
model-based testing Research papers

FSM, FSD, EFSM, FSMWeb, SFG,
PFG, PTG, navigation graph or model,
STD or screen transition graph, DSM or
ESG

Kuk and Kim (2008), Marchetto et al. (2008),
Marchetto and Tonella (2009), Song and Miao

(2009), Ran et al. (2009), Andrews et al. (2010),
Song et al. (2011), Tkachuk and Rajan (2011),
Törsel (2011), Chen et al. (2012), Tanida et al.

(2013), Bansal and Sabharwal (2013), Törsel (2013),
Arora and Sinha (2013), Törsel (2013), Suhag and
Bhatia (2014), Nabuco and Paiva (2014), Polpong
and Kansomkeat (2015), Zhang and Tanno (2015),
Dixit et al. (2015), Habibi and Mirian-Hosseinabadi

(2015), Sengupta and Dasgupta (2015), Qi et al.
(2017), Boukhris et al. (2017) and Gao et al. (2022)

DFM or data flow graph, DDM or data
dependency graph, CFM or CDM or
graph

Tarhini et al. (2008), Ran et al. (2009), Offutt and
Wu (2010), Tung et al. (2010), Törsel (2011), Sun
et al. (2011), Bansal and Sabharwal (2013), Panthi
and Mohapatra (2017), Akpinar et al. (2020) and

Elgendy et al. (2020a)

Security-related models: threat model,
attack model, safe model, secure model,
and vulnerability model

Mallouli et al. (2008), Xu et al. (2012), Tian et al.
(2012), Buchler et al. (2012), Avancini and Ceccato

(2012), Lei et al. (2013) and Bozic et al. (2015b)

GUI test models Li et al. (2010a), Heinecke et al. (2011), Boumiza
and Azzouz (2012), Dallmeier et al. (2013), Nabuco

and Paiva (2014), Mirshokraie et al. (2016) and
Hallé et al. (2016)

DOM Arora and Sinha (2013), Stocco et al. (2014), Fard
et al. (2015), Mirshokraie et al. (2015, 2016), Stocco
et al. (2016), Akpinar et al. (2020), Imtiaz and Iqbal

(2021), Sherin et al. (2021), Corazza et al. (2021)
and Gao et al. (2022)

Markov chain workload model Habibi and Mirian-Hosseinabadi (2015) and Ahmad
et al. (2018)

ESG, EFG or event functional graph Krüger and Linschulte (2012) and Habibi and
Mirian-Hosseinabadi (2015)

VFG Liu and Tan (2008)

Failure mitigation model Boukhris et al. (2017) and Andrews et al. (2019)

Use case description Zhang and Tanno (2015)

PITM Liu et al. (2010)

SD Suhag and Bhatia (2014)

Analysis model that represents the web
pages and their relationships

Kuk and Kim (2008)

In Table 4, the models and graphs used for web applications model-based testing are
arranged in descending order from the most commonly used models to the models used
the least. One research paper may use more than one model for testing web applications;
accordingly, this paper will appear in different sections in Table 4.

 26 S. Hanna and A. Al-Said Ahmad

It should be noted that one research paper can use more than one model for WAT. For
example, a research paper can use both FSM and PFG in test data generation, which
means that this paper will appear in different categories of the models used in testing.
This applies to all the other research papers in this review where a paper can use different
models for test data generation. This means that the models’ categories are not mutually
exclusive.

Figure 6 summarises the results in Table 4 by specifying the number of papers that
used each of the models of test data generation for web applications among the reviewed
papers. It can be concluded from Figure 6 that the most commonly used models in
MWAT are FSM, FSD, EFSM, FSMWeb, SFG, PFG, PTG, navigation graph (NG) or
model, STD or STG, DSM or ESG.

Figure 7 Number of papers in the ‘other testing techniques’ category (see online version
for colours)

10.3 Other testing techniques used for web applications testing

This section will discuss the other types of web applications testing techniques found in
the literature. Table 5 presents these testing techniques together with the research papers
in this SMS that used each of these techniques. Testing techniques appear in descending
order from those used the most to those used the least.

Figure 7 summarises the result of Table 5 by specifying the number of reviewed
papers in each type of testing for web applications.

Figure 7 clearly shows that the most commonly used other web applications testing
techniques based on the SMS are performance testing, mutation testing, and regression
testing. In the performance testing of web applications, the properties of an application
are checked when it is used concurrently by multiple users (Rodríguez et al., 2013). In
mutation testing of web applications, minor changes are deliberately made in the code of
the web application under test to ascertain whether test cases can detect such changes or
not. Regression testing focuses on selecting a subset of the test case used to test a web
application to cover the changes made to this application.

 Web applications testing techniques 27

Table 5 Other web applications testing techniques

Testing technique Research papers

Performance testing Jiang and Jiang (2009), Gao et al. (2010), Kao et al. (2013),
Rodríguez et al. (2013), Ali and Badr (2015), Ahmad et al.

(2018), Eid et al. (2020) and Porres et al. (2020)

Mutation testing Shahriar and Zulkernine (2008, 2009), Xu et al. (2012), Habibi
and Mirian-Hosseinabadi (2015) and Sherin et al. (2021)

Combinatorial testing
(Nie and Leung, 2011)

Bozic et al. (2015b), Qi et al. (2017) and Bozic and Wotawa
(2020)

Testing sanitisation process Balzarotti et al. (2008), Li et al. (2010b) and Hanna and Munro
(2018)

Semantic-based testing
(Dadkhah et al., 2020)

Li et al. (2010b) and Hanna and Munro (2018)

Fuzz testing Li et al. (2014, 2010b) and Offutt et al. (2014)

User session-based testing Sampath et al. (2008), Quan and Lu (2010) and Sampath and
Bryce (2012)

Search-based testing Marchetto and Tonella (2009), Bolis et al. (2012) and Elgendy
et al. (2020b)

Regression testing Tarhini et al. (2008), Kwon et al. (2018), Andrews et al. (2019),
Eid et al. (2020) and Abadeh (2021)

Concolic testing Wassermann et al. (2008) and Fard et al. (2015)

User acceptance testing Yu et al. (2009) and Otaduy and Díaz (2017)

Crawlability testing Marchetto et al. (2011)

Metamorphic testing Aruna and Prasad (2014)

Random testing Artzi et al. (2011)

GUI testing Habibi and Mirian-Hosseinabadi (2015

Requirements testing Sengupta and Dasgupta (2015)

Usability testing Marien et al. (2019)

11 Classifying research papers according to the goal of testing (RQ2)

This section will classify the studies in the field of web applications testing according to
the goal or target of testing. Subsection 11.1 specifies testing purposes for the research in
the field of SWAT, Subsection 11.2 repeat the same process for the MWAT, and finally
Subsection 11.3 specifies testing purposes for other types of web applications testing.

11.1 Classifying studies in the field of web applications security testing
techniques according to the testing goal

Table 6 displays the testing purposes for the security-based testing techniques in the
papers reviewed in this study.

Figure 8 summarises the result of Table 6 by specifying the main testing purposes of
the research papers in the field of SWAT.

 28 S. Hanna and A. Al-Said Ahmad

Table 6 Testing purposes for SWAT techniques

Main testing purpose Research papers

Test automation Shahriar and Zulkernine (2008), Dao and Shibayama
(2009, 2010), Buchler et al. (2012), Akrout et al. (2014),

Offutt et al. (2014) and Jan et al. (2019)

Test coverage Bozic et al. (2015b), McAllister et al. (2008), Dao and
Shibayama (2009, 2010) and Liu and Tan (2008)

Higher vulnerabilities
exploitation rate

Balzarotti et al. (2008), Dao and Shibayama (2009), Tian
et al. (2012), Lei et al. (2013), Bozic et al. (2015a), Muzaki

et al. (2020) and Leithner et al. (2021)

Reduce false positive Huang et al. (2011) and Akrout et al. (2014)

Reduce false negative Tian et al. (2012)

Evaluation of sanitisation process Balzarotti et al. (2008)

Figure 8 Testing purposes for the SWAT research (see online version for colours)

0 1 2 3 4 5 6 7 8

Test automation

Test coverage

Higher vulnerabilities exploitation rate

Reduce false positive

Reduce false negative

Evaluation of sanitization process

Reduce false negative

Number of Papers

It can be concluded from Figure 8 that most of the research in the field of security-based
testing of web applications, based on the reviewed papers in this SMS, targets test
automation and focuses on higher vulnerabilities exploitation rates.

11.2 Classifying studies in the field of web application model-based testing
according to the testing goal

The reviewed papers in the field of MWAT were also classified according to the goal of
testing. Table 7 shows the main goals of the model-based testing techniques and the
number of research papers that targeted each of these goals. The testing goals appear in
descending order, with the purposes targeted the most appearing first.

Figure 9 summarises the results in Table 7.
It can be concluded from Figure 9 that, similar to security-based testing, the most

commonly targeted testing purposes in the field of model-based testing of web
applications is test automation. It must be emphasised here that one research paper can
have more than one goal. For example, a research may target test automation and test
coverage at the same time; therefore, the research categories in this case are not mutually
exclusive.

 Web applications testing techniques 29

Table 7 Classification of testing goals for MWAT techniques

Main testing purpose Research papers

Test automation Kuk and Kim (2008), Ran et al. (2009), Liu et al. (2010), Li et al.
(2010a), Tung et al. (2010), Törsel (2011), Heinecke et al. (2011),
Tkachuk and Rajan (2011), Sun et al. (2011), Chen et al. (2012),

Xu et al. (2012), Buchler et al. (2012), Tanida et al. (2013),
Dallmeier et al. (2013), Törsel (2013), Suhag and Bhatia (2014),
Stocco et al. (2014), Fard et al. (2015), Mirshokraie et al. (2015),
Zhang and Tanno (2015), Stocco et al. (2016), Hallé et al. (2016),

Qi et al. (2017), Akpinar et al. (2020), Elgendy et al. (2020a),
Imtiaz and Iqbal (2021) and Gao et al. (2022)

Test coverage Mallouli et al. (2008), Liu and Tan (2008), Ran et al. (2009), Song
and Miao (2009), Li et al. (2010a), Song et al. (2011), Arora and
Sinha (2013), Bansal and Sabharwal (2013), Tanida et al. (2013),

Dallmeier et al. (2013), Lei et al. (2013), Bozic et al. (2015b),
Polpong and Kansomkeat (2015), Fard et al. (2015), Mirshokraie

et al. (2015), Habibi and Mirian-Hosseinabadi (2015), Stocco et al.
(2016), Qi et al. (2017), Andrews et al. (2019), Akpinar et al.

(2020), Sherin et al. (2021), Elgendy et al. (2020a) and Gao et al.
(2022)

Detecting security
vulnerabilities

Mallouli et al. (2008), Song et al. (2011), Xu et al. (2012), Tian
et al. (2012), Buchler et al. (2012), Avancini and Ceccato (2012),

Lei et al. (2013) and Bozic et al. (2015a)

Improve the rate of fault
detection

Marchetto and Tonella (2009), Offutt and Wu (2010), Tian et al.
(2012), Arora and Sinha (2013), Mirshokraie et al. (2016), Qi et al.

(2017) and Sherin et al. (2021)

Reduce test time and
effort

Marchetto et al. (2008), Krüger and Linschulte (2012), Boumiza
and Azzouz (2012) and Dixit et al. (2015)

Reduce test case set or
test suite

Tarhini et al. (2008) and Tung et al. (2010)

User input validation Liu and Tan (2008)

Maximise test suite
diversity

Marchetto and Tonella (2009)

Testing dynamic web
applications

Panthi and Mohapatra (2017)

Reduce false negative Tian et al. (2012)

Failure mitigation Boukhris et al. (2017)

Examine database
updates

Ran et al. (2009)

Testing the navigation
behaviour

Bansal and Sabharwal (2013)

Detecting near-duplicate
web pages

Corazza et al. (2021)

 30 S. Hanna and A. Al-Said Ahmad

Figure 9 Goals of the research papers in the field of MWAT with the number of papers that
targeted each of these goals (see online version for colours)

0 5 10 15 20 25 30

Test automation
Test coverage

Detecting security vulnerabilities
Improve the rate of fault detection

Reduce test time and effort
Reduce test case set or test suite

User input validation
Maximize test suite diversity

Testing dynamic Web applications
Reduce false negative

Failure mitigation
Examine database updates

Testing the navigation behaviour
Detecting near-duplicate web pages

Number of Papers

11.3 Classifying other types of studies in the field of web applications testing
according to the testing goal

Table 8 specifies the testing purposes or goals for the other web applications testing
techniques besides SWAT and MWAT in Subsections 10.1 and 10.2, respectively. The
number of research papers targeted each of the testing goals for each testing technique in
this category is also specified.

It can be concluded from Table 8 that based on the reviewed studies:

 The main testing goal or purpose is test automation for the web applications
performance testing, user session-based testing, and concolic testing.

 For the web applications fuzz testing, mutation testing, and combinatorial testing the
main testing goal is detecting security vulnerabilities.

 For the web applications search-based testing, crawlability testing, user acceptance
testing, and requirement-based testing, the main testing goal is test coverage.

 For the web applications regression testing, reducing test case set is the main testing
purpose based on the reviewed papers.

 For the sanitisation testing and semantic-based testing, detecting semantic-based user
input validation vulnerabilities is the main testing purpose.

 Web applications testing techniques 31

Table 8 Testing goals for other web applications testing techniques

Testing technique Main testing goal Research papers #

Performance
testing

Test automation Jiang and Jiang (2009), Rodríguez et al.
(2013), Ali and Badr (2015), Gao et al.

(2010), Eid et al. (2020) and Porres et al.
(2020)

6

Load assessment Jiang and Jiang (2009), Rodríguez et al.
(2013), Kao et al. (2013) and Ali and

Badr (2015)

4

Test efficiency or
accuracy

Jiang and Jiang (2009) and Kao et al.
(2013)

2

Reduce test cost Jiang and Jiang (2009) 1

Reactivity assessment Gao et al. (2010) 1

Identifying worst path
(i.e., a sequence of user

interactions)

Ahmad et al. (2018) 1

Fuzz testing Detecting security
vulnerabilities

McAllister et al. (2008), Avancini and
Ceccato (2012), Offutt et al. (2014) and

Bozic et al. (2015a)

5

Reduce test time and
effort

Krüger and Linschulte (2012) 1

Higher vulnerabilities
exploitation rate

Bozic et al. (2015a) 1

Test automation Offutt et al. (2014) 1

Test coverage McAllister et al. (2008) 1

Mutation testing Detecting security
vulnerabilities (SQL
injection and XSS)

Shahriar and Zulkernine (2008, 2009) and
Xu et al. (2012)

3

Test automation Shahriar and Zulkernine (2008) and Xu
et al. (2012)

2

Test coverage Habibi and Mirian-Hosseinabadi (2015)
and Sherin et al. (2021)

2

Generating adequate test
data

Shahriar and Zulkernine (2009) 1

Combinatorial
testing

Detecting security
vulnerabilities

Bozic et al. (2015a, 2015b), Qi et al.
(2017) and Bozic and Wotawa (2020)

4

Test coverage Bozic et al. (2015b) and Qi et al. (2017) 2

Increase fault detection Bozic et al. (2015b) and Qi et al. (2017) 2

Test automation Qi et al. (2017) 1

Sanitisation
testing

Detecting semantic-based
UIV vulnerabilities

Li et al. (2010b) and Hanna and Munro
(2018)

2

Higher security
vulnerabilities

exploitation rate

Balzarotti et al. (2008) 1

 32 S. Hanna and A. Al-Said Ahmad

Table 8 Testing goals for other web applications testing techniques (continued)

Testing technique Main testing goal Research papers #

Semantic-based
testing

Detecting semantic-based
UIV vulnerabilities

Li et al. (2010b) and Hanna and Munro
(2018)

2

User
session-based
testing

Test automation Quan and Lu (2010) 1

Performance assessment Quan and Lu (2010) 1

Improve the rate of fault
detection

Sampath et al. (2008) and Sampath and
Bryce (2012)

2

Test suite reduction Sampath and Bryce (2012) 1

Test suite prioritisation Sampath and Bryce (2012) 1

Regression testing Sampath et al. (2008) 1

Search-based
testing

Test coverage Bolis et al. (2012) and Elgendy et al.
(2020b)

2

Test automation Bolis et al. (2012) 1

Increase fault detection Marchetto and Tonella (2009) 1

Maximise test suit
diversity

Marchetto and Tonella (2009) 1

Regression testing Reduce test case set Tarhini et al. (2008) 1

Faster feedback on
failures

Kwon et al. (2018) 1

Test coverage Andrews et al. (2019), Eid et al. (2020)
and Abadeh (2021)

3

Concolic testing Test automation Wassermann et al. (2008) and Fard et al.
(2015)

2

Test coverage Fard et al. (2015) 1

Crawlability
testing

Test coverage Marchetto et al. (2011) 1

Test automation Marchetto et al. (2011) 1

Metamorphic
testing

Test automation Aruna and Prasad (2014) 1

Increase fault detection Aruna and Prasad (2014) 1

User acceptance
testing

Test coverage Yu et al. (2009) and Otaduy and Díaz
(2017)

2

Random testing Test coverage Artzi et al. (2011) 1

Test automation Artzi et al. (2011) 1

Requirements
testing

Test coverage Sengupta and Dasgupta (2015) 1

Usability testing Usability assessment Marien et al. (2019) 1

12 Classifying research studies according to the method used for evaluation
(RQ3)

This section describes the evaluation methods used by each primary study in this SMS.
Table 9 specifies the evaluation methods together with the research papers that used each
of these methods.

 Web applications testing techniques 33

Table 9 The evaluation methods used in the primary studies

Main evaluation method Research studies

Case study Marchetto et al. (2008), Mallouli et al. (2008), Tarhini et al. (2008),
Liu and Tan (2008), Marchetto and Tonella (2009), Song and Miao
(2009), Ran et al. (2009), Li et al. (2010a, 2010b), Andrews et al.

(2010), Huang et al. (2011), Song et al. (2011), Krüger and
Linschulte (2012), Avancini and Ceccato (2012), Törsel (2013),

Bansal and Sabharwal (2013), Tanida et al. (2013), Sabharwal et al.
(2013), Kao et al. (2013), Aruna and Prasad (2014), Offutt et al.

(2014), Suhag and Bhatia (2014), Habibi and Mirian-Hosseinabadi
(2015), Polpong and Kansomkeat (2015), Sengupta and Dasgupta
(2015), Zhang and Tanno (2015), Stocco et al. (2016), Panthi and

Mohapatra (2017), Otaduy and Díaz (2017), Boukhris et al. (2017),
Hanna and Munro (2018), Ahmad et al. (2018), Andrews et al.

(2019), Akpinar et al. (2020), Elgendy et al. (2020a), Sherin et al.
(2021) and Corazza et al. (2021)

Experiments McAllister et al. (2008), Liu and Tan (2008), Dao and Shibayama
(2009), Jiang and Jiang (2009), Sampath et al. (2008), Yu et al.

(2009), Ran et al. (2009), Dao and Shibayama (2010), Offutt and
Wu (2010), Tung et al. (2010), Gao et al. (2010), Artzi et al. (2011),
Halfond et al. (2011), Tkachuk and Rajan (2011), Sun et al. (2011),
Marchetto et al. (2011), Heinecke et al. (2011), Bolis et al. (2012),
Sampath and Bryce (2012), Xu et al. (2012), Lei et al. (2013), Ali
and Badr (2015), Bozic et al. (2015a, 2015b), Mirshokraie et al.
(2015), Hallé et al. (2016), Mirshokraie et al. (2016), Qi et al.

(2017), Kwon et al. (2018), Jan et al. (2019), Muzaki et al. (2020),
Porres et al. (2020), Abadeh (2021), Imtiaz and Iqbal (2021), Sherin

et al. (2021) and Gao et al. (2022)

Prototype or tool Shahriar and Zulkernine (2008), Marchetto et al. (2008), Kuk and
Kim (2008), Balzarotti et al. (2008), Wassermann et al. (2008), Dao
and Shibayama (2009), Ran et al. (2009), Quan and Lu (2010), Sun
et al. (2011), Törsel (2011), Artzi et al. (2011), Bolis et al. (2012),

Boumiza and Azzouz (2012), Buchler et al. (2012), Chen et al.
(2012), Dallmeier et al. (2013), Arora and Sinha (2013), Rodríguez
et al. (2013), Törsel (2013), Tanida et al. (2013), Sabharwal et al.

(2013), Gupta and Bajpai (2014), Nabuco and Paiva (2014), Stocco
et al. (2014), Akrout et al. (2014), Dixit et al. (2015), Fard et al.

(2015), Mirshokraie et al. (2015), Hallé et al. (2016), Stocco et al.
(2016), Panthi and Mohapatra (2017), Marien et al. (2019), Eid

et al. (2020), Long et al. (2020), Elgendy et al. (2020b) and Leithner
et al. (2021)

Some studies used more than one evaluation method such as building a tool and then
using this tool in many experiments or case studies.

Also, for the purpose of evaluation, some studies used an experimental web
application while other studies used real world industrial web applications. These studies
are: Aruna and Prasad (2014), Dao and Shibayama (2010), Dixit et al. (2015), Habibi and
Mirian-Hosseinabadi (2015), Hallé et al. (2016), Hanna and Munro (2018), Jan et al.
(2019), Krüger and Linschulte (2012), Kwon et al. (2018), Lei et al. (2013), Mallouli
et al. (2008), Marchetto et al. (2011), Marien et al. (2019), McAllister et al. (2008),
Mirshokraie et al. (2016), Offutt et al. (2014), Qi et al. (2017), Rodríguez et al. (2013)
and Wassermann et al. (2008).

 34 S. Hanna and A. Al-Said Ahmad

To reduce the gap between the research in the field of web applications testing and
industry it is preferable to use real applications in the research in this field. This can also
encourage industry to use the testing techniques proposed by research studies for
detecting faults and assessing quality.

13 Conclusions and future work

The importance of web applications seems to be increasing with each passing day, and
researchers need to identify approaches, methods or techniques for testing these
applications to assess their dependability.

Due to the importance of web applications, many research studies had been
conducted in the field of web applications testing to be able to detect faults in these
applications and assess their different quality attributes, such as security and
performance.

After conducting a comprehensive literature review in the area of web applications
testing, it was found that most of the research in this field is about model-based testing
and security testing. This paper conducted an SMS on the research in the field of web
applications testing and testing purposes or goals. Ninety eight research papers published
between 2008 and 2021 were categorised based on the testing technique and testing
purposes.

The results revealed that most of the research in this field is related to model-based
testing and security testing of web applications. The testing purpose targeted the most is
test automation in both types of testing. The results also revealed that the most commonly
used model in research in the field of MWAT is FSM. SQL injection testing is the most
commonly used testing type for the SWAT technique. Test automation was the mostly
targeted goal for both MWAT and SWAT. This paper also specified all the other testing
techniques used in the literature for testing web applications, such as performance testing,
fuzz testing, and semantic-based testing. The testing purposes for each of these testing
techniques were also specified.

The other web applications testing techniques listed in are performance testing, fuzz
testing, mutation testing, combinatorial testing, testing sanitisation process or UIV,
semantic-based testing, user session-based testing, search-based testing, regression
testing, concolic testing, crawlability testing, metamorphic testing, user acceptance
testing, and random testing.

Similar to model-based testing and security testing, for some of the other web
applications test techniques such as performance testing, test automation is the main or
most targeted testing purpose, while for other testing techniques, such as mutation
testing, fuzz testing and combinatorial testing, the main testing purpose is detecting
security vulnerabilities. The testing purposes for each of the other web applications
testing techniques appear in descending order in Table 8.

Web applications testing techniques are related. For example, mutation testing,
combinatorial testing, fuzz testing and semantic-based testing can be used to detect
security vulnerabilities such as SQL injection and XSS, which are considered part of
security testing. In addition, performance testing can be used in load testing, and user
session-based testing can be used with performance testing.

Future research will add more RQs to the SMS. Since researchers use model-based
testing and security testing the most, an independent review of each of these techniques

 Web applications testing techniques 35

will be conducted. Future research will also consider conducting a SMS for specific web
applications testing techniques, especially the techniques that are not adequately covered
in literature, such as web applications acceptance testing. Moreover, future research will
conduct an SMS for mobile applications due to their great importance nowadays.

References

Abadeh, M.N. (2021) ‘Genetic-based web regression testing: an ontology-based multi-objective
evolutionary framework to auto-regression testing of web applications’, Service Oriented
Computing and Applications, Vol. 15, No. 1, pp.55–74.

Ahmad, T., Truscan, D. and Porres, I. (2018) ‘Identifying worst-case user scenarios for
performance testing of web applications using Markov-chain workload models’, Future
Generation Computer Systems, Vol. 87, pp.910–920.

Akpinar, P., Aktas, M.S., Keles, A.B., Balaman, Y., Guler, Z.O. and Kalipsiz, O. (2020) ‘Web
application testing with model based testing method: case study’, International Conference on
Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, IEEE, pp.1–6.

Akrout, R., Alata, E., Kaaniche, M. and Nicomette, V. (2014) ‘An automated black box approach
for web vulnerability identification and attack scenario generation’, Journal of the Brazilian
Computer Society, Vol. 20, No. 1, pp.1–16.

Ali, A. and Badr, N. (2015) ‘Performance testing as a service for web applications’, IEEE Seventh
International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo,
Egypt, pp.356–361.

Al-Said Ahmad, A., Brereton, P. and Andras, P. (2017) ‘A systematic mapping study of empirical
studies on software cloud testing methods’, IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), Prague, Czech Republic, IEEE,
pp.555–562.

Andrews, A., Alhaddad, A. and Boukhris, S. (2019) ‘Black-box model-based regression testing of
fail-safe behavior in web applications’, Journal of Systems and Software, Vol. 149, No. 2019,
pp.318–339.

Andrews, A.A., Offutt, J., Dyreson, C., Mallery, C.J., Jerath, K. and Alexander, R. (2010)
‘Scalability issues with using FSMWeb to test web applications’, Information and Software
Technology, Vol. 52, No. 1, pp.52–66.

Anon. (2020) OWASP Top Ten [online] https://owasp.org/www-project-top-ten/ (accessed 26 June
2022).

Arora, A. and Sinha, M. (2013) ‘Applying variable chromosome length genetic algorithm for
testing dynamism of web application’, International Conference on Recent Trends in
Information Technology (ICRTIT), IEEE, USA, pp.539–545.

Artzi, S., Dolby, J., Jensen, S.H., Møller, A. and Tip, F. (2011) ‘A framework for automated testing
of JavaScript web applications’, 33rd International Conference on Software Engineering,
IEEE, Honolulu, USA, pp.571–580.

Aruna, C. and Prasad, R.S.R. (2014) ‘Testing approach for dynamic web applications based on
automated test strategies’, 48th Annual Convention of Computer Society of India, Springer,
India, Vol. 2, pp.399–410.

Avancini, A. and Ceccato, M. (2012) ‘Grammar based oracle for security testing of web
applications’, Proceedings of the 7th International Workshop on Automation of Software Test,
IEEE, Zurich, Switzerland, pp.15–21.

Aydos, M., Aldan, Ç., Coşkun, E. and Soydan, A. (2021) ‘Security testing of web applications: a
systematic mapping of the literature’, Journal of King Saud University-Computer and
Information Sciences, ISSN: 1319-1578.

 36 S. Hanna and A. Al-Said Ahmad

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C. and Vigna, G.
(2008) ‘Saner: composing static and dynamic analysis to validate sanitization in web
applications’, 2008 IEEE Symposium on Security and Privacy (SP 2008), California, USA,
pp.387–401.

Bansal, P. and Sabharwal, S. (2013) ‘A model based approach to test case generation for testing the
navigation behavior of dynamic web applications’, Sixth International Conference on
Contemporary Computing, IEEE, India, pp.213–2018.

Bolis, F., Gargantini, A., Guarnieri, M. and Magri, E. (2012) ‘Evolutionary testing of PHP web
applications with WETT’, International Symposium on Search Based Software Engineering,
Springer, Berlin, Heidelberg, Trento, Italy, pp.285–291.

Boukhris, S., Andrews, A., Alhaddad, A. and Dewri, R. (2017) ‘A case study of black box fail-safe
testing in web applications’, Journal of Systems and Software, Vol. 131, No. 2018,
pp.146–167.

Boumiza, D.S. and Azzouz, A.B. (2012) ‘Design and development of a user interface to customize
web testing scenarios’, International Conference on Education and E-Learning Innovations,
IEEE, Tunisia, pp.1–5.

Bozic, J., Garn, B., Kapsalis, I., Simos, D., Winkler, S. and Wotawa, F. (2015a) ‘Attack
pattern-based combinatorial testing with constraints for web security testing’, International
Conference on Software Quality, Reliability and Security, IEEE, Vancouver, Canada,
pp.207–212.

Bozic, J., Garn, B., Simos, D. and Wotawa, F. (2015b) ‘Evaluation of the IPO-family algorithms
for test case generation in web security testing’, IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), IEEE, Vienna, Austria,
pp.1–10.

Bozic, J.L.Y. and Wotawa, F. (2020) ‘Ontology-driven security testing of web applications’,
International Conference on Artificial Intelligence Testing (AITest), IEEE, UK, pp.115–122.

Buchler, M., Oudinet, J. and Pretschner, A. (2012) ‘Semi-automatic security testing of web
applications from a secure model’, in 2012 IEEE Sixth International Conference on Software
Security and Reliability, Maryland, USA, 20–22 June, pp.253–262.

Chen, S., Miao, H. and Song, B. (2012) ‘AGT4W: automatic generating tests for web applications’,
Frontiers in Computer Education, Vol. 133, pp.885–892.

Clarke, J. (2009) SQL Injection Attacks and Defense, Elsevier, ISBN-10: 1597499633.

Corazza, A., Di Martino, S., Peron, A. and Starace, L.L.L. (2021) ‘Web application testing: using
tree kernels to detect near-duplicate states in automated model inference’, Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), IEEE/ACM, Bari, Italy, pp.1–6.

Dadkhah, M., Araban, S. and Paydar, S. (2020) ‘A systematic literature review on semantic web
enabled software testing’, Journal of Systems and Software, Vol. 162, No. 2020, p.110485.

Dallmeier, V., Burger, M., Orth, T. and Zeller, A. (2013) ‘WebMate generating test cases for
Web 2.0’, International Conference on Software Quality, Springer, Berlin, Heidelberg,
pp.55–69.

Dao, T.B. and Shibayama, E. (2010) ‘Coverage criteria for automatic security testing of web
applications’, Gandhinagar, International Conference on Information Systems Security,
Springer, Berlin, Heidelberg, India, pp.111–124.

Dao, T-B. and Shibayama, E. (2009) ‘Idea: automatic security testing for web applications’,
International Symposium on Engineering Secure Software and Systems, Springer-Verlag,
Belgium, pp.180–184.

Dixit, R., Lutteroth, C. and Weber, G. (2015) ‘FormTester: effective integration of model-based
and manually specified test cases’, 37th International Conference on Software Engineering,
IEEE, Firenze, Italy, Vol. 2, pp.745–748.

Doğan, S., Betin-Can, A. and Garousi, V. (2014) ‘Web application testing: a systematic literature
review’, Journal of Systems and Software, Vol. 91, No. 2014, pp.174–201.

 Web applications testing techniques 37

Eid, S., Makady, S. and Ismail, M. (2020) ‘Detecting software performance problems using source
code analysis techniques’, Egyptian Informatics Journal, Vol. 21, No. 4, pp.219–229.

Elgendy, I.T., Girgis, M.R. and Seiwsy, A. (2020a) ‘An automated tool for data flow testing of
ASP .NET web applications’, Applied Mathematics & Information Sciences, Vol. 14, No. 4,
pp.679–691.

Elgendy, I.T., Girgis, M.R. and Sewisy, A.A. (2020b) ‘A GA-based approach to automatic test data
generation for ASP .NET web applications’, IAENG International Journal of Computer
Science, Vol. 47, No. 3, pp.557–564.

Fard, A.M., Mesbah, A. and Wohlstadter, E. (2015) ‘Generating fixtures for JavaScript unit
testing’, 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, USA, pp.190–200.

Gao, P.S.F., Chen, T., Zeng, Y. and Su, T. (2022) ‘Model-based automated testing of JavaScript
web applications via longer test sequences’, Frontiers of Computer Science, Vol. 16, No. 3,
pp.1–14.

Gao, T., Ge, Y., Wu, G. and Ni, J. (2010) ‘A reactivity-based framework of automated performance
testing for web applications’, Ninth International Symposium on Distributed Computing and
Applications to Business, Engineering and Science, Washington, USA, pp.593–597.

Garousi, V., Mesbah, A., Betin-Can, A. and Mirshokraie, S. (2013) ‘A systematic mapping study of
web application testing’, Information and Software Technology, Vol. 55, No. 8,
pp.1374–1396.

Gupta, R. and Bajpai, N. (2014) ‘A keyword-driven tool for testing web applications (KeyDriver)’,
IEEE Potentials, Vol. 33, No. 5, pp.35–42.

Habibi, E. and Mirian-Hosseinabadi, S.H. (2015) ‘Event-driven web application testing based on
model-based mutation testing’, Information and Software Technology, Vol. 67, No. 2015,
pp.159–179.

Halfond, W.G., Choudhary, S.R. and Orso, A. (2011) ‘Improving penetration testing through static
and dynamic analysis’, Software Testing, Verification and Reliability, Vol. 21, No. 3,
pp.195–214.

Hallé, S., Bergeron, N., Guérin, F., Le Breton, G. and Beroual, O. (2016) ‘Declarative layout
constraints for testing web applications’, Journal of Logical and Algebraic Methods in
Programming, Vol. 85, No. 5, pp.737–758.

Hanna, S. and Munro, M. (2018) ‘Test case generation for semantic-based user input validation of
web applications’, International Journal of Web Engineering and Technology, Vol. 13, No. 3,
pp.225–254.

Heinecke, A., Griebe, T., Gruhn, V. and Flemig, H. (2011) ‘Business process-based testing of web
applications’, International Conference on Business Process Management, Springer, Berlin,
Heidelberg, pp.603–614.

Huang, Y-Y., Chen, K. and Chiang, S-L. (2011) ‘Finding security vulnerabilities in Java web
applications with test generation and dynamic taint analysis’, 2nd International Congress on
Computer Applications and Computational Science, Springer-Verlag, pp.133–138.

Imtiaz, J. and Iqbal, M.Z. (2021) ‘An automated model-based approach to repair test suites of
evolving web applications’, Journal of Systems and Software, Vol. 171, No. 2021, p.110841.

Jan, S., Panichella, A., Arcuri, A. and Briand, L. (2019) ‘Automatic generation of tests to exploit
XML injection vulnerabilities in web applications’, IEEE Transactions on Software
Engineering, Vol. 45, No. 4, pp.335–362.

Jiang, G. and Jiang, S. (2009) ‘A quick testing model of Web performance based on testing flow
and its application’, Sixth Web Information Systems and Applications Conference, IEEE,
China, pp.57–61.

Kao, C.H., Lin, C.C. and Chen, J.N. (2013) ‘Performance testing framework for REST-based web
applications’, Najing, 13th International Conference on Quality Software, IEEE, China,
pp.349–354.

 38 S. Hanna and A. Al-Said Ahmad

Kitchenham, B.A., Budgen, D. and Brereton, P. (2015) Evidence-Based Software Engineering and
Systematic Reviews, CRC Press, New York, USA.

Krüger, B. and Linschulte, M. (2012) ‘Cost reduction through combining test sequences with input
data’, IEEE Sixth International Conference on Software Security and Reliability Companion,
IEEE, Gaithersburg, MD, USA, pp.207–216.

Kuk, S.H. and Kim, H.S. (2008) ‘Automatic generation of testing environments for web
applications’, International Conference on Computer Science and Software Engineering,
IEEE, China, pp.694–697.

Kwon, J.H., Ko, I.Y. and Rothermel, G. (2018) ‘Prioritizing browser environments for web
application test execution’, 40th International Conference on Software Engineering,
Gothenburg, Sweden, pp.468–479.

Lakshmi, D.R. and Mallika, S.S. (2017) ‘A review on web application testing and its current
research directions’, International Journal of Electrical and Computer Engineering, Vol. 7,
No. 4, pp.2132–2141.

Lei, L., Jing, X., Minglei, L. and Jufeng, Y. (2013) ‘A dynamic SQL injection vulnerability test
case generation model based on the multiple phases detection approach’, IEEE 37th Annual
Computer Software and Applications Conference, IEEE, Japan, pp.256–261.

Leithner, M., Garn, B. and Simos, D.E. (2021) ‘HYDRA: feedback-driven black-box exploitation
of injection vulnerabilities’, Information and Software Technology, Vol. 140, No. 2021,
p.106703.

Li, L., Miao, H. and Chen, S. (2010a) ‘Test generation for web applications using model-checking’,
11th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, Washington, USA, pp.237–242.

Li, N., Xie, T., Jin, M. and Liu, C. (2010b) ‘Perturbation-based user-input-validation testing of web
applications’, Journal of Systems and Software, Vol. 83, No. 11, pp.2263–2274.

Li, Y.F., Das, P.K. and Dowe, D.L. (2014) ‘Two decades of web application testing – a survey of
recent advances’, Information Systems, Vol. 43, No. C, pp.20–54.

Liu, H. and Tan, H.B.K. (2008) ‘Testing input validation in web applications through automated
model recovery’, The Journal of Systems and Software, Vol. 81, No. 2, pp.222–233.

Liu, Y., Li, Y. and Wang, P. (2010) ‘Design and implementation of automatic generation of test
cases based on model driven architecture’, Second International Conference on Information
Technology and Computer Science, IEEE, Bali Island, Indonesia, pp.344–347.

Long, Z., Wu, G., Chen, X., Chen, W. and Wei, J. (2020) ‘WebRR: self-replay enhanced robust
record/replay for web application testing’, Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ACM, USA, pp.1498–1508.

Mallouli, W., Lallali, M., Morales, G. and Cavalli, A.R. (2008) ‘Modeling and testing secure
web-based systems: application to an industrial case study’, IEEE International Conference on
Signal Image Technology and Internet Based Systems, IEEE, Bali, Indonesia, pp.128–136.

Marchetto, A. and Tonella, P. (2009) ‘Search-based testing of Ajax web applications’, 1st
International Symposium on Search Based Software Engineering, IEEE, Windsor, UK,
pp.3–12.

Marchetto, A., Ricca, F. and Tonella, P. (2008) ‘A case study-based comparison of web testing
techniques applied to AJAX web applications’, International Journal on Software Tools for
Technology Transfer, Vol. 10, No. 6, pp.477–492.

Marchetto, A., Tiella, R., Tonella, P., Alshahwan, N. and Harman, M. (2011) ‘Crawlability metrics
for automated web testing’, International Journal on Software Tools for Technology Transfer,
Vol. 13, No. 2, pp.131–149.

Marien, S., Legrand, D., Ramdoyal, R., Nsenga, J., Ospina, G., Ramon, V. and Spinewine, A.
(2019) ‘A user-centered design and usability testing of a web-based medication reconciliation
application integrated in an eHealth network’, International Journal of Medical Informatics,
Vol. 126, pp.138–146.

 Web applications testing techniques 39

McAllister, S., Kirda, E. and Kruegel, C. (2008) ‘Leveraging user interactions for in-depth testing
of web applications’, International Workshop on Recent Advances in Intrusion Detection,
Springer-Verlag, MA, USA, pp.191–210.

Mirshokraie, S., Mesbah, A. and Pattabiraman, K. (2015) ‘JSEFT automated JavaScript unit test
generation’, 8th International Conference on Software Testing, Verification and Validation,
IEEE, Graz, Austria, pp.1–10.

Mirshokraie, S., Mesbah, A. and Pattabiraman, K. (2016) ‘Atrina: inferring unit oracles from GUI
test cases’, IEEE International Conference on Software Testing, Verification and Validation
(ICST), IEEE, Chicago, USA, pp.330–340.

Muzaki, R.A., Briliyant, O.C., Hasditama, M.A. and Ritchi, H. (2020) ‘Improving security of
web-based application using ModSecurity and reverse proxy in web application firewall’,
2020 International Workshop on Big Data and Information Security (IWBIS), IEEE, Depok,
Indonesia, pp.85–90.

Nabuco, M. and Paiva, A.C. (2014) ‘Model-based test case generation for web applications’,
International Conference on Computational Science and Its Applications, Springer, Portugal,
pp.248–262.

Nie, C. and Leung, H. (2011) ‘A survey of combinatorial testing’, ACM Computing Surveys
(CSUR), Vol. 43, No. 2, pp.1–29.

Offutt, J. and Wu, Y. (2010) ‘Modeling presentation layers of web applications for testing’,
Software & Systems Modeling, Vol. 9, No. 2, pp.257–280.

Offutt, J., Papadimitriou, V. and Praphamontripong, U. (2014) ‘A case study on bypass testing of
web applications’, Empirical Software Engineering, Vol. 19, No. 1, pp.69–104.

Otaduy, I. and Díaz, O. (2017) ‘User acceptance testing for agile-developed web-based
applications: empowering customers through Wikis and mind maps’, Journal of Systems and
Software, Vol. 133, No. 2017, pp.212–229.

Panthi, V. and Mohapatra, D.P. (2017) ‘An approach for dynamic web application testing using
MBT’, International Journal of System Assurance Engineering and Management, Vol. 8,
No. 2, pp.1704–1716.

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M. (2008) ‘Systematic mapping studies in
software engineering’, EASE‘08: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering, Italy, pp.1–10.

Polpong, J. and Kansomkeat, S. (2015) ‘Syntax-based test case generation for web application’,
International Conference on Computer, Communications, and Control Technology (I4CT),
Malaysia, pp.389–393.

Porres, I.T., Rexha, H., Lafond, S. and Truscan, D. (2020) ‘Automatic exploratory performance
testing using a discriminator neural network’, 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, IEEE,
pp.105–113.

Qi, X.F., Wang, Z.Y., Mao, J.Q. and Wang, P. (2017) ‘Automated testing of web applications using
combinatorial strategies’, Journal of Computer Science and Technology, Vol. 32, No. 1,
pp.199–210.

Quan, X. and Lu, L. (2010) ‘Session-based performance test case generation for web applications’,
IEEE, Hong Kong, pp.1–7.

Ran, L., Dyreson, C., Andrews, A., Bryce, R. and Mallery, C. (2009) ‘Building test cases and
oracles to automate the testing of web database applications’, Information and Software
Technology, Vol. 51, No. 2, pp.460–477.

Rodríguez, F.T., Reina, M., Baptista, F., Usaola, M.P. and Lamancha, B.P. (2013) ‘Automated
generation of performance test cases from functional tests for web applications’, International
Conference on Evaluation of Novel Approaches to Software Engineering, Springer, Berlin,
Heidelberg, pp.164–173.

 40 S. Hanna and A. Al-Said Ahmad

Sabharwal, S., Bansal, P. and Aggarwal, M. (2013) ‘Modeling the navigation behavior of dynamic
web applications’, International Journal of Computer Applications, Vol. 65, No. 13,
pp.20–27.

Sampath, S. and Bryce, R.C. (2012) ‘Improving the effectiveness of test suite reduction for
user-session-based testing of web applications’, Information and Software Technology,
Vol. 54, No. 7, pp.724–738.

Sampath, S., Bryce, R.C., Viswanath, G., Kandimalla, V. and Koru, A.G. (2008) ‘Prioritizing
user-session-based test cases for web applications testing’, International Conference on
Software Testing, Verification, and Validation, Norway, pp.141–150.

Scholte, T., Balzarotti, D. and Kirda, E. (2012) ‘Have things changed now? An empirical study on
input validation vulnerabilities in web applications’, Computers & Security, Vol. 31, No. 3,
pp.344–356.

Sen, K. (2007) ‘Concolic testing’, Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering, IEEE/ACM, Atlanta, Georgia USA,
pp.571–572.

Sengupta, S. and Dasgupta, R. (2015) ‘A VDM-based approach for specifying and testing
requirements of web-applications’, Procedia Computer Science, Vol. 46, pp.774–783.

Shahriar, H. and Zulkernine, M. (2008) ‘MUSIC: mutation-based SQL injection vulnerability
checking’, The Eighth International Conference on Quality Software (QSIC‘08), IEEE, USA,
pp.77–86.

Shahriar, H. and Zulkernine, M. (2009) ‘Mutec: mutation-based testing of cross site scripting’,
ICSE Workshop on Software Engineering for Secure Systems, IEEE, Vancouver, Canada,
pp.47–53.

Sherin, S., Iqbal, M.Z., Khan, M.U. and Jilani, A.A. (2021) ‘Comparing coverage criteria for
dynamic web application: an empirical evaluation’, Computer Standards & Interfaces,
Vol. 73, No. 2021, p.103467.

Song, B. and Miao, H. (2009) ‘Modeling web applications and generating tests: a combination and
interactions-guided approach’, Third IEEE International Symposium on Theoretical Aspects of
Software Engineering, IEEE, Tianjin, China, pp.174–181.

Song, B., Gong, S. and Chen, S. (2011) ‘Model composition and generating tests for web
applications’, Seventh International Conference on Computational Intelligence and Security,
IEEE, China, pp.568–572.

Stocco, A., Leotta, M., Ricca, F. and Tonella, P. (2014) ‘PESTO: a tool for migrating DOM-based
to visual web tests’, 14th International Working Conference on Source Code Analysis and
Manipulation, IEEE, Victoria, Canada, pp.65–70.

Stocco, A., Leotta, M., Ricca, F. and Tonella, P. (2016) ‘APOGEN: automatic page object
generator for web testing’, Software Qual J., Vol. 25, No. 3, pp.1007–1039.

Suhag, V. and Bhatia, R. (2014) ‘Model based test cases generation for web applications’,
International Journal of Computer Applications, Vol. 92, No. 3, pp.23–31.

Sun, L., Li, J. and Liu, S. (2011) ‘Automatic test case generation for web applications testing.
Communication systems and information technology’, Lecture Notes in Electrical
Engineering, Vol. 100, pp.657–666.

Tanida, H., Prasad, M.R., Rajan, S.P. and Fujita, M. (2013) ‘Automated system testing of dynamic
web applications’, International Conference on Software and Data Technologies, Springer,
Berlin, Heidelberg, pp.181–196.

Tarhini, A., Ismail, Z. and Mansour, N. (2008) ‘Regression testing web applications’, International
Conference on Advanced Computer Theory and Engineering, IEEE, Thailand, pp.902–906.

Tian, W., Yang, J-F., Xu, J. and Si, G-N. (2012) ‘Attack model based penetration test for SQL
injection vulnerability’, IEEE 36th Annual Computer Software and Applications Conference
Workshops, Turkey, pp.589–594.

 Web applications testing techniques 41

Tkachuk, O. and Rajan, S. (2011) ‘Automated driver generation for analysis of web applications’,
International Conference on Fundamental Approaches to Software Engineering, Springer,
Berlin, Heidelberg, pp.326–340.

Törsel, A.M. (2013) ‘A testing tool for web applications using a domain-specific modelling
language and the NuSMV model checker’, IEEE Sixth International Conference on Software
Testing, Verification and Validation, Luxembourg, IEEE, pp.383–390.

Törsel, A-M. (2011) ‘Automated test case generation for web applications from a domain specific
model’, 35th IEEE Annual Computer Software and Applications Conference Workshops,
IEEE, Munich, pp.137–142.

Tung, Y-H., Tseng, S-S., Lee, T-J. and Weng, J-F. (2010) ‘A novel approach to automatic test case
generation for web applications’, Zhangjiajie, 10th International Conference on Quality
Software, IEEE, China, pp.399–404.

Van Deursen, A., Mesbah, A. and Nederlof, A. (2015) ‘Crawl-based analysis of web applications:
prospects and challenges’, Science of Computer Programming, Vol. 97, Part 1, pp.173–180.

W3C (2004) Document Object Model (DOM) Level 3 Core Specification, W3C.

Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H. and Su, Z. (2008) ‘Dynamic test
input generation for web applications’, International Symposium on Software Testing and
Analysis, ACM, Seattle, WA, USA, pp.249–260.

Xu, D. Tu, M., Sanford, M., Thomas, L., Woodraska, D. and Xu, W. (2012) ‘Automated security
test generation with formal threat models’, IEEE Transactions on Dependable and Secure
Computing, Vol. 9, No. 4, pp.526–540.

Yu, L., Zhao, W., Di, X., Kong, C., Zhao, W., Wang, Q. and Zhu, J. (2009) ‘Towards call for
testing: an application to user acceptance testing of web applications’, 33rd Annual IEEE
International Computer Software and Applications Conference, IEEE, Seattle, Washington,
USA, pp.166–171.

Zhang, X. and Tanno, H. (2015) ‘Requirements document based test scenario generation for web
application scenario testing’, IEEE Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Graz, Austria, pp.1–3.

