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Abstract: The burden of antimicrobial use in agricultural settings is one of the greatest challenges
facing global health and food security in the modern era. Malaysian poultry operations are a relevant
but understudied component of epidemiology of antimicrobial resistance. We aimed to identify
the prevalence, resistance patterns, and risk factors associated with Salmonella isolates from poultry
farms in three states of East Coast Peninsular Malaysia. Between 8 February 2019 and 23 February
2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) was
collected from poultry operations. Characteristics of the sampled farms and associated risk factors
were obtained using semi-structured questionnaires. Presumptive Salmonella spp. isolates were
identified based on colony morphology with subsequent biochemical and PCR confirmation. Sus-
ceptibility of isolates was tested against a panel of 12 antimicrobials using disk diffusion method.
Our findings revealed that the proportion of Salmonella spp.-positive isolates across sample source
were as following: cloacal swab (46.3%, 120/259); faecal (59.5%, 50/84); in tap water (14.3%, 2/14);
and in sewage sample (35.7%, 5/14). Isolates from faecal (15.5%, 13/84), cloacal (1.2%, 3/259), and
sewage (7.1%, 1/14) samples were significantly resistant to at least five classes of antimicrobials.
Resistance to Sulfonamides class (52%, 92/177) was predominantly observed followed by tetracycline
(39.5%, 70/177) and aminoglycosides (35.6%, 63/177). Multivariate regression analysis identified
intensive management system (OR = 1.55, 95% CI = 1.00–2.40) as a leading driver of antimicrobial
resistance (AMR) acquisition. A prevalence of resistance to common antimicrobials was recorded
for sulfamethoxazole (33.9%), tetracycline (39.5%), and trimethoprim-sulphamethoxazole (37.9%). A
close association between different risk factors and the prevalence of AMR of Salmonella strains sug-
gests a concern over rising misuse of veterinary antimicrobials that may contribute to the emergence
and evolution of multidrug-resistant pathogen isolates. One Health approach is recommended to
achieve a positive health outcome for all species.

Keywords: Salmonella spp.; antimicrobial resistant; distribution; poultry farms; environment; Malaysia

1. Introduction

Antimicrobial resistance is one of the biggest threats to global health and food security;
today, this is rising globally in both developed and developing countries. Antimicro-
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bial resistance occurs naturally, or it can be acquired by bacteria. Antimicrobial selective
pressure due to inappropriate and overuse of antibiotics may promote the emergence of
the phenomenon. Cross-sectoral interconnectivity through healthcare, agriculture, and
environment contributes further emergence, evolution, and global spread of antimicrobial
resistance [1]. The rise in multidrug-resistant (MDR) bacterial infections is being driven by
the global expansion of livestock production systems where antimicrobials are used rou-
tinely to maintain livestock health and productivity. In low- and middle-income countries
(LMICs), 73% of all antimicrobials are used in animals raised for food [2]. More specifically,
in Malaysia and many other Southeast Asian countries, a wide use of antibiotics, especially
in intensive production system, is linked to the higher resistance to various antibiotics [3].
Most of these antimicrobial compounds are accumulated and biomagnified through the
food chain. Exposure among human populations to low levels of antimicrobial contami-
nants through marine and agricultural ecosystems has been linked to development and
acquisition of antibiotic-resistant bacteria [1,4].

Salmonella spp. are the cause of one of the most common bacterial infections in humans.
A substantial number of pathogenic strains of Salmonella spp. cause food-related poisoning
worldwide [5]. The global burden of non-typhoidal Salmonella spp. (NTS) is increasing,
with over 94 million cases of gastroenteritis, which is responsible for 77,500 in 2017 [6]. The
development of antimicrobial drug resistance in non-typhoidal Salmonella spp. is an almost
inevitable consequence of the use of antibiotics in animal husbandry [7]. Practices such
as rampant use of broad-spectrum antimicrobials administered in low doses for growth
promotion and use of non-approved drugs or drugs used in off-label scenarios are driving
the emergence of antimicrobial resistance in veterinary settings [8]. Of particular concern is
the development of resistance to key antibiotics, such as the fluoroquinolones [9], β-lactams,
and colistin [10].

Malaysia is among the top consumers of poultry meat worldwide, and the scale-
up and intensification of poultry farming has led to the steady rise of antimicrobial-
resistant Salmonella spp. infections [8]. Poultry make up the largest share of livestock
in Malaysia [11].

The reliance on antimicrobials to meet demand for animal protein poses a serious
public health consequence and a likely threat to the sustainability of the livestock industry
and thus to the livelihood of farmers [12]. Effectivity and scalability of AMR surveil-
lance with the recognition of One Health approach as center of governance is appreciated
worldwide [13]. However, epidemiological investigations for proper understanding of
the context and assessment of the ultimate and proximate drivers of AMR are poorly
documented in the east coast of peninsular Malaysia. In the absence of systematic surveil-
lance systems, the use of point prevalence surveys in these operations represent a largely
untapped source of information to map trends in AMR.

We present findings from a study of risk factors associated with the carriage of resistant
Salmonella spp. isolates in poultry farms of East Coast Peninsular Malaysia to establish a
baseline for monitoring AMR levels in these settings for policy makers.

2. Results

We administered a semi-structured questionnaire to 31 poultry farmers and conve-
niently sampled 14 farms with a total of 371 samples across three states of peninsular
Malaysia. The 14 included poultry farms were in Kelantan, Terengganu, and Pahang,
located in east coast of peninsular Malaysia. The socio-demographic traits of the included
farms is given in Supplementary Table S1. Of these, 371 samples (cloacal swabs = 259;
faecal samples = 84; sewage = 14, tap water = 14) were collected from 14 poultry farms:
158 from Kelantan, 80 from Terengganu, and 133 from Pahang. Of the tested 371 samples,
177 (47.7%) were Salmonella spp. positive (Table 1). Univariate analyses identified several
variables significantly associated with Salmonella spp. positivity (p < 0.05), such as sample
source, location, sewage system, and water source. Most of these variables are poultry-
farm-contact related. The proportion of Salmonella spp.-positive isolates across sample
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source were as follows: cloacal swab (46.3%, 120/259); faecal samples (59.5%, 50/84); in
tap water (14.3%, 2/14); and in sewage sample (35.7%, 5/14). The proportion of Salmonella
spp.-positive isolates among the states were not significantly different (p > 0.065) (Table 1).

Table 1. Summary of risk factors of Salmonella spp. among poultry farms in the Kelantan, Terengganu,
and Pahang Malaysia (n = 371 samples) by using chi-square analysis.

Risk Factors Samples Tested Affected (%) p-Value

Age 0.504
Young 187 86 (46%)
Adult 184 91 (49.5%)

Management system 0.478
Intensive 187 95 (50.8%)

Semi-intensive 158 70 (44.3%)
Mixed 26 12 (46.2%)

Production system 0.188
Broiler 212 109 (51.4%)
Layer 53 25 (47.2%)
Mixed 106 43 (40.6%)

State 0.065
Kelantan 158 79 (50%)

Terengganu 80 29 (36.3%)
Pahang 133 69 (51.9%)

Districts 0.010
Kelantan
Bachok 52 29 (55.8%)

Kota Bharu 26 12 (46.2%)
Machang 28 16 (57.1%)
Pasir Mas 26 13 (50%)

Jeli 26 9 (34.6%)
Pahang
Kuantan 79 50 (63.3%)

Pekan 54 19 (35.2%)
Terengganu

Kuala Terengganu 26 8 (30.8%)
Marang 54 21 (38.9%)

Sample source 0.007
Cloaca swab 259 120 (46.3%)
Fecal Sample 84 50 (59.5%)

Sewage 14 5 (35.7%)
Tap Water 14 2 (14.3%)

Farm size 0.098
Small 104 50 (48.1%)

Medium 187 97 (51.9%)
Large 80 30 (37.5%)

Origin of the poultry 0.113
Local 26 12 (46.2%)

Imported 133 73 (54.9%)
Both 212 92 (43.4%)

Sewage system 0.021
Excellent 109 64 (58.7%)

Good 210 92 (43.8%)
Poor 52 21 (40.4%)

Water Source 0.013
Surface water 106 38 (35.8%)
Bond water 133 72 (54.1%)
Pump water 132 67 (50.8%)
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Among the districts, the highest prevalence of Salmonella spp. was recorded in Kuantan
farms (63.3%, 50/79) followed by Machang (57.1%, 16/28) and Bachok (55.8%, 29/52) and
Pasir Mas (50% 13/26), respectively (Table 1). The proportion of Salmonella spp.-positive
isolates among water source are as follows: surface water (35.8%, 38/106), bond water
(54.1%, 72/133), and pump water (50.8%, 67/132) (Table 1). We observed that 86.4% of
the Salmonella spp. isolates were resistant to the tested panel of antimicrobials, and MDR
strains were 41.2% (Table 2).

Table 2. Mean of univariate analysis of poultry samples for antimicrobial-resistant Salmonella spp.
from poultry farms in east coast of Malaysia (n = 177 samples).

Antimicrobial Resistance Percentage (%)

Resistance
No resistance 24 (13.6%)

Resistance 153 (86.4%)

Number of classes
No resistance 24 (13.6%)

Resistant to 1 class 46 (26%)
Resistant to 2 classes 34 (19.2%)

Resistant to 3–4 classes 56 (31.6%)
Resistant to 5 or more classes 17 (9.6%)

Tetracyclines
Resistant 70 (39.5%)

Penicillins
Resistant 57 (32.2%)

Aminoglycosides
Resistant 63 (35.6%)

Sulfonamides
Resistant 92 (52%)

Cephalosporins
Resistant 21 (11.9%)

Chloramphenicol
Resistant 14 (7.9%)

Macrolides
Resistant 33 (18.6%)

Quinolones
Resistant 45 (25.4%)

Resistance to sulfonamides class (52%, 92/177) was predominantly observed followed
by tetracycline (39.5%, 70/177) and aminoglycosides (35.6%, 63/177), whereas chloram-
phenicol (7.9%, 14/177) and cephalosporins (11.9%, 21/177) were the least resistant classes
for the isolated Salmonella spp. Figure 1 shows the prevalence of antimicrobial class-resistant
Salmonella spp. isolated from poultry farms collected from Kelantan, Terengganu, and
Pahang poultry operations. We observed the resistance patterns of Salmonella spp. isolates
against a panel of 12 antimicrobials were similar across the participated states. However,
the prevalence of resistance to trime-thoprim-sulphamethoxazole was consistently higher
than other tested antimicrobials (Figure 2). Similarly, the highest resistance was noted
in faecal samples, followed by cloacal and sewage systems (Figure 3). The source of the
sample, production system, management system, the size of the farm, poultry origin, and
source of the water factors were significantly associated with at least one antimicrobial
(Supplementary Table S2). Furthermore, we observed that isolates collected from faecal
(15.5%, 13/84), cloacal (1.2%, 3/259), and sewage (7.1%, 1/14) samples were significantly
resistant to at least five classes of antimicrobials, whereas surface water (4.9%, 5/103), bond
water (12%, 16/133), and pump water (9.1%, 12/132) were significantly resistant to at
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least two classes of antimicrobials (Table 3). The multivariate regression analysis for the
management system of the farms with special-reference intensive farms (OR = 1.55, 95%
CI = 1.0–2.4) were significant (p < 0.05) as leading drivers of Salmonella spp. antimicrobial
resistance in the participating states of East Coast Peninsular Malaysia (Table 4).
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Figure 1. Prevalence of antimicrobial class susceptibility to Salmonella spp. isolated from poultry farms collected from
Kelantan, Terengganu, and Pahang poultry operations. Data are the number of samples (n = 177). Sulf, sulfonamides;
Tet, tetracyclines; Ami, aminoglycosides; Pen, penicillins; Qui, quinolones; Mac, macrolides; Cep, cephalosporins; Chl,
chloramphenicol.
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Figure 2. Prevalence of antimicrobial-resistant Salmonella spp. isolated from poultry farms collected from Kelantan,
Terengganu, and Pahang poultry operations. Data are the number of samples (n = 371). Tet, tetracycline; Sulft, sulfamethox-
azole/trimethoprim; Gen, gentamycin; Sul, sulfamethoxazole; Amp, ampicillin; Nal, nalidixic acid; Chl, chloramphenicol;
Ery, erythromycin; Cef, cefoxitin; Kan, kanamycin; Amo, amoxicillin; Cip, ciprofloxacin.
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Figure 3. Prevalence of antimicrobial-resistant Salmonella spp. by sample collected from poultry farms of East Coast
Peninsular Malaysia. Data are the number of poultry strains (n = 371). Gen, gentamycin; Tet, tetracycline; Amp, ampicillin;
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Table 3. Summary of univariate analysis of risk factors for antimicrobial-resistant Salmonella spp. from poultry farms in east
coast of Malaysia (n = 371 samples).

Risk Factors
Antimicrobials

No Identified Resistance Antimicrobial Class Resistance

No
Antimicrobial

Resistance

Resistance to
at Least One

Antimicrobial

No
Antimicrobial

Resistance

Resistant to 1
Class

Resistant to 2
Classes

Resistant to
3–4

Classes

Resistant to 5
or More
Classes

Sample type

Cloacal
(n = 259) 20 (7.7%) 100 (38.6%) 22 (8.5%) 36 (13.9%) 24 (9.3%) 35 (13.5%) 3 (1.2%)

Faecal (n = 84) 0 50 (59.5%) 0 7 (8.3%) 9 (10.7%) 21 (34.2%) 13 (15.5%)
Sewage
(n = 14) 2 (14.3%) 3 (21.4%) 2 (14.3%) 2 (14.3%) 0 0 1 (7.1%)

Tap water
(n = 14) 2 (14.3%) 0 2 (14.3%) 0 0 0 0

Age
Young

(n = 187) 12 (6.4%) 74 (39.6%) 13 (7%) 20 (10.7%) 13 (7%) 30 (16%) 10 (5.3%)

Adult
(n = 184) 12 (6.5%) 79 (43%) 13 (7.1%) 24 (13%) 21 (11.4%) 26 (14.1%) 7 (3.8%)

Poultry origin

Local (n = 26) 3 (11.5%) 9 (34.6%) 3 (11.5%) 5 (19.2%) 0 4 (15.4%) 0
Imported
(n = 133) 5 (3.8%) 68 (51.1%) 6 (4.5%) 21 (15.8%) 20 (15%) 20 (15%) 6 (4.5%)

Both (n = 212) 16 (7.5%) 76 (35.8%) 17 (8%) 19 (9%) 13 (6.1%) 32 (15.9%) 11 (5.2%)

Management
system

Intensive
(n = 187) 7 (3.7%) 88 (47.1%) 9 (4.8%) 21 (11.2%) 18 (9.6%) 34 (18.2%) 13 (7%)

Semi-intensive
(n = 158) 14 (8.9%) 56 (35.4%) 14 (8.9%) 19 (12%) 15 (9.5%) 18 (11.4%) 4 (2.5%)

Mixed (n = 26) 3 (11.5%) 9 (34.6%) 3 (11.5%) 5 (19.2%) 0 4 (15.4%) 0

Production
system

Broiler
(n = 212) 13 (6.1%) 96 (45.3%) 15 (7.1%) 26 (12.3%) 20 (9.4%) 36 (17%) 12 (5.7%)

Layer (n = 53) 1 (1.9%) 24 (45.3%) 1 (1.9%) 9 (17%) 6 (11.3%) 8 (15.1%) 1 (1.9%)
Mixed

(n = 106) 10 (9.4%) 33 (31.1%) 10 (9.4%) 10 (9.4%) 7 (6.6%) 12 (11.3%) 4 (3.8%)
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Table 3. Cont.

Risk Factors
Antimicrobials

No Identified Resistance Antimicrobial Class Resistance

No
Antimicrobial

Resistance

Resistance to
at Least One

Antimicrobial

No
Antimicrobial

Resistance

Resistant to 1
Class

Resistant to 2
Classes

Resistant to
3–4

Classes

Resistant to 5
or More
Classes

Farm size

Small (n = 104) 9 (8.7%) 41 (39.4%) 9 (8.7%) 18 (17.3%) 8 (7.7%) 13 (12.5%) 2 (1.9%)
Medium
(n = 187) 14 (7.5%) 83 (44.4%) 15 (8%) 21 (11.2%) 19 (10.2%) 33 (17.6%) 9 (4.8%)

Large (n = 80) 1 (1.3%) 29 (23.8%) 2 (2.5%) 6 (7.5%) 6 (7.5%) 10 (12.5%) 6 (7.5%)

Water source

Surface water
(n = 103)

Bond water
(n = 133)

6 (5.8%)
7 (5.3%)

32 (31.1%)
65 (48.9%)

7 (6.8%)
8 (6%)

3 (2.9%)
20 (15.8%)

5 (4.9%)
16 (12%)

13 (12.6%)
22 (16.5%)

10 (9.7%)
6 (4.5%)

Pump water
(n = 132) 11 (8.3%) 56 (32.2%) 11 (8.3%) 22 (16.7%) 12 (9.1%) 21 (16%) 1 (0.8%)

Sewage
system

Excellent
(n = 109)

Good (n = 210)

4 (3.7%)
16 (7.6%)

60 (55%)
76 (36.2%)

5 (4.6%)
17 (8.1%)

17 (15.6%)
21 (10%)

12 (11%)
19 (9%)

25 (23%)
23 (11%)

5 (4.6%)
12 (5.7%)

Poor (n = 52) 4 (7.7%) 17 (32.7%) 4 (7.7%) 7 (13.5%) 2 (3.8%) 8 (15.4%) 0

Feed source

Endogenous
(n =132) 8 (6%) 53 (40.1%) 8 (6.1%) 20 (15.2%) 14 (10.6%) 16 (12.1%) 3 (2.3%)

Exogenous
(n = 213) 15 (7%) 88 (41.4%) 17 (8%) 19 (9%) 15 (7%) 38 (17.8%) 14 (6.6%)

Other (n = 26) 1 (3.8%) 12 (46.2%) 1 (3.8%) 6 (23.1%) 4 (15.4%) 2 (7.7) 0

Table 4. Multivariate regression analysis of risk factors for antimicrobial-resistant Salmonella spp.
from poultry farms in east coast of Malaysia.

OR 2.5% 97.5% Pr (>|z|)

Semi-intensive Mixed Ref - - -
Intensive 1.55 1.01 2.40 0.04

Mixed 0.96 0.39 2.26 0.93

For PCR analysis, eight resistance genes, including blaTEM for β-Lactams, tet (A) and
tet (B) for tetracyclines; catA1, cat2, and floR for chloramphenicol; and sul1 and sul2 for
sulfonamides, were identified in the tested Salmonella spp. isolates (Table 5). Among them,
85%, were found to harbor sul1, followed by cat2 78%, floR 78%, sul2 71%, and blaTEM 42%.

Table 5. Prevalence of Salmonella carrying resistance genes.

Antimicrobial Class/Agent Resistance Gene % Isolates

Tetracyclines tet (A) 7%
Tetracyclines tet (B) 14.2%

Chloramphenicol cat1 7%
Chloramphenicol cat2 78%
Chloramphenicol floR 78%

Sulfonamides sul1 85%
Sulfonamides sul2 71%
β-Lactams blaTEM 42%

3. Discussion

This study aimed to identify the prevalence, resistance patterns, and risk factors asso-
ciated with Salmonella spp. resistance from poultry farms in Kelantan, Terengganu, and
Pahang states of East Coast Peninsular Malaysia. The results suggested farm-contact related
variables, including sample source, location, sewage system, and water source, were signif-
icantly (p < 0.05) associated with Salmonella spp. positivity. The findings are comparable to
studies from Peninsular Malaysia [14], Indonesia [15], Thailand [16], and Vietnam [17], all
of which reported high levels of Salmonella spp. prevalence. This indicates that contamina-
tion by Salmonella in these farms greatly increases the risk of human exposure and the need
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for improved monitoring and surveillance systems that address environmental sanitation
and behavioral intervention. Notably, the results also revealed Salmonella spp. isolates
were resistant to most of the antimicrobials tested, with special reference to tetracycline,
sulfamethoxazole/trimethoprim, sulfamethoxazole, gentamicin, and ampicillin [18]. These
resistance rates reflect their widespread use and are consistent with similar studies that
report a minimum level of resistance against the tested panel of antibiotics in poultry
settings [19,20]. The fact that our study found low resistant levels against amoxicillin
and ciprofloxacinreflects is possibly because these antibiotics are not used for therapeutic
purposes in clinical veterinary medicine in Malaysia [21]. Notably, the antimicrobial drugs,
including tetracyclines and sulfonamides, are most commonly used in farm animals to
promote growth production. In this study, we observed that the resistance patterns of
Salmonella spp. isolates against a panel of 12 antimicrobials are generally similar in all
selected states of East Coast Peninsular Malaysia that include Kelantan, Terengganu, and
Pahang. However, there is considerable variation in the prevalence of Salmonella spp. resis-
tance between districts. These differences are associated to farm-specific risk factors. The
prevalence of Salmonella spp. resistance to tetracycline, sulfamethoxazole/trimethoprim,
sulfamethoxazole, gentamicin, and ampicillin was consistent in all three participating states.
This resistance also reflects the common use of antimicrobials in these poultry operations
as well as in other agricultural activities [12]. Moreover, most of these antimicrobials are
also used in human medicine, with special reference to tetracycline, sulfamethoxazole, and
ampicillin [22]. Our results are consistent with those of other studies across peninsular
Malaysia. For example, chicken flock sampling in south-central peninsular Malaysia found
that Salmonella spp. were resistant to ampicillin (17.6%), tetracycline and streptomycin
(35.3%), sulfonamides (29.4%), trimethoprim (20.6%), nalidixic acid and colistin (14.7%),
chloramphenicol and nitrofurantoin (11.7%), amoxicillin-clavulanate (5.9%), kanamycin
and cefotaxime (2.9%), gentamicin, ciprofloxacin, norfloxacin, and ceftiofur (0%) [23].

Of note, our farm-level estimates are based on non-randomly selected samples, and
we should expect these estimates to be different than estimates from randomly selected
samples. For example, in Salmonella spp., high percentages of resistance were found, such as
to sulphonamide (96.5%), ampicillin (89.5%), tetracycline (85.1%), chloramphenicol (75.4%),
trimethoprim (68.4%), trimethoprim-sulfamethoxazole (67.5%), streptomycin (58.8%), and
nalidixic acid (44.4%) [24].

Implementation of biosecurity levels including improved sewage systems, personal
protective equipment (PPE), washing facilities, use of disinfectant, and source of the food
were not important factors for the occurrence of Salmonella spp. and AMR in the sam-
pled poultry farms. In this study, the majority of farmers reported antimicrobial usage
for prophylactic, treatment, and productivity purposes [25]. This reflects substandard
farm management conditions in which poultry disease frequently occur along with global
expansion of intensifications. Furthermore, the cost associated with veterinary services,
including treatment and laboratory diagnostics, might further exacerbate the misuse of
antimicrobials [12]. While the ban of antibiotic growth promoter has been globally im-
plemented including EU countries [26–30], circumstantial evidence suggest their use in
farm-produced animals in South East Asia, including Malaysia [31,32]. Little data on aware-
ness campaigns of antimicrobials usage exist so far in the livestock-production system
across South East Asia, including Malaysia [31,33,34].

Regarding PCR analysis, most isolates harbored sul1-resistant genes (85%), followed
by cat2 (78%), floR (78%), sul2 (71%), and blaTEM (42%). This was in agreement with other
results of previous studies reported in South East Asia [35] and China [36]. Difference in
the distribution of resistance genes across tested strains remains unclear. However, the
high frequency of resistant genes reflects resistance to sulfonamides along with co-selection
factors in poultry Salmonella spp.

These findings were comparable to our previous study in which poultry E. coli isolated
harbored sul1-resistant genes (100%) [8].
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Furthermore, the prevalence of Salmonella spp. resistance in source samples, sewage,
and water sources was significantly (p < 0.005) associated with AMR acquisition. Impor-
tantly, most of the risk factors were associated with resistance to at least one antimicrobial
agent (Supplementary Table S2). Notably, intensive management systems (OR = 1.55, 95%
CI = 1.0–2.4) had an increased frequency of AMR, as the agricultural intensive farming sys-
tems have long been recognized as hotspots of drug resistance in low- and middle-income
countries (LMICs) in South East Asia [37]. This indicates the necessity of a transition
to sustainable animal production in Malaysia in which government enhances the farm-
level biosafety and biosecurity [38]. The resistance patterns found in the cloacal, faecal,
sewage, and tap samples in this study have been found to be similar to those reported
in clinical-based surveillance studies [39]. The lower prevalence of resistance in sewage
and tap water isolates, however, could be correlated with sensitivity, as it is likely lower
than isolate-based surveillance [40]. The source of water and the presence of a sewage
system were identified as important risk factors for the presence of AMR in Salmonella
isolates in the study sites. Importantly, the sampled poultry farms usually access drinking
water from intact sources, and thus the association could reflect contact transmission at the
farm level. This association has important implications for low-income countries, where
potable water remains a pressing challenge [41]. Consumption of poultry meat and its
products is increasing, and most poultry meat and eggs are produced and distributed
through informal sources that operate outside national quality-control standards and
regulations [42,43]. Generally, poor sewage systems along with presence of manure and
rubbish from these operations increase the likelihood of multidrug-resistant Salmonella
spp. carriage in synanthropic wildlife, which in return galvanizes the dissemination of
clinically relevant AMR between sympatric wildlife, humans, livestock, and their shared
environment. These associations were more pronounced for seed-eating birds and wild
boars across different urban ecological systems [44,45]. This denotes the pressing need to
effectively enforce environmental legislation and unregulated antibiotic use in agricultural
setting. In the absence of national systematic surveillance, our point prevalence surveys
of AMR in poultry farms of East Coast Peninsular Malaysia are useful to guide potential
future interventions of AMR. The close association between different risk factors and the
high prevalence of resistant in Salmonella strains indicates increased exposure to antimi-
crobials and suggests a concern over rising misuse of veterinary antimicrobials that may
contribute to the emergence and evolution of multidrug-resistant pathogen isolates. Public
health interventions to limit AMR need to be tailored to local poultry-farm practices that
affect bacterial transmission. Cross-sectoral collaboration and enhancement of surveillance
systems, including developing alert mechanisms for early detection and reporting of AMR,
will drive improved policy formulation and its translation into effective implementation.
Improving certain domains, including public awareness and education, antimicrobial stew-
ardship and medicines regulation, as well as AMR research and fostering implementation
research using One Health approach, is recommended.

4. Materials and Methods
4.1. Ethics Approval

This study was approved by the Institutional Research Ethics Committee of the Faculty
of Veterinary Medicine, University Malaysia Kelantan (UMK) (Ref: 12/2018).

4.2. Study Design and Data Sources

We performed a cross-sectional study targeting poultry farms in three states of East
Coast Peninsular Malaysia that include Kelantan, Terengganu, and Pahang (Figure 4).
Figure 5 depicts the study organizational chart of sites, farms, risk factors, and flow of
sample collection, laboratory processing, and analyses by antibiotic class.
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4.3. Data and Sample Collection

A total of 371 samples (cloacal swabs = 259; faecal = 84; sewage = 14; tap water = 14)
were collected between 8 February 2019 and 23 February 2020. Data pertaining to farm
characteristics, including management, biosecurity, and disease history along with antimi-
crobial usage, were collected using semi-structured questionnaires. A total of 31 farmers
that met inclusion criteria of keeping poultry farms and who responded with written
consent were included in the analyses in (Supplementary Table S1). Regarding the man-
agement system, flock size, and sewage system, the following definitions and criteria
were used:

Intensive management system is defined as mainly concentrated and often mecha-
nized operations that use controlled-environment systems to provide the ideal thermal
environment for the poultry.
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Semi-intensive system is that which relies on natural airflow though the shed
for ventilation.
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Extensive system is mainly pasture-based and land-based, where birds in the house-
hold flock are typically housed overnight in the shelter and are let out in the morning to
forage during the day.

The criteria of the farm size included large-scale commercial farms that have
≥10,000 birds, medium-scale commercial farms that have 5000–10,000, and small-scale
farms where birds are often kept in single-age groups of >1000.
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A poor sewage system is defined as one that retains high volumes of wastewater
with low flow rate, blackish appearance, and sewage smell odour as a result of composing
agricultural waste—probably as leakage from nearby irrigated effluent that is used for
agricultural land application along with the presence of food waste, green waste, plastic,
and heavy materials.

A good sewage system is one that has good drainage with no agricultural waste and
relatively low heavy materials.

Excellent sewage system is one that has significant drainage, no agriculture, and no
heavy materials.

4.4. Samples Collection and Laboratory Methods

The samples were collected according to standard operating procedures and good
laboratory practices. Briefly, the cloacal swab samples were collected using sterile transport
media; faecal samples using sterile containers and water samples using sterile water bottles
were kept in a cooling box containing ice bags, maintaining low temperature at (4 ◦C) before
transferring to the clinical laboratory within 24–48 h for pathogen culturing. All cloacal
swabs and fresh faecal samples were placed in Amies transport media and transported on
ice to the molecular biology laboratory, University Malaysia, Kelantan (UMK). Sewage and
tap water samples were transported in conical tubes, all on ice. The number of samples per
farm is given in Supplementary Table S3.

4.5. Microbiological Testing

Samples were enriched in buffered peptone water for 24 h at 37 ◦C, and then pre-
enriched 0.1 mL and 1 mL cultures were incubated in 9.9 mL of Rappaport Vassiliadis Soy
Broth (RVS) at 42 ◦C and 9 mL of Muller–Kauffmann Tetrathionate–Novobiocin (MKTTn)
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broth at 37 ◦C for 24 h, respectively. Loopfuls of RVS and MKTTn cultures were streaked
onto selective agar plates (Brilliant Green Agar (BGA)) and then incubated for about 24 h
at 37 ◦C. Suspected Salmonella spp. colonies were picked from each plate, purified, and
subjected to biochemical tests (Supplementary Table S5). All media used were purchased
from Oxoid, Basingstoke, Hampshire, UK. Cultured bacteria were routinely stored with
20% of glycerol stock at −20 ◦C and processed for the subsequent experiments, including
antimicrobial susceptibility testing, PCR, and statistical analysis.

4.6. Antimicrobial Susceptibility Testing

All isolates were revived and inoculated onto Müller–Hinton (Oxoid, Basingstoke,
Hampshire, UK) plates for antimicrobial susceptibility testing. We determined the re-
sistance of Salmonella spp. isolates against a panel of 12 antimicrobials. Antimicrobial
susceptibility testing was determined by Kirby–Bauer disk diffusion method according to
the Clinical and Laboratory Standards Institute (CLSI). The following antibiotics (Oxoid,
Basingstoke, UK; Becton Dickinson, Mississauga, ON, Canada) were used: ampicillin (AMP,
10 µg), amoxicillin-clavulanic acid (AMC, 20/10 µg), chloramphenicol (C 30 µg), gentam-
icin (CN, 10 µg), tetracycline (TE, 30 µg), trimethoprim-sulfamethoxazole (SXT, 25 µg),
erythromycin (E, 15 µg), nalidixic acid (NA, 30 µg), ciprofloxacin (CIP, 5 µg), kanamycin
(K, 30 µg), cefoxitin (FOX, 30 µg), and sulphonamides (S, 300 µg). CLSI guidelines were
also used to determine breakpoints for classifying isolates as susceptible, intermediate,
or resistant to the drug [46]. Multidrug-resistant Salmonella spp. was defined as “non-
susceptibility to at least one agent in three or more antimicrobial classes” [47]. The multiple
antibiotic resistances (MAR) index was determined according to the previously described
method [48]. E. coli ATCC 25922 was used as the quality control. The breakpoint for
resistance or susceptibility interpretation to each antibiotic was in accordance with the CLSI
standards. In the evaluation of the results, the strains displaying intermediate resistance
were regarded as resistant [49].

4.7. DNA Extraction of Salmonella spp. Isolates

Salmonella spp. crude DNA was prepared by using isolated colonies that were sub-
cultured overnight in Luria–Bertani broth (Fisher Scientific UK, Loughborough, UK), and
genomic DNA was extracted using a Wizard1 Genomic DNA Purification Kit (Promega,
Southampton, UK) according to the manufacturer’s instructions. The quality of the ex-
tracted DNA was analyzed using spectrophotometer and BE buffer as blank to obtain
purified DNA for PCR samples.

4.8. PCR Confirmation of Salmonella spp.

The primers that were used were a genus specific primer for Salmonella spp. invA gene
having the following nucleotide sequence: Forward (5′-3′): GTG AAA TTA TCG CCA CGT
TCG GGC AA and Reversed (5′-3′): TCA TCG CAC CGT CAA AGG AAC C. The detailed
protocol of the procedure used in this study was performed according to the previously
described method [50] and is given in Supplementary Table S5.

4.9. PCR Assay for Detection of Resistance Genes

The prevalence of genes related to resistance to blaTEM for β-Lactams; tet (A), and
tet (B) for tetracyclines, cat1, cat2, and floR for chloramphenicol; and sul1 and sul2 for
sulfonamides was determined by classical PCR. The set of primers used for each gene is
shown Supplementary Table S1. The primers were designed according to Ye et al. [51].
PCR reactions were performed in a total volume of 25 µL using GoTaq1 Green Master Mix
(Promega, Madison, WI, USA), including 12.5 µL of GoTaq1 Green Master Mix, 1 µL of
forward primer, 1 µL of reverse primer, 5.5 µL of nuclease-free water, and 5 µL of extracted
DNA. Amplification reactions were carried out using a DNA thermocycler (Fisher Scientific
UK, Loughborough, UK) according to conditions presented in (Supplementary Table S4).
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4.10. Statistical Analysis

Data were entered into a Microsoft Excel spreadsheet and imported into SPSS version
25 (IBM, Armonk, NY, USA) and the R software (version 3.6.1, https://www.r-project.org/,
accessed on 15 January 2021) for statistical analysis. The data were sorted and checked
for consistency and duplication. Data visualization was done in ArcGIS v. 10 (esri Inc.,
Redlands, CA, USA). The data focused on sets of variables that had been previously pro-
posed or identified as risk factors for antimicrobial resistance [52]. Briefly, we classified
strains as resistant and not resistant to antimicrobials and then categorized the antimicro-
bials into their classes then identified which isolates were resistant to one or more specific
classes. Classes of antimicrobials included tetracyclines, aminoglycosides, quinolones,
sulfonamides, β-Lactams, and chloramphenicol. Prevalence of resistance of Salmonella to
a panel of 12 antimicrobials was also compared between four different types of samples
that included cloacal, faecal, tap water, and sewage samples. Descriptive statistics for
frequency of association between AMR and potential risk factors was performed. Selection
of variables for inclusion in a logistic regression model was based on prior hypotheses and
variables which were suggestive of an important effect from the descriptive analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10091160/s1, Table S1: Characteristics of 31 farmers/farmsin Kelantan, Tereng-
ganu, and Pahang states, Malaysia; Table S2: Summary of prevalence of resistance to at least one
antimicrobial and their associated risk factors; Table S3: Number of samples per farm in East Coast
Peninsular Malaysia; Table S4: The set of primers used for each gene; and Table S5: The biochemical
characteristics and PCR confirmation of Salmlmonella spp.
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