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Abstract: We consider theoretically the two-dimensional flow in a vertically-aligned thick molten 1

liquid film to investigate the competition between cooling and draining due to gravity, relevant 2

in the formation of metallic foams. The molten liquid in the film cools as it drains, losing its heat 3

to the surrounding colder air and substrate. We extend our previous model in Alahmadi et al. [1] 4

to include non-isothermal effects resulting in coupled nonlinear evolution equations for the film’s 5

thickness, extensional flow speed, and temperature. The coupling between the flow and cooling is 6

via a constitutive relationship for the temperature-dependent viscosity and surface tension. This 7

model is parameterized by the heat transfer coefficients at the film-air free surface and film-substrate 8

interface, the Péclet number, the viscosity-temperature coupling parameter and the slope of the linear 9

surface tension-temperature relationship. A systematic exploration of the parameter space reveal that 10

at low Péclet numbers, increasing the heat transfer coefficient and a gradual reduction in viscosity 11

with temperature is conducive for cooling and can slow down the draining and thinning of the film. 12

The effect of increasing the slope of the surface tension-temperature relationship on the draining and 13

thinning of the film is observed to be more effective at lower Péclet numbers where surface tension 14

gradients in the lamella region oppose the gravity-driven flow. At higher Péclet numbers, though, 15

the surface tension gradients tend to enhance the draining flow in the lamella region resulting in the 16

dramatic thinning of the film at late times. 17

Keywords: Thin film viscous flows; Thermoviscous; Thermocapillary 18

1. Introduction 19

Foams play a crucial role in a variety of applications, such as in the fabrication of 20

metallic foams [2,3] and in the food industry (e.g., bread dough) [4]. They contribute to the 21

mechanical properties in metallic foams enhancing their stiffness and energy absorption, 22

ideal for applications in the automobile industry, for example. They also contribute to the 23

texture, aroma and visual appearance in food foams [4]. Therefore, understanding the 24

factors that influence foam structure, its stability and lifetime, is of considerable interest. 25

The structure in metallic foams are broadly similar to that in aqueous foams, which 26

are characterized by a network of thin liquid films (lamellae) intertwining gas bubbles. The 27

process of liquid drainage into the Plateau borders and consequently thinning of the lamella 28

is important in understanding bubble collapse and in predicting the lifetime of a foam or 29

its overall stability. This process is well-studied in aqueous foams [5] where surfactants 30

are required to stabilize foams by reducing the surface tension of the air-liquid interface. 31

Surfactants are not available to affect the surface tension of metallic foams, therefore, nano 32

and micro particles are often added during the foaming process to increase the effective 33

liquid viscosity and to slow down the drainage, thinning and rupture time [3,6,7]. In 34

addition, during metallic foam formation, solidification by cooling of liquid metal in the 35
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lamella is a “race against time” [8] competing against the liquid drainage, The competition 36

between the two then determines the overall stability and pore structure of the metallic 37

foam. The cooling and subsequent freezing of metallic foams have received very little 38

attention even though they are crucial in the manufacture of these foams. 39

Non-isothermal effects are important when there exists a strong coupling between the 40

flow and the temperature field due to a strong dependence of the liquid properties on the 41

temperature. The viscosity of most materials decreases with temperature. Some materials, 42

such as glass, metallic and polymeric melts, can exhibit dramatic changes in their viscosity 43

due to variations in temperature, e.g., cooling and solidification of silicate (or glass-like) 44

lava flows [9]. For glasses and polymers, the surface tension can also vary with temperature 45

(surface tension in most liquids decreases with increase in temperature), perhaps not as 46

dramatic as the variation in viscosity. 47

In the context of metallic foams, the heat transfer between the hot liquid within the 48

lamella and Plateau borders and the cooler surrounding gas bubbles via the free surface, 49

could result in the lamella cooling down considerably and rapidly in some situations. The 50

resulting thermoviscous (viscosity variations with temperature) and thermocapillary effects 51

(surface tension variations with temperature) could have a significant influence on film 52

drainage and thinning, and overall foam stability. 53

Indeed, Cox et al. [8] were the first to theoretically investigate the competition between 54

liquid drainage and freezing in the formation of metallic foams. They combined the so- 55

called foam drainage equation [5] with the heat conduction equation to derive a bubble 56

coalescence criterion which allows for the rupture of thin films. Their one-dimensional 57

model is restricted to cooling taking place only at the top and bottom surfaces, and does 58

not account for heat loss from the air-liquid interface. Moreover, they only investigate 59

viscosity variation with temperature but not surface tension variations. More recently, 60

Shah et al. [10] have investigated the influence of thermal fluctuations on the drainage, 61

thinning and rupture of liquid films. They show that thickness variations due to thermal 62

fluctuations at the free surface (originating from random thermal motion of molecules) can 63

compete with the curvature-induced drainage at the Plateau borders. In particular, if the 64

drainage is weak, then the film ruptures at a random location due to spontaneous growth 65

of fluctuations originating from thermal fluctuations. This is in contrast to a scenario where 66

the drainage is strong, resulting in the film rupturing at a local depression - so-called dimple 67

- between the lamella and the Plateau border. It is worth mentioning here that the role of 68

thermoviscous and thermocapillary effects have also been investigated in a related context 69

of extensional flow associated with the drawing of viscous threads or sheets, with focus on 70

the stretching and pinching of the threads [11,12] or sheet rupture [13,14]. The goal of this 71

paper is to fully investigate the coupling between the gravity-driven extensional flow and 72

cooling without the limitations imposed by Cox et al. [8]. While we do not consider phase 73

transition due to freezing, we account for cooling from both the air-liquid interface as well 74

as the top and bottom surfaces. Moreover, we consider the influence of both thermoviscous 75

and thermocapillary effects on the drainage and cooling of the molten liquid film. 76

The outline of this paper is as follows. We formulate the two-dimensional mathemati- 77

cal problem in §2 which provides the governing equations and boundary conditions for 78

the flow and the temperature field. The lubrication approximation using the fact that the 79

film’s aspect ratio is small, allows simplification of the governing equations and boundary 80

conditions to a system of three coupled PDEs for the evolution of the one-dimensional 81

free surface shape and the extensional flow speed, and the two-dimensional temperature 82

field. In §4, we perform numerical simulations of the evolution equations to determine 83

the free surface shapes, the extensional flow speeds and temperature fields for a variety of 84

parameter values related to the Péclet number, heat transfer coefficients, an exponential 85

viscosity-temperature model and a linear surface tension-temperature model. In §5, we 86

discuss the main results. 87
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2. Methods 88

Following on from previous work [1,15], we consider the two-dimensional flow due 89

to the draining of a liquid in a vertically-aligned film with two free surfaces and suspended 90

between two horizontal solid frames, as shown in Fig. 1. The liquid in the film is hot, at 91

an initial temperature T⋆
i , compared to its cooler surroundings at ambient temperature 92

T⋆
a . The configuration shown in Fig. 1 mimics the thinning of a lamella draining into a 93

Plateau border and is a simple idealization of a liquid foam film. Other configurations that 94

have been investigated include a liquid film suspended over a liquid bath at its lower end 95

[16–20]. As we will see below, it is much simpler to prescribe boundary conditions at the 96

upper and lower ends in the configuration considered here. In addition, we assume that 97

the film is drawn out sufficiently quickly for a stable initial film profile to exist keeping in 98

mind that the speed at which the film is drawn will influence whether a film of specified 99

height and thickness can be achieved and its stability [16]. 100

The initial liquid film is sufficiently thick for gravity to play a significant role in its 101

drainage. The liquid loses its heat via the cooler free surface at z⋆ = h⋆(x⋆, t⋆) (exposed 102

to the colder air at temperature T⋆
a external to the liquid film), and the top and bottom 103

supports at x⋆ = 0, L⋆. The flow evolves due to the effects of gravity, viscous forces and 104

surface tension causing the liquid in the film to drain downwards in the direction of gravity 105

and resulting in the thinning of the film. The liquid is assumed to be an incompressible 106

and Newtonian liquid with constant properties, except, the liquid viscosity and surface 107

tension are dependent on the temperature. We do not consider phase transition associated 108

with solidification due to freezing near the surface or supports.The ambient temperature, 109

T⋆
a is assumed to be much higher than the melting point to prevent the film from freezing. 110
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Figure 1. Schematic of a vertically-aligned two-dimensional free liquid film draining under gravity
between two rigid frames (adapted from Alahmadi et al. [1]). The liquid within the film is hot
compared to its cooler surroundings.

Figure 1 shows a schematic of the geometry. We consider a two-dimensional Cartesian 111

coordinate system (x⋆, z⋆) with the x⋆-axis in the vertical direction pointing downwards in 112

the direction of the film length and the z⋆-axis in the horizontal direction along the film’s 113

thickness. The horizontal frames are separated by a distance L⋆ and are of width 2H⋆
0 . 114

Gravity acts vertically downwards. We assume symmetry about the film’s centre line at 115

z⋆ = 0. The two free surfaces of the film are represented by z⋆ = ±h⋆(x, t). Assuming 116

left-right symmetry, we only consider half of the film between z⋆ = 0 and z⋆ = h⋆(x, t). 117

The superscript ⋆ refers to dimensional quantities. 118
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2.1. Governing equations 119

The flow is described by the Navier-Stokes equations. The density ρ⋆ is assumed 120

constant (due to the incompressibility assumption), so the continuity equation reduces to 121

u⋆
x⋆ + w⋆

z⋆ = 0. (1)

In the above, v⋆ = (u⋆, w⋆) are the flow speeds in the x⋆ and z⋆ directions, respectively, and
the subscript denotes differentiation with respect to the subscript variable. The momentum
equations can be written as:

ρ⋆(u⋆
t⋆ + u⋆u⋆

x⋆ + w⋆u⋆
z⋆) = −p⋆x⋆ + τ

⋆xx
x⋆ + τ

⋆xz
z⋆ + ρ⋆g⋆, (2a)

ρ⋆(w⋆
t⋆ + u⋆w⋆

x⋆ + w⋆w⋆
z⋆) = −p⋆z⋆ + τ

⋆xz
x⋆ + τ

⋆zz
z⋆ , (2b)

where p⋆ is the liquid pressure, τ
⋆xx and τ

⋆zz are the extensional viscous stresses in the x⋆ 122

and z⋆ directions, respectively, τ
⋆xz is the viscous shear stress and and g⋆ is the acceleration 123

due to the gravity. 124

The constitutive relation between the viscous stress τ⋆ and the shear rate γ̇⋆ for a 125

Newtonian liquid with temperature-dependent viscosity is written as: 126

τ⋆ = µ⋆(T⋆)γ̇⋆, (3)

where µ⋆(T⋆) is the temperature-dependent liquid viscosity, T⋆ is the temperature, and 127

τ⋆ =

(
τ
⋆xx τ

⋆xz

τ
⋆xz τ

⋆zz

)
, γ̇⋆ =

(
2u⋆

x⋆ u⋆
z⋆ + w⋆

x⋆
u⋆

z⋆ + w⋆
x⋆ 2w⋆

z⋆

)
, (4)

The two-dimensional governing equation for the temperature, T⋆ in Cartesian coordi- 128

nates, (x⋆, z⋆) is given by 129

ρ⋆c⋆p(T
⋆
t⋆ + u⋆T⋆

x⋆ + w⋆T⋆
z⋆) = κ⋆[T⋆

x⋆x⋆ + T⋆
z⋆z⋆ ], (5)

in a material with density, ρ⋆, specific heat, c⋆p, thermal conductivity, κ⋆ and thermal diffu- 130

sivity, κ⋆d = κ⋆/(ρ⋆c⋆p). These are assumed to be constant and independent of temperature. 131

We neglect the contribution from viscous dissipation. 132

2.2. Boundary conditions 133

Symmetry along the center line z⋆ = 0 is imposed through the boundary conditions: 134

w⋆ = u⋆
z⋆ = τ

⋆xz = T⋆
z⋆ = 0, at z⋆ = 0. (6)

At the free surface, z⋆ = h⋆(x⋆, t⋆), we have the stress boundary conditions normal and 135

tangential to the free surface. The normal stress boundary condition balances the jump 136

in the total normal stress (between the outside air and the liquid) with the product of the 137

surface tension times the curvature of the free surface, 138

−p⋆ +
1

1 + h⋆2
x⋆

[
h⋆

2

x⋆τ
⋆xx − 2h⋆x⋆τ

⋆xz + τ
⋆zz

]
=

σ⋆(T⋆)h⋆x⋆x⋆(
1 + h⋆2

x⋆

) 3
2

, (7)

where σ⋆(T⋆) is the temperature-dependent surface tension and h⋆x⋆x⋆/
(

1 + h⋆
2

x⋆

) 3
2 is the 139

surface curvature. Without loss of generality, we take the atmospheric pressure to be zero, 140

therefore, the liquid pressure p⋆ is relative to the atmospheric pressure. The tangential 141

stress at the free surface for the non-isothermal case is driven by gradients in surface tension 142

due to variations in temperature (the so-called Marangoni stress). The tangential stress 143

boundary condition can be written as: 144
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(1 − h⋆
2

x⋆)τ
⋆xz + h⋆x⋆

(
τ
⋆zz − τ

⋆xx
)
= [σ⋆

x⋆(T
⋆) + h⋆x⋆σ⋆

z⋆(T
⋆)]

√
1 + h⋆x⋆

2. (8)

At the free surface, z⋆ = h⋆(x⋆, t⋆), we also impose a heat flux boundary condition 145

based on Newton’s law of cooling which assumes that the heat flux is proportional to the 146

temperature difference across this boundary. This is written as: 147

−κ⋆n⋆ · ∇T⋆ = a⋆m(T
⋆ − T⋆

a ), (9)

where a⋆m is a heat transfer coefficient (assumed constant) and T⋆
a is the ambient temperature 148

(assumed constant), and n⋆ =
1√

1 + h⋆2
x⋆

(−h⋆x⋆ , 1) is the outward-pointing normal vector 149

to the free surface. We can write Eq. (9) as: 150

κ⋆
(

1 + h⋆2
x⋆
)− 1

2
(T⋆

z⋆ − h⋆x⋆T⋆
x⋆) = −a⋆m(T

⋆ − T⋆
a ). (10)

Finally, the kinematic boundary condition at the free surface is given by 151

h⋆t⋆ = w⋆ − u⋆h⋆x⋆ , at z⋆ = h⋆(x⋆, t⋆). (11)

At the top and bottom boundary, x⋆ = 0, L⋆, respectively, the film is pinned to the end of 152

the frame and we impose no slip, 153

h⋆ = H⋆
0 and v⋆ = 0, at x⋆ = 0, L⋆. (12)

Here we also impose the following heat flux boundary condition:

−κ⋆n⋆ · ∇T⋆ = b⋆s (T
⋆ − T⋆

s ), (13){
κ⋆T⋆

x⋆ = b⋆s (T⋆ − T⋆
s ), at x⋆ = 0,

−κ⋆T⋆
x⋆ = b⋆s (T⋆ − T⋆

s ), at x⋆ = L⋆,
(14)

where b⋆s is a heat transfer coefficient at the wire frames (assumed constant) and T⋆
s is the 154

temperature there (assumed constant). In the above, we have used the fact that n⋆ = (−1, 0) 155

at x⋆ = 0 and n⋆ = (1, 0) at x⋆ = L⋆. 156

Using Eq. (1), and applying Leibniz’s rule, one can re-write the kinematic boundary 157

condition, Eq. (11), as 158

h⋆t⋆ + Q⋆
x⋆ = 0, Q⋆ =

∫ h⋆

0
u⋆(x⋆, z⋆, t⋆) dz⋆, (15)

where Q⋆(x⋆, t⋆) is the liquid flux at any location x⋆ along the length of the film. Eq. (15) 159

represents the evolution of the film thickness, h⋆(x⋆, t⋆). 160

The flow is coupled to the temperature field via a constitutive relationship between
the viscosity and temperature, µ⋆(T⋆) and the surface tension and temperature, σ⋆(T⋆). We
assume an exponential decay in viscosity with temperature [21] and a linear dependence of
surface tension on temperature [13] to describe this relationship, given by:

µ⋆ = µ⋆
min + (µ⋆

0 − µ⋆
min)e

−α⋆(T⋆−T⋆
a ), (16a)

σ⋆ = σ⋆
0 − M⋆(T⋆ − T⋆

a ), (16b)

where α⋆ is a temperature-viscosity coupling constant, µ⋆
0 is a reference viscosity (at tem- 161

perature T⋆
a ), µ⋆

min is a minimum viscosity limit, M⋆ =
dσ⋆

dT⋆
|(σ⋆

0 ,T⋆
a )

is the rate at which 162

surface tension depends linearly on temperature and σ⋆
0 is a reference surface tension (at 163

temperature T⋆
a ). 164
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Table 1 shows the physical quantities appearing in the model including their estimates 165

either based on aluminium foam melts where available (Tripathi et al. [22] and references 166

therein) or assumed. 167

Table 1. Physical quantities in the model. The liquid melt properties and temperatures are based on
Aluminium melts where available (Tripathi et al. [22] and references therein) or assumed, if otherwise.

Physical quantity Estimated value

initial temperature, T⋆
i 700 − 800oC

ambient temperature, T⋆
a > 660oC (melting point)

temperature drop, T⋆
i − T⋆

a 40 − 140oC (based on melting point 660oC)
temperature at wire frames, T⋆

s T⋆
a (assumed)

density at T⋆
a , ρ⋆ 2.7 × 103kg/m3

viscosity at T⋆
a , µ⋆

0
1Pa s (generally 1 − 1.4mPa s but assumed to
be enhanced by addition of particles [3,6,7]

minimum viscosity limit, µ⋆
min µ⋆

0/10 Pa s (assumed)
surface tension at T⋆

a , σ⋆
0 850 − 1100mN/m

speciic heat capacity, c⋆p 0.9kJ/kg K
thermal conductivity, κ⋆ 237W/m K

thermal diffusivity, κ⋆d = κ⋆/(ρ⋆c⋆p) 9.7 × 10−5m2/s
free surface heat transfer coefficient, a⋆m 1 − 103W/m2 K (assumed)
wire frame heat transfer coefficient, b⋆s a⋆m (assumed)

temperature-viscosity coupling constant, α⋆, 0.01 − 0.5oC−1 (based on viscosity drop from
µ⋆

0 to µ⋆
min in temperature range T⋆

i to T⋆
a )

slope of surface tension-temperature
relationship, M⋆,

10−6 − 10−5 N/moC (based on 0.01% drop in
surface tension in temperature range T⋆

i to T⋆
a )

characteristic film length, L⋆ 10−2m
characteristic film thickness, H⋆

0 50µm

characteristic flow speed, U⋆ =
ρ⋆g⋆L⋆2

µ⋆
0

2.7m/s

characteristic pressure, p⋆ = ρ⋆g⋆L⋆ 270N/m2

characteristic time, t⋆ =
L⋆

U⋆
4ms

2.3. Nondimensionalization of the governing equations and boundary conditions 168

We focus on the scenario where the flow is primarily extensional (or plug flow) and
there is a balance between extensional viscous stresses and gravity. Following Alahmadi &
Naire [1] the appropriate nondimensionalization is:

x⋆ = L⋆x, (z⋆, h⋆) = H⋆
0 (z, h), (u⋆, w⋆) =

ρ⋆g⋆L
⋆2

µ⋆
0

(u, ϵw),

(p⋆, τ
⋆xx, τ

⋆zz, τ
⋆xz) = ρ⋆g⋆L⋆(p, τxx, τzz,

1
ϵ

τxz),

(γ
⋆xx, γ

⋆zz, γ
⋆xz) = µ⋆

0ρ⋆g⋆L
⋆
(γxx, γzz,

1
ϵ

γxz),

t⋆ =
µ⋆

0
ρ⋆g⋆L⋆ t, Q⋆ =

ρ⋆g⋆L
⋆2

µ⋆
0

H⋆
0 Q,

T⋆ = T⋆
a + (T⋆

i − T⋆
a )θ, (0 ≤ θ ≤ 1). (17)

θ = 0, implies T⋆ = T⋆
a and θ = 1, implies T⋆ = T⋆

i . The ratio of the two length scales is 169

denoted by ϵ =
H⋆

0
L⋆

, which is typically much less than one. We are interested in deriving 170

the thin film equations in the asymptotic limit ϵ → 0. 171



Version May 6, 2023 submitted to Fluids 7 of 20

Substituting Eq. (17) into the governing equations and boundary conditions gives the
following nondimensionalized system:

ux + wz = 0, (18a)

ϵ2Re(ut + uux + wuz) = −ϵ2 px + ϵ2τxx
x + τxz

z + (18b)

ϵ2,

ϵ2Re(wt + uwx + wwz) = −pz + τxz
x + τzz

z , (18c)

Per[θt + uθx + wθz) = ϵ2θxx + θzz, (18d)(
τxx τxz

τxz τzz

)
= µ(θ)

(
2ux uz + ϵ2wx

uz + ϵ2wx 2wz

)
, (18e)

w = uz = τxz = θz = 0, at z = 0, (18f)

ϵ

Ĉa
σ(θ)hxx

(1 + ϵ2h2
x)

3
2
= −p+

1
1 + ϵ2h2

x

[
ϵ2h2

xτxx − 2hxτxz + τzz
]
, at z = h(x, t), (18g)

(1 − ϵ2h2
x)τ

xz + ϵ2hx(τ
zz − τxx) =

ϵ

Ĉa
[σx(θ) + hxσz(θ)]

√
1 + ϵ2h2

x, at z = h(x, t), (18h)

θz = ϵ2hxθx − aϵ2θ
√

1 + ϵ2h2
x, z = h(x, t), (18i)

ht + Qx = 0, Q =
∫ h

0
u(x, z, t) dz, (18j)

h = 1, u = w = 0, at x = 0, 1, (18k)

θx = ϵ2b(θ − θs), at x = 0, (18l)

θx = −ϵ2b(θ − θs), at x = 1, (18m)

µ(θ) = µmin + (1 − µmin)e−αθ , σ(θ) = 1 − ϵ2Mθ. (18n)

In the above, the dimensionless numbers Re =
ρ⋆U⋆2

/L⋆

µ⋆
0U⋆/L⋆2 is the Reynolds number (com- 172

pares inertial and extensional viscous forces with U⋆ =
ρ⋆g⋆L⋆2

µ⋆
0

), Ĉa =
µ⋆

0U⋆

σ⋆
0

is the capil- 173

lary number (compares extensional viscous and surface tension forces), the reduced Péclet 174

number, Per = ϵ2Pe, Pe = (ρ⋆c⋆pU⋆L⋆)/κ⋆ = U⋆L⋆/κ⋆d , is the Péclet number (compares 175

convective to diffusive heat transport), α = α⋆(T⋆
i − T⋆

a ) is a temperature-viscosity coupling 176

constant, µmin = µ⋆
min/µ⋆

0 , M = [M⋆(T⋆
i − T⋆

a )/σ⋆
0 ]/ϵ2 is the rate of decrease in surface 177

tension with temperature, a = a⋆m H⋆
0 /(ϵ2κ⋆) and b = b⋆s H⋆

0 /(ϵ2κ⋆) are the heat transfer co- 178

efficients at the free surface and substrate, respectively, and θs = (T⋆
s − T⋆

a )/(T⋆
i − T⋆

a ). We 179

will see later on, that surface tension effects will be important over smaller lengthscales, so in 180

anticipation of this we define a rescaled capillary number, Ca =
µ⋆

0U⋆

ϵσ⋆
0

= Ĉa/ϵ, Ĉa = O(1), 181

and retain the surface tension term at leading order. We assume (Per, M, a, b) = O(1). 182

Table 2 shows the dimensionless parameters appearing in the model and their esti- 183

mated values. 184
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Table 2. Dimensionless parameters in the model and their estimated values.

Dimensionless parameters Values

aspect ratio, ϵ = H⋆
0 /L⋆ 5 × 10−3

Reynolds number, Re =
ρ⋆U⋆L⋆

µ⋆
72

Capillary number, Ĉa =
µ⋆

0U⋆

σ⋆
0

0.27 − 2.7

rescaled Capillary number, Ca = Ĉa/ϵ 540 − 5400
Péclet number, Pe = U⋆L⋆/κ⋆d 102

reduced Péclet number, Per = ϵ2Pe 2.5 × 10−3

temperature-viscosity coupling,
α = α⋆(T⋆

i − T⋆
a )

0.4 − 70

minimum viscosity, µmin = µ⋆
min/µ⋆

0 10−1

rescaled surface tension-temperature slope,
M = [M⋆(T⋆

i − T⋆
a )/σ⋆

0 ]/ϵ2 0.04 − 0.1

rescaled heat transfer coefficients,
(a, b) = (a⋆m, b⋆s )H⋆

0 /(ϵ2κ⋆)
10−2 − 10

wire frame temperature,
θs = (T⋆

s − T⋆
a )/(T⋆

i − T⋆
a )

0

2.4. The small aspect ratio, ϵ =
H⋆

0
L⋆

≪ 1, approximation 185

We exploit the fact that ϵ =
H⋆

0
L⋆

≪ 1 and expand each of the unknowns variables 186

(u, w, p, τxx, τzz, τxz) as a power series in ϵ2 of the form: 187

(u, w, p, τxx, τzz, τxz, θ) = (u, w, p, τxx, τzz, τxz, θ)0(x, z, t) + ϵ2(u, w, p, τxx, τzz, τxz, θ)1(x, z, t) + O(ϵ4). (19)

Substituting this in Eq. (18) we can sequentially solve for the O(1) and O(ϵ2) quantities, 188

using which the PDEs and boundary conditions describing the evolution of the film’s free 189

surface h(x, t) and the extensional flow speed u0(x, t) can be derived at leading order. The 190

details of the derivation are provided in Appendix A. The system of PDEs and boundary 191

conditions are given by: (for simplicity, we drop the subscript 0) 192

ht + Qx = 0, Q = uh, (20a)

Re h(ut + uux)− 4
[

µ(θ)hxux +
∫ h

0
(µ(θ)ux)x dz

]
= h

[
1

Ca
hxxx + 1

]
− M

Ca
[θx + hxθz|z=h], (20b)

µ(θ) = µmin + (1 − µmin)e−αθ , (20c)

Per[θt + uθx + wθz] = ϵ2θxx + θzz, w(x, z, t) = −uxz, (20d)

θz = −aϵ2θ, at z = h(x, t), θz = 0, at z = 0, (20e)

θx = ϵ2b(θ − θs), at x = 0, θx = −ϵ2b(θ − θs), at x = 1 (20f)

h(0, t) = h(1, t) = 1, hxxx(0, t) = hxxx(1, t) = −Ca, (20g)

u(0, t) = u(1, t) = 0. (20h)

The boundary conditions in Eq. (20g,20h) correspond physically to the film being pinned at 193

the top and bottom (first two boundary conditions in Eq. (20g)), and no flux out of the rigid 194

wire supports, so Q = 0, (represented by the last two boundary conditions in Eq. (20g) 195

and boundary conditions in Eq. (20h)). As a consequence of this, both u and ux are forced 196

to be zero near the ends and the film evolves to quasi-static shapes there. We also retain 197

the O(ϵ2) term in Eq. (20d) in order to satisfy the boundary conditions for θ at x = 0, 1 198

(boundary conditions in Eq. (20f)). 199



Version May 6, 2023 submitted to Fluids 9 of 20

3. Numerical methods 200

Equations (20a,20b) for h(x, t) and u(x, t), respectively, are solved for x ∈ [0, 1] with 201

boundary conditions given by Eq. (20g,20h). The two-dimensional evolution equation, Eq. 202

(20d), for the temperature, θ(x, z, t), is solved for (x, z) ∈ [0, 1]× [0, h(x, t)] with boundary 203

conditions given by Eq. (20e,20f). For computational convenience, it is useful to map 204

the temperature field, θ(x, z, t), onto a rectangular domain using the change of variables 205

z̄ = z/h. The transformed evolution equation for the temperature, θ(x, z̄, t) is solved for 206

(x, z̄) ∈ [0, 1]× [0, 1]. The transformed evolution equations for h, u and θ are given by Eqs. 207

(A22,A23) shown in Appendix B. In what follows, we drop the bar in z with the implicit 208

understanding that z ∈ [0, 1]. 209

The equations are solved numerically using the Method of Lines on a uniform and 210

fixed computational mesh in the spatial directions (x, z) [23]. The spatial derivatives are 211

discretised using second-order centered finite difference schemes including a first-order 212

upwind scheme for convection terms in the temperature equation (the terms multiplying 213

θx and θz on the left-hand-side of Eq. (A22a)). The time derivatives appearing in the 214

equations are kept continuous. We use the trapezoidal rule to approximate the integral in 215

the expression for u(x, t) in (A23b). The resulting system of differential-algebraic equations 216

for the unknowns in h, u and θ at each grid point are solved in MATLAB (Release 2013a, 217

The MathWorks Inc., Natick, Massachusetts, United States) using the stiff ODE solver 218

ode15i. The corresponding computational mesh sizes were ∆x, z = 10−3 − 10−2 resulting in 219

a system of O(104 − 106) differential-algebraic equations (DAEs) required to be solved at 220

each time step. For Per ≫ 1, the problem can have very narrow thermal boundary layers 221

near z = h(x, t) of width O(Pe−1/2
r ) and x = 0, 1 of width O(ϵPe−1/2

r ). The smallest value 222

of ∆z = 10−3 is sufficient to resolve these boundary layers for Per ≤ 103. For Per > 103, 223

much smaller values of ∆x, z are required which increases the number of DAEs at each 224

time step, hence the computational effort. These results are not shown here as they are 225

not different from the Per = 103 results. The time step was controlled within the solver 226

to maintain the stability of the numerical solutions. The accuracy and convergence of the 227

numerical scheme are formally checked by systematically reducing the mesh sizes ∆(x, z) 228

for sample cases corresponding to a low, intermediate and high reduced Péclet number Per. 229

Based on this, we can confirm that for the mesh sizes stated above the numerical solutions 230

presented below are an accurate reflection of the draining process. 231

4. Results 232

We seek numerical solutions of the evolution of the film thickness h(x, t), extensional 233

flow speed u(x, t) and temperature θ(x, z, t), by varying the key parameters: the reduced 234

Péclet number Per (or Péclet number Pe), rate of linear decrease in surface tension with 235

temperature, M, the heat transfer coefficients, a, b, at the free surface and substrate, respec- 236

tively, and the temperature-viscosity coupling constant, α. Table 2 provides a range of 237

values for the dimensionless parameters. We do not always restrict the choice of the values 238

of these parameters to be based on Table 2, but allow for a full range of realistic values to 239

be explored in (Per, M, a, b, α) space. We consider variations in the above parameters for 240

Ca = 103 (representative of Ca ≫ 1) and Re = 0. Re ≪ 1 has no significant influence on 241

the evolution of the film and the extensional speed, hence we choose Re = 0. Additionally, 242

we choose the heat transfer coefficient at the top and bottom ends, b = 0, focusing on a, 243

the heat transfer at the free surface only. The initial condition is h(x, 0) = θ(x, z, 0) = 1 and 244

the corresponding initial condition for the extensional flow speed is u(x, 0) = x(1 − x)/8 245

obtained by solving Eq. (20b) for (h, θ) = 1 and Re = 0. 246

We first investigate the influence of viscosity varying with temperature, and take 247

the surface tension to be constant (so, M = 0). The solid curves in Fig. 2(a, e) show the 248

evolution of h(x, t) (h(x, t) is plotted on a logarithmic scale) for t = 0 − 160 (in steps of 249

20) with µ = 1 (or θ = 0 everywhere corresponding to a film with liquid at the ambient 250

temperature, T⋆
a ) and µmin = 5 × 10−2 (or θ = 1 corresponding to a film with liquid at a 251

hotter temperature, T⋆
i everywhere), respectively. Both these cases are isothermal with 252
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differing liquid viscosities. The solid curves in Fig. 2(b, f ) show the extensional speed 253

u(x, t) corresponding to µ = 1, µmin, respectively. The remaining curves in Fig. 2(a, c, e) 254

show the evolution of h(x, t) (h(x, t) is plotted on a logarithmic scale) for t = 0 − 160 (in 255

steps of 20) for Per = 10−1, 10, 102, 103, respectively, with fixed α = 2, a = 0.02, Ca = 103
256

and Re = 0. Fig. 2(b, d, f ) show the corresponding evolution of u(x, t), respectively. 257
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Figure 2. The evolution of the film thickness h(x, t) (on a logarithmic scale) for t varying between
t = 0 − 160 (in steps of 20) corresponding to (a) µ = 1 (solid curves; isothermal case with θ = 0
everywhere) and Per = 10−1 (dashed curves), (c) Per = 10 (solid curves) and Per = 102 (dashed
curves) and (e) Per = 103 (dashed curves) and µ = µmin = 5 × 10−2 (solid curves; isothermal case
with θ = 1). The corresponding extensional flow speed u(x, t) is shown in (b, d, f ). The evolution (g)
of the global minimum hmin as a function of time t for varying Per. The parameter values are: α = 2,
a = 0.02, Ca = 103 and Re = 0.
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At early times, the fluid in the film drains downwards leading to thinning of the film 258

in the upper region and a thickening in the lower region, and the film shape is concave- 259

out (Fig. 2(a, c, e); see also the outline profile for h shown in the leftmost panel in Fig. 260

3(a, d, g, j)). At late times, the fluid has drained significantly towards the lower end of 261

the domain forming a quasi-static pendant drop there, leaving a very thin and almost 262

flat film (lamella) in the middle region, and a quasi-static capillary meniscus at the upper 263

end (Fig. 2(a, c, e); see also the outline profile for h shown in the rightmost panel in Fig. 264

3(c, f , i, l)). This late-time behaviour can be clearly observed using a logarithmic scale 265

for h(x, t) shown in Fig. 2(a, c, e). This shows the middle lamella region connecting onto 266

quasi-static curves at the top and bottom represented by the capillary meniscus and the 267

pendant drop, respectively. The maximum flow speeds are in the middle lamella section 268

of the film (Fig. 2(b, d, f )) which causes the film thickness to decrease severely there. The 269

flow speed is zero near the top in the capillary meniscus region, and at the bottom in the 270

pendant drop region. 271

For small Per (dashed curves in Fig. 2(a)), the cooling is significant over the entire film 272

resulting in the temperature quickly dropping to its equilibrium value, θ = 0 (or T⋆ = T⋆
a ) 273

and the evolution of h(x, t) is similar to that of isothermal draining with µ(θ) = 1 (dashed 274

curves in Fig. 2(a)). For intermediate Per (Fig. 2(c) with Per = 10, 102, respectively), the 275

cooling is less uniform and pronounced in the thinner lamella section of the film while the 276

temperature is much higher in the thicker pendant drop and upper meniscus regions; the 277

overall viscosity of the liquid is lower than that for low Per leading to faster extensional 278

flow speed as Per increases (Fig. 2(d)) and hence faster draining and thinning of the lamella 279

region. For much larger Per (dashed curves in Fig. 2(d, e) with Per = 103), the cooling 280

is confined in a skin near the film’s free surface (a diffusive boundary layer) and a collar 281

of cooler liquid forms in the lamella region, with the rest of the liquid within the film 282

insulated at a higher temperature θ ≈ 1. This results in a much lower overall viscosity, and 283

consequently faster draining and thinning compared to lower values of Per. The evolution 284

of h(x, t) is almost indistinguishable from that of isothermal draining with µ(θ) = µmin 285

(solid curves in Fig. 2(e)). 286

Fig. 2(g) tracks the evolution of the minimum in h, hmin, as a function of t for Per 287

between 10−1 ≤ Per ≤ 103. hmin is representative of the thickness of the lamella film region. 288

We observe increased thinning of the minimum film thickness, hmin(t), as Per increases. 289

As Per increases the fluid drains more quickly which causes the middle section to become 290

thinner sooner, therefore more likely to rupture at earlier times. We also observe that hmin is 291

always bounded by the two isothermal curves corresponding to µ(θ) = 1, µmin, respectively 292

(red dashed curves in figure 2(g)) and the thinning rates for small and large Per tend to 293

these limiting rates (∝ t−2.25) [1]. To characterise the time taken for the film to thin, we 294

define a rupture time, trupt, as the time taken for the film to drain to a prescribed thickness. 295

In practise, we estimate trupt to be the time taken until hmin reduces to 5 × 10−2 of its initial 296

thickness. We observe that the rupture time is almost doubled as Per → 0. 297

To highlight the temperature variations within the film and the non-uniform cooling 298

as Per is increased, in Fig. 3(a − c), (d − f ), (g − i) and (j − l), we show the contour 299

plot for θ(x, z, t) at times t = 5 (a, d, g, j), t = 20 (b, e, h, k) and t = 100 (c, f , i, l) for 300

Per = 1, 10, 102, 103, respectively. The other parameter values kept fixed are: α = 2, 301

a = 0.02, Ca = 103 and Re = 0. 302
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Figure 3. The contour plot for (a) θ(x, z, t = 5), (b) θ(x, z, t = 20) and (c) θ(x, z, t = 100) for Per = 1;
(d) θ(x, z, t = 5), (e) θ(x, z, t = 20) and ( f ) θ(x, z, t = 100) for Per = 10; (g) θ(x, z, t = 5), (h)
θ(x, z, t = 20) and (i) θ(x, z, t = 100) for Per = 102; (j) θ(x, z, t = 5), (k) θ(x, z, t = 20) and (l)
θ(x, z, t = 100) for Per = 103. The other parameter values kept fixed are: α = 2, a = 0.02, Ca = 103

and Re = 0.

For very small Per (not shown here), the heat loss at the free surface results in the 303

temperature dropping from its initial value θ = 1 (T = Ti) to its equilibrium value, θ = 0 304

(T = Ta), very quickly. At small values of Per, the diffusion of temperature across the 305

thickness of the film dominates, i.e., θzz, resulting in the film cooling uniformly. As Per 306

increases, the diffusion rate is even slower, and is less dominant in suppressing spatial 307

variations in temperature due to non-uniform cooling both along the film (Fig. 3(a − c) for 308

Per = 1 and (d − f ) for Per = 10) as well as within the film (Fig. 3(d − f ) for Per = 10). 309

This results in more pronounced cooling in the lamella section of the film where h is 310

much smaller, compared to near the ends where the temperatures are much higher as h is 311

comparatively larger there. This non-uniformity in the cooling is due to the rate of heat 312

loss being inversely proportional to h - the thicker regions of the film retain their heat 313

more compared to the thinner regions, which lose their heat and therefore cool relatively 314

quickly. This non-uniformity in cooling can be clearly observed in Fig. 4(a, b) which 315

shows the evolution of the temperature along the free surface, θ(x, z = h(x, t), t), for t 316

varying between t = 1 − 160 (in steps of 20), corresponding to Per = 1, 10, respectively. For 317

Per = 1, we observe the highest temperatures in the pendant drop region followed by the 318

temperatures in the upper meniscus (Fig. 4(a)). For Per = 10, the highest temperatures are 319

in the pendant drop and upper meniscus regions, and we start to observe the development 320

of steep temperature gradients between these regions and the lamella region (Fig. 4(b)). 321

Increasing Per further, the spatial variations in θ are much more pronounced, with cooling 322

in the middle section of the film where h is much smaller, compared to near the ends where 323
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h is comparatively larger (Fig. 3(g − i) for Per = 102). At early times, we also observe 324

variations in θ within the film (Fig. 3(g)), with the film slowly cooling from the free surface. 325

At later times, it appears that θ is uniform across the film (Fig. 3(h, i)). The large spatial 326

variation in θ between the ends and the lamella region is clearly observed in Fig. 4(c) 327

which shows the evolution of the temperature along the free surface, θ(x, z = h(x, t), t), for 328

t varying between t = 1 − 160 (in steps of 20), corresponding to Per = 102. For even larger 329

values of Per, we clearly observe that the majority of the cooling is in the lamella section of 330

the film, where the film is very thin; the upper capillary meniscus and the pendant drop 331

region at the bottom remain almost insulated at its initial temperature from the cooler 332

middle section and a thin cooler boundary layer near the free surface (Fig. 3(j, k) for 333

Per = 103 where the boundary layer is clearly visible; in Fig. 3(l) the boundary layer is 334

very thin and not resolved here). This is also clearly identified in Fig. 4(d) which shows 335

the evolution of the temperature along the free surface, θ(x, z = h(x, t), t), for t varying 336

between t = 1 − 160 (in steps of 20), corresponding to Per = 103. The significant reduction 337

in the cooling of the middle lamella section is clearly evident at higher Per. This is due to 338

the enhanced convection of heat through the flow coming from the hotter upper meniscus 339

region. 340
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Figure 4. The evolution of the temperature at the free surface, θ(x, z = h(x, t), t) for t varying between
t = 0 − 160 (in steps of 20) corresponding to (a) Per = 1, (b) Per = 10, (c) Per = 102 and (d)
Per = 103. The other parameter values kept fixed are: α = 2, a = 0.02, Ca = 103 and Re = 0.

Next, we investigate the influence of the viscosity-temperature decay constant α, the 341

heat transfer coefficient at the free surface a and the surface tension-temperature parameter 342

M on the global minimum film thickness hmin. 343
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Figure 5. The global minimum hmin as a function of time t for (a) varying α (Per = 103, a = 0.02),
(b) varying a (Per = 103, α = 2), (c) varying M (Per = 1, a = 0.02) and (d) varying M (Per = 103,
a = 0.02). The other parameter values kept fixed are Ca = 103 and Re = 0.

Fig. 5(a) investigates the influence of varying α on hmin(t), for fixed Per = 103 and 344

a = 0.02. We observe the increased thinning of the minimum film thickness, hmin(t), as 345

α increases. As α increases the fluid drains more rapidly (due to the larger reduction in 346

viscosity) which accelerates the the thinning of the middle section, therefore lowering the 347

rupture times (by almost half the time compared to the isothermal µ = 1 case). In the limit 348

as α → 0, ∞, we recover the isothermal cases corresponding to µ = 1, µmin respectively (red 349

dashed curves in Fig. 4(a)). Fig. 5(b) investigates the influence of varying a on hmin(t), 350

for fixed Per = 103 and α = 2. We observe the thinning of the minimum film thickness, 351

hmin(t), decreases as a increases. The fluid drains more slowly which slows down the 352

thinning of the lamella section, therefore delaying the rupture times. We now study the 353

influence of varying M on hmin(t), for two cases corresponding to a low value of Per = 1 354

(Fig. 5(c)) and a high value of Per = 103 (Fig. 5(d)). We fix α = 2 and a = 0.02. For low 355

values of Per, we observe hmin to marginally increase with M; the increase is exaggerated 356

for larger values of M (Fig. 5(c)). This is due to gradients in surface tension generated due 357

to variations in θ along the film (i.e., θx) which is much stronger in the transition region 358

between the downstream end of the lamella region and the pendant drop compared to the 359

transition region between its upstream end and the upper meniscus region (see Fig. 4(a)). 360

Moreover, the stronger surface tension gradients at the downstream end of the lamella 361

region oppose the gravity-driven flow, hence slowing down the extensional flow speed and 362

thereby reducing the thinning of the lamella region. 363

In contrast, for high values of Per, we observe a decrease in hmin at late time as M 364

increases; the drop in hmin is quite dramatic for higher values of M. In this case, the 365

surface tension gradients in the transition region between the upstream end of the lamella 366

and the upper meniscus region are stronger than that in the transition region between its 367

downstream end and the pendant drop region (due to θx being larger at the upstream end - 368
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see Fig. 4(d)). This contribution cooperates with the gravity-driven flow, hence increasing 369

the extensional flow speed and thereby accelerating the thinning of the lamella region. 370

5. Discussion 371

In this paper, we coupled the thin-film flow equations to a two-dimensional advection- 372

diffusion equation for the temperature field and investigated the draining and thinning 373

of a cooling vertically-aligned hot Newtonian liquid film for the reduced Péclet number, 374

Per = O(1). We considered non-isothermal conditions which included a temperature- 375

dependent viscosity and surface tension, and heat loss due to cooling at the free surface. 376

A systematic parameter study revealed the influence of the system parameters on this 377

cooling, particularly, the reduced Péclet number, Per, the decay constant in the exponential 378

viscosity-temperature model, α, the heat transfer coefficient, a, and the slope of the linear 379

surface tension-temperature model, M. The resulting temperature and corresponding 380

viscosity and surface tension contrast arising due to the cooling near the film’s free surface 381

significantly influenced the draining and subsequent thinning of the film. 382

A key contribution of this work distinguishes the thinning rate and rupture times of 383

the lamella between the non-isothermal cases and the isothermal cases from our previous 384

work [1]. Indeed, we have demonstrated the significant influence of cooling on these and 385

showed that, depending on the parameter values, the lamella can thin and rupture either 386

faster or slower than the corresponding isothermal cases (Figs. 2(g), 5). 387

The main highlight of our results identifies an important feature during the draining 388

and thinning process - the preferential cooling in the film’s flat middle section (lamella) 389

compared to the top and bottom regions (Plateau borders). The rate of heat loss in the 390

lamella is maximum due to its much smaller thickness compared to the much thicker 391

Plateau borders (Fig. 4). The extent of this cooling was dependent on the parameter values, 392

in particular the reduced Péclet number, Per. For intermediate and large Per, a draining 393

collar of colder liquid was observed in the lamella sandwiched between two much hotter 394

Plateau border regions. The hotter regions appeared to be almost insulated from the cooler 395

middle section and a thin cooler boundary layer near the free surface (Figs. 3(i, l) and 396

4(c, d)). In contrast, for small values of Per, the temperature isotherms are almost constant 397

across the film thickness (Fig. 3(a − c)) and the film cooled almost uniformly along its 398

thickness. The non-uniform cooling and its influence on foam film drainage identified in 399

our work clearly suggests that it is necessary to include the heat transfer and drainage both 400

in the lamella and Plateau borders, not considered in previous work [8]. Moreover, the 401

cooling from the free surface is also important, again neglected in previous work which only 402

investigated heat transfer from the solid wire frame [8]. In our model, we have assumed 403

that the wire frames are insulated; future work will include heat transfer from both the free 404

surface and wire frames. 405

We observed that the cooling rate could be enhanced by increasing the heat transfer 406

coefficient a which slowed down the draining and thinning of the film. Moreover, a rapid 407

drop in the viscosity with temperature controlled by the parameter α increased the draining 408

flow and the subsequent thinning of the film. The low Per limit is preferable in metallic 409

films since the hot liquid in the film cools uniformly and rapidly, consequently the liquid 410

viscosity increases uniformly within the film, resulting in slower drainage and thinning of 411

the film. This can be achieved if the Péclet number, Pe = U⋆L⋆/κ⋆d , is small (or the thermal 412

diffusivity for the liquid, κ⋆d , is large or the aspect ratio, ϵ, is small). For melts with low 413

diffusivity, one would need very thin films for the low Per results to be achieved. Another 414

method to sufficiently reduce the drainage so that cooling can occur, is to disperse particles 415

within the melt that can increase its effective viscosity, e.g., alumina particles are dispersed 416

in aluminium foam to increase the viscosity [6,7]. 417

Our investigations on the influence of temperature variations in surface tension 418

showed that effect of increasing the slope of the linear surface tension-temperature re- 419

lationship M⋆ is observed to be more effective at lower Péclet numbers where surface 420

tension gradients in the lamella region oppose the gravity-driven flow. At higher Péclet 421
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numbers, though, the surface tension gradients tend to enhance the draining flow in the 422

lamella region resulting in the dramatic thinning of the film at late times. Our results 423

indicate that the thermocapillary effect has much less influence on the draining and thin- 424

ning of the film in comparison to thermoviscous effects. This is due to a limitation in our 425

model which restricts the variation in surface tension with temperature to be O(ϵ2) in order 426

to relegate the influence of surface tension gradients to O(ϵ2). To accommodate larger 427

variations in surface tension, this needs to be relaxed and a different dominant balance 428

including surface tension gradients at leading order in ϵ needs to be explored in future. 429

A major limitation of this study was in not considering the influence of phase transition 430

due to solidification which occurs when the metallic foam structure is immediately cooled 431

to trap this foam structure in a solid. This limits our results to be only valid for temperatures 432

much larger than the melting temperature. We were unable to investigate scenarios where, 433

for example, a solid crust forms at the air-liquid interface (if the temperature there drops 434

below the freezing point) on the hot draining liquid core [8]. As part of the future work, we 435

will need to modify viscosity-temperature relationship in Eq. (16a) to model the change in 436

viscosity at low temperatures close to when the foam is frozen, e.g., Cox et al. [8] choose 437

a step function for µ that gives small values at high temperatures and high values at low 438

temperatures. In addition, the latent heat of fusion will need to be considered. Cox et al. 439

[8] use a simple specific heat-temperature relationship to mimic a peak in the specific heat 440

around the melting temperature to represent the heat that must be absorbed before the 441

foam solidifies. Incorporating these relationships into our model will allow us to fully 442

describe the cooling and solidification of metallic foam films. 443

The theoretical framework developed here is versatile and can be readily adapted to 444

accommodate complex melts exhibiting non-Newtonian or viscoelastic behaviour with 445

temperature-dependent properties. This insight would form the basis for future develop- 446

ments of this model to utilize the results to investigate the overall behaviour of a foam 447

network, using the framework proposed by Stewart et al. [24], for example. 448
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Appendix A. Derivation of the PDEs in (20) 467

We exploit the fact that ϵ =
H⋆

0
L⋆

≪ 1 and expand each of the unknowns variables 468

(u, w, p, τxx, τzz, τxz, h) as a power series in ϵ2 of the form: 469

(u, w, p, τxx, τzz, τxz, θ) = (u, w, p, τxx, τzz, τxz, θ)0(x, z, t) + ϵ2(u, w, p, τxx, τzz, τxz, θ)1(x, z, t) + O(ϵ4). (A1)
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Substituting this into Eqs. (18(a − n). we obtain at O(1):

u0x + w0z = 0, (A2)

τxz
0z = 0, (A3)

− p0z + τxz
0x + τzz

0z = 0, (A4)

w0 = u0z = τxz
0 = 0, at z = 0, (A5)

− p0 + τzz
0 − 2hxτxz

0 =
1

Ca
hxx, at z = h (A6)

τxz
0 = 0, at z = h. (A7)

Eqs. (A3), (A5) and (A7) imply that 470

τxz
0 (x, z, t) = 0. (A8)

Integrating Eq. (A4) with respect to z and using Eq. (A5) and (A6), we obtain 471

p0 = τzz
0 − 1

Ca
hxx. (A9)

To determine τxx,zz
0 , we need to analyse the O(ϵ2) equations. Before we do this, we

note the following: u0z = 0, so u0 = u0(x, t), using τxz
0 = 0 and Eq. (18e) at leading order.

In addition, τzz
0 = −τxx

0 , using Eq. (A2) in Eq. (18e). Eq. (A2) also gives w0z = −u0x, which
on integrating with respect to z and using w0 = 0 at z = 0, gives w0(x, z, t) = −u0xz. At
O(ϵ2), we have

Re(u0t + u0u0x + w0u0z) = −p0x + τxx
0x + τxz

1z + 1, (A10)

Re(w0t + u0w0x + w0w0z) = −p1z + τxz
1x + τzz

1z , (A11)

w1 = u1z = τxz
1z = 0, at z = 0, (A12)

τxz
1 − h2

xτxz
0 + hx(τ

zz
0 − τxx

0 ) = − M
Ca

[θ0x + hxθ0z], at z = h. (A13)

Integrating Eq. (A10) with respect to z and using Eq. (A12), we obtain 472

τxz
1 = −2

∫ z

0
τxx

0x dz −
[

1
Ca

hxxx + 1 − Re(u0t + u0u0x)

]
z. (A14)

Substituting this into Eq. (A13) gives 473

2
∫ h

0
τxx

0x dz + 2hxτxx
0 + h

[
1

Ca
hxxx + 1 − Re(u0t + u0u0x)

]
=

M
Ca

[θ0x + hxθ0z|z=h]. (A15)

Eq. (A15) represents the force balance at the free surface of the extensional stress (rep- 474

resented by the first two term), surface tension (represented by the third term), gravity 475

(represented by the fourth term), inertia (represented by the fifth and sixth terms) and 476

variations in surface tension (represented by the last term). 477

To determine the evolution equation of h using Eq. (18j), we also need to determine 478

u0 and the O(ϵ2) correction u1. We use the constitutive law to determine these. From Eq. 479

(18e), we obtain 480

u0x =
1

2µ(θ0)
τxx

0 , (A16)

u1z + w0x =
1

µ(θ0)
τxz

1 ⇒ u1z =
1

µ(θ0)
τxz

1 − w0x =
1

µ(θ0)
τxz

1 + u0xxz, (A17)
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where µ(θ0) is given by Eq. (18n). We can combine Eqs. (A15) and (A16) to write a single 481

evolution equation for u0. This can be written as: 482

Re h(u0t + u0u0x)− 4
[

µ(θ0)hxu0x +
∫ h

0
(µ(θ0)u0x)x dz

]
= h

[
1

Ca
hxxx + 1

]
− M

Ca
[θ0x + hxθ0z|z=h]. (A18)

Finally, the evolution equation for h can be obtained from Eq. (18j) as:

ht + Q0x = 0, Q0 = u0h. (A19)

Hence, Eqs. (A19) and (A18) provide a coupled system of two PDEs for the film’s free 483

surface evolution, h(x, t) and the extensional flow speed u0(x, t), respectively. 484

Appendix B. Mapping (x, z) ∈ [0, 1]× [0, h] to a rectangular domain (x, z) ∈ [0, 1]× [0, 1] 485

In order to solve Eqs. (20) numerically, it is instructive to map (x, z) ∈ [0, 1]× [0, h] to
a rectangular domain (x, z) ∈ [0, 1]× [0, 1]. We apply the following change of variables:

x̄ = x, z̄ =
z

h(x, t)
, t̄ = t. (A20)

Using the chain rule, we can write 486

∂

∂x
=

∂

∂x̄
− z̄hx̄

h
∂

∂z̄
,

∂

∂z
=

1
h

∂

∂z̄
,

∂

∂t
=

∂

∂t̄
− z̄ht̄

h
∂

∂z̄
. (A21)

Applying the above change of variables to Eq. (20d,20e,20f), we obtain the transformed 487

evolution equation for θ(x̄, z̄, t̄) given by 488

Per

[
θt̄ + uθx̄ + (w − z̄uhx̄ − z̄ht̄)

1
h

θz̄

]
=

1
h2 θz̄z̄ + ϵ2

[
θx̄x̄ − z̄

(
hx̄

h

)
x̄
θz̄ −

z̄hx̄

h

(
2θx̄z̄ −

(
z̄hx̄

h
θz̄

)
z̄

)]
, (x̄, z̄) ∈ [0, 1]× [0, 1],

w(x̄, z̄, t̄) = −ux̄hz̄, (x̄, z̄) ∈ [0, 1]× [0, 1], (A22a)

θz̄ = 0, at z̄ = 0, ∀x̄ ∈ [0, 1], θz̄ = −aϵ2hθ, at z̄ = 1, ∀x̄ ∈ [0, 1], (A22b)

θx̄ = ϵ2b(θ − θs) +
z̄hx̄

h
θz̄, at x̄ = 0, ∀z̄ ∈ [0, 1], θx̄ = −ϵ2b(θ − θs) +

z̄hx̄

h
θz̄, at x̄ = 1, ∀z̄ ∈ [0, 1]. (A22c)

The film thickness evolution, Eq. (20a), and the extensional flow speed evolution, Eq. 489

(20b), in the transformed coordinates become, 490

ht̄ + Qx̄ = 0, Q = uh, (A23a)

Reh(ut̄ + uux̄)− 4
[

µ(θ)hx̄ux̄ +
∫ 1

0
(µ(θ)ux̄)x̄h dz̄ −

∫ 1

0
z̄hx̄(µ(θ)ux̄)z̄ dz̄

]
= h

[
1

Ca
hx̄x̄x̄ + 1

]
− M

Ca

[
θx̄ +

hx̄

h
θz̄|z̄=1

]
.

(A23b)
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