
Unsupervised Complexity Reduction of Sensor Data for Robot Learning
and Adaptation

T. Kyriacou, R. Iglesias, M. Rodrı́guez, P. Quintı́a

Abstract— In this paper an unsupervised method is presented
for decreasing the amount of data a robot uses from its sensors
without destroying the useful information that the robot needs
to be successful in its learning task. This reduction is done by
selecting a subset of all the sensors available to the robot but
also by segmenting the measurement range of each sensor into
intervals. It is shown here that this reduction in sensor data
results in a significant reduction in the learning time of the
robot.

I. INTRODUCTION

Every year an increasing number of robots are entering the
domestic environment. These robots are intended to help
with household chores, act as home health aids, and serve
as companions and entertainers for people. However most of
these robots are still very limited, or look and behave like
they belong in a factory. There is still an important barrier
between the latest developments on research robots and the
commercial ones. Partly to blame for this is the uncertainty
inherent to any robot behaviour: what any mobile robot does
is the result of the properties of the robot itself, the control
program the robot is executing and the robot’s environment
[1]. This problem becomes worse for domestic and service
robots due to an important lack of predictability (neither the
user’s behaviour nor the physical environment can be known
before a robot is placed in a home). Therefore, we must
accept that we will be buying imperfect robots and that at
some point these robots will make mistakes when moving
in our home. Therefore we need robots that are able to
adapt their behaviour and learn from their experiences when
emulating people or exploring their environment. As is the
case with humans, the mistakes and successes a robot makes
should influence its future behaviour rather than relying only
on predefined rules, models or hard-wired controllers.

To achieve real and effective on-line robot adaptation
we consider a three-stage process: First we must achieve
fast learning procedures. Second, the robot needs to learn
simultaneously how to perceive and how to act. Finally, the
learning procedure must be transferred into the real robot.
This paper concentrates on the second stage.

We need robots that are able to simultaneously learn
how to perceive and how to act from their interaction with

T. Kyriacou is with the School of Computing and Mathe-
matics, Keele University, Keele, Staffordshire ST5 5BG, UK.
t.kyriacou@keele.ac.uk

R. Iglesias, M. Rodrı́guez and P. Quintı́a are with the
Department of Electronics and Computer Science, University
of Santiago de Compostela, Campus Vida, 15782 Santiago
de Compostela, Spain. {roberto.iglesias.rodriguez;
miguel.rodriguez.gonzalez; pablo.quintia}@usc.es

the environment. Robot learning and adaptation in realistic
environments requires novel algorithms able to identify im-
portant events in the stream of sensor data. Nevertheless, this
is getting more and more complex, due to the increasing
number and resolution of sensors that today’s robots use.
Technology advances provide robots continuously increasing
sensor modalities that make data collection easier and faster.
This usually results in high dimensional and complex data
sets in which many of the dimensions are often irrelevant to
what the robot’s learning task. These irrelevant dimensions
confuse clustering techniques since when the number of di-
mensions increases, distance measures become increasingly
meaningless [2]. Additional dimensions spread out the points
until, in very high dimensions, they are almost equidistant
from each other, this is known as the curse of dimensionality.
Obviously, one solution to reduce the complexity of data is
(for the user) to determine, heuristically, which subset of
sensors are relevant for the task the robot is trying to solve,
but this contradicts the idea of an autonomous robot that is
changing its behaviour under the working circumstances. We
need unsupervised techniques able to reduce the sensor data
complexity.

In this paper mutual information and entropy measure-
ments are used to determine not only the subset of sensors
that are really meaningful for what the robot is doing, but
also a suitable partition of every sensor’s range of values into
a finite set of intervals, thus reducing the complexity of the
robot’s sensor data.

II. EXPERIMENTAL SETUP

The aim if this paper is to propose and evaluate a method
to determine the most relevant sensors and their partition
in intervals. The experimental scenario is shown in figure
1. A Pioneer 3DX robot is used to learn the wall following
behaviour in a simulated environment. The robot is equipped
with a front-facing laser scanner and 16 ultrasonic sensors
(figure 2). To evaluate the unsupervised sensor selection
and the partitioning methods, the robot’s actions and sensor
perceptions were logged with a sampling period of 250
milliseconds while the robot was learning its task. The
data collected was then used to determine the most relevant
sensors and the partition of the sensors ranges into finite sets
of intervals. This data complexity reduction was evaluated
using subsequent attempts to learn the same task. In other
words, during the evaluation phase, the robot was made to
use less sensors (those deemed most relevant) and sensors
whose ranges were discretised (again, into intervals that were
deemed to be most relevant to the task). In this way we

Fig. 1: Simulated environment where the Pioneer 3DX will learn
how to follow a wall located on its right.

Fig. 2: P3DX robot, a simulated model of which was used in our
experiments. This robot is equipped with a SICK laser scanner and
16 ultrasound sensors.

evaluated the performance of our method and whether the
simplified sensor data still contained enough information to
learn the task.

The set of data that was used to determine the most
relevant sensors and the partition of every sensor’s range
readings into intervals was that logged during the early stages
of the robot’s learning, while its movement was still erratic
and showed many mistakes. The reason why we decided to
do this is because as part of our future research we plan to
use our method in parallel with the learning process itself.

III. DETERMINATION OF THE MOST RELEVANT SENSORS

To determine the most relevant sensor inputs we estimated
the sensitivity of the robot actions, A, with respect to each
input Si, ∀i by using the average mutual information Im [3].

Im(Si,A) = ∑
ai,s j

PS,A(ai,s j)log2[
PS,A(ai,s j)

PA(ai).PS(s j)
] (1)

PS,A(ai,s j) is the joint probability density with which the
robot performs action ai when sensor Si takes the value s j.
PS(s j) and PA(ai) are the individual probability densities for
Si and A resulting in values s j and ai, respectively.

Mutual information measures the information that Si and
A share; i.e. how much we can say about one of the two

variables (robot action or sensor value) when we know the
value of the other. If Si and A are completely unrelated (i.e.
independent), PSi,A(s,a) = PSi(s).PA(a) and, therefore, the
mutual information is zero. In the other extreme, if the two
variables (Si, A in our case) are identical, all the information
conveyed by one of them is shared with the other; the value
of one of the variables can be used to determine the value
of the other. In this case the mutual information is the
uncertainty contained in any of the two variables, i.e. the
entropy H of either of the two since they are identical.

IV. DETERMINATION OF THE MOST MEANINGFUL
SENSOR INTERVALS

Splitting sensor values in intervals instead of working
with the full range of sensor values (i.e. the full resolution
of each sensor’s range) can be beneficial for many robot
behaviours. Working with intervals might help to focus the
robot’s attention on those aspects that are relevant for the task
at hand and thus cause it to avoid details that might confuse
the robot or even alter its behaviour erroneously. Examples
of such problems occur during a door traversal behaviour or
during convoy formation behaviour. In the case of the door
traversal task, all the robot needs to know is the location
of the door at every instant so that it can move towards
the door’s centre. Details such as the objects encountered
after the robot has traversed the door (detected with the
front sensors) will make the learning more difficult and the
robot’s behaviour less robust. A very crude descretisation
of the robot’s range sensors using only two intervals (“1”
showing close obstacles such as the door frame, and “0”
representing distant obstacles) would almost suffice in order
to learn the task. Something similar happens with the convoy
formation. In this case each robot in the formation needs to
follow closely the robot in front. The observation of close and
frontal obstacles is much more relevant than distant features
of the environment in which the convoy moves.

The descretisation of each sensor range in intervals needs
to be done automatically and in an unsupervised way. We
must avoid error-prone heuristic criteria dependent on the
designer’s considerations. On the other hand we must use an
automatic way of determining a partition that is dependent
on the sensor itself and the behaviour exhibited by the
robot (“the task”). In this paper we suggest a combination
of mutual information and evolutionary strategies [4] to
find this partition: we plan to find the partition to those
intervals, for every sensor, that maximizes the mutual
information between the sensor and the action. Therefore,
the partition will be dependant on both, the sensor and the
robot behaviour:

• Computation of the mutual information using intervals:
If we divide the range of possible sensor values Si, ∀i
in a set of P intervals:

Si = ...
... = {Si(1) = [0,s1),Si(2) = [s1,s2), ...,
...,Si(p) = [sp−1,sp = max possible value o f Si)}

(2)
we can compute the mutual information between the
action A, and Si when this partition is used:

Im(Si,A,P) = ∑
ai,l

PS,A(ai,Si(l))log2[
PS,A(ai,Si(l))

PA(ai).PS(Si(l))
]

(3)
PS,A(ai,Si(l)) is the probability that the value of Si falls
into the l-interval and the action A takes the value ai.
PS(Si(l)) is the probability that the value of Si falls
into l-interval.

• Search for the best partition: Given a partition of Si in
P-intervals, we can shift the boundaries of the intervals
trying to maximize the mutual information between Si
and A. To do this we have chosen to use evolutionary
strategies (ES), since they are suitable and common for
continuous parameter optimisation [4]. An evolutionary
strategy is an optimization technique based on ideas
of adaptation and evolution: given a population of
individuals within some environment that has limited
resources, competition for those resources causes
natural selection (survival of the fittest). Therefore,
evolutionary strategies (ES) need a fitness function
that will be maximized. In fact, on the basis of this
fitness function some of the best candidates are chosen
to seed the next generation. In this paper we have
applied one of the simplest ES algorithms, (1+1)-ES.
This algorithm will find the (P-1) upper boundaries
of the intervals into which we shall split Si values
(s1,s2, ...,sp−1 in equation 2). These boundaries will be
found by trying to maximize the mutual information
between the robot actions and the sensor readings. To
do this, the (1+1)-ES will operate on a population of
size two: the current point (parent), and the result of
its mutation (offspring). Only if the offspring’s fitness
is at least as good as the parent’s one, the offspring
becomes the parent for the next generation. Next we
present a brief description of the basic algorithm:

BEGIN
1) Set t = 0
2) Create an initial point with the boundaries of the

intervals xt = (s1,s2, ...,sp−1) ∈Rp−1

3) REPEAT UNTIL (TERMINATION CONDITION
IS SATISFIED) DO
a) draw a new random point zt ∈ Rp−1 from a

normal distribution N(0,σ)
b) create a new candidate (offspring) by adding

the random vector z to the initial parent point
yt = xt + zt

c) Survivor selection: compare the fitness of the

parent and the new candidate.
If Im(A,Si,x) > Im(A,Si,y) then

xt+1 = xt

else
xt+1 = yt

d) t = t +1
END

Im(A,Si,x) and Im(A,Si,y) are the mutual information
amongst A and Si, when the interval boundaries are
the ones in vector x, and in vector y,respectively. A
Gaussian, or normal, distribution with zero mean and
standard deviation σ is used for drawing random vectors
and thus generate new candidates. Thus, the σ value is a
parameter that determines the extent to which the parent
values (x) are perturbed. For this reason σ is often called
mutation step size. Usually σ’s value is altered on-line
using the 1/5 success rule:

σ =

 σ/c if ps > 1/5
σ.c if ps < 1/5
σ if ps = 1/5

where ps is the relative frequency of succesful
mutations measured over a number of trials. The
parameter c is a constant value usually within the
interval [0.8,1]. This 1/5 rule is applied at periodic
intervals, for instance, after k iterations. The more the
success of mutation the higher the value of σ in an
attempt of making a wider search for the solution in
Rp−1. On the contrary if the success ratio is less that
1/5 then σ should be decreased to concentrate the
search around the current solution.

• Search for the best number of intervals: There is a
problem that still needs to be solved: according to the
previous two items we know how to search for the best
partition of Si in P-intervals. This partition will be the
one that maximizes the mutual information amongst Si
and the robot actions, A. Nevertheless, we still don’t
know how many intervals we should use. Because of
this, we still need to apply a straightforward interative
process that, once again, tries to maximize the mutual
information:

1) P=1
2) DO

a) Apply (1,1)-ES to get the best partion of Si
in P-intervals. Im(A,Si,P) is the mutual in-
formation achieved when P-intevals are used.
This mutual information is calculated using the
method described in the previous item.

b) If (P=1) then
max Im = Im(A,Si,P)

best number intervals = 1
Else If max Im < Im(A,Si,P)

max Im = Im(A,Si,P)
best number intervals = P

P = P+1

UNTIL (P =MAXIMUM NUMBER OF PARTI-
TIONS)

3) END THE SEARCH PROCESS,
best number intervals IS THE BEST PARTITION
FOR Si.

V. SIMULTANEOUS LEARNING OF PERCEPTION AND
ACTION

We now describe the strategy we used to learn a map-
ping ”sensor-state-action” through trial and error robot-
environment interactions. In order for a robot to learn from its
own experiences, it needs to be able to build a representation
of the environment that increases dynamically to include
new situations that have not been seen before. We shall call
to these new and distinguishable situations, detected in the
stream of sensor inputs, states. A dynamic creation of the
state representation will avoid the classic, error-prone and
cyclic process of designing and testing ad hoc representa-
tions. On the other hand, the dynamic representation of the
environment will be combined with a learning strategy able
to adapt the robot’s behaviour to those relevant situations
(states) that are being identified. Therefore, our system will
learn simultaneously the state space and the action to execute
on each state.

Despite the fact that we will describe the learning pro-
cedure so that the contents of this paper are clear, we
also want to highlight that this learning procedure plays a
secondary role in this paper. We want to determine whether
the complexity reduction of the sensor data helps the robot
to achieve learning faster than when it is using all sensors
available to it.

A. Dynamic representation of the environment

If we really want a robot able to adapt to its workspace
without human help, we must avoid representations of the
environment that are created off-line and, instead, use strate-
gies that enable the identification of important events in the
stream of sensor inputs in a largely unsupervised way. We
used a Fuzzy ART artificial neural network to obtain this
dynamic creation of the set of states [5] .

The input of the Fuzzy ART network will be an M-
dimensional vector containing sensor readings. Each one of
this components will be translated into the interval [0,1].
To prevent the Fuzzy ART from creating too many states,
we will normalize the inputs using complement coding. The
complement coded input I to the recognition system is a
2M-dimensional vector:

I = (a,ac)≡ (a1, ...,aM,ac
1, ...,a

c
M), (4)

where ac
n = 1− an. Using complement coding, the norm

of the input vector will always equal the dimension of the
original vector.

The prototype that identifies each state learnt by the Fuzzy
ART network, will be codified as an array of 2M dimensions
with values in [0,1]: Wj = (w j1, ...,w jM,wc

j1, ...,w
c
jM), where

the sub index j refers to the state. The behaviour of the
Fuzzy ART is determined by two parameters: learning rate
β ∈ [0,1]; and a vigilance parameter ρ ∈ [0,1]. The way
the Fuzzy ART network operates can be summarized in
the following steps (there are some important differences in
comparison with the general proposal described in [5]):

1) After presenting an input I to the network, there will
be a competitive process after which the categories will
be sorted from the lowest activation to the highest. For
each input I and each state (often called category) j,
the activation function Tj is defined as

Tj(I) =
|I∧w j|
|w j|

(5)

the fuzzy operator AND ∧ is (x∧y)i ≡min(xi,yi) and
the norm | · | is defined as

|x| ≡
M

∑
i=1
|xi|. (6)

2) The state with the maximum activation value will be
selected to see if it resonates with the input pattern I

J = arg max j{Tj : j = 1...N}. (7)

3) The Fuzzy ART network will enter in resonance if the
matching between the input I and the winning state J
is greater or equal than the vigilance parameter ρ:

|I∧wJ | ≥ ρ|I| (8)

If this relation is not satisfied, a new state will be
created and the new prototype vector will be equal
to the input I.

4) When the network enters in resonance with one input,
the prototype vector wJ is updated:

w(new)
J = βI+(1−β)w(old)

J . (9)

B. Increasing Time before failure

According to psychology theories, learning is strengthened
if it is followed by positive reinforcement – pleasure – and
weakened if it is followed by punishment – pain [6]. Inspired
by these psychological theories, Sutton and Barto developed
reinforcement learning as a machine learning paradigm that
determines how an agent ought to take actions in an envi-
ronment so as to maximise some notion of long-term reward
[7]. What makes this learning paradigm appealing is that the
system learns on its own, through trial and error, relying
only on its own experiences and a feedback – reward signal

– that encourages or discourages the execution of different
sequences of actions.

We have developed a new reinforcement-learning based
algorithm that is almost parameterless, and which allows an
easy interpretation of what the robot is learning [8], [9]. Our
proposal will provide a prediction of how long the robot
will be able to move before it makes a mistake and hence, it
receives negative reinforcements. This will make it easier
to assess the evolution of the learning process as a high
discrepancy between the time before failure predicted and
what is actually observed on the real robot is a clear sign of
an erroneous learning.

During the learning process, our robot will learn a utility
function of states and actions, termed Q-function, Q(S×A).
This function estimates the expected time interval before a
robot failure when the robot starts moving in s, performs
action a, and follows an optimal policy thereafter:

Q(s,a) = E[−e(−T b f (s0=s,a0=a)/50T)], (10)

where T b f (s,a) represents the expected time interval (in
seconds) before the robot does something wrong, when it
performs action a in s, and then follows the best possible
control policy. T is the control period of the robot (expressed
in seconds). The term −e−T b f /50T in Eq. 10 is a continuous
function that takes values in the interval [−1,0], and varies
smoothly as the expected time before failure increases. If
we are able to predict the consequences of performing a
particular action in a state (time that will elapse before the
robot makes a mistake), it is straightforward that we can
achieve the best control policy by simply selecting the action
with the highest Q-value for every state. This will give us
the control policy that maximizes the time interval before
any robot failure; this is called greedy policy π∗:

π
∗(s) = arg maxa{Q(s,a)} (11)

Since Q(s,a) and T b f (s,a) are not known, we can only
refer to their current estimations Qt(s,a) and T b ft(s,a):

T b ft(s,a) =−50∗T ∗Ln(−Qt(s,a)), (12)

The definition of Q(s,a), T b f , and the greedy policy, de-
termine the relationship between the Q-values corresponding
to consecutive states:

Qt+1(st ,a) =
{
−e−1/50 if rt < 0
Qt(st ,at)+δ otherwise

(13)

where,

δ = βL(e
−1
50 ∗Qmax(st+1)−Q(st ,at)). (14)

rt is the reinforcement the robot receives when it executes
action at in state st , βL ∈ [0,1] is a learning rate, and it is
the only parameter whose value has to be set by the user.

To obtain the utility values Q(s,a), the robot begins
with an initial set of random values, Q(s,a) ∈ [−1,−0.95],
∀s,a, and then it initiates a stochastic exploration of its
environment. The robot will move and collect data during
a maximum period of time or until it makes an error. The

data collected will later be used to update the Q-values:

First stage, collecting data
1) m = 0
2) At each instant t and while the robot does not receive

a negative reinforcement or moves for a maximum
period of time do:

a) Observe the current state, s(t): s[m] = st .
b) Select an action at for st : a[m] = at .
c) Perform action at , observe new state st+1 and

reinforcement value rt , r[m] = rt ,
d) m← m+1.

Second stage, updating the Q-values
1) for k = m−1,m−2, . . . ,0 do:

a) Update time before failure:
if k = m−1 then:

T b f =
{

T if r[m−1] < 0
T b f (s[m−1]) otherwise

else T b f ← T b f +T .
b) Update the Q-values:
• ∆Qt(s[k],a[k]) =

... = βL(−e−T b f /50T −Qt(s[k],a[k]))

To speed up the learning procedure, we have used an
ensemble of learning individuals working in parallel. Since
the Q − values predict the time interval before a robot
failure, we call ”predictor” to each learning individual. The
main idea is that each predictor will have to learn the best
action interval for every state. Therefore the best action to
be executed at every state will be inferred from the joint
participation of all the predictors. Basically each predictor
will ”vote” for a set of actions, so that the action with
the maximum number of votes will be the one the robot
finally executes. Another nice aspect of our proposal is that
it allows the parallel learning of the same behaviour from
different robots simultaneously operating in the same or
different environments. In all the experiments we present in
this paper there were two robots moving at the same time.
Further details can be found in [8], [9], and there is a journal
article in preparation.

The reason why we used this learning strategy instead of
other classic reinforcement learning algorithms, is because
it really shortens the amount of time that the robot requires
to learn a behaviour. Table I shows the performance of the
learning algorithm just described (I T b f) in comparison with
a classic reinforcement learning algorithm that that has been
widely used in the past (Naive Q(λ) [7]). Clearly I T b f
outperforms Naive Q(λ).

VI. EXPERIMENTAL RESULTS

We applied mutual information and evolutionary strategies
to search the most relevant sensors and their partitioning
intervals for a particular behaviour (“wall following”). The
robot we used was a simulated version of a Pioneer P3DX.
This robot is equipped with a SICK laser scanner and 16

TABLE I: Time required to learn the wall following behaviour
when two different algorithms were used. Average learning time is
in minutes. Each one of these learning times have been obtained
after 15 experiments

Learning Average learning
algorithm learning time parameters

Parallel I Tbf 13.85±15.26 ρ = 0.91005,
β = 0.0015

βL = 0.288282
Naive Q(λ) 23.12±15.33 ρ = 0.91005,

β = 0.0015
βL = 0.288282

trace decay λ = 0.869965
decay f actor γ = 0.9

Fig. 3: Two robots learning the wall following behaviour using the
algorithm described in section V. This graph has been obtained at
the last stages of the learning process

ultrasonic sensors. Because of this, we log 193 data every
250 milliseconds, 177 of these inputs are laser readings,
while the 16 remaining inputs are ultrasound sensors. These
data were logged while the robot was learning the wall
following task in a simulated environment (figure 3), and
using Player/Stage software [10].

A. Determination of the relevant sensors

We calculated the mutual information amongst every sen-
sor and the actions performed by the robot while it was
learning the task. The results achieved are shown in figures
4 and 5. According to figure 4 the most relevant laser inputs
are those corresponding to the front and right side of the
robot. This agrees with what we would expect from a right-
hand wall follower, but we still need to prove if this is really
enough to learn the task. Regarding the ultrasound sensors,

Fig. 4: Mutual information amongst each laser beam and the robot
actions. This mutual information was calculated using data logged
at the initial stage of the learning process.

Fig. 5: Mutual information amongst each sonar and the robot
actions. This mutual information was calculated using data logged
at the initial stage of the learning process.

the most relevant ones appear to be the ones located not only
at the front, but also at the right and rear sides of the robot.

To determine whether this information is meaningful we
decided to learn the behaviour using only the subset of
sensors that seem to be the most relevant. To determine these
relevant sensors we first added up all the mutual information
values:

Total Im =
i=192

∑
i=0

Im(Si,A)

We then sorted out the sensors by mutual information,
from large to small values and, finally, we selected one sensor
at a time until the sum of their mutual information reached
50% of the Total Im.

Using this criterion, the relevant sensors are those 76
sensors (laser and sonar) shown in figures 6 and 7. When
only these sensors were used to learn the task, we got
an important reduction in the learning time (table II)), in
particular the robot only needed 65% of the time that was
necessary to learn the same behaviour using all sensors.

Fig. 6: Location of the most relevant laser beams.

Fig. 7: Location of the most relevant sonar sensors

B. Determination of meaningful intervals

We now used the same data collected for the determination
of the relevant sensors, but this time to find the best partition
of every sensor readings into a finite set of intervals. The
combination of 1+1 ES and mutual information, described in
section IV, allowed us to explore the partition of each sensor
readings into a number of intervals that ranged from 1 to 10.
In most cases the mutual information obtained for the parti-
tion of the sensor values in 1, 2, ...,10 intervals approaches a
logarithm curve (figure 8). The mutual information increases
very fast with the first intervals, but this growth slows down
when a higher number of intervals is used.

For every sensor we took the partition which gave raise
to the highest mutual information (8, 9 or 10 intervals for
most of the laser sensors (figure 9), while in the case of the
sonar this partition was in 10 intervals in all cases but one
(figure 10)).

Once again our robot learnt the right wall following
behaviour using these partitions of the sensor readings. We
considered two situations: a) learning of the task using all
sensors and their partitions, b) learning of the task using only
the most relevant sensors and their partition intervals. In both
cases the ART network didn’t receive the sensor readings
at each instant, but the centroid of the intervals that con-
tained those sensor values. We achieved very important and
representative reductions in the learning time in both cases
(table II). The use of intervals reduces very significantly the
amount of time the robot requires to learn the task, and this
reduction is even higher when only the relevant sensors and
their partition is involed in the learning procedure.

Fig. 9: Number of intervals into which the values of each laser
beam are projected.

Fig. 10: Number of intervals into which the values of each sonar
are projected.

VII. CONCLUSION

Successful applications of mobile robots have so far been
restricted to well defined, fairly narrow application scenarios
in which boundary conditions are known a priori. Never-
theless, this opposes the idea of robots operating in our
everyday workplaces or our homes. Robots need to be able
to adapt and learn on their during their interaction with their
environment. This adaptation does not affect only the robot’s
actions but also how they should perceive the environment:
data acquisition and processing will be dependent on the
current goal or the task the robot is trying to achieve.

The constant development of new and more accurate
sensors opens new challenges and possibilities in robotics.
Robots will now be able to operate in more complex sce-
narios. In turn, this produces an enormous increase in data
dimensionality which makes necessary the development of
unsupervised methods that are able to reduce the complexity
of sensor data. We have addressed this problem by devel-
oping a method able to search the subset of sensors and
distance intervals which seem to be directly connected with
what the robot is trying to achieve (i.e. the robot’s motor
actions). This “connection” is determined by means of the

Fig. 8: Mutual information amongst two different laser beams and robot actions. These graphs show the growth of the mutual information
as the number of intervals increases. This growth is faster at the beginning thus approaching a logaritmic curve. For the rest of the laser
beams and sonar sensors the variance of the mutual information with the robot actions, as the number of intervals increases, is very similar
to these two cases.

TABLE II: Time required to learn the wall following behaviour
when different levels of sensor data complexity reduction were
used. All the learning experiments where run using the parallel
I T b f described in section V. In all experiments βL = 0.288282.
The average learning time is in minutes. Each one of these learning
times have been obtained after 15 experiments

Learning Average Fuzzy ART
Characteristics learning time parameters

all sensors, no intervals 13.85±15.26 ρ = 0.91005,
β = 0.0015

relevant sensors, no intervals 8.97±5.51 ρ = 0.91005,
β = 0.001

all sensors and intervals 7.66±4.36 ρ = 0.91005,
β = 0.0015

relevant sensors and intervals 7.09±3.54 ρ = 0.926
β = 0.0027

mutual information measure. Our method was applied on a
data set collected when the robot was starting to learn a wall
following behaviour, the robot was learning from its mistakes
and successes when interacting with the environment. As part
of our future work we plan to use this method in order to
combine the reduction of sensor data complexity with the
learning process itself. We shall apply this on-line complexity
reduction to the learning of wider robot tasks.

VIII. ACKNOWLEDGMENTS

This work has been funded by the research grants
TIN2009-07737, INCITE08PXIB262202PR, and TIN2008-
04008/TSI.

REFERENCES

[1] U. Nehmzow, R. Iglesias, T. Kyriacou, S. Billings, Robot learning
through task identification, International Journal on Robotics and
Autonomous Systems 54 (2006) 766–778.

[2] L. Parsons, E. Haque, H. Liu, Subspace clustering for high dimen-
sional data: a review, SIGKDD Explor. Newsl. 6 (2004) 90–105.

[3] H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Springer,
1996.

[4] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing,
Springer, 1998.

[5] G. A. Carpenter, S. Grossberg, D. B. Rosen, Fuzzy ART: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system, Neural Netw. 4 (1991) 759–771.

[6] M. A. Bozarth, Pleasure: The politics and the reality, Springer Nether-
lands, 1994, pp. 5–14.

[7] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,
MIT Press, 1998.

[8] P. Quintia, R. Iglesias, M. Rodriguez,C. V. Regueiro, Fast Robot
Learning through an Ensemble of Predictors Able to Forecast the Time
Interval Before Failure, in: In Proceedings of Towards Autonomous
Robotic Systems, TAROS 2009.

[9] M. Rodriguez, R. Iglesias, P. Quintia,C. V. Regueiro, Parallel robot
learning through an ensemble of predictors able to forecast the time
interval before a robot failure, in: In Proceedings of XI Workshop of
Physical Agents, WAF 2010.

[10] B. P. Gerkey, R. T. Vaughan, A. Howard, The Player/Stage project:
Tools for multi-robot and distributed sensor systems, in: In Proceed-
ings of the 11th International Conference on Advanced Robotics, 2003,
pp. 317–323.

