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Abstract

The M–σ relations observed between the masses of central massive objects (CMOs:

either a nuclear star cluster or a supermassive black hole) in galaxy nuclei and the stellar

velocity dispersion of their host galaxy bulges strongly suggest that the evolution of

CMOs and their host galaxies are closely related. Self-regulated feedback from CMOs

sweeps the surrounding ambient medium into a shell and when the CMO is at a critical

mass the shell is driven from the galaxy, cutting off fuel to the CMO for further growth

and locking in the M–σ relations. We investigate the M–σ relations that result from

either momentum- or energy-conserving feedback.

In the case of momentum-conserving feedback in an isothermal halo, we find the

previously derived critical mass is not by itself sufficient to drive the shell to large

radius and it takes a CMO with a mass three times the critical value to drive the

shell to the escape speed of the halo. In non-isothermal haloes both of these issues are

mitigated as the critical mass is sufficient to drive any shell to large radius where it

will accelerate and escape the halo.

For energy-conserving feedback, we focus on the case that the CMO is a black

hole and we find Mvw ∝ σ5, where vw is the black hole wind speed. This relation

allows us to infer the wind speeds a sample of now quiescent galaxies would have had

during an active phase, and we find good agreement with distributions of observed

wind speeds in local active galaxies. We discuss the possibility of a transition from

momentum- to energy-driving, the implications of relaxing the assumption of steady

CMO winds and the effects these may have on the derived M–σ relations.
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1 Introduction

Most early-type galaxies and galaxy bulges with masses M >∼ 1010M⊙ harbour a su-

permassive black hole (SMBH) at their centre with a mass M
BH

∼ 106 − 1010M⊙. The

black hole mass is found to correlate with galaxy properties such as total spheroid

mass, Msph (i.e., the bulge of a spiral galaxy or all of an elliptical galaxy; Kormendy &

Richstone 1995; Magorrian et al. 1998) and even more tightly with the stellar velocity

dispersion of the host galaxy spheroid, σ (e.g., Ferrarese & Merritt 2000; Gebhardt et

al. 2000; Ferrarese & Ford 2005; Gültekin et al. 2009; McConnell & Ma 2013). These

connections between the SMBH, which has a sphere of influence of a few tens of par-

secs, and the global properties of the host galaxy on kiloparsec scales strongly suggest

that the evolution of the SMBH and the host galaxy are closely related.

Self-regulated feedback from accreting black holes has been thought to play a key

role in galaxy formation, including establishing correlations between the black hole and

galaxy properties (e.g., Silk & Rees 1998; Fabian 1999). Observations of strong, fast

outflows from the SMBHs powering active galactic nuclei (AGN; Pounds et al. 2003;

Reeves et al. 2003; Tombesi et al. 2011) lend support to this theory. Black holes

accreting at or above the Eddington limit are expected to drive strong winds back into

their host galaxies (King & Pounds 2003). These winds move out into the host galaxy,

pushing material outwards until at a critical SMBH mass the gas is cleared from the

galaxy, cutting off further star formation and SMBH growth, ultimately locking in the

observed M
BH
–σ relation. In further support of the self-regulated feedback scenario

are observations of galaxy scale outflows driven from AGN that could be responsible

for quenching star formation (e.g., Bautista et al. 2010; Rupke & Veilleux 2011; Sturm

et al. 2011).

The M
BH
–σ relation is used in many areas of astrophysics such as in cosmological

simulations as it is widely recognised as critical to galaxy formation due to the feedback

processes between the black hole and the galaxy (i.e., Merritt & Ferrarese 2001; Yu &

Tremaine 2002; Monaco, Salucci & Danese 2000)
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Less massive galaxies, M <∼ 1010M⊙, are host to massive nuclear star clusters

(NCs) with masses M
NC

∼ 105 − 108M⊙. Surprisingly, the NCs also follow scaling

relations between their mass and galaxy properties such as total spheroid mass and

stellar velocity dispersion (e.g., Ferrarese et al. 2006; Wehner & Harris 2006). A similar

self-regulated feedback scenario can be applied to the nuclear cluster case where the

combined winds and supernova explosions of stars in the cluster drive a superwind.

There is again a critical mass at which the superwind can clear the galaxy of gas, thus

quenching star formation and establishing an M
NC
–σ relation. The close connection

between both NCs and SMBHs with their host galaxies has lead to them being grouped

under the term central massive objects (CMOs).

Due to the connection between the CMOs and their host galaxies that is suggested

by the observed correlations, it is of interest to investigate the physical origins of these

relations so as to determine the effect they have on the formation and evolution of the

galaxies as a whole.

Before looking at the M–σ relations that result from the feedback scenario, we

briefly review the observational evidence for CMOs in galaxies and the relations ob-

served between CMOs and their host galaxies. We then look at the physical concepts

behind theoretical derivations of the M–σ relations, before looking at the scaling rela-

tions that result. Finally, we look at descriptions of the dark matter haloes in which

the feedback scenario can be modelled.

1.1 Observational overview

1.1.1 Supermassive black holes

The Milky Way Galaxy in which we reside is a fairly typical large spiral galaxy with

a luminosity of (3.0 ± 1.0) × 1010L⊙ (Binney & Tremaine 2008). Many large galax-

ies (Mgal
>∼ 1010M⊙), both early- and late-type, harbour a supermassive black hole

(SMBH) in their nucleus with masses M
BH

∼ 106 − 1010M⊙. Our Galaxy harbours an
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SMBH at its centre with a mass M
BH

≃ (4.1± 0.6)× 106M⊙ (Ghez et al. 2008).

Though SMBHs are now detected in quiescent galaxies, the black hole paradigm

originates from the study of active galactic nuclei (AGN).

Normal, i.e., non-active galaxies are composed of stars, gas and dust embedded

in a halo of non-luminous matter known as a dark matter halo. The spectrum of a

normal galaxy is the composite spectrum of the stars, gas and dust that make up the

galaxy. The stars emit a thermal spectrum with absorption lines overlaid. The gas

is partly visible in the form of HII regions, clouds of hot gas that are the site of on-

going star formation, prominent in spiral and irregular galaxies. The dust in galaxies

is relatively cool and its main effect on an optical spectrum is the dimming of starlight.

The broadband spectum of a normal galaxy peaks at optical wavelengths and has more

energy radiated at far-IR wavelengths than in X-rays.

Active galaxies have extra, non-stellar, features in their spectra in addition to

those of normal galaxies. The optical spectrum of an active galaxy has emission lines

that are stronger and broader than a normal galaxy. The temperatures implied by

the broadening are hotter than the cores of all but the most massive stars and the

alternative explanation implies bulk motions of several thousands of kilometres per

second, which would mean large amounts of kinetic energy are tied up in the gas

motions. The broadband spectrum of an active galaxy peaks in the X-ray and UV

region. They emit the ‘normal’ amount of starlight at optical wavelengths and emit

several times this at IR and other wavelengths. In many cases a large fraction of the

luminosity is produced in the central regions of the galaxy, in the active galactic nucleus

(AGN), giving active galaxies their name.

Figure 1.1 shows the broadband spectral energy distribution of a cD galaxy and a

quasar (Schneider 2006). cD galaxies are extremely luminous and large galaxies found

near the centres of dense galaxy clusters. The spectra of the cD galaxy covers only a

few decades in frequency and peaks in the optical part of the spectrum as we would

expect for a normal galaxy. Quasars are high redshift members of the family of active

galaxies. Figure 1.1 shows that the quasar is much brighter than the cD galaxy and

that emission from the quasar is observed over the full electromagnetic spectrum. This
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Figure 1.1: A comparison of the spectra of a cD galaxy and an active galaxy (Schneider
2006). The cD galaxy spans only a few decades in frequency and its spectrum peaks
in the optical/IR wavelengths. The spectrum of an active galaxy (a quasar in this
example) spans the whole EM spectrum and peaks in the higher energy UV, X-ray and
γ-ray regions.

implies that the luminosity of the quasar is generated by some other, non-stellar source.

There is wide variety in the family of active galaxies, with different kinds of AGN

discovered separately and seeming very different to each other, but they all show these

spectral peculiarities.

Although unrealised at the time, the first study of AGN was made by Seyfert

(1943) who identified 12 spiral galaxies with unusually bright, point like nuclei. The

spectra of the nuclei showed emission lines of highly excited species and some very broad

lines. The broadening of the hydrogen lines implied velocites of up to 8, 500km s−1 in

several of the nuclei, whereas comparably bright knots of emission in the periphery of

other galaxies showed no line broadening. It was also noted that the mean magnitude

of these spirals was larger than the average spiral with no nuclear emission and that



5

the nuclei themselves had large luminosities, comparable to the sum of the stars in

their host galaxy.

In the 1950’s it was found that many of the strongest radio sources coincided

with the nuclei of luminous elliptical galaxies. This, combined with the work of Seyfert

(1943), made it clear that unfamiliar processes were occuring in the nuclei of many

galaxies. Baade & Minkowski (1954b) catalogued discrete radio sources into four cat-

egories including “peculiar extragalactic nebulae”. They associated the strong radio

source Vir A with the giant elliptical galaxy M87, the dominant galaxy in the Virgo

cluster. They noted that the galaxy does not differ significantly in size or brightness

from other bright members of the cluster. However, a bright optical jet, ∼1 kpc in

length, emanating from the nucleus and spectra of the nucleus showing line widths of

several hundreds of kilometers per second implied that it was the radio source.

M87 was not an isolated case. Jennison & Das Gupta (1953) identified Cygnus A

as being a double radio source, with Baade & Minkowski (1954a) later associating the

radio source with a galaxy at the centre of a cluster at redshift z = 0.057 (D ≃ 250Mpc

for H0 = 70km s−1Mpc−1). Baade & Minkowski (1954b) noted that the spectrum

resembled to a certain degree those identified by Seyfert (1943) though there were

some marked differences, most notably that the area of emission in Cygnus A was

much larger than in the nuclei of Seyfert’s galaxies. The source of emission was found

to originate from two lobes on either side of the visible object. Like M87, the nucleus of

the visible object associated with Cyg A showed strong extended emission with usual

line strengths.

In the 1960’s the first quasars were recognised. They were described as “quasi-

stellar” because of their star-like appearance. However, their high redshifts (z > 0.1)

betrayed them as being incredibly luminous objects. It was soon recognised that a

large number of radio sources were quasars at large redshifts.

Although all of these active nuclei seemed very different when their peculiarities

were first observed, they all have several common properties. We can deduce that these

sources are very long-lived. The radio sources in some objects are very large, several

hundred kiloparsecs in extent. Even if the radio source were able to expand outwards
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at the speed of light, the age of a source ∼ 500 kpc in extent would be of the order

106yr, as a lower limit.

The high velocities observed in the nuclei imply that huge amounts of energy are

generated in AGN. If we assume that the luminosity of the source does not change

considerably over its lifetime then we can estimate the energy generated. A typical

quasar has a bolometric luminosity Lbol ∼ 1047 erg s−1, so over 107 yrs a total energy

of E ∼ 3 × 1061 erg is generated. However, as we discuss below, the assumption of

constant luminosity is not neccessarily valid.

Another common property of all AGN types is how compact they are. Even the

nearest AGN cannot be resolved, implying sizes< 1pc. They can be further constrained

by the timescales on which their luminosities vary, for example, variability on the order

of a day (∼ 105s) implies sizes ∼ ct ≃ 10−3pc.

It became widely accepted that the power supply in AGN is primarily gravita-

tional, with various models involving dense clusters, supermassive stars and black holes

(e.g., Salpeter 1964). However, these collections of objects in the compact regions im-

plied from observations are found to be unstable. The most plausible candidate was

found to be a supermassive black hole (SMBH). Thus it was suggested that the con-

version of gravitational energy into radiation when matter accretes onto an SMBH

produces the enormous luminosities observed in AGN. The variation in AGN types

could then be caused by effects on larger scales where the emitted radiation is repro-

cessed by its environment, and by orientation effects.

There was still a long wait for the solid detections of SMBHs in galaxy nuclei.

The giant elliptical galaxy M87 in the Virgo cluster was often the target in the search

for SMBHs as an SMBH would be a plausible energy source for its relativistic jet and

its relatively close proximity makes it a convenient candidate.

Sargent et al. (1978) analysed the stellar velocity dispersion as a function of

radius for M87 and found the velocity dispersion showed a sharp increase in the central

regions, consistent with a central mass concentration. Sargent et al. then deduced the

mass distribution of M87 on general, model indepentent principles. Taking the first



7

moment of the spherical, isotropic, collisionless Boltzmann equations gives:

d

dr

[
ν(r)σ2

r (r)
]
= −GM(r)

r2
ν(r) , (1.1)

where ν(r) is the stellar mass density and σr(r) is the velocity dispersion of these stars.

Equation (1.1) can be solved for the total mass interior to radius r, M(r)

M(r) =
rσ2

r (r)

G

[
−d ln ν

d ln r
− d ln σ2

r

d ln r

]
. (1.2)

Using their measured velocity dispersion and mass density (obtained from a luminosity

density and assumed mass-to-light ratio), Sargent et al. (1978) found equation (1.2)

implied a mass > 109M⊙ inside the central 110pc of M87. However, it wasn’t until the

spectroscopic observations of Harms et al. (1994) that the presence of a (2.4 ± 0.7) ×
109M⊙ SMBH in the nucleus of M87 was firmly accepted.

It was found that the cumulative mass density of SMBHs required to power high

redshift quasars is orders of magnitude higher than that required to power local AGN

(Padovani, Burg & Edelson 1990). The total mass related to accretion in past quasars is

not accounted for in local AGN and therefore must be present in quiescent galaxies. As

such, recent SMBH searches have targeted quiescent galaxies where dormant SMBHs

are expected to be found. Dormant SMBHs show little or no signs of unusual nuclear

emission and, in the absence of an AGN, their presence must be detected by gravita-

tional interactions with their surroundings. These Keplerian dynamical signatures can

only be resolved in nearby galaxies.

The use of Hubble Space Telescope (HST ) data greatly increased the number of

galaxies in which the sphere of influence of a black hole could be resolved, leading to

many more secure detections of black holes in quiescent galaxies.

Using these secure measurements of SMBH masses, work began to investigate the

demographics of black holes. One of the first scaling relations identified for SMBHs was

that between the SMBH mass, M
BH
, and the absolute blue magnitude of the galaxy

spheroid, MB (i.e., the bulge for spiral galaxies or the whole of an elliptical galaxy)

(Kormendy & Richstone 1995). The existence of a correlation between SMBHs and
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the properties of thier host galaxies suggests that the formation and evolution of the

two could be related.

A connection between SMBH mass and stellar velocity dispersion of the host

galaxy bulge, M
BH

∝ σx, was first made observationally by Ferrarese & Merritt (2000)

who found x = 4.8 ± 0.5, and independently by Gebhardt et al. (2000) who found

x = 3.75 ± 0.3. There has been much debate over the “best fit” value of the slope of

the M–σ relation, with more recent works showing x = 4.24 ± 0.41 (Gültekin et al.

2009) and x = 5.65±0.32 (McConnell & Ma 2013; they also show that if they split their

sample into early- and late-type galaxies, both sub-samples have a slope of x = 5.01

but with different intercepts). The difference in these results can be at least partially

attributed to different groups’ definition of “the sigma”, specifically the choice of region

across which it is measured. It is often measured at a fraction of the bulge effective

radius1, Re, though the fraction varies from group to group. However, this way of

defining “the sigma” is inappropriate when considering galaxies with little or no bulge

component.

In spite of these issues, the M–σ relation is a remarkably tight correlation, with

other relations showing much more scatter (e.g., see Ferrarese & Ford 2005 for a com-

parison between theM–MB andM–σ relations). In either case, the correlation between

SMBH masses and the global properties of their host galaxies is strong evidence for a

connection between the formation and evolution of the two.

The tight correlation between SMBH mass and bulge velocity dispersion is shown

in the left-hand panel of Figure 1.2 where the filled circles represent the SMBH data

compiled by McConnell & Ma (2013) and the solid line has the equation

log

(
M

BH

M⊙

)
= (8.32± 0.05) + (5.64± 0.32) log

(
σ

200km s−1

)
, (1.3)

which is their line of best fit to the data.

We expect this to be closely related to the correlation between black hole mass

1The effective radius of a source is that within which half of its luminosity is contained in projection.
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Figure 1.2: Left: The mass of the supermassive black holes, M
BH
, plotted against the

velocity dispersion, σ, of the galaxy bulges averaged within the effective radius, Re.
Right: The mass of the SMBH, M

BH
, plotted against the mass of the host galaxys

bulge, Mbul. Data from McConnell & Ma (2013).

and the galaxy bulge mass, Mbul, because on dimensional grounds we have that

Mbul ∝
σ2Re

G
, (1.4)

where Re is the effective radius of the galaxy. The filled points in the right-hand panel

of Figure 1.2 show bulge masses for 35 galaxies in the compilation of McConnell & Ma

(2013), found by multiplying the bulge luminosity by a mass-to-light ratio. The solid

line there shows their best fit to the data which is given by

log

(
M

BH

M⊙

)
= (8.46± 0.08) + (1.05± 0.11) log

(
Mbul

M⊙

)
. (1.5)

As well as correlations between SMBHs and the baryonic component of their host

galaxy, it has been proposed that black hole masses also scale with the properties of

the dark matter halo in which their host galaxy resides. Ferrarese (2002) investigated

the possibility of a relation between black hole mass and the total gravitational mass of
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their host galaxy which is dominated by the dark matter mass, M
DM

, using a sample of

the 20 elliptical galaxies of Kronawitter et al. (2000) and 16 spiral galaxies of Gerhard

et al. (2001). Ferrarese finds a tight correlation between the velocity dispersion, σc,

measured inside Re/8 <∼ 0.5 kpc, and the large scale circular speed, Vc, measured where

the rotation curve is flat, at galactic radii R ∼ 20− 80 kpc;

log Vc = (0.84± 0.09) log σc + (0.55± 0.19) . (1.6)

In the simple case of a galaxy modelled as a singular isothermal sphere (see §1.3) we
would expect Vc ∝ σ, so a near linear relation is not unexpected. Combining this σc–Vc

relation with theM–σ relation of Ferrarese & Merritt (2000) and using the cosmological

simulations of Bullock et al. (2001) to connect Vc to M
DM

, Ferrarese (2002) derives a

relation between the black hole mass and the mass of the dark matter halo,

M
BH

108M⊙

∼ 0.10

(
M

DM

1012M⊙

)1.65

. (1.7)

Following this work, Baes et al. (2003) used σc and Vc measurements for an

additional 12 spiral galaxies to ‘refine’ the σc–Vc correlation. They found a similar

relation to Ferrarese (2002) with

log Vc = (0.96± 0.11) log σc + (0.32± 0.25) . (1.8)

Baes et al. also look explicitly at a relation between the black hole mass and large scale

circular velocity, using the M–σ relation of Tremaine et al. (2002) to estimate black

hole masses based on their measurements of velocity dispersion. They find

log

(
M

BH

M⊙

)
= (4.21± 0.60) log

(
Vc

200km s−1

)
+ (7.24± 0.17) , (1.9)

which, because of the near linear relationship between Vc and σ, follows roughly the

same relation as black hole mass and velocity dispersion. Baes et al. also look at the

relation between black hole mass and dark matter mass, like Ferrarese (2002). They

note however, that the uncertainties in an M
BH
–M

DM
relation are large, but an M

BH
–Vc

relation is based only on observable quantities, so has much smaller uncertainties.
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With a much larger galaxy sample (792 galaxies, spanning a broad range of

Hubble types) Ho (2007) found that the Vc–σ relation exhibits much more scatter than

previously shown. Ho also argues that the zero point of the relation varies with galaxy

properties such as morphology, bulge-to-disk ratio and light concentration. Ho does

note however that the M
BH
–Vc relation still remains a useful tool in estimating black

hole masses when σc is difficult to measure.

Part of the problem with the Vc–σc relation can be traced back to the definition of

the velocity dispersion. Ferrarese (2002) defines the velocity dispersion measured inside

an aperture of size Re/8. Ho (2007) use velocity dispersions that are generally measured

inside an aperture that is smaller than Re. In very late-type spirals which have little or

no bulge component, Ho uses the velocity dispersion of the central star cluster (nuclear

star cluster, see §1.1.2 below), which is a self-gravitating system, distinct from galaxy

bulges and which has an effective radius of only a few parsecs.

More recently, Kormendy & Bender (2011) and Volonteri, Natarajan & Gültekin

(2011) have argued against and for correlations between SMBHs and dark matter haloes

respectively. Kormendy & Bender (2011) suggests that such a correlation requires

exotic physics to control the black hole growth. They show that Vc does not correlate

with σc, though the outliers are late-type spiral galaxies where the velocity dispersion

of the nuclear star cluster is used.

Volonteri, Natarajan & Gültekin (2011) have argued that galaxies/bulges con-

taining SMBHs show a correlation, of the form M
BH

∝ V y
c with y ≈ 4, between black

hole mass and the ‘asymptotic’ circular speed Vc at large radii where the dark matter

is expected to dominate the total galaxy mass. They find that the M
BH
–Vc relation is

similar in scatter and slope to the M
BH
–σ relation.

It is important to note that correlations between black holes and their dark

matter haloes do not imply in any way that the dark matter feeds the growth of the

black hole, as suggested by Kormendy & Bender (2011). It is clear the stellar velocity

dispersion is connected to the dark matter distribution which dominates the potential

of the galaxy. The circular speed at large radius probes the dark matter distribution

so a correlation between σ and Vc is not unexpected, though the exact connection is
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complex and model dependent.

The M–σ relation for SMBHs, and other correlations, are in themselves inter-

esting results warranting further investigation because of the links they show between

parsec and kiloparsec scale structures in galaxies. They suggest that SMBHs co-evolve

with their host galaxies, and play an important role in galaxy formation and evolution.

These scaling relations are made all the more significant by the fact that analogous

relations exist in lower mass galaxies that harbour nuclear star clusters (NCs) at their

centres.

1.1.2 Nuclear star clusters

The Milky Way is a member of the Local Group which contains over 30 galaxies within

a sphere ∼ 1Mpc is radius, centred between the Milky Way and M31, the Andromeda

galaxy. The majority of galaxies in the Local Group (around 85 %) are irregular galax-

ies, dwarf irregulars, dwarf ellipticals and dwarf spheroidals with luminosities less than

109L⊙. The numerical dominance of these less luminous galaxies is demonstrated by

the luminosity function, which describes the number of galaxies of different luminosi-

ties. It is known to depend upon both the galaxy type and environment, but it is

observed that the number density of lower luminosity galaxies is much higher than

that of massive galaxies, in all environments (Binney & Tremaine 2008).

The intrinsic faintness of these numerically dominant galaxies has made them

difficult to study. The first data on the Local Group dwarf elliptical (dE) galaxy NGC

205 were collected by Redman & Shirley (1938) during their photometric study of M31

because of its close proximity to the larger galaxy as one of its satellites. Further

work by Baade (1944) classified the dEs NGC 147 and NGC 185 as members of the

Local Group. As such, they could be resolved into stars, leading Hodge (1963, 1973)

to study their structure and content. In particular Hodge (1973) studied NGC 205

and by examining the colour gradient, a central population of young blue stars was

identified, indicating a recent burst of star formation in the centre of the dE. Using

the luminosity function of the observed stars, Hodge estimated the mass of the cluster
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to be 5 × 105 to 5 × 106M⊙. Then, assuming the brightest OB star in the cluster to

be at the main sequence turn-off, Hodge estimated the age of the cluster as being of

order 5 × 106 years. This is much younger than expected for other, similarly massive

star clusters in typical elliptical systems; for example, typical globular clusters in the

Milky Way’s halo have masses ∼ 5× 105M⊙ and ages of 13 Gyr.

Extensive studies of dEs beyond the Local Group came with large photographic

surveys of the Virgo Cluster (the Virgo Cluster Catalogue, VCC; Binggeli, Sandage &

Tammann 1985) and the Fornax Cluster (the Fornax Cluster Catalogue, FCC; Ferguson

& Sandage 1990). Examples were found in Virgo and Fornax of bright dEs (LB
<∼

109L⊙) showing unresolved spikes in luminosity in their centres, referred to as central

nuclei (Sandage & Binggeli 1984; Bothun &Mould 1988). Of the 1277 members and 574

probable members of the Virgo Cluster in the VCC, Binggeli, Tammann & Sandage

(1987) classified over 1600 of them to be dwarf galaxies, with 415 noted as having

bright central nuclei. While studying the distribution of galaxies, it was found that

the nucleated dEs (dE,Ns) are strongly concentrated toward the centre of the main

substructure of the Virgo Cluster, whilst the non-nucleated dEs are more dispersed.

By examining the colours of dEs in the Fornax Cluster, Caldwell & Bothun

(1987) noted that dE,Ns are redder at a given luminosity than non-nucleated dEs.

This led them to hypothesize that some dEs may have been able to retain more of

their enriched interstellar gas after an initial burst of star formation, and that this

gas fell to the galaxy’s centre triggering another burst of star formation. This second

burst of star formation would have created not only the nucleus but also more stars

throughout the galaxy, all of which would be metal-rich and hence redder. Caldwell

& Bothun suggested that stellar winds and supernovae explosions in non-nucleated

dEs may have been more efficient at sweeping out the residual gas, perhaps due to a

shallower gravitational potential, leaving little metal-rich material from which to form

new stars or a nucleus.

Babul & Rees (1992) proposed that faint blue objects (FBOs) seen in deep images

of the sky are in fact dEs undergoing their initial bursts of star formation at redshifts

z ∼ 1. They suggest that the retention of gas in the dEs is dependent upon the
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environment in which the galaxy evolves, i.e., the state of the intergalactic medium

(IGM). In regions of low IGM density, the ram pressure of the supernovae driven gas

outflow could overcome the pressure of the IGM allowing the gas to escape, whereas in

higher density regions the IGM pressure would halt the wind. Retaining the supernovae

ejecta could allow the dEs to undergo further episodes of star formation, in the way

suggested by Caldwell & Bothun (1987), resulting in these dEs being nucleated. This

theory ties in with the observation that dE,Ns are more centrally concentrated in both

the Fornax and Virgo Clusters (Ferguson & Sandage 1989).

Other ideas for the formation of the nucleus hypothesized that dE,Ns and non-

nucleated dEs began as morphologically distinct galaxies. Ferguson & Sandage (1989)

proposed that non-nucleated dEs began as irregular galaxies that have been stripped

of their gas whereas dE,Ns were always genuine ellipticals.

It came as some surprise when images from HST revealed that it is not just dEs

that show central nuclei, but that galaxies all along the Hubble sequence show nuclear

luminosity peaks (e.g., see Figure 1.3). While examining the centres of 20 nearby disk

galaxies, from lenticulars to late type spirals, Phillips et al. (1996) found that they

often exhibit unresolved nuclei, much like those found in dE galaxies. Further analysis

of early type spiral galaxies with HST by Carollo et al. (1997) showed in a sample of 35

galaxies that central compact sources were found in 18 of them. With an additional 40

targets Carollo, Stiavelli & Mack (1998) found that the frequency of nucleation, fn was

still around 50%. Nuclei have also been found in the centres of very late type spiral

galaxies, i.e. those with little or no bulge, with fn ≈ 75% (Böker et al. 2002).

HST has been able to resolve these nuclei and has shown them to be massive star

clusters with luminosities of order 106− 108L⊙ (Böker et al. 2002), much brighter than

the average globular cluster (GC) in our Galaxy which have luminosities of <∼ 106L⊙.

This luminosity difference could be in part due to the differing ages of the GCs and

nuclear clusters. The average GC is ∼ 13 Gyr old, meaning they contain only faint, low-

mass stars. On the other hand, nuclear clusters show evidence for multiple generations

of stars (Rossa et al. 2006), and contain populations of young, massive, luminous stars.

The dynamical masses of nuclear clusters, Mnc ∼ 106 − 107M⊙ (Walcher et al. 2005),
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place them at the very high end of the GC mass function. Despite the higher masses

and luminosities of the nuclear clusters they are comparable in size to GCs, both having

effective radii of order a few parsecs (Böker et al. 2004).

The suggested formation mechanisms of a nuclear cluster can be broken down

into two main categories. Either

1. The cluster formed in situ by gas infall which causes (possibly episodic) star

formation, as envisioned by Caldwell & Bothun (1987). Or,

2. A dense cluster is formed elsewhere in the galaxy and falls into the centre by

dynamical friction. The infall of gas onto this “migrated” star cluster would

result in episodes of star formation.

There is some debate over which of these is the more viable formation mechanism.

Böker et al. (2004) claim there is no explanation for high densities required for in-situ

formation in late type spirals and suggest migration combined with a small amount of

more recent star formation as a plausible alternative. Milosavljević (2004) takes the

opposite stance, claiming the migratory scenario fails to place the clusters where they

are observed in late type spirals and propose that gas is transported to the centre of

the disk from elsewhere for in-situ formation. Emsellem & van de Ven (2008) construct

models for the formation of clusters via tidal compression of gas. They find that the

size of the regions in which the tidal forces are compressive correspond to the typical

sizes of nuclear clusters in both early- and late-type galaxies.

The Advanced Camera for Surveys Virgo Cluster Survey (ACS VCS) was an HST

program that imaged 100 early type members of the Virgo Cluster (Côté et al. 2004).

Côté et al. (2006) examined the innermost structure of the galaxies in this survey.

They found the frequency of nucleation to be much higher than previously believed

from the VCC (Binggeli et al 1987). Of the 100 galaxies, there were 6 cases where

a determination could not be made (due to either dust or the presence of an active

galactic nucleus) and only 12 cases were classified with certainty as non-nucleated,

posing an upper limit of fn <∼ 88%. Of the remaining galaxies, 62 were classified as
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definitely nucleated and 4 as likely nucleated, giving the overall frequency of nucleation

as 66% <∼ fn <∼ 88%.

Côté et al. (2006) found the nuclear clusters that could be resolved in the early

type cluster members to be a close match in terms of size and luminosity to those

found in the late type spiral galaxies of Böker et al. (2002, 2004), suggesting that the

formation mechanism of the clusters is largely insensitive to galaxy type.

Using a further 43 early type galaxies from the ACS Fornax Cluster Survey (ACS

FCS; Jordán et al. 2007), Côté et al. (2007) show that central excesses of stellar light are

present in the majority of low- and intermediate- luminosity early-type galaxies, Lgal
<∼

1010L⊙. Figure 1.3 shows the surface brightness profiles of nine representative galaxies

in the ACS VCS from Côté et al. (2007). When considering decreasing luminosity, the

galaxies in the sample show a smooth transition from a central deficit with respect to

inward extrapolation, possibly due to core evacuation by coalescing SMBH binaries, to

an excess, i.e., a nuclear cluster.

With as many as 80% of low- and intermediate-luminosity galaxies of all Hubble

types showing now-resolved nuclei (Carollo et al. 1997; Carollo, Stiavelli & Mack 1998;

Böker et al 2002; Côté et al. 2006, 2007), much investigation into these nuclear clusters

has taken place, uncovering two fundamental relations between the nuclear clusters and

their host galaxies, analogous to the relations observed between SMBHs and their host

galaxies.

The first of these is a tight correlation between the masses of the nuclear star

clusters, Mnc, and the velocity dispersions of their host galaxy bulges, σ, the Mnc −
σ relation. Ferrarese et al. (2006) use photometric data from the ACS VCS, with

supplementary ground-based spectroscopy to show that

log

(
Mnc

M⊙

)
= (4.27± 0.61) log

(
σ

54km s−1

)
+ (6.91± 0.09) , (1.10)

which is shown as the dashed line in the left-hand panel Figure 1.4, where the open

circles show the nuclear cluster data of Ferrarese et al.

As with SMBHs, theM
NC
–σ relation is closely linked to a relationship between the

nuclear cluster mass and the mass of the host galaxy bulge. Recalling Mbul ∝ GRe/σ
2
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Figure 1.3: Surface brightness profiles for nine galaxies of the ACS VCS sample from
Côté et al. (2007). The plots are ordered in terms of decreasing total luminosity with
the total magnitude in the B-band, MB, and the morphological type of each galaxy
given along with the VCC catalogue number. The two lines (red-upper, blue-lower)
represent magnitudes in the z and g bands respectively.

(equation [1.4]), Ferrarese et al. (2006) adopt a value for the constant of proportionality,

known as the virial parameter, of α = 5 (from Cappellari et al. 2006) to estimate Mbul
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Figure 1.4: Left: The mass of the central massive object, MCMO, plotted against the
velocity dispersion, σ, of the galaxy bulges averaged within the effective radius, Re.
Right: The mass of the central massive object, MCMO, plotted against the mass of the
host galaxys bulge, Mbul. In both cases the filled points represent data for black holes
(McConnell & Ma 2013) and the open points represent the nuclear star clusters (Scott
& Graham 2013). The bulge masses for the black holes are dynamical masses taken
from McConnell & Ma (2013). For the nuclear star clusters, the bulge mass is defined
as Mbul = 5reσ

2/G. The open circles represent the data of Ferrarese et al. (2006) in
the compilation of Scott & Graham (2013).

and find

log

(
Mnc

M⊙

)
= (1.32± 0.25) log

(
Mbul

109.6M⊙

)
+ (6.91± 0.09) , (1.11)

which is shown by the dashed line in the right panel of Figure 1.4, where again the

open circles represent the Ferrarese et al. nuclear cluster data.

The parallels between the M–σ and M–Mbul relations for BHs and nuclear clus-

ters suggest that the nuclear clusters may be the low mass analogues of SMBHs. As

such, SMBHs and nuclear clusters have been grouped under the term central massive

object (CMO), which we adopt here.
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1.1.3 Central massive objects

Consider again the M–σ relations shown in the left-hand panel of Figure 1.4. The

SMBH data (McConnell & Ma 2013; filled circles, solid line) and the nuclear cluster

data of Ferrarese et al. (2006) (open circles, dashed line) suggest that both types of

CMO follow roughly the same scaling relation, though the exact slope of either relation

is of some debate.

It has recently be argued that the nuclear cluster scaling relations have signifi-

cantly shallower slopes than the relations defined by the sample of Ferrarese et al. (2006)

and therefore, that BHs and nuclear clusters follow different scaling relations. With an

additional 16 galaxies with M
NC

and σ measurements, shown by the open triangles in

Figure 1.4, Scott & Graham (2013) find

log

(
Mnc

M⊙

)
= (2.11± 0.31) log

(
σ

54km s−1

)
+ (6.63± 0.09) , (1.12)

which is shown by the dotted line in the left-hand panel of Figure 1.4. Several of these

galaxies appear to have under-massive star clusters at given velocity dispersions in

comparison with the Ferrarese et al. (2006) data and best fit. However, many of these

galaxies also harbour SMBHs with masses that are comparable to or larger than the

nuclear clusters, which would put them in line with the black hole M–σ relation.

Though black holes and nuclear clusters follow roughly the same scaling there is

a clear offset between the Ferrarese et al. data and the data of McConnell & Ma in the

sense that the nuclear clusters lie a factor of ∼ 10 above an extrapolation of the of the

M
BH
–σ relation to lower masses.

When considering the M–Mbul relations in the right-hand panel of Figure 1.4,

there is very little overlap between the black hole data from McConnell & Ma (2013)

and the nuclear cluster data of Ferrarese et al. (2006), which meet at galaxy masses of

∼ 1010M⊙. Scott & Graham (2013) adopt the same method as Ferrarese et al. (2006)

to calculate the bulge masses in their compilation (open triangles in the right panel of

Figure 1.4), and again find a much shallower relation than Ferrarese et al., suggesting

that BHs and nuclear clusters follow different scaling relations. Again, the BHs that
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also reside in the additional galaxies in the Scott & Graham sample bring these galaxies

in line with the M
BH
–Mbul relation so that the BHs and nuclear clusters define a single

M
CMO

–Mbul relation. Wehner & Harris (2006) investigated the M
CMO

–Mbul relation

with bulge masses calculated using the observed galaxy magnitudes and mass-to-light

ratios. They also find that the CMOs define a single, unbroken M
CMO

–Mbul relation

with the CMO masses almost directly proportional to the bulge masses.

As in the Scott & Graham (2013) data, there are cases where nuclear clusters

and SMBH coexist, such as the low luminosity, active galaxy NGC 1042 (Shields et al.

2008); and other cases of nuclear clusters coexisting with AGN, and hence SMBHs,

such as NGC 4395 (Filippenko & Ho 2003). Seth et al. (2008) studied a sample of

galaxies of various types and masses, known to host nuclear star clusters, searching

for signs of AGN activity to infer the presence of an SMBH. Of the 176 galaxies in

the sample, it is suggested that ∼ 10% harbour an SMBH as well as a nuclear cluster.

These cases of coexistence cover a wide range of galaxy masses (109 − 1011M⊙) but

the frequency of AGN detection increases with increasing galaxy and nuclear cluster

mass. Seth et al. also find that the masses of the nuclear clusters and SMBHs are

comparable in the galaxies where they coexist. The central few parsecs of our own

Galaxy, the Milky Way, contains a dense star cluster with a very compact radio source,

Sgr A*, at its centre, only 3-10 light minutes in diameter. The orbits of ∼ 30 stars in

the immediate vicinity of Sgr A* imply an SMBH with M
BH

≃ (4.1 ± 0.6) × 106M⊙.

Graham & Spitler (2009) speculate that the coexistence of SMBHs and nuclear clusters

may be a common feature of galaxies with bulge masses 108 − 1011M⊙, roughly the

range covered by the galaxies in the Scott & Graham (2013) compilation.

The M
CMO

–σ and M
CMO

–Mbul relations suggest not only that SMBHs and nuclear

clusters co-evolve with their host galaxies but also that the two types of CMO evolve

with their host galaxies in similar ways. It is of interest to investigate the physical

origins of these relations between CMOs and the properties of their host galaxies, and

the effect they have on the formation and evolution of the galaxies as a whole.
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1.2 Theoretical overview

1.2.1 Physical concepts

As discussed in §1.1, galaxies with masses greater than 1010M⊙ harbour SMBHs in

their centres while those with masses less than 1010M⊙ host nuclear star clusters. In

either case, it has been observed that these CMOs are closely connected to their host

galaxies as can be seen through the M–σ relations. The physical explanation of these

relations has been an active area of research and it is now widely accepted that self-

regulated feedback is key in establishing these correlations. The M–σ relations can be

used to probe the importance of feedback in galaxy formation and evolution, so it is

of interest to investigate the physical origins of the relation.

The self-regulated feedback scenario, discussed in §1.2.2, utilises several key con-

cepts: the Eddington luminosity, super wind bubbles and black hole winds.

1.2.1.1 The Eddington luminosity

The Eddington luminosity is the maximum luminosity an object can sustain while

radiation forces on free electrons outwards are balanced by gravitational force inwards.

If we consider a fully ionised gas, the interaction of the radiation with the gas is due

to photons scattering off free electrons, known as Thomson scattering.

The flux per unit area per unit time at radius r from a source of luminosity L is

= L/(4πr2). The momentum of a photon is given by p = E/c, so that ṗ = L/c = Frad.

Thus the radiation force per unit area (i.e., the radiation pressure) is = L/(4πr2c). The

cross sectional area of an electron is given by the Thomson cross-section, σT, therefore

the radiation force acting on an electron is

Frad = σT
L

4πr2c
. (1.13)

The gravitational force acting on an electron-proton pair by the source of the
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luminosity which has mass M , is given by

Fgrav =
GM(mp +me)

r2
≃ GMmp

r2
(1.14)

where we take the last equality because mp ≫ me.

Then the Eddington luminosity is found by equating the radiation force (equation

1.13) to the gravitational force (equation 1.14), giving

LEdd =
4πGmp c

σT

M . (1.15)

As can be seen from equation (1.15), LEdd is directly proportional to the mass of the

object in question. Objects with luminosities above their Eddington luminosity are

unable to hold on to the material in their outer layers against the radiation pressure,

resulting in a radiatively driven outflow.

In accretion-powered objects, such as AGN, the luminosity is produced by the

conversion of rest mass, m, into energy at some efficiency, η, so that E = ηmc2.

Differentiating this we find the luminosity of an object accreting masses m at a rate

Ṁ , is L = ηṀc2. For matter to fall on to an object, the radiation force must be

smaller than the gravitational force, i.e., the object must be radiating at less than its

Eddington limit. This places a limit on the accretion rate

ṀEdd =
LEdd

ηc2
=

4πGM

ηκc
(1.16)

where η is the accretion efficiency, i.e., the fraction of the gravitational potential energy

of the accreted material that can be radiated away and κ = σT/mp. When accreting

above the Eddington rate (super-Eddington accretion), the object is unable to hold

all the material it is gaining against radiation pressure, again resulting in a radiation

driven outflow.

Although much more intense than the stellar winds of objects with luminosities

less than their Eddington limits, these outflows interact with surrounding ambient

medium in much the same way, driving a super bubble.
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1.2.1.2 Stellar winds and super bubbles

It is well known from stellar wind theory (e.g., Lamers & Cassinelli 1999; Dopita

& Sutherland 2003) that massive stars drive stellar winds that interact with their

surrounding ambient medium. The wind sweeps up the ambient medium into a shell

that it drives outwards. The material in the shell is hot and tries to expand both

backwards and forwards, driving two shock fronts, one propagating into the ambient

medium and one propagating back into the stellar wind. The resulting shock pattern is

composed of four zones; 1) the freely flowing wind, 2) a region of shocked wind material,

3) a region of shocked ambient medium which also contains the original swept-up shell

and 4) the undisturbed ambient medium.

The dynamics of the swept-up shell are determined by the behaviour of the

shocked wind region immediately behind it. In a momentum-conserving phase the

shocked wind region is able to cool efficiently, so it condenses and is geometrically

thin. The swept-up shell is then effectively driven outwards by a direct transfer of

momentum from the wind impacting on its inner side. In an energy-conserving phase

the shocked wind does not cool and the region remains hot and expands. The shell is

then driven by the thermal pressure in the shocked wind region.

In Chapter 2 we will discuss outflow physics in detail. For now we note that the

same process occurs for the winds driven by SMBHs and nuclear star clusters. In the

case of SMBHs and NCs, it is possible to connect the wind thrust to the Eddington

luminosity using the black hole winds theory of King & Pounds (2003).

1.2.1.3 Black hole winds

Motivated by observations of high velocity outflows in AGN accreting at rates com-

parable to the Eddington value, King & Pounds (2003) outline a theory of black hole

winds driven by radiation that is key in theoretical explanations of the M–σ relation.

King & Pounds begin by looking at the electron scattering optical depth through
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an outflow with density ρ = Ṁout/(4πvwbr
2), viewed from infinity down to radius r

τ =

∫ ∞

r

κρdr =
κṀout

4πvwbr
=

1

2bη

rs
r

c

vw

Ṁout

ṀEdd

, (1.17)

where rs = 2GM
BH
/c2 is the Schwarzschild radius, ṀEdd is the Eddington rate defined

in equation (1.16), vw is the outflow speed and the parameter b is a geometrical factor

that allows for some collimation of the outflow. The photospheric radius, rph, is defined

as the radius at which τ = 1, giving

rph
rs

=
1

τeη

c

v

Ṁout

ṀEdd

, (1.18)

where τe = 2bτ ∼ 1. Since τeη < 1 and v/c < 1, rph > rs for outflows with Ṁout of the

order ṀEdd, i.e., these outflows are Compton thick. Inside rph the photons scatter off

electrons and their momentum is transfered to the outflow. Outside rph the photons

decouple from the matter. For the outflow to escape requires that rph lies close to the

escape radius resc = (c/vw)
2 rs, so that

vw
c

= τe η
ṀEdd

Ṁout

. (1.19)

or,

τe
LEdd

c
≃ Ṁoutvw . (1.20)

McLaughlin, King & Nayakshin (2006) note that equation (1.20) can be extended

to treat the nuclear cluster case as well as SMBHs by parameterizing the wind thrust

as

Ṁoutvw ≃ λτe
LEdd

c
= λτe

4πGM
CMO

κ
(1.21)

In the case the CMO is an SMBH the parameter λ ≃ 1 and we return to equation

(1.20), the case as argued by King & Pounds (2003). In the case the CMO is a nuclear

cluster, the feedback is provided by the combined stellar winds and supernovae from

stars in the cluster, which drive a superwind with a momentum flux that is much less

than LEdd/c, but still directly proportional to it. This proportionality comes from

the fact the Eddington luminosity itself is directly proportional to mass. Only a fixed
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fraction of stars in the cluster will contribute to the superwind, i.e., those massive

enough to produce strong stellar winds and to result in supernovae. As such λ takes

a value ≪ 1 related to the fraction of massive stars. McLaughlin, King & Nayakshin

(2006) estimate the separate contributions of stellar winds and supernovae in a cluster

with a Chabrier (2003) initial mass function and find λ ≃ 0.05.

With these concepts, we now move on to look at theoretical derivations of the

M–σ relations.

1.2.2 The MCMO − σ relation

Before the significance of the M−σ relation for SMBHs was established observationally

(Ferrarese & Merritt 2000; Gebhardt et al. 2000), derivations of SMBH properties in

relation to their host galaxies had already been the subject of much investigation (e.g.

Haehnelt, Natarajan & Rees 1998; Magorrian et al. 1998; Merrifield, Forbes & Terlevich

2000). The works of Silk & Rees (1998) and Fabian (1999) are both concerned with

the accretion of matter onto a seed black hole at the centre of a protogalaxy that is

modelled as a singular isothermal sphere (see §1.3). This accretion of matter produces

an outflow that sweeps the surrounding medium into a shell that expands into the

galaxy. The key idea in both these works is that when the shell is able to escape

the galaxy it will fragment and form the stars of the galaxy bulge, hence giving an

MBH −Mbul relation. By considering the velocity of the shell and when it can escape

the galaxy, Silk & Rees find MBH ∝ σ5. In a similar fashion, Fabian considers when

the wind power is sufficient to eject the shell from the protogalaxy, finding MBH ∝ σ4.

In both Silk & Rees (1998) and Fabian (1999) the wind luminosity is taken to be an

unspecified fraction of the Eddington luminosity of the SMBH, leaving the MBH − σ

relations in terms of a free parameter. Equation (1.20) has allowed more recent results

to be derived with no free parameter.

It is the assumption of a momentum-driven outflow that leads to the scaling

M
CMO

∝ σ4 (e.g., Fabian 1999; King 2003, 2005; McLaughlin et al. 2006) as we can see

by considering the ram pressure of the wind that drives the shell and the pressure of
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the ambient medium. Using equation (1.20), the ram pressure of the wind is

ρwv
2
w =

Ṁoutvw
4πr2

= τe
LEdd

4πr2c
= τe

GM
CMO

κr2
(1.22)

In order for the shell to escape, the ram pressure must be greater than the ambient

pressure, which in a halo modelled as a singular isothermal sphere (see equation [1.26]

below) is given by

ρambσ
2
0 =

fgσ
4
0

2πGr2
(1.23)

where σ0 is the velocity dispersion that characterizes a singular isothermal sphere and

fg is an ambient gas fraction, ∼ 0.2 at all radii in a halo where the gas traces the dark

matter directly. Therefore, for the ram pressure to overcome the ambient pressure, i.e.,

for the shell to escape, gives a relation where M
CMO

∝ σ4.

In more detail, by considering the motion of the shell as it moves out against the

gravity of the dark matter inside it, McLaughlin et al. (2006) find for the shell to reach

large radius requires

MCMO = λ−1fgσ
4
0

π

κ

G2
≃ 3.68× 108 M⊙ λ−1

(
σ

200km s−1

)4

(1.24)

(see also Murray et al. 2005; King 2005). Taking values of λ = 1 for SMBHs and

λ = 0.05 for nuclear clusters gives an offset of the same order as is observed between

the MBH − σ and Mnc − σ relations, as seen in the left-hand panel of Figure 1.4.

Once a CMO in an isothermal halo with a given σ0 has grown to the mass in

equation (1.24), the CMO wind may drive a momentum-conserving shell with coasting

speed v > 0 at arbitrarily large radii in the galaxy. If the wind is strong enough to drive

the shell to the escape speed of the halo then the galaxy is cleared of any remaining

ambient gas, cutting off further star formation and CMO growth, and locking in an

M
CMO

–σ relation.

In their derivation, Silk & Rees (1998) find M
BH

∝ σ5 because they assume that

the outflow is energy-conserving.

In the energy-driven regime the shell is driven by the thermal pressure of the

shocked wind region, into which energy is injected from the wind so that in that region

d

dt

[
r3P

]
∝ Ė , (1.25)
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where Ė = Ṁoutv
2
w/2 is the kinetic energy flux of the wind. We note that the full

energy equation of the shocked wind region includes work done by expanding the shell

and work against the gravity of both the CMO and the dark matter inside the shell as

we will discuss in Chapter 4.

Combining equation (1.25) with equation (1.20), we find the thermal pressure

driving the shell outwards P ∝ vwMCMO
/[r2v(r)], where v(r) = dr/dt is the velocity of

the swept up shell. Then for the thermal pressure to overcome the ambient pressure

(equation [1.23]) actually leads to M
CMO

vw ∝ σ5
0, for shell speeds v(r) ∼ σ0.

The explicit dependence of the energy-driven M
CMO

–σ relation on vw has not

been made by previous authors (e.g., Silk & Rees 1998) who have assumed a constant

vw and found M
CMO

∝ σ5. The dependence on vw is also lost in other related analyses

of energy-driven shells (e.g., King 2005; Faucher-Giguère & Quataert 2012).

It has been argued that energy-driven outflows lead to too steep a slope in the

M–σ relation. King (2003) suggests that as the shell moves out into the galaxy the

cooling time of the shocked wind region increases. The shell then transitions from a

momentum- to an energy-driven regime that allows it to accelerate and escape, while

preserving the M
CMO

∝ σ4 scaling of momentum-driven outflows. In that case, in its

momentum-driven phase the CMO needs only to push the shell to the radius where the

switch to energy-driving occurs. This could be done with a CMO less massive than the

mass in equation (1.3), suggesting that this may be an upper limit for observed M–σ

relations; and indeed, the equation lies above the current best fits to data by factors of

a few. However, as discussed earlier, the slope of the observed M–σ relation is ∼ 4−5,

so it is not clear whether momentum-driven outflows (M
CMO

∝ σ4) or energy-driven

outflows (M
CMO

vw ∝ σ5) provide better agreement with observations.

Whether the CMO outflow is energy- or momentum-driven is the subject of some

debate, a discussion we will return to in Chapter 2.

As discussed above, much of the previous theoretical work on the M–σ relation

has modelled momentum-driven outflows in galaxies with dark matter haloes modelled

as singular isothermal spheres (SISs). The SIS is analytically tractable and has some

features that relate to real dark matter haloes. The SIS provides a good first order
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approximation of dark matter haloes but it does suffer from some drawbacks, perhaps

most notably that its mass increases linearly with radius at all radii. A truncated

isothermal halo is often used, where outside some radius the mass is zero, but there

are also much more realistic models for dark matter haloes that we will consider here,

though these are often not analytically tractable.

1.3 Dark matter haloes

There has been evidence for some time that galaxies include a large, non-luminous

component of matter which we now call dark matter haloes. While tabulating galaxy

masses as a function of radius Ostriker, Peebles & Yahil (1974) found that spiral galaxy

masses increase linearly with radius, out to tens and hundreds of kpc, and the masses

of galaxy groups increase linearly with radius out to almost ∼ 1Mpc, implying masses

of order 1012M⊙. It has also been observed that the circular speed profiles of many

galaxies remain flat, or even rise slightly, at large radii well beyond the extent of the

luminous matter (e.g. Rubin, Ford & Thonnard 1980; Burstein 1982). The circular

speed V 2
c (r) = GM(r)/r, so that a constant circular speed at large radius implies the

galaxy mass, M(r) increases linearly with radius, as found by Ostriker et al. (1974).

Today, cold dark matter (CDM) is the favoured theory for how galaxies are

formed from the initial smooth state of the Universe. In the CDM paradigm small

objects are formed by the collapse of random fluctuations under gravity and galaxies

form hierarchically by mergers of these small objects to form larger structures. Many

simulations have been performed under this model, and the results are in general

agreement with observations of large scale structures. Much has been learned about

dark matter haloes from these simulations. One such result concerns the similarity of

the density profiles of haloes of widely different masses (Navarro, Frenk & White 1996).

There has been much work in fitting the ‘universal’ density profile of simulated dark

matter haloes.

Before looking in detail at the density profiles used to fit simulated dark matter
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haloes, we look at the density profile of a singular isothermal sphere (SIS). The SIS

provides a good “zeroth-order” approximation for galaxy density profiles in theoretical

work because it is simple to work with, but it does have some relavence to real galaxies

and the structure of dark matter haloes.

The density of an SIS is given by

ρ
DM

(r) =
σ2
0

2πGr2
, (1.26)

where σ0 is the velocity dispersion that characterizes the halo. This means that the

mass inside radius r is given by

M
DM

(r) = 4π

∫ r

0

ρ
DM

(r′)r′2dr′ =
2σ2

0

G
r . (1.27)

We then find that the circular speed profile of an SIS is constant at all radii:

V 2
c (r) =

GM
DM

(r)

r
= 2σ2

0 . (1.28)

Given the simplicity of the SIS model, this result matches well with the observations

of real haloes as discussed above (Rubin et al. 1980 etc.) that the circular velocity

remains constant at large radius.

However, the SIS has ρ
DM

∝ r−2 at all radii, so that the mass increases linearly

with radius to infinitely large radii, and similarly, the circular speed is constant out to

infinitely large radii. More realistically, we are interested in dark matter haloes that

have a finite extent, so that the mass and circular speed fall off at large radius, as is

observed. As such, a truncated SIS is often used in analytic calculations, where outside

some radius (often the virial radius) the mass is zero.

It is not entirely satisfactory to just chop off the outer extent of the halo. There

are more sophisticated models that have been used to fit simulated dark matter haloes

where the density falls off more steeply that r−2 at large radii. Simulated dark matter

haloes generally have density profiles that are shallower than isothermal at small radii

and steeper than isothermal at large radii.

The general fitting function most commonly applied to simulated dark matter

haloes has the form

ρ(r) ∝ 1

r−α(rs + r)α−β
(1.29)
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where rs is an appropriate scale length. This form for the density profile gives ρ(r) ∝
r−α for r ≪ rs, and ρ(r) ∝ r−β for r ≫ rs. Density profiles used to fit simulated haloes

commonly have α < 2 and β > 2 (e.g, Hernquist 1990; Navarro, Frenk & White 1996,

1997), so that there is a single, well defined radius where the logarithmic density slope

d ln ρ/d ln r = −2, which we denote r−2. This form of density profile also gives circular

speed profiles, V 2
c (r), that have a single peak.

Figure 1.5 shows the density (top panel), mass (middle panel) and circular speed

profiles (bottom panel) of several dark matter halo models with a scale radius rs = r−2.

For comparision, the density, mass and circular velocity profile of an SIS are shown by

dotted (black) lines in each panel. In all cases, the density, mass and circular speed

are all scaled by their values at rs, which we denote as ρ
DM

(rs) ≡ ρs, MDM
(rs) ≡ Ms

and V 2
c (rs) ≡ V 2

c,s.

The short-dashed (blue) lines in each panel of Figure 1.5 show the density, mass

and circular speed profiles of Hernquist (1990), which was used by Dubinski & Carlberg

(1991) to fit their simulated dark matter haloes. The properties of their simulated

haloes, such as the rotation curves, were in reasonable agreement with observed rotation

curves in spiral galaxies.

The Hernquist (1990) profile has

ρ
DM

(r) =
Mtot

2πr30

(
r

r0

)−1(
1 +

r

r0

)−3

, (1.30)

where Mtot is the total halo mass and r0 is a scale radius. We can see this is shallower

in the centre and steeper at larger radius than the SIS, shown by the dotted (black)

lines. This means that the mass profile, given by

M
DM

(r) = Mtot

(
r/r0

1 + r/r0

)2

, (1.31)

rises more steeply in the centre but tends to a finite mass at large radius, unlike the SIS

which diverges at large radius. Unlike the SIS, the circular speed profile of Hernquist

(1990) varies with radius as

V 2
c (r) =

GMtot

r0

r/r0
(1 + r/r0)2

, (1.32)
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Figure 1.5: Density profile ρ(r) (top panel), mass profile M(r) (middle panel) and the
circular speed profile V 2

c (r) (lower panel) for Hernquist (blue short-dashed lines), NFW
(red long-dashed lines), Dehnen & McLaughlin (magenta dot-short-dashed lines) and
Burkert (green dot-long-dashed lines).
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so that the circular speed increases outward from the centre, reaches a peak and then

declines towards larger radii.

Navarro, Frenk & White (1996) used high resolution simulations to investigate

the formation of dark matter haloes with a wide range of halo masses. They found that

the density profiles of haloes of different masses were all fitted well by the same model.

The dark matter profile of Navarro, Frenk & White (1996, 1997, hereafter NFW) is

given by

ρ
DM

(r) = 4ρ0

(
r

r0

)−1(
1 +

r

r0

)−2

, (1.33)

where r0 is a scale radius and ρ
DM

(r0) ≡ ρ0. This gives a mass profile

M
DM

(r) = 16πρ0r
3
0

[
ln(1 + r/r0)−

r/r0
1 + r/r0

]
, (1.34)

which then gives a circular speed profile of

V 2
c (r) = 16πGρ0r

2
0

[
ln(1 + r/r0)

r/r0
− 1

1 + r/r0

]
. (1.35)

Like Hernquist (1990), the NFW profile has ρ
DM

∝ r−1 at small radii, though ρ
DM

∝ r−3

at large radii. It has also been shown that the NFW profile provides an equally good

fit to the haloes simulated by Dubinski & Carlberg (1991) as the profile of Hernquist

(1990) (Deimand & Moore 2009). The NFW profile is shown by the long-dashed (red)

lines in Figure 1.5. We can see that in the inner regions the density, mass and circular

speed profiles of the NFWmatch that of Hernquist (1990). At large radius however, the

density of NFW is somewhat shallower than Hernquist (1990) and the mass of NFW

actually diverges logarithmically at large radius. Like Hernquist (1990), the circular

speed curve of NFW rises outwards to a single peak and then declines at large radius.

Dehnen & McLaughlin (2005) developed a family of halo models motivated by

the result that the ratio ρ
DM

(r)/σ3(r) is a single power law in radius for simulated dark

matter haloes. Their derived density profile for the case of velocity isotropy has

ρ
DM

(r) =
5

9

Mtot

πr30

(
r

r0

)−7/9
[
1 +

(
r

r0

)4/9
]6

, (1.36)
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where again r0 is a scale radius and Mtot is the total mass of the halo. This gives a

mass profile

M
DM

(r) = Mtot

[
(r/r0)

4/9

1 + (r/r0)4/9

]5
, (1.37)

and circular speed profile

V 2
c (r) = GMtotr0

(r/r0)
11/9

[1 + (r/r0)]5
. (1.38)

This profile matches current simulations at least as well as any other fitting function.

The profile of Dehnen & McLaughlin (2005) is shown as the short dash-dot (magenta)

lines in Figure 1.5. At small radius, the density goes as r−7/9 which is slightly shallower

than both Hernquist (1990) and NFW. At large radius ρ
DM

∝ r−20/9, a slope between

that of Hernquist (1990) and NFW. The mass profile of Dehnen & McLaughlin (2005)

increases approximately in line with Hernquist and NFW and tends to a finite mass at

large radius. Again, the circular speed profile increases outwards, peaks and then falls

of at large radius.

In addition to the appearance of a ‘universal’ density profile for dark matter

haloes, another result common to many simulated haloes is the absence of a well defined

central “core” of constant density. Several studies argue for a steeper central “cusp”

where the dark matter density grows without limit towards the centre of the halo, such

as the profiles of Hernquist (1990), NFW and Dehnen & McLaughlin (2005). However,

the resolution of current simulations can only resolve structure to within an appreciable

fraction (∼ 10−3) of the virial radius, leaving the possibility that the density may still

become shallower than r−1 at smaller radii.

There are several models for cored density profiles such as Burkert (1995), which

has been used to model the dark matter haloes of dwarf galaxies. The density profile

of this model is given by

ρ
DM

(r) =
4ρ0

(1 + r/r0)(1 + r2/r20)
, (1.39)

where r0 is the scale radius and ρ
DM

(r0) ≡ ρ0. This leads to

M
DM

(r) = 8πρ0r
3
0

[
ln(1 + r/r0) +

1

2
ln(1 + r2/r20)− tan−1(r/r0)

]
, (1.40)



34

and

V 2
c (r) = 8πGρ0r

2
0

(
r

r0

)−1 [
ln(1 + r/r0) +

1

2
ln(1 + r2/r20)− tan−1(r/r0)

]
. (1.41)

The Burkert (1995) density profile is still shallower than isothermal at small radii and

steeper than isothermal at large radii, with ρ
DM

∝ r−3 at large radius and a constant

density at small radii, as can be seen by the long dash-dot (green) lines in Figure

1.5. It also has the most steeply increasing mass profile at small radius. As with the

cuspy dark matter profiles, the circular speed profile of Burkert (1995) has a single,

well defined peak.

As we have noted, all of these models, both cored and cuspy, have a single, well

defined peak in their circular speed profiles, V 2
c (r) = GM(r)/r, as can be seen in the

bottom panel of Figure 1.5. This peak, occuring at radius rpk, so that V 2
c (rpk) ≡ V 2

c,pk,

provides a natural point of reference in all such haloes, which we will make use of later

(see Chapters 3 and 5).

We will now look in detail at physics of momentum- and energy-driven outflows,

and whether outflows from nuclear star clusters and supermassive black holes are mo-

mentum or energy-driven.
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2 Outflow physics

As discussed in Chapter 1, it is widely accepted that the M
CMO

–σ relations between

CMO mass, M
CMO

, and stellar velocity dispersion, σ, for both nuclear star clusters and

supermassive black holes are the result of self-regulated feedback. In the self-regulated

feedback scenario the CMO drives a wind that sweeps the surrounding ambient medium

into a shell. A key question regarding CMO winds is whether the swept-up shell is

momentum-driven, which leads to an M–σ relation of the form M
CMO

∝ σ4, or if it is

energy-driven, which gives M
CMO

∝ σ5. There is an ongoing debate in the literature

over which driving mechanism is responsible for the M–σ scaling, which couples with

the observational discussion of the exact slope.

In this chapter we look in detail at outflow physics and at the dynamics of the

shell. We will look at the shock structure generated by the outflow and at how the pre-

and post-shock properties of the gas are related through the jump conditions. We use

the jump conditions to find the temperature, density and velocity of the post-shock

gas, which we subsequently use to determine the cooling time of the shocked gas. This

allows us to address the question of whether the CMO driven outflows are momentum-

or energy-driven.

2.1 Outflow structure

Outflows arise from a variety of astrophysical objects. Of interest in the context of

outflows driven by nuclear clusters or black holes are;

1. Supernova explosions,

2. Radiatively driven stellar winds,

3. Outflows from active galactic nuclei.
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Stars with initial main sequence masses of >∼ 8M⊙ result in supernovae expol-

sions. In a supernova explosion a large fraction of the star’s mass is ejected at high

speed, depositing a large amount of kinetic energy into the surrounding region. The

expansion of the supernova ejecta drives an outflow into the ambient medium.

All hot stars, including main sequence and evolved stars, produce winds driven by

radiation pressure. Essentially, radiation from the star is scattered by the atmosphere,

transferring momentum from the radiation field to the atmospheric gas, driving an

outflow.

In nuclear star clusters the supernovae and the winds of individual stars in the

cluster combine to drive a “superwind”.

Strong outflows in local AGN have been observed both on large scales and closer

to the SMBH. As discussed in Chapter 1, an SMBH accreting at near- or super-

Eddington rates is expected to drive a fast outflow back into the host galaxy.

The properties of these different objects cover a wide range of parameters includ-

ing various wind speeds, vw, (several thousands of km s−1 from massive stars, to ∼ 0.1c

from AGN) and a range of mass-loss rates, Ṁout, (∼ 10−6M⊙ yr−1 for massive stars, to

several M⊙ yr−1 in AGN outflows). These combine to give a wide range of mechanical

or wind luminosities, Lw = 1
2
Ṁoutv

2
w (∼ 1035 erg s−1 for massive stars, e.g., Lamers &

Cassinelli 1999; to ∼ 1045 erg s−1 for AGN outflows, e.g., Tombesi et al. 2013). De-

spite the range of mechanical luminosities, these winds interact with their surrounding

ambient media in much the same way.

The basic theory outling the interaction of stellar winds with their surrounding

ambient media was developed by Castor, McCray & Weaver (1975), and in more de-

tail by Weaver et al. (1977). In our cases, the CMO wind sweeps the surrounding

ambient medium into a shell which it drives outwards. The swept-up shell is hot and

tries to expand both backwards, into the freely flowing wind, and forwards into the

undisturbed ambient medium. This expansion drives two shock fronts, an inner shock

that propagates into the wind material, and an outer shock that propagates into the

ambient medium. The resulting shock pattern, shown in Figure 2.1, has four distinct

regions:
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Figure 2.1: Schematic of a wind bubble. Here, the source emits a wind of constant
velocity vw which passes through the wind shock at radius rsw. The shocked wind
region is separated from the shocked ambient medium by the contact surface at radius
rC. The region of shocked ambient medium also contains the original shell of swept-up
material and is bounded by the ambient shock at radius rs.

• Zone 1 — The free wind, of constant velocity vw, with density ρw(r) =

Ṁw/(4πr
2vw), forms the innermost region and is bounded only by the inner or

wind shock at radius rsw.

• Zone 2 — The shocked wind region is bounded by the wind shock and the

contact surface, at radius rc, which separates material that originates from the

wind and material originally from the ambient medium. This region gathers

mass from the wind material that passes through the inner shock.

• Zone 3 — The region of shocked ambient medium is bounded by the contact



38

surface and the outer or ambient shock, at radius rs. This region contains the

shell of swept-up material and gathers mass as the outer shock passes through

the undisturbed ambient medium.

• Zone 4 — The undisturbed ambient medium is the outermost region and is

bounded only on the inner side by the ambient shock at rs.

The wind shock and ambient shock have velocities of vsw and vs respectively, in

the stationary frame. The shell continues to gain mass as it is driven outwards, which

causes the expansion of the shell to slow down. As such we have that vsw ≪ vin and

vs ≪ vin. Then the velocity of the wind relative to the wind shock is u0 ≡ vin−vsw ≈ vin

In their study of the dynamics of wind bubbles and superbubbles, Koo & McKee

(1992) explain that the behaviour of the bubble, or shock pattern, depends on three

timescales (see also, Faucher-Giguère & Quataert 2012):

• tflow = rs/vs — the flow time of the shell, where rs is the radius of the shell

and vs is the shell velocity.

• tcool,sw ∼ E/Ė— the cooling time of the shocked wind region, where E is the

energy in the shocked wind and Ė is the energy loss rate in the region.

• tdyn = rsw/vw — the dynamical time of the wind, where rsw is the radius of

the wind shock and vw is a constant wind velocity.

If tcool,sw ≪ tdyn, then the shock is radiative, i.e., the shocked wind region is

able to cool in the time it takes new wind material (i.e., more energy input) to reach

the shock front from the source. Thus, the shocked wind region cools efficiently and

condenses so it is geometrically thin. The swept-up shell is then effectively driven

outwards by a direct transfer of momentum from the wind impacting on its inner side,

defining a momentum-driven outflow.

If instead tcool,sw ≫ tflow, then the shocked wind material is unable to cool in the

time it takes to reach the shell. Hence the region is hot and geometrically thick, driving

the swept up shell outwards with its thermal pressure, so the outflow is energy-driven.
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If tdyn <∼ tcool,sw <∼ tage then the bubble is in a partially radiative regime. In this

case, most of the shocked wind cools, but the most recently shocked portion remains

hot and occupies most of the volume of the bubble. In this intermediate state the

outflow conserves neither energy or momentum.

Thus, the nature of the outflow is determined by whether or not the shocked

wind region is able to cool efficiently. Although properties such as density and veloc-

ity can change discontinuously as the material passes through the shock front, mass,

momentum and energy must also be conserved across the shock. These conservation

laws place constraints upon how the properties of the material can change by relating

the pre- and post-shock conditions of the flow, known as adiabatic jump conditions.

Using these jump conditions, we can find the temperature and density of the gas in the

shocked wind region immediately after it has been shocked and determine whether or

not the material is able to cool efficiently, and thus whether the outflow is momentum-

or energy-conserving.

We note that the behaviour of the shocked ambient medium does not greatly

impact the results. If the shocked ambient medium cools efficiently then both the

shocked wind and the shocked ambient medium are confined to a thin shells. If the

shocked ambient medium does not cool then it is still confined to a relatively thin shell

because is it being continually compressed by the shocked wind region (Koo & McKee

1992).

2.2 Jump conditions

We follow Dopita & Sutherland (2003) in our derivation of the jump conditions and take

a frame of reference where the shock front is stationary. The fluid motion must obey the

conservation of mass, momentum and energy. The flow is also subject to an equation

of state relating pressure, density and temperature. We consider a radiationless, or

adiabatic shock where the material does not lose or gain energy when passing through

the shock front. We will consider the cooling process of the material immediately after
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it has been shocked in §2.3.
The conservation equations are given by

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

ρ

[
∂u

∂t
+ (u · ∇)u

]
= F−∇P (2.2)

∂

∂t

(
ρu2

2
+ ρU + ρΦ

)
+∇ ·

[
ρu

(
u2

2
+H + Φ

)]
= 0 , (2.3)

where ρ is the mass density of the fluid, u is the velocity, F represents any external force

(i.e., gravity) per unit volume, P is the internal fluid pressure, Φ is the potential, U is

the internal energy and H = U + P/ρ is the enthalpy per unit mass, which represents

the total amount of energy per mass available to the gas, including the specific internal

energy and the energy required to establish its volume and pressure.

Equation (2.1) is the continuity equation, which states that the rate of change of

mass in a region (i.e., the density) is determined by the difference in the rate of flow

into and out of that region.

Equation (2.2) gives the conservation of momentum, which states that the rate

of change of momentum in a region is balanced by the flux of momentum into that

region and the net force acting upon the material in that region, i.e., ∂p/∂t = F per

unit volume.

The conservation of energy is given by eqaution (2.3), which requires that the

rate of change of energy in a region equates to the net flux of energy through the surface

that bounds that region.

In the spherical systems that we are considering, we can reduce equations (2.1)–

(2.3) to one dimension so the conservation of mass, momentum and energy are given

by

∂ρ

∂t
+

∂

∂x
(ρ u) = 0 (2.4)

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂P

∂x
(2.5)

∂

∂t

(
ρu2

2
+ ρU

)
+

∂

∂x

[
ρu3

2
+

γ

γ − 1
Pu+ F

]
= 0 (2.6)
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We can simplify this further by assuming a potential-free (i.e., Φ = 0), steady flow,

and we can substitute U = P/ρ(γ − 1) where γ is the ratio of specific heats. For a

steady flow the time derivatives vanish, and we have

d

dx
(ρ u) = 0 (2.7)

d

dx
(P + ρu2) = 0 (2.8)

d

dx

[
ρu3

2
+

γ

γ − 1
Pu+ F

]
= 0 (2.9)

Equations (2.7), (2.8) and (2.9) provide a complete description of a one dimen-

sional, potential-free, steady-state flow. We can integrate the equations between two

points, a region with variables u0, ρ0 and P0 and a later region in the flow with variables

u1, ρ1 and P1, where u0 and u1 are the velocities relative to the shock front. This gives

us the Rankine-Hugoniot jump conditions :

[ρu]10 = 0 (2.10)
[
P + ρu2

]1
0

= 0 (2.11)
[
u2

2
+

γ

γ − 1

P

ρ

]1

0

= 0 (2.12)

As noted previously, the quantity ρu is constant in the flow and equation (2.12) follows

from dividing equation (2.9) by ρu.

We now use equations (2.10)-(2.12) to relate the pre- and post-shock variables.

Expanding equations (2.10) and (2.11), we find that

ρ0u0 = ρ1u1 , (2.13)

and

P0 + ρ0u
2
0 = P1 + ρ1u

2
1 . (2.14)

We then use equation (2.13) to eliminate ρ1 and equation (2.14) to eliminate P1 from

the expansion of equation (2.9) giving

(
γ + 1

γ − 1

)
u2
1 −

2γ

γ − 1

(P0 + ρ0u
2
0)

ρ0u0

u1 +

(
2γ

γ − 1

P0

ρ0
+ u2

0

)
= 0 . (2.15)
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We can simplify this further by using the definition of the adiabatic sound speed

c2s = γ
P

ρ
, (2.16)

to eliminate P0. Then, defining β = u1/u0, we have
(
γ + 1

γ − 1

)
β2 − 2

γ − 1

[(
c0
u0

)2

+ γ

]
β +

[
2

γ − 1

(
c0
u0

)2

+ 1

]
= 0 . (2.17)

We can simplify this one step further by noting that the Mach number M ≡ u/cs,

finally giving
(
γ + 1

γ − 1

)
β2 − 2

γ − 1

(
M−2

0 + γ
)
β +

(
2M−2

0

γ − 1
+ 1

)
= 0 , (2.18)

where M0 = u0/c0 is the pre-shock Mach number.

In the limit of a strong shock, where the velocity of the gas is much higher than

the sound speed, M0 ≫ 1 so the M−2
0 terms become negligible. Therefore, in a

monatomic gas where γ = 5/3, equation (2.18) becomes

4β2 − 5β + 1 = 0 , (M0 ≫ 1) (2.19)

which has solutions

β = 1 =⇒ u0 = u1 , (2.20)

β =
1

4
=⇒ u1 =

u0

4
. (2.21)

The first of these simply implies that nothing happens to the fluid. Since ρ0u0 = ρ1u1,

the second implies that in the limit of a strong shock the fluid can be compressed by

at most a factor of four. Since we have considered the shock to be stationary in the

frame of reference, u0 = vw − vsw ≃ vw where vsw is the wind shock velocity relative to

the source of the wind, and the last equality follows becasue the wind speed is much

higher then the shock velocity, as discussed above. The full set of post-shock variables

is then found

u1 =
vw
4

,

ρ1 = 4ρ0 ,

P1 =
3

4
ρ0v

2
w . (2.22)
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Finally, because we have the equation of state, P = ρkT/(µmp), we can obtain

the post-shock temperature of the gas in the strong shock limit

T1 =
3

16

µmp

k
v2w . (2.23)

With these jump conditions we can estimate the properties of the shocked wind

material in outflows driven by nuclear clusters and black holes. We can use this to find

the gas cooling times, which depend on the density, velocity and temperature of the

shocked material. This will allow us to address the question of whether these outflows

are momentum- or energy-driven.

2.3 Cooling mechanisms

The dynamics of the shell depends upon whether or not the shocked wind material is

able to cool efficiently. We can now find the properties of the immediate post-shock

material, such as density and temperature, through the jump conditions derived above.

We look next at the mechanisms by which this material may be able to cool.

2.3.1 Atomic processes

We adopt the cooling function of Sutherland & Dopita (1993) for cooling by atomic

process and follow Dopita & Sutherland (2003) in our discussion of this cooling function.

The rate of energy lost by a plasma is the sum of the various cooling and heating

rates. In general, cooling and heating rates are functions of density n, temperature

T and metallicity A. Sutherland & Dopita (1993) investigated the cooling function of

a non-relativistic, thermal plasma over a range of temperatures (T = 104 − 108.5K)

and metallicities. They use the following cooling function (in units erg cm3s−1) in their

calculations:

ΛN(T,A) = Λlines + Λcont ± Λrec − Λphoto + Λcoll ± ΛCompton . (2.24)



44

It is a function of the electron temperature, T , and the metallicity of the plasma, A. It

accounts for collisional line radiation (Λlines), continuum emission (Λcont), recombina-

tion processes (Λrec), photoionisation heating (Λphoto), collisional ionisation (Λcoll) and

Compton heating (or cooling, ΛCompton).

Λline, Λcont and Λcoll all represent processes by which the gas loses energy. Line

radiation is emitted when an ion becomes excited and then decays back to the ground

state, emitting photons, hence losing energy. The continuum processes include free-free

radiation, also known as Bremsstrahlung, and free-bound radiation. Free-free radiation

is emitted when a charged particle, such as an electron, is deflected by other charged

particles, such as protons. Free-bound emission arises by the capture of a free electron

into a bound state and describes the recombination process. When an electron strikes

an ion with enough energy to knock out a bound electron, i.e., the collisional ionisation,

the incoming electron loses energy.

Photoionisation represents a heating process as energy is transferred from a pho-

ton to an electron during the ionisation process.

The Compton term can represent heating or cooling. It is a heating process when

high-energy photons excite low-energy electrons, transferring energy from the photon

field to the electrons. It is a cooling process when low-energy photons are scattered by

high-energy electrons, tranferring energy from the electrons to the photon field. We

will discuss Compton cooling in more detail below.

Sutherland & Dopita (1993) note that recombinations (giving rise to free-bound

radaition), may be a heating or cooling process and so treat the radiation from recom-

binations separately in Λrec.

Figure 2.2 shows the cooling function for a plasma as a function of the heavy

metal abundance, from Sutherland & Dopita (1993).

Line cooling and collisional ionisation are the dominant processes in the tempera-

ture range 4 <∼ log T (K) <∼ 7. In the range 5 <∼ log T (K) <∼ 7, the cooling rate decreases

with increasing temperature because the material becomes increasingly ionised.

At still higher temperatures (log T (K) > 7.5), all plasmas are totally ionised and

electron free-free, or bremsstrahlung, emission is the dominant process. Sutherland &
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Figure 2.2: Cooling functions calculated by Sutherland & Dopita (1993) for (top to
bottom curve) [Fe/H] = 0.0, -0.5, -1.0 and -1.5. The dot-dashed lines show the approx-
imation of the cooling function from McLaughlin et al. (2006) that is used to calculate
the cooling time of the shocked wind region in the case of outflows driven by nuclear
clusters (see §2.4.1).

Dopita (1993) note that the free-free power law can be extrapolated to higher temper-

atures with a fair level of accuracy, up to log T (K) ∼ 9 when relativistic effects become
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important, and Compton cooling becomes dominant.

2.3.2 Inverse Compton scattering

In the Compton scattering process high energy photons collide with electrons and

transfer some of their energy and momentum to the electron, reducing the energies

and momenta of the scattered photons, as discussed above.

In inverse Compton scattering ultra-relativistic electrons scatter low energy pho-

tons to higher energies, i.e., the photons gain energy from the kinetic energy of the

electrons, so this cools the electron gas. In this case the energy loss rate of an electron

is (Longair 2011) (
dE

dt

)

IC

=
4

3
σT c urad

(ve
c

)2
γ2 (2.25)

where ve is the velocity of the electron, urad is the radiation density and σT is the

Thomson cross section. The electron loses energy when it interacts with photons,

therefore the energy loss rate is dependent upon the density of the photon field.

2.4 CMO outflows

We look now at the behaviour of the shocked wind region in outflows driven by nu-

clear clusters and black holes to determine whether the outflows are momentum- or

energy-driven. We treat the two cases separately because as we have seen above, the

temperature of the shocked gas depends on the wind velocity, which varies greatly

between the two cases.

2.4.1 Nuclear star clusters

In the case that the CMO is a nuclear star cluster the super wind is driven by the

combined winds and supernovae of stars in the cluster and is far from relativistic.



47

Using equation (2.23) we find that the temperature of the post-shock wind material in

this case is

Tsw =
3

16

µmp

k
v2w = 1.23× 106K

(
vw

300km s−1

)2 ( µ

0.6

)
. (2.26)

This falls into the regime of the cooling by atomic processes calculated by Sutherland &

Dopita (1993), shown in Figure 2.2. We follow McLaughlin, King & Nayakshin (2006)

in approximating the cooling function by

ΛN ≃ 3.55× 10−18

(
Z

Z⊙

)0.6

T−0.75erg cm3 s−1 , (2.27)

which is applicable for (Z/Z⊙) = 0.1 − 1 and T ≃ (0.5 − 5) × 106K, shown by the

dot-dashed lines in Figure 2.2 for (Z/Z⊙) = 0.1, 0.3 and 1.

We use equation (2.27) to calculate the cooling time of the post-shock wind

material which is given by

tcool =
µmpkT

ρswΛN

. (2.28)

Recalling the post-shock density given by the adiabatic jump conditions, ρsw =

4ρw (equation 2.22), calculating the wind density ρw = Ṁw/(4πr
2vw) and recalling

Ṁwvw = λLEdd/c (equation [1.20] with τe ∼ 1), we find that the cooling time for the

shocked wind in the nuclear cluster case is given by

tcool = 1.77× 10−32 sλ−1 v5.5w M−1
CMO

r2
(

Z

Z⊙

)−0.6 ( µ

0.6

)2.75

≃ 3600 yrλ−1

(
vw

300km s−1

)5.5(
M

CMO

108M⊙

)−1(
r

kpc

)2 ( µ

0.6

)2.75( Z

Z⊙

)−0.6

.

(2.29)

We can see immediately that this cooling timescale will be very short when the shell

is at small radii, demonstrating that the shell is initially momentum-driven.

The shell is momentum-driven when the cooling time is shorter than the dynam-

ical time of the wind, tdyn = rsw/vw, or at radii

rsw <∼ 900 kpcλ
M

CMO

108M⊙

(
vw

300km s−1

)−6.5(
Z

Z⊙

)0.6 ( µ

0.6

)−2.75

. (2.30)
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When the wind shock is inside this radius the shocked wind region cools efficiently and

is thin so rsw ∼ rs. Thus, we find that in the case of outflows driven by nuclear clusters

the shocked wind region can cool efficiently out to radii of order 50 kpc (for λ = 0.05),

meaning that the outflow is predominantly momentum-driven, the case as considered

by McLaughlin et al. (2006).

The shell becomes energy-driven when tcool >∼ tflow = rs/vs, or at radii

rs ≃ 1350 kpcλ

(
M

CMO

108M⊙

)(
vs

200km s−1

)−1(
vw

300km s−1

)−5.5

( µ

0.6

)−2.75
(

Z

Z⊙

)0.6

. (2.31)

Hence, the shell can become energy-driven at radii ∼ 70 kpc, again for λ = 0.05.

2.4.2 Supermassive black holes

In the case that the central object is a supermassive black hole, the temperature of the

shocked wind material exceeds the range considered by Sutherland & Dopita (1993)

for cooling by atomic processes,

Tsw =
3

16

µmp

k
v2w ≃ 1.10× 109K

( vw
0.03c

)2
. (2.32)

Sutherland & Dopita (1993) state that extrapolating their results to higher temper-

atures breaks down at log T ∼ 9 because of relativistic effects. This temperature

corresponds to electron velocities ve ∼ 0.8c, thus in the case of SMBHs we consider the

case where the shocked wind material is cooled by inverse Compton scattering. We

recall the electron energy loss rate from equation (2.25) depends on the density of the

radiation field, which in this case is given by

urad =
LEdd

4πr2c
. (2.33)

The energy loss rate also depends upon the post-shock energy of the electrons, which

is given by

E = 3kT =
9

16
mp µ (vw − vws)

2 ≃ 9

16
mp µ v2w . (2.34)
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We use equation (2.34) to find the velocity of the electrons by noting that

Ee,kin = (γ − 1)me c
2 =

9

16
µmp v

2
w (2.35)

or

γ − 1 =
9

16

mp

me

v2w
c2

(2.36)

where in this case γ = (1 − v2/c2)−1/2 (not the ratio of specific heats). This implies

that the electrons are very relativistic with velocities ve ≃ 0.85c.

With the above, the cooling timescale of the post-shock wind material by inverse

Compton scattering is given by (King 2003)

tcool =
E

dE/dt
=

4

3

cr2

GMbh

(
me

mp

)2 (vw
c

)−2 (ve
c

)−2

≃ 4.29× 108 yr

(
r

kpc

)2 ( vw
0.03c

)−2 ( ve
0.85c

)−2

. (2.37)

The dynamical time of the wind is simply

tdyn = rsw/vw ≃ 1.09× 105 yr
r

kpc

( vw
0.03c

)−1

. (2.38)

Again, the outflow is momentum-driven when the cooling timescale (equation

2.37) is shorter than the dynamical timescale of the wind (equation 2.38), or at radii

rsw =
3

4

GM
BH

c2

(
mp

me

)2 (vw
c

)(ve
c

)2

≃ 0.26 pc
M

BH

108M⊙

vw
0.03c

( ve
0.85c

)2
. (2.39)

When the wind shock is inside this radius rsw ∼ rs and the outflow is momentum-

driven, which implies that in the case of outflows driven by black holes, the shocked

wind region is only able to cool at very small radii.

The outflow is energy-driven when the cooling time exceeds the flow time of the

shell, tflow = rs/vs, at radii

rs >∼
3

4

GM
BH

cvs

(
mp

me

)2 (vw
c

)2 (ve
c

)2

≃ 11 pc

(
vs

200 km s−1

)−1(
M

BH

108M⊙

)( vw
0.03c

)2 ( ve
0.85c

)2
(2.40)
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for typical shell velocities vs ∼ σ ∼ 200km s−1. Outside of this radius, the shell is

energy-driven. This radius is comparable to the sphere of influence of a 108M⊙ SMBH

in a halo with σ = 200km s−1, so the outflow can be predominantly energy-driven, in

contrast to previous discussion of momentum- versus energy-driven outflows.

2.4.3 Review of energy- vs. momentum-driven outflows

There has been much debate in the literature about whether the M–σ relation between

CMO mass and stellar velocity dispersion is the result of momentum- or energy-driven

feedback. This couples with an ongoing debate about the slope of the observed M–σ

relations for both black holes and nuclear clusters.

As discussed in Chapter 1, the first results relating black hole mass to stellar

velocity dispersion were part of calculations aimed at deriving a relation between the

black hole mass and bulge mass. Silk & Rees (1998) found a relation of the form M
BH

∝
σ5 by considering a swept-up shell that is energy-driven, though the normalization of

their relation places it well below the relation observed between black hole mass and

velocity dispersion. Fabian (1999) found the shallower relation M
BH

∝ σ4 as the result

of a momentum-conserving outflow.

King (2003) considered an outflow from a black hole which cools by inverse

Compton scattering, as discussed above, and found that the outflow is at least ini-

tally momentum-driven. This results in an M–σ relation with M
BH

∝ σ4, with a

normalisation a factor of a few above the observed relation. Following King (2003),

McLaughlin, King & Nayakshin (2006) looked at the case of outflows driven by nuclear

cluster with cooling by atomic transitions and also concluded that the outflows are

momentum-driven.

It is expected that outflows from black holes will transition to an energy-conserving

regime as they move outwards into the protogalaxy. King (2005) and King, Zubovas &

Power (2011) look at energy-driving in the specific case that the black hole has reached

the critical mass found by King (2005) during a momentum-driven phase and then

transitions to an energy-driven regime. They find that the large radius coasting speed
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of energy-driven shells is higher than the speed of momentum-driven shells driven by

the same M
BH

in an isothermal halo with the same velocity dispersion. They suggest

that the initial momentum-driven phase establishes theM
BH

∝ σ4 scaling, though more

recent fits favour a steeper slope, and that the switch to energy-driving causes the shell

to accelerate to this higher coasting speed, which allows the shell to clear the galaxy

bulge.

More recent work has focussed on the evolution of the shell once it has transi-

tioned to an energy-driven regime, connecting explicitly to observations of large-scale

outflows driven by AGN. King, Zubovas & Power (2011) investigate the properties of

large scale, energy-driven outflows, considering the case where the AGN “switches off”

before the shell has cleared the galaxy. They find that the residual thermal pressure

behind the shell is capable of driving the shell further out and possibly to escape, which

could explain why massive outflows are sometimes observed when there is little or no

AGN activity.

It is clear that an energy-driven phase is of importance, but in a more detailed

analysis of the cooling of shocked AGN winds, Faucher-Giguère & Quataert (2012) show

that energy-driving may be the dominant form of feedback in more circumstances than

previously.

2.5 Summary

We have looked at the nature of outflows driven by both nuclear star clusters and by

supermassive black holes. We used the adiabatic jump conditions, derived in §2.2, to
calculate the properties of the post-shock wind material which determines the dynamics

of the shell by whether or not it is able to cool. We considered the cooling mechanisms

relevant in the cases of nuclear clusters and black holes separately, due to the difference

in wind speed in each case.

We have shown that outflows driven by nuclear clusters may be able to cool

efficiently, and thus momentum-driven, out to several 10 kpc, whereas outflows driven
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by black holes may only be efficiently cooled inside a few parsecs, implying they may

be energy-driven for most of their lifetime.

Motivated by these results we look at the two extremes of outflows that are

purely momentum- and purely energy-driven. We consider momentum-driven outflows

for both black holes and nuclear star clusters in haloes modelled as singular isothermal

spheres and non-isothermal haloes in Chapter 3. We look at energy-driven outflows

driven by black holes in a halo modelled as a singular isothermal sphere in Chapter 4,

and in non-isothermal haloes in Chapter 5. In Chapter 6 we present a summary and

discussion of these results.
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3 Momentum-driven feedback and the M–

σ relation in non-isothermal galaxies

We showed in Chapter 2 that outflows from nuclear star clusters may be momentum-

driven for most of their evolution and that outflows from black holes are at least initially

momentum-driven, though perhaps only at very small radii. As discussed in Chapter

1, momentum-driven outflows have been modelled in galaxies described by singular

isothermal spheres, resulting in M
CMO

–σ relations where M
CMO

∝ σ4.

Presented in this chapter is the paper ‘Momentum-driven outflows and the M–σ

relation in non-isothermal galaxies’ (McQuillin & McLaughlin 2012), where we look in

detail at the effect on the M
CMO

–σ relations of relaxing the assumption that galaxies

are isothermal spheres.

We solve for the velocity fields of momentum-conserving supershells driven from

galaxy centres by steady winds from either a supermassive black hole or a nuclear star

cluster. We look for the critical CMO mass that allows such a shell to escape from its

host galaxy. In the case that the host galaxy dark matter halo is a singular isothermal

sphere, we find that the critical CMO mass derived by King, which scales with the

halo velocity dispersion as Mcrit ∝ σ4, is necessary, but not by itself sufficient, to drive

shells to large radii in the halo. Furthermore, a CMO mass at least 3 times the King

value is required for a steady wind to drive the shell to the escape speed of the halo. In

the case of CMOs embedded in protogalaxies with non-isothermal dark matter haloes,

which we treat here for the first time, we find a critical CMO mass that is sufficient

to drive any shell (under a steady wind) to escape any galaxy with a peaked circular

speed profile. In the limit of large halo mass, relevant to real galaxies, this critical

CMO mass depends only on the value of the peak circular speed of the halo, scaling as

Mcrit ∝ V 4
c,pk. Our results therefore relate to observational scalings between black hole

mass and asymptotic circular speed in galaxy spheroids. They also suggest a natural

way of extending analyses of M–σ relations for black holes in massive bulges, to include

similar relations for nuclear clusters in lower-mass and disc galaxies.
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McQuillin & McLaughlin (2012) was written by R. C. McQuillin with drafts of

sections 3.1, 3.4.1.3, 3.4.1.4 and 3.5 completed by D. E. McLaughlin.

Appendix 3.B contains an alternative method of finding the critical CMO mass

that enables the escape of a momentum-driven shell from any non-isothermal halo with

a singly peaked circular speed profile (from §3.4.1.3), which is not included McQuillin

& McLaughlin (2012)
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3.1 Introduction

Most early-type galaxies and bulges with M >∼ 1010M⊙ harbour a supermassive black

hole (SMBH) at their centre (Kormendy & Richstone 1995); while observations with

the Hubble Space Telescope have revealed the presence of massive nuclear star clusters

(NCs) in the majority of less massive galaxies (both early- and late-type: Phillips et

al. 1996; Carollo et al. 1997; Böker et al. 2002; Côté et al. 2006, 2007). The properties

of these central massive objects (CMOs) correlate tightly with properties of their host

galaxies, perhaps most notably in terms of CMO mass, M
CMO

, versus (bulge) stellar

velocity dispersion, σ: M
CMO

∝ σx, with x ≃ 4 (for SMBHs, see, e.g., Ferrarese &

Merritt 2000, Gebhardt et al. 2000, Tremaine et al. 2002, Ferrarese & Ford 2005, or

Gültekin et al. 2009; for NCs, see Ferrarese et al. 2006; also relevant are Wehner &

Harris 2006 and Rossa et al. 2006). Though essentially parallel, there is an offset

between the M–σ relations of NCs and SMBHs, in the sense that the NC masses in

intermediate- and low-mass galaxies tend to be ∼ 10× larger than if they followed a

simple extrapolation of the SMBH M–σ relation for higher-mass spheroids (Ferrarese

et al. 2006; see also McLaughlin et al. 2006).

Recently, Volonteri, Natarajan, & Gültekin (2011; cf. Ferrarese 2002) have argued

that galaxies/bulges containing SMBHs also show a correlation, of the form Mbh ∝ V y
c

with y ≈ 4, between black hole mass and the “asymptotic” circular speed Vc at large

radii where dark matter is expected to dominate the total galaxy mass. There is some

debate (e.g., see Ho 2007; Kormendy & Bender 2011) over how the stellar velocity

dispersions in the M–σ relation, which are measured inside a fraction of the bulge

effective radius, connect empirically to asymptotic circular speeds, which normally refer

to many times the effective radius defined by stars. This can be a difficult question (with

a model-dependent answer), especially in “hot” stellar systems where circular speeds—

that is, V 2
c (r) = GM(r)/r—are not observed simply as net rotation. However, the

existence of some kind of connection, and at least the possibility of an Mbh–Vc relation

in addition to Mbh–σ, is clear in principle: The stellar velocity dispersion at any radius

in a dark-matter dominated galaxy depends on the dark matter distribution, which is
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precisely what Vc probes at large radii.

Self-regulated feedback from growing CMOs is thought to play a key role in es-

tablishing the M–σ relation and associated scalings. Though through different mech-

anisms, either an NC or an SMBH will drive an outflow, which sweeps the ambient

gas in a protogalaxy into a shell that, at least initially, is able to cool rapidly and is

therefore momentum-driven (King 2003; McLaughlin et al. 2006; see also §3.2 below).

There is then a critical CMO mass above which the outwards force of the wind on the

shell may overcome the inwards gravitational pull of the CMO plus the dark matter

halo of the parent galaxy.

The only case that has been considered in detail analytically is that of a steady

wind, in which the CMO mass (and associated wind thrust) is constant throughout the

motion of the shell (Silk & Rees 1998; Fabian 1999; King 2003, 2005, 2010a; Murray

et al. 2005; McLaughlin et al. 2006, Silk & Nusser 2010). In this case, and assuming a

halo modelled as a singular isothermal sphere, King (2005) found a critical CMO mass

of

Mcrit =
f0 κ

λπ G2
σ4
0 ≃ 4.56× 108 M⊙ σ4

200 f0.2 λ
−1 , (3.1)

(see also Mclaughlin et al. 2006; Murray et al. 2005). In this expression f0 is an average

gas mass fraction (≈ 0.2, so f0.2 = f0/0.2) and σ200 = σ0/200 km s−1. The parameter

λ is related to the feedback efficiency for each type of CMO; it has a value λ ≈ 1 for

SMBHs, and λ ≈ 0.05 for NCs (McLaughlin et al. 2006). Once a CMO in an isothermal

halo with a given σ0 has grown to at least the mass in equation (3.1), the CMO wind

may drive a momentum-conserving shell with coasting speed v > 0 at arbitrarily large

radii in the galaxy. This then admits the possibility of a blow-out clearing the galaxy

of any remaining ambient gas, choking off further star formation and CMO growth,

and locking in an M
CMO

–σ relation.

As a momentum-driven shell moves outwards from a CMO, gas cooling times

increase and a switch to an energy-driven phase is expected, at which point the shell

can accelerate to escape the galaxy (King 2003). Momentum-driving may then need

only push a shell out to where the switch to energy-driving occurs; and this can be
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done with a CMO less massive than the Mcrit in equation (3.1), which is necessary for

momentum-driving to arbitrarily large radii. This suggests that equation (3.1) may

actually predict an upper limit for observed M–σ relations; and indeed, the equation

lies above current best fits to data by factors of a few.

Distributed star formation in a protogalaxy bulge is expected to provide addi-

tional momentum input to the feedback (Murray et al. 2005; Power et al. 2011). This

would also reduce the CMO mass required for the feedback to escape, again suggesting

that the M
CMO

–σ relation in equation (3.1) is an upper limit.

Silk & Nusser (2010) have shown that, in a truncated isothermal sphere specifi-

cally, a momentum-conserving shell driven solely by a steady black-hole wind can reach

large radius with fast enough speed to escape directly (that is, with v >∼ 2σ0), only

if the SMBH mass is at least a few times larger than the critical value in equation

(3.1) (which is necessary just to have v > 0 at large r). This would put the predicted

normalization of an M
CMO

–σ relation above the observed normalization by a full order

of magnitude. Silk & Nusser argue from this that the real key to a feedback origin for

M
CMO

–σ is momentum input from distributed bulge-star formation that is triggered

by the outflow from a CMO. However, Power et al. (2011) counter that a switch from

momentum- to energy-driving of the CMO feedback is still inevitable and will alleviate

some of the difficulty identified by Silk & Nusser.

In this chapter, we investigate how this basic feedback scenario for M–σ relations

depends on the simplifying assumption that dark matter haloes are singular isothermal

spheres. We analyze aspects of the dynamics of supershells in spherical but non-

isothermal haloes, while retaining some other simplifying assumptions (steady winds

and purely momentum-driven shells) in common with previous work.

Our main result is a generalization of the critical CMO mass that suffices to blow

momentum-driven feedback entirely out of any realistic, non-isothermal dark matter

halo that has a well-defined maximum in its circular speed profile, V 2
c (r) = GM

DM
(r)/r.
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For large halo masses, this critical CMO mass tends to the limiting value,

Mcrit −→ f0 κ

λπ G2

V 4
c,pk

4

= 1.14× 108 M⊙

(
Vc,pk

200 km s−1

)4

f0.2 λ
−1 , (3.2)

where Vc,pk is the peak value of the circular speed.

In a singular isothermal sphere, which has a constant Vc =
√
2 σ0, our new

equation (3.2) clearly reduces to equation (3.1). However—as we discuss in detail in

§3.3 and §3.4.1 below—in an isothermal halo this Mcrit is necessary but not sufficient,

in general, to guarantee the escape of a momentum-driven CMO wind. By contrast,

in the more realistic, non-isothermal cases that we consider, equation (3.2) gives the

M
CMO

that is sufficient for the escape of any such feedback.

Any momentum-conserving shell driven by a steady wind from a CMO with

the mass in equation (3.2) will eventually accelerate at large radii and exceed the

escape speed of any non-isothermal halo with a peaked Vc(r) profile, even without a

possible change to energy-driving, additional momentum feedback from star formation

or growth of the CMO (none of which we include in our analysis). Thus, the objection

of Silk & Nusser (2010) to equation (3.1) as the basis for observedM–σ relations applies

only if dark matter haloes are strictly isothermal.

Equation (3.2) defines the “characteristic” velocity dispersion that needs to be

considered when interpreting observed M
CMO

–σ relations in non-isothermal galaxies:

σ0 ≡ Vc,pk/
√
2. It also gives the first direct, quantitative prediction of an M

CMO
–Vc

relation such as that discussed by Volonteri et al. (2011). The result may still be an

upper limit to observed relations since we do not consider any transition to energy-

conserving feedback, nor any sources of feedback other than steady CMO winds, in

this work.

We begin in §3.2 by looking at the general equation of motion of a momentum-

driven shell as it moves out into a gaseous protogalaxy. In §3.3 we develop, in more

detail than before, the case of the singular isothermal sphere. In §3.4.1, we analyze the
motion of a momentum-driven shell in a general, non-isothermal halo with a peaked
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circular-speed curve, and derive equation (3.2). In the rest of §3.4, we illustrate our

general results using three particular dark-matter halo models as examples (those of

Hernquist 1990; Navarro, Frenk, & White 1996, 1997; and Dehnen & McLaughlin

2005). In §3.5 we summarize the chapter and give a brief discussion.

3.2 Equation of motion

An SMBH accreting at near- or super-Eddington rates in a gaseous protogalaxy is

expected to drive a fast wind back into the galaxy (King & Pounds 2003), with quasi-

spherical (i.e., not highly collimated) geometries indicated by observations of strong

outflows from local AGN (e.g., Tombesi et al. 2010). Similarly, the combined winds

and supernovae from massive stars in a very young (still forming) NC will drive a

superwind into its host protogalaxy. In a spherical approximation to either case, the

wind sweeps up the surrounding ambient gas into a shell. The material in this shell is

hot and tries to expand both backwards and forwards, giving rise to two shock fronts,

one propagating forwards into the ambient medium and one backwards into the wind.

Initially, the shocked wind region can cool efficiently, by inverse Compton scattering

for SMBHs (King 2003) and by atomic processes for NCs (McLaughlin et al. 2006). As

such, this region is geometrically thin and the shell is effectively driven outwards by a

transfer of momentum from the wind impacting on its inside.

The thrust on the shell from the CMO wind is proportional to the Eddington

luminosity of the CMO (King & Pounds 2003; McLaughlin et al. 2006):

dpwind

dt
= λ

LEdd

c
= λ

4πGM
CMO

κ
, (3.3)

where M
CMO

is the CMO mass and κ is the electron scattering opacity. For SMBHs,

λ ∼ 1 (King & Pounds); for NCs, λ ∼ 0.05, a value related to the mass fraction of the

massive stars that contribute to the superwind (McLaughlin et al.).

As the shell moves outwards, the cooling time of the shocked wind material behind

the shell eventually becomes longer than the dynamical time of the wind. This region
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then cannot cool before more material/energy is injected (King 2003; McLaughlin et

al. 2006). As such, it expands and the shell becomes driven by the thermal pressure

in the shocked wind region. If the shell can reach a galactocentric radius where this

switch from momentum- to energy-driving occurs, then it may accelerate from that

point to escape the galaxy (King 2003).

In this chapter, we consider only the momentum-conserving phase of the feedback,

in the form of a spherical supershell moving outwards into a spherical, dark-matter

dominated protogalaxy, driven entirely by a steady wind from a central point mass

that may be thought of as either an SMBH or an NC. Our aim is primarily to explore

the effects of relaxing the assumption of isothermal dark matter distributions, so we

leave to one side all issues around any transition to energy-driving, additional feedback

from bulge-star formation, and evolution of the CMO mass.

The equation of motion that we consider for the shell is

d

dt
[Mg(r)v] = λ

LEdd

c
− GMg(r)

r2
[M

CMO
+M

DM
(r)] , (3.4)

where r is the instantaneous radius of the shell; v = dr/dt is the velocity of the shell;

M
DM

(r) is the dark matter mass inside radius r; and Mg(r) is the ambient gas mass

originally inside radius r (i.e., the mass that has been swept up into the shell when it

has radius r). The first term on the right-hand side of equation (3.4) is the wind thrust

acting on the shell, from equation (3.3). The second and third terms on the right-hand

side are the gravity of the CMO and the dark matter inside the shell (see also King

2005).

In general, we write Mg(r) = f0 h(r)MDM
(r), where f0 is a fiducial gas fraction

(≈ 0.2) and h(r) is a function that describes how the gas traces the dark matter;

when h(r) ≡ 1, the gas directly traces the dark matter. It is also convenient to define

characteristic mass and radius scales, Mσ and rσ, in terms of a characteristic velocity

dispersion σ0 in the dark matter halo:

Mσ ≡ f0κσ
4
0

/
(λπG2) ≃ 4.56× 108 M⊙ σ4

200 f0.2 λ
−1

rσ ≡ GMσ

/
σ2
0 ≃ 49.25 pc σ2

200 f0.2 λ
−1, (3.5)
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where σ200 = σ0/200 km s−1 and f0.2 = f0/0.2. Referring back to equation (3.1), the

unit Mσ is just the critical CMO mass found by King (2005).

Then, defining M̃ ≡ M/Mσ, r̃ ≡ r/rσ and ṽ ≡ v/σ0 equation (3.4) can be written

d

d r̃

[
h2M̃2

DM
ṽ 2( r̃ )

]
= 8M̃

CMO
h( r̃ )M̃

DM
( r̃ )

− 2h2( r̃ )M̃2
DM

( r̃ )

r̃ 2

[
M̃

CMO
+ M̃

DM
( r̃ )
]
. (3.6)

We aim to solve this equation for the velocity fields of momentum-driven shells, ṽ 2( r̃ ),

rather than r̃ (t) explicitly.

If the wind thrust is great enough, then equation (3.6) will have solutions that

allow shells to reach arbitrarily large r̃ with non-zero ṽ—the minimum requirement for

escape of the feedback. If the wind thrust is unable to overcome the combined gravity

of the CMO and dark matter then the shell will stall with ṽ 2 = 0 at some finite radius,

and subsequently collapse. Equation (3.6) cannot describe such a collapse, since that

would involve a shell with fixed mass rather than one that continually gathers mass

[Mg(r) = f0 h(r)MDM
(r)] as it moves outwards into a galaxy.

The form of equation (3.6) allows us to select any density profile for the host

galaxy dark matter and also allows for the segregation of gas and dark matter through

the function h(r). Throughout this chapter, we consider only the case that h(r) ≡ 1,

but we investigate various halo mass distributions.

3.3 The singular isothermal sphere

We look first at the dark matter density profile of a singular isothermal sphere, with

h( r̃ ) ≡ 1 so that gas traces the dark matter directly. Aspects of this case have been

considered previously by several authors (Silk & Rees 1998; Fabian 1999; King 2003,

2005, 2010a; McLaughlin et al. 2006; Murray et al. 2005). King (2005, 2010a) looked

at the behaviour of a shell that is far from an SMBH, so that the mass of dark matter

inside the shell dominates over the SMBH gravity. King (2005, 2010a) find that the



62

Figure 3.1: Velocity fields ṽ 2 versus r̃ for momentum-driven shells in a singular isother-
mal sphere with spatially constant gas fraction and M̃

CMO
= 0.3, 1.01 and 3. In each

case, the solution with C = [ r̃ ṽ(0) ]2 = 0 is shown by a long-dashed (magenta) line.
The physical ( ṽ 2 ≥ 0) parts of other solutions are shown as solid lines. All solutions

with C < 0 are unphysical at small radii, but if M̃
CMO

> 1 they will achieve ṽ 2 ≥ 0 at
large r̃, corresponding to launches. All solutions with C > 0 decelerate from small radii.
If one hits ṽ 2 = 0 at some point, then it generally becomes unphysical at larger radii,
and the shell it describes must stall and collapse. This can occur even if M̃

CMO
> 1.

Formally, solutions with C > 0 and M̃
CMO

> 1 that stall can have second physical
parts with ṽ 2 > 0 at still larger r̃. These parts of such solutions again correspond to
launches, though not of the same shells that stall at smaller radii.

shell can reach arbitrarily large radii only if the black hole has the critical mass given

in equation (3.1). However, as we now show, this condition does not actually guarantee

that a momentum-driven shell will be able to make it to large enough radii that the

CMO gravity becomes negligible compared to the dark matter.

The density of a singular isothermal sphere is given by

ρ
DM

(r) =
σ2
0

2πGr2
, (3.7)

so that

M
DM

(r) = 4π

∫ r

0

ρ
DM

(r′)r′2dr′ =
2σ2

0

G
r . (3.8)
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In terms of the characteristic mass and radius defined in equation (3.5), this means

M̃
DM

( r̃ ) = 2r̃ . (3.9)

Then, with h( r̃ ) ≡ 1, equation (3.6) for the motion of the shell becomes

d

d r̃

[
r̃ 2 ṽ 2

]
= 4M̃

CMO
r̃ − 2M̃

CMO
− 4r̃ , (3.10)

which has solution

ṽ 2 = 2M̃
CMO

− 2− 2M̃
CMO

r̃
+

C

r̃ 2
. (3.11)

The constant of integration, C, represents (the square of) the shell’s momentum,

[Mg(r) v(r)]
2 ∝ r̃ 2 ṽ 2, at r̃ = 0.

In the limit of very large radius, equation (3.11) shows that the shell approaches

a constant coasting speed:

ṽ 2 −→ 2M̃
CMO

− 2 . ( r̃ ≫ 1) (3.12)

Equations (3.11) and (3.12) are implicit in King (2005) (multiply his eq. [2] by ṘR and

integrate). Equation (3.12) specifically is only physical if ṽ 2 > 0. Thus, for the shell

to have any chance of escaping we must have M̃
CMO

> 1, which is exactly the result of

King (2005, 2010a).

In the limit of small radius, the last term of equation (3.11) for ṽ 2 becomes

dominant, and the initial momentum of the shell (i.e., C) determines the behaviour of

the shell.

If C ≤ 0, then ṽ 2 is large and negative at small radii, which is unphysical.

However, d ṽ 2/d r̃ > 0, so it may happen that ṽ 2 = 0 at some larger radius and

increases further outwards. The ṽ 2 ≥ 0 part of such a solution is physical, and the

point at which ṽ 2 = 0 can be considered as a “launch” radius for a (pre-existing) shell

initially at rest.

A launch solution has ṽ 2 = 0 and d ṽ 2/d r̃ ≥ 0 at some r̃launch. From equation

(3.11), this requires

r̃launch(M̃CMO
− 1) ≥ M̃

CMO

2
. (3.13)
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Thus, such solutions are only possible for M̃
CMO

> 1, and then only starting from radii

r̃launch ≥ M̃
CMO

2(M̃
CMO

− 1)
>

1

2
. (3.14)

As M̃
CMO

→ 1, r̃launch → ∞, so launches are not possible when M̃
CMO

= 1.

If C > 0, ṽ 2 is large and positive at small radii but d ṽ 2/d r̃ < 0, so the shell

decelerates but keeps moving out into the galaxy, unless and until ṽ 2 = 0 is reached at

some finite r̃. If this happens, then the shell stalls and is not able to escape. If ṽ 2 = 0

is never realised, then the shell is formally able to escape to large radii while purely

momentum-driven.

The stall radius, at which ṽ 2 = 0, is found from equation (3.11) as

r̃stall =
M̃

CMO
−
√
M̃2

CMO
− 2C(M̃

CMO
− 1)

2(M̃
CMO

− 1)
, (3.15)

where we have taken the root with the minus sign since this corresponds to the first

instance of ṽ 2 = 0 as the shell moves outwards. If r̃stall is positive and finite, the shell

cannot move out beyond this radius while purely momentum driven.

In the case that M̃
CMO

< 1, r̃stall > 0 for any C > 0. We can see this by noting

that when M̃
CMO

< 1 the discriminant in equation (3.15) is always positive and > M̃2
CMO

so that both the numerator and denominator are negative, leading to a positive r̃stall.

As there are no physical launch solutions and the shell always stalls when M̃
CMO

< 1,

no shell can ever escape while purely momentum-driven if M̃
CMO

< 1.

In the limit that M̃
CMO

→ 1, we find that

r̃stall =

M̃
CMO

− M̃
CMO

√
1− 2C(M̃

CMO
−1)

M̃2

CMO

2(M̃
CMO

− 1)
−→ C

2
, (3.16)

so r̃stall occurs at some positive and finite radius when C > 0 and, because r̃launch is

infinite (equation [3.14]), when M̃
CMO

= 1 exactly no shell can escape.

When r̃stall does not exist (formally, when equation [3.15] is complex), ṽ 2 = 0 is

never realised (for solutions with C > 0) and the shell is able to reach arbitrarily large
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radii while being purely momentum-driven. This requires

M̃2
CMO

− 2C(M̃
CMO

− 1) < 0 , (3.17)

which, for M̃
CMO

> 1 (as we know this is the only case where purely momentum-driven

escape is possible), means that escape requires

C >
M̃2

CMO

2(M̃
CMO

− 1)
. (3.18)

If the value of C does not satisfy this constraint, then the shell will stall before ever

reaching the radii where it could coast at the speed given by equation (3.12), even

if M̃
CMO

> 1. This is one reason why the critical CMO mass of King (2005, 2010a)

is a necessary but not sufficient condition for the escape of momentum-driven CMO

feedback from an isothermal sphere.

Figure 3.1 plots ṽ 2 versus r̃ from equation (3.11) for M̃
CMO

= 0.3, 1.01 and 3,

with a range of C values in each case. The long-dashed (magenta) curve in each panel

is the solution with C = 0 for that M̃
CMO

. The physical parts of solutions with C 6= 0

are shown as solid lines

The left-hand panel of Figure 3.1 shows solutions for M̃
CMO

= 0.3. No solution

can escape in this case. Those with C > 0 all stall at some finite radius (beyond which

ṽ 2 < 0), while those with C ≤ 0 never give physical values of ṽ 2 > 0.

Since we know that M̃
CMO

= 1 exactly also has no escape, the middle panel shows

solutions for M̃
CMO

= 1.01. In this case, only a few realistic solutions can “escape,” and

those that do tend to a coasting speed of just v ∼ 0.14σ0 at large radii (eq. [3.12]). In

order even to reach the radii where this applies, shells must have very large velocity at

small radii (C >∼ 51 from equation [3.18], which corresponds to v ∼ 0.2c at a distance

of 1 pc from the CMO if σ0 = 200 km s−1), or else be launched somehow from very

large radius (r̃launch > 50.5 from equation [3.14], which corresponds to r >∼ 2.5 kpc if

σ0 = 200 km s−1).

Finally, the right-hand panel of Figure 3.1 illustrates solutions for M̃
CMO

= 3.

Formally, all solutions now have a significant coasting speed of 2σ0 at large radii, but
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those with C < 9/4 (or v <∼ 15, 000 km s−1 at r = 1 pc when σ0 = 200 km s−1) still stall

before they are able to make it to large radius. Several of the solutions that escape are

those with a launch radius; these require r̃launch > 3/4 (r >∼ 40 pc for σ0 = 200 km s−1).

The escape speed from a truncated isothermal sphere is vesc >∼ 2σ0 at large radius.

Our results for a shell driven by a CMO of constant mass (i.e., a steady wind, equation

[3.12] in particular) show that to achieve this escape speed requires M̃
CMO

≥ 3. This

is another reason why the condition of King (2005, 2010a), i.e., simply M̃
CMO

> 1, is

necessary but not sufficient for the escape of a purely momentum-driven shell from

an isothermal sphere. It is also, in essence, the same as the objection raised by Silk

& Nusser (2010) against explanations of observed M
CMO

–σ relations as the result of

outflows driven by the central objects alone. However, these and all other prior results

have come from modelling protogalaxies only as singular isothermal spheres. We look

now at the effect of allowing more realistic descriptions of dark-matter (and ambient

gas) density profiles.

3.4 Non-isothermal dark matter haloes

3.4.1 General analysis

Simulated dark matter haloes have density profiles that are shallower than that of an

isothermal sphere at small radii and steeper than isothermal at large radii. Dubinski

& Carlberg (1991) originally fitted haloes with the profile of Hernquist (1990), which

has ρ
DM

∝ r−1 at small radii and ρ
DM

∝ r−4 at large radii. The dark-matter profile of

Navarro, Frenk & White (1996, 1997) also has ρ
DM

∝ r−1 at small radii, but ρ
DM

∝ r−3

at large radii. Dehnen & McLaughlin (2005) develop a family of physically motivated

halo models that, with ρ
DM

(r) slightly shallower than r−1 at small radii and slightly

steeper than r−3 at large radii, match current simulations at least as well as any other

fitting function.

The circular speed corresponding to all such density profiles, V 2
c (r) = GM(r)/r,
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increases outwards from the centre, has a well-defined peak, and then declines towards

larger radii. This suggests the peak of the circular speed curve as a natural point of

reference for velocities, radii, and masses in realistically non-isothermal haloes.

We denote the location of the peak in Vc(r) by rpk and the value Vc(rpk) ≡ Vc,pk,

and we define

σ2
0 ≡ V 2

c,pk

/
2 (3.19)

as a characteristic velocity dispersion in order to specify unique mass and radius units,

Mσ and rσ, as in equation (3.5) above. Then, recalling that M̃ ≡ M/Mσ, r̃ ≡ r/rσ,

and ṽ ≡ v/σ0, so that Ṽ 2
c ( r̃ ) = M̃

DM
( r̃ )/ r̃, we have

Ṽ 2
c,pk = 2 (3.20)

and

M̃
DM

(r̃pk) ≡ M̃pk = 2 r̃pk . (3.21)

We now refer all radii to the peak of the circular speed curve, defining x ≡ r/rpk;

and we introduce a dimensionless mass profile, m(x), such that

M̃
DM

(x) ≡ M̃pk m(x) . (3.22)

By construction, then,

M̃
DM

(1) ≡ M̃pk =⇒ m(1) = 1 . (3.23)

Moreover, Ṽ 2
c = M̃

DM
( r̃ )/ r̃ = 2m(x)/x, and thus,

(
dṼ 2

c

dx

)

x=1

= 0 =⇒
(
d lnm

d ln x

)

x=1

= 1 . (3.24)

These generic properties of m(x) are important later in our analysis (see especially

Appendix 3.A).

With these definitions, equation (3.6) for the motion of a momentum-driven shell

becomes

d

dx

[
h2 m2 ṽ 2(x)

]
= 4M̃

CMO
h(x)m(x)
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− 4
M̃

CMO

M̃pk

h2(x)m2(x)

x2
− 4

h2(x)m3(x)

x2
. (3.25)

The formal solution of this, when h(x) ≡ 1 for protogalactic gas that traces the dark

matter directly, is

m2(x) ṽ 2(x) = C + 4M̃
CMO

∫ x

0

m(u)du

− 4
M̃

CMO

M̃pk

∫ x

0

m2(u)

u2
du− 4

∫ x

0

m3(u)

u2
du , (3.26)

where C ≡ m2(0) ṽ 2(0) is again a constant of integration representing (the square of)

the momentum of the shell at the origin.

3.4.1.1 Velocity fields at small and large radii

In the limit of small x, we can assume to leading order that

m(x) −→ Axp , (x ≪ 1, p > 1) (3.27)

where p > 1 because we consider only halo density profiles that are shallower than

isothermal at the centre. Equation (3.26) then gives

ṽ 2 −→ C

A2
x−2p , (x ≪ 1, C 6= 0) (3.28)

so, as with the singular isothermal sphere, the integration constant, or (the square of)

the momentum of the shell at r = 0, determines the behaviour of the shell.

If C > 0, then ṽ 2 > 0 and d ṽ 2/dx < 0 at small radii, and the shell decelerates

outwards unless and until ṽ 2 = 0, at which point the shell stalls and then collapses.

If C < 0, then ṽ 2 < 0 at small radii, which is unphysical; but d ṽ 2/dx > 0, so ṽ 2

may become positive at some non-zero “launch” radius.

When C = 0, from equation (3.26),

ṽ 2 −→ 4M̃
CMO

A

x1−p

p+ 1
− 4M̃

CMO

M̃pk

x−1

2p− 1
,
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(x ≪ 1, C = 0) (3.29)

and the behaviour of the shell depends on the specific values of A and p, which in

turn depend upon the specific choice of dark matter density profile. The solution with

C = 0 corresponds to a shell having zero momentum at x = 0 and is also the value

of C that separates initially decelerating solutions that either escape or stall (C > 0),

from solutions that are launched from rest at a non-zero radius (C < 0).

Since we consider only haloes that are steeper than isothermal at large radii, we

must have that d lnm/d ln x < 1 for x > 1. At large radius, the second term from the

right-hand side of equation (3.26) then dominates, so that

ṽ 2 −→ 4M̃
CMO

m2(x)

∫ x

0

m(u)du . (x ≫ 1) (3.30)

The velocity field in the limit x → ∞ is therefore completely independent of initial

conditions (i.e., no C dependence). To leading order, ṽ 2 → O(x1−q) with q < 1.

Thus, if the shell can make it to large radii at all in a non-isothermal halo it must

eventually accelerate. This is in contrast to the singular isothermal sphere, where a

shell at very large radius can only coast at a constant speed. It is the steeper-than-

isothermal gradient of ρ
DM

(r) at large radii in realistic dark matter haloes that leads

to the acceleration.

3.4.1.2 Condition for the escape of a particular shell

Any momentum-driven shell with a velocity field given by equation (3.26), and with

C > 0, decelerates as it moves outwards from small radii according to equation (3.28).

The same is true of shells with C = 0, if the small-x value of ṽ 2 from equation (3.29) is

positive. Some shells with C < 0 and relatively small launch radii can also have ṽ 2 > 0

and d ṽ 2/dx < 0 over some range of radius (see below). Meanwhile, any solution to

equation (3.25) [with h(x) ≡ 1] accelerates at large radii according to equation (3.30).

Therefore, there is a large class of solutions that go through local minima in ṽ 2 at

intermediate radii. We want to know the CMO mass required for a particular shell in

this class to escape a given galaxy. (The only solutions not in this class are some, with
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C < 0, which are launched from large enough radii that they only accelerate outwards,

and so always escape.)

If a local minimum in ṽ 2 exists for a particular solution, we denote the radius

where it occurs by xmin, and the value of the minimum by ṽ 2
min. Putting h(x) ≡ 1 in

equation (3.25) and setting d ṽ 2/dx = 0 at x = xmin, we then obtain

ṽ 2
min

d lnm2(xmin)

d ln xmin

= 4M̃
CMO

xmin

m(xmin)

− 4
M̃

CMO

M̃pk

1

xmin

− 4
m(xmin)

xmin

. (3.31)

If a shell with a given initial momentum (value of C) is to escape a dark-matter halo

with given m(x), M̃pk, and σ0 ≡ Vc,pk/
√
2, then we must have ṽ 2

min ≥ 0 so the shell

does not stall (i.e., cross ṽ 2 = 0) before it can start accelerating outwards. We refer to

the case that ṽ 2
min = 0 exactly as the critical case, and we denote the values of M̃

CMO

and xmin in this case by M̃crit and xcrit. Then, from equation (3.31),

M̃crit =
m2(xcrit)

x2
crit

[
1− 1

M̃pk

m(xcrit)

x2
crit

]−1

. (3.32)

Also, setting x = xcrit, ṽ 2 = 0, and M̃
CMO

= M̃crit in equation (3.26), and using

equation (3.32) to eliminate M̃pk, yields

M̃crit =

∫ xcrit

0
[m(xcrit)−m(u)] [m(u)/u]2 du + C/4∫ xcrit

0
[x2

crit/m(xcrit)− u2/m(u)] [m(u)/u]2 du
.

(3.33)

Equating the right-hand sides of equation (3.32) and (3.33) allows us to solve for

xcrit, and then M̃crit, in terms of C and the dark-matter halo parameters. The necessary

condition for the escape of a purely momentum-driven shell with a particular value of

C is just M̃
CMO

≥ M̃crit.

Equation (3.32) can give a sensible (positive) value for M̃crit only for shell-and-

dark matter combinations such that M̃pk > m(xcrit)/x
2
crit. This is not a problem in

general. M̃pk is the dark matter mass inside the peak of the dark-matter circular-speed
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curve, in units of Mσ ≃ 4.6 × 108 M⊙ σ4
200 (equation [3.5]), and so will be a large

number in real galaxies. Meanwhile, the function m(x)/x2 is always equal to 1 at

x = 1 (equation [3.23]), so that having M̃pk > m(xcrit)/x
2
crit at some reasonable value

of xcrit is usually assured.

The density profiles of realistic dark-matter halo models are such that d lnm/d ln x <

2 in the main, the only exception being in the very innermost regions of some models

(see below). Thus, for most values of xcrit, the integral in the denominator of equation

(3.33) is positive; while the integral in the numerator is always positive. Therefore,

this equation implies M̃crit > 0 for any shell with C ≥ 0. Launch solutions with mod-

est C < 0 can also have M̃crit > 0, so long as the numerator in equation (3.33) is

still positive. If C is too large and negative, then formally M̃crit < 0, which means

that such solutions do not actually go through minima in ṽ 2. These correspond to

shells, launched from large radii, which accelerate monotonically outwards to escape

regardless of the CMO mass.

Below, we will find the necessary M̃crit for shells that have C = 0 (i.e., zero mo-

mentum at zero radius) in some specific dark-matter haloes. We emphasize, however,

that this is not the only physically meaningful solution. Solutions with C > 0 would

describe shells that receive an impulse at the centre. Solutions with C < 0 could be

of interest for shells that stall at some radius inside a galaxy during an early phase of

CMO growth, and are later “re-launched” by feedback from the CMO when it is more

massive.

3.4.1.3 Sufficient condition for the escape of any shell

Momentum-driven shells with different initial conditions (C values) have different val-

ues of xcrit and M̃crit, given by equations (3.32) and (3.33). To compare these values

between different shell solutions, we differentiate equation (3.32) with respect to xcrit,

for a fixed dark matter mass M̃pk:

dM̃crit

dxcrit

=
2m2(xcrit) xcrit[

x2
crit −m(xcrit)/M̃pk

]2 ×
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{[
d lnm(xcrit)

d ln xcrit

− 1

]
− 1

2 M̃pk

1

xcrit

dm(xcrit)

dxcrit

}
. (3.34)

By definition, (d lnm/d ln x − 1) = d lnV 2
c /d ln x, which is positive at x < 1 and

negative for x > 1 (recall equation [3.24]). Hence, dM̃crit/dxcrit > 0 among shells with

sufficiently small xcrit, and dM̃crit/dxcrit < 0 among shells with sufficiently large xcrit.

Setting dM̃crit/dxcrit = 0 for a given dark-matter m(x) and M̃pk therefore identifies the

momentum-driven shell that has the largest critical CMO mass required for escape,

M̃max
crit .

To find M̃max
crit , we first solve the equation dM̃crit/dxcrit = 0 for the radius xc,max

at which the shell with exactly this critical mass begins to accelerate,

d lnm

d ln x

∣∣∣∣
x=xc,max

= 1 +
1

2 M̃pk

1

xc,max

dm

dx

∣∣∣∣
x=xc,max

, (3.35)

and then use this value in equation (3.32):

M̃max
crit =

m2(xc,max)

x2
c,max

[
1− 1

M̃pk

m(xc,max)

x2
c,max

]−1

. (3.36)

The sufficient condition for the escape of any momentum-driven shell is simply

M̃
CMO

≥ M̃max
crit . This trivially includes any launch solutions of the type, mentioned

above, that do not go through local minima in ṽ 2 but only ever accelerate outwards.

We analyse equations (3.35) and (3.36) further in Appendix 3.A. There we show

that, in the observationally relevant limit of large halo mass M̃pk,

xc,max −→ 1 +
1

2 M̃pk

(
d2m

dx2

∣∣∣∣
x=1

)−1

M̃max
crit −→ 1 +

1

M̃pk

(M̃pk ≫ 1) (3.37)

to first order in (1/M̃pk). That is, in very massive, non-isothermal dark matter haloes,

the CMO mass that suffices to ensure the escape of any momentum-driven shell tends

to the value M̃max
crit → 1; and the radius where the slowest-moving shell driven by a

CMO with this mass begins to accelerate tends to xc,max → 1, which is the peak of the

dark-matter circular-speed curve.
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3.4.1.4 M–σ and M–Vc relations

The dimensional CMO mass that guarantees the escape of any momentum-driven shell

from a non-isothermal halo follows from recalling the definition of the mass unit Mσ

(equation [3.5]) and our identification of a characteristic velocity dispersion in terms of

peak circular speed in the halo (equation [3.19]). For very massive haloes in particular

(Mpk ≫ Mσ), equation (3.37) gives approximately

Mmax
crit −→ Mσ ≡ f0 κ

λπ G2
σ4
0 ≡ f0 κ

λπ G2

V 4
c,pk

4
. (3.38)

Numerically,

Mmax
crit −→ 1.14× 108 M⊙

(
Vc,pk

200 km s−1

)4

f0.2 λ
−1 , (3.39)

in which λ ∼ 1 describes CMOs that are supermassive black holes, while λ ∼ 0.05

applies for nuclear star clusters (King & Pounds 2003; McLaughlin et al. 2006).

This result reduces to the M–σ relation obtained by King (2005) for singular

isothermal spheres, in which Vc =
√
2σ0 is constant with radius. However, there are

significant distinctions between previous work and our new analysis.

First, as we have emphasized, Mmax
crit corresponds in the isothermal case to a CMO

mass that is necessary but not sufficient for momentum-driven feedback to break out

of a galaxy; while in the non-isothermal case it is a sufficient but not always necessary

CMO mass. The CMO masses required for the escape of most momentum-driven shells

in a given dark-matter halo (as obtained from equations [3.32] and [3.33] above) will

be smaller than Mmax
crit . On these grounds alone, theoretical Mmax

crit –σ0 or Mmax
crit –Vc,pk

relations from our work are expected to be something of upper limits to observed M–σ

or M–Vc relations.

Second, our general treatment shows that the value of Mmax
crit in equation (3.38)

or (3.39) applies only in the limit of very large dark-matter halo mass, Mpk ≫ Mσ.

The exact value of the sufficient CMO mass Mmax
crit for a specific value of Mpk must be

obtained from equations (3.35) and (3.36).

Third, our results are the first to incorporate explicitly and rigorously the peak

value of a dark-matter circular-speed curve (and associated velocity dispersion), which
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is a well-defined quantity in any realistic non-isothermal halo. This provides a new

basis from which to begin addressing observational claims of correlations between CMO

masses and dark-matter halo properties (e.g., Volonteri et al. 2011; Ferrarese 2002).

In the rest of this section, we illustrate the general results we have obtained, by

looking in detail at their application to three specific dark-matter halo models.

3.4.2 Hernquist model haloes

The first non-isothermal density profile we consider is that of Hernquist (1990). This

model has been used to fit dark-matter haloes from N-body simulations (e.g., Dubin-

ski & Carlberg 1991) and also has the advantage that, with it, our problem remains

analytically tractable.

The density of a Hernquist sphere is given by

ρ
DM

(r) =
Mtot

2 π r30

(
r

r0

)−1(
1 +

r

r0

)−3

, (3.40)

where r0 is a scale radius and Mtot is the total halo mass. In terms of the characteristic

mass and radius of equation (3.5), the mass enclosed inside radius r̃ is

M̃
DM

( r̃ ) = M̃tot

(
r̃/r̃0

1 + r̃/r̃0

)2

. (3.41)

The circular-speed curve for this model, Ṽ 2
c = M̃

DM
( r̃ )/ r̃, peaks at r̃pk = r̃0, so that

the mass inside this radius is

M̃
DM

( r̃pk) ≡ M̃pk =
M̃tot

4
. (3.42)

Defining x ≡ r/rpk = r/r0, we therefore write

M̃
DM

(x) = M̃pk
4x2

(1 + x)2
≡ M̃pk m(x) . (3.43)

With the above definitions and h(x) ≡ 1 again, equation (3.25) for the motion of
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a momentum-driven shell has the general solution

ṽ 2 = M̃
CMO

(
1 + x

x

)4 [
1 + x− 1

1 + x
− 2 ln(1 + x)

]

− 4

3

M̃
CMO

M̃pk

1 + x

x
− 16

5

x

1 + x
+

C

16

(
1 + x

x

)4

. (3.44)

In the limit that x → 0, m(x) → 4x2, and from equation (3.28) we have

ṽ 2 −→ C

16
x−4 , (x ≪ 1, C 6= 0) (3.45)

or, if C = 0, equation (3.29) instead gives

ṽ 2 −→
[
M̃

CMO

3
− 4

3

M̃
CMO

M̃pk

]
x−1 . (x ≪ 1, C = 0) (3.46)

Thus, for halo masses M̃pk > 4, all shell solutions with C ≥ 0 decelerate from large,

positive ṽ 2 at small radii.

In the large-x limit, m(x) → 4 and equation (3.30) gives

ṽ 2 −→ M̃
CMO

x . (x ≫ 1) (3.47)

All solutions tend to the same form at large radii, corresponding to acceleration

outwards that is independent of C, as we expect from the general discussion in §3.4.1
The solid lines in Figure 3.2 show, as functions of M̃pk, the sufficient CMO mass,

M̃max
crit , that provides for the escape of any momentum-driven shell from a Hernquist

halo (upper panel); and the radius, xc,max at which the slowest-moving shell begins to

accelerate towards larger radii (lower panel). These quantities have been calculated

from equations (3.35) and (3.36), with m(x) defined in equation (3.43). As expected

on general grounds (see equation [3.37]; also Appendix 3.A), M̃max
crit → 1 and xc,max → 1

(denoting the peak of the circular-speed curve in the halo) for large M̃pk ≫ 1.

The dashed lines in Figure 3.2 show the necessary CMO mass, M̃crit, that allows

for the escape from a Hernquist halo of shells with C = 0 [m2 ṽ 2 → 0 as x → 0]

specifically; and the radius, xcrit, at which this particular shell begins to accelerate

outwards. In this case, M̃crit and xcrit have been calculated from equations (3.32) and
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Figure 3.2: Solid lines show, as functions of M̃pk, the sufficient critical CMO mass,

M̃max
crit , that allows the escape of any momentum-driven shell from a Hernquist halo

(upper panel); and the radius, xc,max, at which the slowest-moving shell driven by such
a CMO begins to accelerate to escape (lower panel). Dashed lines show the necessary

M̃crit and associated xcrit for the escape of the particular solution with C = 0. We show
results only for halo masses M̃pk > 4, above which xcrit and xc,max are single-valued

functions of M̃pk.

(3.33), with C set to zero and m(x) taken from equation (3.43). Now, the necessary

M̃crit → 0.93 in the limit M̃pk → ∞ (versus the sufficient M̃max
crit → 1), and the

acceleration begins at xcrit → 1.46 (just beyond the corresponding radius for M̃
CMO

=

M̃max
crit ).

Parameters that give a reasonable, model-independent summary of the circular-

speed curve of the Milky Way dark-matter halo are rpk ≈ 50 kpc and Vc,pk ≈
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Figure 3.3: Velocity fields ṽ 2(x) for M̃
CMO

= 0.3, 1, 3 in a Hernquist dark-matter halo

with spatially constant gas fraction and dimensionless M̃pk = 4000. This corresponds
to a roughly Milky Way-sized halo with rpk ≈ 50 kpc, Mpk ≈ 4.7 × 1011 M⊙, and
σ0 ≈ 140 km s−1. The top axis gives the radius in units of rσ ≈ 25 pc σ2

140 f0.2 λ
−1,

where f0.2 = f0/0.2. The magenta curve represents the solution with C = 0 for each
value of CMO mass illustrated. As in Figure 3.1, the physical part(s) of each solution
are shown by the solid lines.

200 km s−1 (see, e.g., Dehnen, McLaughlin & Sachania 2006; McMillan 2011). Thus,

Mpk = rpkV
2
c,pk/G ≈ 4.7 × 1011 M⊙; σ0 ≡ Vc,pk/

√
2 ≈ 140 km s−1; and Mσ ≈

1.1× 108 M⊙ f0.2 λ
−1, so that M̃pk ≈ 4300.

Figure 3.3 shows the solutions from equation (3.44) for M̃
CMO

= 0.3, 1 and 3 in a

Hernquist halo with M̃pk = 4000. In each panel the dashed (magenta) curve shows the

solution with C = 0. As in Figure 3.1, the physical parts of each solution (i.e., those

with ṽ 2 ≥ 0) are shown as solid lines.

The left panel shows solutions with M̃
CMO

= 0.3. Most of these represent shells

that stall and cannot escape. Unlike the singular isothermal sphere however, it is

possible to have launch solutions when M̃
CMO

< 1. Solutions with C < 0 but very close

to zero are launched from inside r̃pk and initially accelerate, then reach a maximum
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velocity and decelerate. When M̃
CMO

= 0.3, these solutions all stall at a finite radius.

Solutions launched from outside r̃pk either correspond to large and negative C or are

the formal continuations of solutions that stall at smaller radii, go into the unphysical

ṽ 2 < 0 regime, but then later recover to ṽ 2 > 0. All launch solutions of this type

accelerate monotonically towards larger radii and therefore escape; but, for this value

of M̃
CMO

, they all start from infeasibly large launch radii of order x ∼ 10 (i.e., r ∼
10 rpk ∼ 500 kpc) or more. For large enough positive values of C it is possible for a shell

to escape without stalling (or being launched from a large radius) when M̃
CMO

= 0.3,

although this is again a formal result that is not physically plausible. The uppermost

curve in the left panel of Figure 3.3 shows one solution that evidently only requires

M̃crit < 0.3 to escape this halo; but it has C >∼ 10, which, given that rpk ≈ 50 kpc and

σ0 ≈ 140 km s−1, corresponds to a shell velocity of ∼106 c at a radius of 1 pc.

The middle panel of Figure 3.3 shows solutions for M̃
CMO

= 1. All of the solutions

shown are able to escape the halo. However, from equation (3.37), we know that, with

M̃pk = 4000, the CMO mass sufficient to ensure escape is actually M̃max
CMO

≈ 1.00025.

Thus, there are some shells in a (narrow) range of C values very close to 0 that stall

rather than escape; these are simply not shown here. Several solutions are shown that

have C < 0 but close to 0. These are launched from inside the peak of the circular-speed

curve and, though they come very close to stalling, those shown manage eventually to

accelerate and escape to large radii. Several launch solutions with large and negative

C are also shown, all starting from radii r > rpk and all accelerating to escape. The

solution with C = 0 exactly is seen to escape (as do all solutions above it with C > 0),

which is expected since our calculations above (see Figure 3.2) gave M̃crit ≃ 0.93 for

this solution.

The right-hand panel of Figure 3.3 shows velocity-field solutions for M̃
CMO

= 3.

This is well above the value of the sufficient M̃max
crit given by equations (3.35) and (3.36)

above (or, approximately, equation [3.37]). As a result, and in contrast to the singular

isothermal sphere, all shells are able to escape and there are no stalls, regardless of the

initial shell momentum.
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3.4.3 NFW model haloes

We next consider the dark matter density profile of Navarro, Frenk & White (1996,

1997; NFW), which has

ρ
DM

(r) = 4 ρs

(
r

rs

)−1(
1 +

r

rs

)−2

, (3.48)

where rs is a scale radius and ρs is the density at rs. From this,

M
DM

(r) = 16πr3sρs

[
ln(1 + r/rs)−

r/rs
1 + r/rs

]
, (3.49)

and it follows that the circular-speed curve, V 2
c = GM

DM
(r)/r, peaks at R ≡ rpk/rs ≃

2.16258. Thus, with x ≡ r/rpk we have

M̃
DM

(x = 1) ≡ M̃pk = 16πr3sρs

[
ln(1 +R)− R

1 +R

]
, (3.50)

and

M̃
DM

(x) = M̃pk
ln(1 +Rx)−Rx/(1 +Rx)

ln(1 +R)−R/(1 +R)
≡ M̃pkm(x) .

(3.51)

At small radii, then, the dimensionless mass profile tends to

m(x) −→ R2x2

2

[
ln(1 +R)− R

1 +R

]−1

, (x ≪ 1) (3.52)

implying for the velocity field, from equation (3.28) for C 6= 0,

ṽ 2 −→ 4C

R4

[
ln(1 +R)− R

1 +R

]2
x−4 , (x ≪ 1, C 6= 0) (3.53)

or from equation (3.29) for C = 0,

ṽ 2 −→
(
8

3

[
ln(1 +R)− R

1 +R

]
M̃

CMO

R4
− 4

3

M̃
CMO

M̃pk

)
x−1 . (x ≪ 1, C = 0)

(3.54)

For M̃pk
>∼ 5.001, ṽ 2 tends to a positive value in the limit of small x for C = 0, and

then all shells with C ≥ 0 decelerate from large, positive velocities at small radii.
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Figure 3.4: Solid lines show, as functions of M̃pk, the CMO mass M̃max
crit , which is

sufficient for the escape of any momentum-driven shell from an NFW halo (upper
panel); and the radius xc,max, at which the slowest-moving shell begins to accelerate

to escape (lower panel). Dashed lines show the necessary values of M̃crit, and the
associated radii xcrit, for the escape of the particular solution with C = 0. Results are
shown for M̃pk

>∼ 5, above which xcrit and xc,max are single-valued functions of M̃pk.

In the limit that x → ∞, the NFW mass profile diverges logarithmically,

m(x) −→
[
ln(1 +R)− R

(1 +R)

]−1

ln(Rx) (x ≫ 1) (3.55)

and, from equation (3.30), all shell velocities tend to

ṽ 2 −→ 4M̃
CMO

[ln(Rx)]2

[
ln(1 +R)− R

1 +R

]
[x ln(Rx)− x] . (x ≫ 1) (3.56)

The solid lines in Figure 3.4 show, as functions of M̃pk, the sufficient CMO mass
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that allows for the escape of any momentum-driven shell from an NFW halo (upper

panel); and the radius, xc,max, at which the slowest-moving shell begins to accelerate

(lower panel). These are again calculated from equations (3.35) and (3.36), now with

m(x) given by equation (3.51). In the limit of large M̃pk, M̃
max
crit → 1 and xc,max → 1

again, just as found for the Hernquist halo in Figure 3.2 and as expected in general

from equation (3.37) and Appendix 3.A.

The dashed lines in Figure 3.4 show the critical CMO mass that is necessary for

the escape from NFW haloes of shells with C = 0 specifically; and the radii, xcrit at

which these particular shells begin to accelerate for a given M̃pk. In this case, M̃crit

and xcrit are calculated from equations (3.32) and (3.33). In the limit of large M̃pk, we

have M̃crit → 0.94, again slightly smaller than the CMO mass sufficient to ensure the

escape of any shell. The acceleration begins at xcrit → 1.50, again somewhat larger

than xc,max in the sufficient case.

Givenm(x) in equation (3.51), equation (3.26) for the velocity fields of momentum-

driven shells in NFW haloes must be evaluated numerically. Figure 3.5 shows several of

the solutions for dimensionless CMOmasses M̃
CMO

= 0.3, 1 and 3, and with M̃pk = 4000

for a Milky Way-sized halo (see §3.4.2). In each panel of this figure, the dashed (ma-

genta) line shows the solution with C = 0. As in Figures 3.1 and 3.3, the physical

parts of solutions with C 6= 0 are shown by solid lines.

Figure 3.5 is qualitatively similar to Figure 3.3 for shells in Hernquist (1990)

haloes. The left-hand panel, which plots solutions for a modest M̃
CMO

= 0.3, shows

all physically plausible shells with C ≥ 0 stalling and unable to escape the halo. (The

one such solution shown that is able to escape, given this CMO mass, has C >∼ 20,

corresponding to v ∼ 106 c at r = 1 pc.) Solutions with C < 0 include those that

are launched from within r < rpk, which first accelerate but then decelerate and stall;

and those launched from outside r > rpk, which accelerate monotonically outwards and

always escape, but which all start from large r >∼ 500 kpc.

The middle panel shows solutions for M̃
CMO

= 1. All of those shown escape,

including those with C < 0 but near zero, which are launched from r < rpk. There are

solutions within a narrow range of C values near zero that cannot escape. These are
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Figure 3.5: Velocity fields ṽ 2(x) for M̃
CMO

= 0.3, 1 and 3 in an NFW halo with

spatially constant gas fraction and M̃pk = 4000. Radius is shown in units of rσ ≈
25 pc σ2

140 f0.2 λ
−1 along the top axis, and in units of rpk ≈ 50 kpc along the bottom

axis. The dashed, magenta curve in each panel represents the solution with C = 0 for
that value of M̃

CMO
. The physical part(s) of all other solutions are shown as solid lines.

not shown, but they exist because, given that M̃pk = 4000 here, the critical CMO mass

required for the escape of all possible solutions is M̃max
crit ≈ 1.00025 > 1, according to

equation (3.37). The solution with C = 0 is able to escape, as the CMO mass necessary

to expel it from such a massive halo is M̃crit ≃ 0.94 < 1 (see Figure 3.4).

The right-hand panel of Figure 3.5 confirms again that all shells escape easily

when M̃
CMO

> M̃max
crit .

3.4.4 Dehnen & McLaughlin model haloes

Finally, we consider a dark-matter density profile from the family developed by Dehnen

& McLaughlin (2005). Their models are analytical solutions to the spherical Jeans

equation, which have “pseudo” phase-space density profiles, ρ(r)/σ3(r), that are power



83

laws in radius and closely match those found in cosmological N -body simulations. They

also allow for radially varying anisotropy in the dark-matter velocity dispersion; and

they fit the spherically averaged density profiles of simulated haloes as well as, or better

than, any other fitting function proposed to date.

The halo model of Dehnen & McLaughlin that is isotropic at its centre has the

density distribution

ρ
DM

(r) =
5

9

Mtot

π r30

(
r

r0

)−7/9
[
1 +

(
r

r0

)4/9
]−6

, (3.57)

where r0 is a scale radius and Mtot is the total halo mass. This gives the enclosed mass

profile,

M
DM

(r) = Mtot

[
(r/r0)

4/9

1 + (r/r0)4/9

]5
. (3.58)

The circular-speed curve in this case peaks at rpk/r0 = (11/9)9/4, so now we set x ≡
r̃/r̃pk = (9/11)9/4(r/r0). Then,

M̃
DM

(x = 1) ≡ M̃pk =

(
11

20

)5

M̃tot (3.59)

and

M̃
DM

(x) = M̃pk

(
20

11

)5
(

11
9
x4/9

1 + 11
9
x4/9

)5

≡ M̃pk m(x) . (3.60)

When x is small, m(x) → (20/9)5x20/9, and from equation (3.28) the momentum-driven

shell velocity field for C 6= 0 tends to

ṽ 2 −→ C

(
9

20

)10

x−40/9 ; (x ≪ 1, C 6= 0) (3.61)

or, from equation (3.29) if C = 0,

ṽ 2 −→ 36

29

(
9

20

)5

M̃
CMO

x−11/9 . (x ≪ 1, C = 0) (3.62)

When x is large, m(x) → (20/11)5 and equation (3.30) gives

ṽ 2 −→ 4

(
11

20

)5

M̃
CMO

x . (x ≫ 1) (3.63)
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Figure 3.6: Solid lines show, as functions of M̃pk, the CMO mass, M̃max
crit , that is suffi-

cient to ensure the escape of any momentum-driven shell from a Dehnen & McLaughlin
(2005) halo (upper panel); and the radius, xc,max, at which the slowest-moving shell

begins to accelerate to escape (lower panel). Dashed lines show the necessary M̃crit,
and the associated xcrit, for the escape of shells with C = 0 specifically. Results are
shown for M̃pk

>∼ 10, since then xcrit and xc,max are single-valued functions of M̃pk.

The solid lines in Figure 3.6 show, as functions of M̃pk, the CMO mass M̃max
crit ,

which is sufficient for the escape of any momentum-driven shell from this halo (upper

panel); and the radius xc,max at which the slowest-moving shell driven by a CMO with

the sufficient mass begins to accelerate outwards (lower panel). These are calculated

as usual from equations (3.35) and (3.36), with m(x) in equation (3.60). As for the

other haloes we have looked at, and as will always be true in general, M̃max
crit → 1 and

xc,max → 1 for M̃pk ≫ 1.
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Figure 3.7: Velocity fields ṽ 2(x) for CMO masses M̃
CMO

= 0.3, 1 and 3 in a Dehnen &

McLaughlin (2005) dark-matter halo with spatially constant gas fraction and M̃pk =
4000. Radius is in units of rσ ≈ 25 pc σ2

140 f0.2 λ
−1 along the top axis, and in units of

rpk ≈ 50 kpc (for a Milky Way-sized halo) along the bottom axis. The solution with
C = 0 is shown by a dashed (magenta) line in each panel. As in Figures 3.1, 3.3, and
3.5, the physical part(s) of all other solutions are shown as solid lines.

The dashed lines in Figure 3.6 show the necessary CMO mass M̃crit, and the

radius xcrit at which acceleration begins, for the escape of shells with C = 0, calculated

from equations (3.32) and (3.33). In the limit of large M̃pk, M̃crit → 0.96 in this case,

and xcrit → 1.53.

With m(x) in equation (3.60), the solutions to equation (3.25) with h(x) ≡ 1

must again be obtained numerically. Figure 3.7 shows solutions for several shells in a

Dehnen & McLaughlin (2005) halo with M̃pk = 4000 (again as in §3.4.2), for each of

the CMO masses M̃
CMO

= 0.3, 1 and 3. The solution with C = 0 in each case is shown

by a dashed (magenta) line, and the physical part(s) of C 6= 0 solutions are drawn as

solid lines.

Figure 3.7 is similar in all respects to Figures 3.3 and 3.5 for the other non-

isothermal halo models we have examined. The left-hand panel of the figure shows
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again that with M̃
CMO

< 1, all physically interesting solutions correspond to shells

that stall. Launch solutions with C < 0 that escape must start from impractically

large r >∼ 500 kpc. Solutions with C > 0 require C >∼ 30 to escape, which implies

unphysical shell speeds at small radii (i.e., v >∼ 106 c at 1 pc). The middle panel of

Figure 3.7 confirms that M̃
CMO

= 1 is almost sufficient for the escape of all momentum-

driven shells; there are a few solutions with a narrow range of C values near C = 0

that cannot escape (because in fact M̃max
crit ≈ 1 + 1/M̃pk = 1.00025 here), but which

are not shown. The right-hand panel finally illustrates again how any shell, with any

initial conditions, can escape the halo when M̃
CMO

exceeds the sufficient M̃max
crit given

by equations (3.35) and (3.36) in general.

3.5 Summary and discussion

We have analyzed the motion of momentum-conserving supershells driven into isother-

mal and non-isothermal protogalaxies by steady (time-independent) winds from central

massive objects (CMOs: either supermassive black holes or nuclear star clusters). Our

main goal has been to find the critical CMO mass that can drive a supershell to es-

cape a galaxy, essentially clearing it of ambient gas and stopping further CMO growth.

Having such a critical CMO mass as a function of a characteristic dark-matter halo

velocity dispersion then gives a theoretical M
CMO

–σ relation.

We assumed that the CMO wind thrust is proportional to M
CMO

(through the

Eddington luminosity: King & Pounds 2003; McLaughlin et al. 2006) to obtain a

general equation of motion for momentum-driven shells (equation [3.6] or [3.25]) that

allows for any dark-matter halo mass profile and also for the segregation of gas and

dark matter. We solved this equation for v2(r), the (square of the) shell velocity as

a function of radius in the CMO’s host galaxy, for a number of different dark-matter

density profiles, though only ever considering the case that gas traces dark matter

directly. This analysis extends and generalizes others in the literature, which have only

considered dark-matter haloes described as singular isothermal spheres, and which have
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not presented full solutions for the velocity fields of momentum-driven supershells.

Since our main aim was to clarify the effect on theoretical M–σ relations of

relaxing the simplifying assumption that CMOs are embedded in singular isothermal

dark matter haloes, we retained some other simplifications also adopted by previous

authors. One of these is the assumption that the wind driving the CMO feedback is

time-independent—in essence, that the CMO mass is constant throughout the motion

of a momentum-conserving supershell.

In reality, of course, if the CMO is a black hole emitting at the Eddington limit,

then it is also accreting mass at the Eddington rate. The growth of the black hole

and thus the wind thrust which is proportional to M
CMO

, are governed by the Salpeter

timescale, defined by

tSalp =
M

BH

ṀEdd

=
M

BH
ηc2

LEdd

= 4.5× 107 yr
( η

0.1

)
. (3.64)

If the CMO is a nuclear star cluster, then the duration and strength of a super-

wind from it is tied to the star-formation history and to the main-sequence lifetime of

supernova progenitors.

The other simplification we made was to consider only the momentum-driven

phase of supershell evolution, ignoring any eventual transition to the energy-driven

regime. Further work is needed to incorporate gas cooling properly into a fuller treat-

ment of time-dependent feedback, which will also account for the impact of variable

CMO masses and wind strengths on M–σ relations.

3.5.1 The singular isothermal sphere

Revisiting the case of a galaxy modelled as a singular isothermal sphere (SIS), we

showed in §3.3 that at large radii a momentum-driven shell tends to a constant coasting

speed given by equation (3.12):

v2 −→ v2∞ ≡ 2σ2
0

[
M

CMO

Mσ

− 1

]
, (r → ∞, SIS) (3.65)
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in which (cf. King 2005)

Mσ ≡ f0 κ

λπ G2
σ4
0 ≃ 4.56× 108 M⊙ σ4

200 f0.2 λ
−1 , (3.66)

where σ0 is the velocity dispersion of the halo and σ200 ≡ σ0/(200 km s−1); f0 ≈ 0.2

is a fiducial gas mass fraction; and the parameter λ ≃ 1 if the CMO is a supermassive

black hole (SMBH), or λ ≈ 0.05 if the CMO is a nuclear star cluster (NC; McLaughlin

et al. 2006). This shows that a momentum-conserving shell can reach arbitrarily large

radii in an isothermal sphere, and potentially escape, only if the CMO driving the shell

has a mass M
CMO

> Mσ (so that v2∞ > 0). Otherwise, any shell must stall at some

finite radius, and subsequently collapse, until the CMO grows in mass and drives a

stronger wind (see also King 2005).

The critical M
CMO

value in equation (3.66) has previously been obtained by meth-

ods that did not include solving explicitly for v2(r) (see King 2003, 2005, 2010a; Mur-

ray et al. 2005; McLaughlin et al. 2006). By solving for the full velocity fields v2(r) of

momentum-driven shells, we have shown that, while M
CMO

≥ Mσ is necessary, it is not

sufficient to guarantee the escape of momentum-driven CMO winds from isothermal

spheres.

First, as discussed in §3.3, M
CMO

and the initial momentum of a shell very near a

CMO together determine whether the shell can reach large enough radii to achieve the

asymptotic coasting speed, v∞; if it cannot, then the value of v∞, which is determined

by M
CMO

alone, is immaterial. As an example, when M
CMO

= 1.01Mσ, a shell will

stall at a finite radius, and re-collapse, unless its launch from the CMO gives it an

exceedingly fast velocity of v >∼ 0.2 c σ200 at a radius of r ≃ 1 pc σ2
200.

Second, if a shell is to coast at large radii with the nominal “escape” veloc-

ity from an isothermal sphere—that is, with v∞ > 2σ0—then our work shows that

M
CMO

> 3Mσ is required. This would mean CMO masses almost an order of mag-

nitude higher, at a given σ0, than those provided by the observed M–σ relations for

either SMBHs or NCs. This is, in essence, the objection raised by Silk & Nusser (2010)

to the idea that momentum-driven CMO winds are the sole source of M–σ. However,

the objection—and detailed answers to it, whether involving additional feedback from
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bulge-star formation triggered by the CMO outflow (Silk & Nusser 2010) or a transi-

tion to energy-conserving evolution at some large shell radius (Power et al. 2011; King

et al. 2011)—applies only if the host galaxy of a CMO is an isothermal sphere.

3.5.2 Non-isothermal haloes

More realistic descriptions of dark-matter haloes have density profiles that are shallower

at small radii than the r−2 profile of an isothermal sphere, and steeper than r−2 at large

radii. Therefore, they have circular-speed curves, V 2
c (r) = GM(r)/r, with well-defined

peaks. We showed that, in any such non-isothermal halo, any momentum-driven shell

must begin to accelerate beyond some large radius and will eventually exceed the halo

escape velocity, just so long as the CMO wind driving the shell can push it to the radius

where it starts accelerating. We obtained equations that can be solved for the critical

CMO mass, Mcrit, required for the escape of a shell with a given initial momentum in

any halo with a peaked Vc(r) curve (§3.4.1.2; equations [3.32] and [3.33]). We then

showed that there is a largest critical CMO mass, Mmax
crit , in any such halo. Once a

CMO exceeds this mass, any momentum-driven shell can escape the halo (§3.4.1.3).
Our equations (3.35) and (3.36) allow the calculation of Mmax

crit in general and provide a

sufficient condition for the escape of momentum-driven feedback from non-isothermal

haloes.

In this general analysis, a basic mass unit Mσ is defined in terms of the peak

circular speed in a halo:

Mσ ≡ f0 κ

λπ G2

V 4
c,pk

4

= 1.14× 108 M⊙ f0.2 λ
−1

(
Vc,pk

200 km s−1

)4

. (3.67)

In the most relevant case that haloes are much more massive than Mσ, the sufficient

condition for the escape of momentum-driven feedback is (equation [3.37])

M
CMO

≥ Mmax
crit = Mσ

[
1 +

Mσ

Mpk

+O
(

M2
σ

M2
pk

)]
,

(Mpk ≫ Mσ) (3.68)
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where Mpk = rpkV
2
c,pk

/
G is the mass of dark matter inside the radius where the halo

circular speed peaks. For the Milky Way, Mpk ≈ 4000Mσ, so this condition is M
CMO

>∼
Mσ to a good approximation in intermediate and massive galaxies.

In a singular isothermal sphere, Vc =
√
2 σ0 is constant and, in effect, Mpk is

infinitely large, so formally Mmax
crit and Mσ reduce to equation (3.66). Although impor-

tant differences remain between the isothermal and non-isothermal cases, this suggests

that the most appropriate single velocity dispersion to use to characterize an entire

non-isothermal halo, at least in discussions of M–σ relations, is simply σ0 ≡ Vc,pk/
√
2.

We illustrated the application of our general results by solving for the veloc-

ity fields of momentum-driven shells in three specific models of non-isothermal dark-

matter haloes (Hernquist 1990—§3.4.2; Navarro et al. 1996, 1997—§3.4.3; Dehnen &

McLaughlin 2005—§3.4.4). We noted that there are two main types of v2(r) solutions,

corresponding to shells that decelerate from small radii close to the CMO (going on to

accelerate further out if M
CMO

is large enough, or to stall at a finite radius if not), and

shells that are launched from zero velocity at non-zero radii (and may then either stall

or escape at larger radii). We also saw that the radius at which any particular shell

starts to accelerate to escape a halo is typically within a factor of order unity times

the radius at which the dark-matter circular speed peaks (which is some tens of kpc in

a Milky Way-sized halo).

Since M
CMO

≥ Mmax
crit ≈ Mσ is a sufficient condition for the escape of momentum-

driven feedback from non-isothermal haloes, it generally exceeds the minimally neces-

sary condition for the escape of any one particular shell. In the specific haloes that we

looked at, shells with zero initial momentum reach large radii and accelerate to escape

for any M
CMO

>∼ (0.93–0.96)Mσ. Different initial conditions may enable escape for still

(slightly) lower CMO masses.

The fact that M
CMO

≥ Mmax
crit allows all purely momentum-conserving shells in

non-isothermal haloes to accelerate at large radii—rather than just to coast as in

isothermal spheres, at potentially sub-escape speeds even if M
CMO

> Mσ—effectively

answers the main objection of Silk & Nusser (2010) to momentum-driven feedback from

CMO winds as the direct cause of observed M–σ relations.
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Again, these results are for time-independent winds from CMOs with fixed

masses. We have integrated v(r) to find r(t) for the C = 0 momentum-driven shells

in each of the non-isothermal haloes calculated in §§3.4.2–3.4.4. For M
CMO

= Mmax
crit ,

these shells take ∼ 3−4 × 108 yrs to move from r = 0 to r ∼ rpk, from where they

can accelerate to escape the galaxy. In the case that the CMO is an SMBH, this cor-

responds to ∼7–8 Salpeter times. Thus, if a critical mass black hole were to launch a

momentum-driven shell from r = 0, the hole would be a factor of ∼ e7−8 times more

massive by the time the shell escapes. Our expression for the sufficient Mmax
crit as a func-

tion of Vc,pk (eq. [67]) would then presumably estimate a lower limit to observed SMBH

M–σ relations. However, this apparent difficulty will be mitigated by two effects.

First, if SMBHs grew from much smaller seeds, then even in the case of purely

momentum-driven feedback the supershells of swept-up ambient gas will have already

been driven to large radii by the time the black hole reaches the critical mass. The

question then becomes, for a given mass-accretion history, how near to r = rpk is a

supershell at the time that the black hole attains our critical mass; and can the shell

subsequently move out to rpk, and start to accelerate, within less than another Salpeter

time? To answer this will require solving a fully time-dependent problem including

CMO masses and wind thrusts that (in the SMBH case at least) increase monotonically

with time. Whatever the final result, it is clear that any upwards “correction” to our

Mcrit for steady winds and momentum-conserving shells will be substantially less than

a factor of ∼e7−8.

Second, the time required for a shell to reach a radius at which it can acceler-

ate to escape a galaxy will be less than any time we derive, whether for steady or

time-dependent winds, if the shell transitions from momentum-conserving to energy-

conserving at some radius (say, rtrans), inside rpk. This will happen if the cooling time

of the shocked gas in the shell exceeds the dynamical time of the wind at r = rtrans

(cf. King 2003; McLaughlin et al. 2006). The issue then becomes to find the CMO

mass at the time when r = rtrans, rather than the mass when r = rpk.

These considerations emphasize the need to include both cooling processes and

time-dependent winds in future, more sophisticated analyses of CMO feedback-regulated
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galaxy formation. Meanwhile, it is worth noting how tantalizingly close the M–σ rela-

tions contained in our present work already are to the observed scalings.

3.5.3 Observational implications

Although subject to the indicated caveats about time-dependent winds and pure

momentum-driving, our results directly predict a relation between SMBH (or NC)

masses and the dark-matter haloes of their host galaxies, through the peak circular

speed of the haloes (equations [3.67] and [3.68], for the large-Mpk limit specifically).

This provides a basis for understanding relations between SMBH mass and dark-matter

halo mass or asymptotic circular speed, which have been claimed (e.g., Ferrarese 2002;

Volonteri et al. 2011), though also contested (Ho 2007; Kormendy & Bender 2011), on

empirical grounds. It is important to recognize the physical content of such a CMO–

dark matter relation, in a feedback context. It does not suggest that dark matter in

any way feeds the growth of either black holes or nuclear star clusters (cf. Kormendy,

Bender & Cornell 2011). Rather, it reflects the fact that the gravity of a host galaxy,

which is dominated by its dark matter halo, is what ultimately determines whether

the feedback from a CMO can escape. The more familiar M–σ relation has the same

fundamental interpretation in this picture.

Making explicit the connection between a theoretical halo Vc,pk and an observed

stellar σ, or even an asymptotic circular speed in real galaxies (which will include

contributions from baryons as well as dark matter), is a non-trivial task and beyond

the scope of our current discussion. We simply recall here that the observed relation

between SMBH mass and the stellar velocity dispersion averaged over one effective

radius in a sample of early-type galaxies and bulges analyzed by Gültekin et al. (2009)

is

Mbh ≃ (1.32± 0.24)× 108 M⊙

(
σeff

200 km s−1

)4.24±0.41

; (3.69)

while the relation inferred by Volonteri et al. (2011) between SMBH mass and the
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asymptotic circular speed in a subset of the same systems is

Mbh ≃ (2.45± 0.80)× 107 M⊙

(
Vc,a

200 km s−1

)4.22±0.93

. (3.70)

If we were to associate our Vc,pk and σ0 ≡ Vc,pk/
√
2 in non-isothermal haloes directly

with observational estimates of Vc,a and σeff , then we might conclude that the nor-

malizations of the predicted M
CMO

–Vc,pk and M
CMO

–σ relations exceed the observed

normalizations by factors of ≈ 3–4. This point has previously been made, from com-

parisons only with an isothermal-sphere analysis, by King (2010).

However, before too much is made of any normalization offset, or even the caveats

associated with steady winds and pure momentum-driving, it is crucial that the correct

relationships be worked out in detail (within specific dark-matter halo models, and

accounting properly for the segregation of dark matter and stars) between Vc,pk and

Vc,a, and between σ0 ≡ Vc,pk/
√
2 and the stellar σeff . It is probably also relevant that

we (like other authors) have worked with the assumption that the gas in protogalaxies

directly traces the dark matter. The consequences of relaxing this assumption remain

unclear, although our general equation of motion for momentum-driven shells (eq. [3.6]

or eq. [3.25]) offers a way to investigate the question.

Even with these issues, recognizing the non-isothermal structure of real galaxies

and dark-matter haloes, and working in terms of an M
CMO

–Vc,pk relation, could provide

a way to extend and unify discussions and analyses to include correlations between

CMO masses and host-galaxy properties in systems with significant rotational support

as well as (or even instead of) pressure support. This could be of particular interest in

connection with nuclear star clusters in intermediate-mass ellipticals and bulges, and

even in very late-type Sc/Sd discs.

3.A The maximum critical CMO mass

Equation (3.35) in §3.4.1.3 is a general expression for the radius, xc,max, marking the

onset of acceleration of the momentum-driven shell that has the maximum critical
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(necessary) CMO mass required to escape a non-isothermal dark-matter halo with a

given mass profile m(x) and normalization M̃pk:

d lnm

d ln x

∣∣∣∣
x=xc,max

= 1 +
1

2 M̃pk

1

xc,max

dm

dx

∣∣∣∣
x=xc,max

. (3.71)

Once this is solved for xc,max, then equation (3.36) gives the value of the maximum

critical CMO mass for the halo in question:

M̃max
crit =

m2(xc,max)

x2
c,max

[
1− 1

M̃pk

m(xc,max)

x2
c,max

]−1

. (3.72)

In the limit that M̃pk → ∞, the second term on the right-hand side of equation

(3.71) tends to zero, so that

d lnm

d ln x

∣∣∣∣
x=xc,max

−→ 1 as M̃pk −→ ∞ . (3.73)

But m(x) is defined such that (see equations [3.23] and [3.24])

m(1) = 1 and
d lnm

d ln x

∣∣∣∣
x=1

=
x

m

dm

dx

∣∣∣∣
x=1

= 1 , (3.74)

so we conclude that xc,max → 1 (the peak of the circular speed curve) for large halo

masses M̃pk → ∞. We therefore look for the dependence of xc,max, and then M̃max
crit , on

M̃pk for large but finite M̃pk (which is the observationally relevant situation; see the

discussion before Figure 3.3 in §3.4.2), which also means for values of xc,max close to 1.

We define

m′′
1 ≡

d2m

dx2

∣∣∣∣
x=1

, (3.75)

so expanding m(x) in a Taylor series about x = 1 leads to

m(x) = x+
1

2
m′′

1 (x− 1)2 +O(x− 1)3 (3.76)

dm

dx
= 1 +m′′

1 (x− 1) +O(x− 1)2 (3.77)

d lnm

d ln x
= 1 +m′′

1 (x− 1) +O(x− 1)2 , (3.78)
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where we have again used the facts (in equation [3.74]) that m = 1 and dm/dx = 1 at

x = 1 always. Equation (3.71) in the limit |xc,max − 1| ≪ 1 is then

(xc,max − 1)

[
m′′

1 −
1

2 M̃pk

(m′′
1 − 1)

]

=
1

2M̃pk

+O(xc,max − 1)2 (3.79)

Since the limit xc,max → 1 corresponds to M̃pk → ∞, terms in (xc,max − 1)/M̃pk

are of the same order as terms in (xc,max − 1)2 or terms in 1/M̃2
pk. With this in mind,

solving equation (3.79) for xc,max as a function of M̃pk gives

xc,max = 1 +
1

2m′′
1

1

M̃pk

+O
(

1

M̃2
pk

)
. (M̃pk ≫ 1) (3.80)

Finally, putting this into equation (3.72) yields

M̃max
crit = 1 +

1

M̃pk

+O
(

1

M̃2
pk

)
. (M̃pk ≫ 1) (3.81)

As discussed further in §3.4, this is the CMO mass that is sufficient to ensure the escape

of any momentum-driven shell in any non-isothermal halo that has a well-defined peak

in its circular-speed curve. In general, it is larger than the CMO mass that is necessary

for the escape of any particular shell.

3.B Sufficient condition for the escape of any shell

II

As noted in §3.4.1.3, momentum-driven shells with different initial conditions (i.e.,

different values of C) have different xcrit and M̃crit, given by equations (3.32) and (3.33).

In §3.4.1.3 we compared these values between different shell solutions by differentiating

equation (3.32) with respect to xcrit for a fixed dark matter mass M̃pk. We then showed

that setting dM̃crit/dxcrit = 0 identifies the momentum-driven shell that has the largest

critical CMO mass required for escape.
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Here, we will derive the same condition sufficient for the escape of any momentum-

driven shell in an alternative way than was presented in McQuillin & McLaughlin

(2012).

To compare the values of xcrit and M̃crit between different shell solutions we look

at where the shells start to accelerate, or equivalently at the extrema of all the curves.

The extrema of a set of ṽ 2(x) curves can be found from equation (3.25) for the motion

of a shell by setting d ṽ 2/dx = 0 at the radius xex at which the extremum occurs. With

h(x) ≡ 1 so that the gas traces the dark matter directly, this gives:

ṽ 2
ex =

[
d lnm2(xex)

d ln xex

]−1
(
4M̃

CMO

xex

m(xex)
− 4

M̃
CMO

M̃pk

1

xex

− 4
m(xex)

xex

)
. (3.82)

where ṽ 2
ex = ṽ 2(xex).

The curve ṽ 2
ex(xex) passes through all the extrema of any family of solutions. For

example, Figure 3.8 shows a set of ṽ 2(x) curves for fixed M̃
CMO

and M̃pk and a range

of C values in a halo with a given m(x). The dashed (blue) curve in the figure shows

the corresponding ṽ 2
ex(xex) curve.

By finding the minimum value of ṽ 2
ex, we know where the lowest extremum of

the family of solutions occurs, or physically where the slowest moving shell starts to

accelerate. If the minimum ṽ 2
ex ≥ 0 then the slowest moving shell can accelerate and

escape, and all other shells represented by that family of solutions will be able to escape.

We identify the case where the minimum in ṽ 2
ex = 0 as the critical case and denote

the CMO mass required for escape as M̃max
crit because escape is generally possible for

particular solutions with smaller CMO masses, so M̃max
crit represents the largest critical

CMO mass required for escape. We also denote the radius at which a shell driven by

a CMO with this critical mass begins to accelerate as xc,max.

To find the minimum of ṽ 2
ex, we differentiate equation (3.82) with respect to xex

d ṽ 2
ex

dxex

d lnm2

d ln xex

+ ṽ 2
ex

d

dxex

(
d lnm2

d ln xex

)
=

4
M̃

CMO

m(xex)

[
1− d lnm

d ln xex

]
+

4

x2
ex

M̃
CMO

M̃pk

− 4
m(xex)

x2
ex

[
d lnm

d ln xex

− 1

]
. (3.83)
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Figure 3.8: The solid lines show examples of ṽ 2(x) in a non-isothermal halo (a Hern-

quist halo with M̃
CMO

= 1 and M̃pk = 4000 is used in this example). The dotted
(magenta) curve shows the solutions with C = 0. The dashed (blue) line shows the
curve ṽ 2

ex(xex) which passes through all the extrema.

The extremum in ṽ 2
ex occurs when d ṽ 2

ex/dxex = 0, and in the critical case we also

require ṽ 2
ex = 0. From equation (3.82), ṽ 2

ex = 0 gives

M̃max
crit =

m2(xex)

x2
ex

[
1− 1

M̃pk

m(xex)

x2
ex

]−1

(3.84)
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which combines with equation (3.83), d ṽ 2
ex/dx = 0 and ṽ 2

ex = 0 to give

M̃max
crit =

m2(xex)

x2
ex

d lnm(xex)

d ln xex

[
2− d lnm(xex)

d ln xex

]−1

(3.85)

We equate the right-hand sides of equations (3.84) and (3.85) to find that ṽ 2
ex = 0

and d ṽ 2
ex/dx = 0 at xc,max such that

d lnm(xex)

d ln xex

∣∣∣∣
xex=xc,max

= 1 +
1

2M̃pk

1

xc,max

dm(xex)

dxex

∣∣∣∣
xex=xc,max

. (3.86)

This is the same expression that is given for xc,max in equation (3.35), and the same

analysis following equation (3.35) can be applied to find M̃max
crit .
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4 Energy-driven outflows: black hole wind

speeds and the M–σ relation

We have looked at purely momentum-driven outflows in galaxies modelled as singular

isothermal spheres and in non-isothermal haloes. As discussed in Chapter 2, outflows

driven by black holes are initially momentum-driven, but it may be that these outflows

become energy-driven within the sphere of influence of the black hole, meaning that

the energy-driven regime dominates the evolution of the outflow.

Presented in this chapter is the paper ‘Black hole wind speeds and the M–σ rela-

tion’ (McQuillin & McLaughlin 2013), where we look at purely energy-driven outflows

driven by black hole winds into galaxies modelled as isothermal spheres.

We derive an M
BH
–σ relation between supermassive black hole mass and stellar

velocity dispersion in galaxy bulges, that results from self-regulated, energy-conserving

feedback. The relation is of the form M
BH
vw ∝ σ5, where vw is the velocity of the

wind driven by the black hole. We take a sample of quiescent early-type galaxies and

bulges with measured black hole masses and velocity dispersions and use our model

to infer the wind speeds they would have had during an active phase. This approach,

in effect, translates the scatter in the observed M
BH
–σ relation into a distribution of

vw. There are some remarkable similarities between the distribution of black hole wind

speeds that we obtain and the distributions of outflow speeds observed in local AGN,

including a comparable median of vw = 0.035c.

In Appendix 4.A, which is not included in McQuillin & McLaughlin (2013),

we discuss how our result for the terminal coasting speed of an energy-driven shell

compares with other analyses (Silk & Rees 1998; King 2005; King et al. 2011; Faucher-

Giguère & Quataert 2012).
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4.1 Introduction

Self-regulated feedback from accreting supermassive black holes (SMBHs) in gaseous

protogalaxies is thought to play a key role in establishing the M
BH
–σ relation observed

in local quiescent galaxies, between SMBH mass and bulge-star velocity dispersion:

M
BH

∝ σx with x = 4–5 (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Ferrarese

& Ford 2005; Gültekin et al. 2009; McConnell & Ma 2013). The accreting SMBH

drives a wind, which sweeps the surrounding ambient medium into a shell. There is

then a critical SMBH mass above which the wind thrust pushing the shell outwards

(proportional to M
BH
) can overcome the inward gravitational pull of the dark matter

(related to σ) and the SMBH itself. At this critical mass, the shell may be blown out

of the galaxy, cutting off fuel to the SMBH and locking in an M
BH
–σ relation (Silk

& Rees 1998; Fabian 1999; King 2003, 2005; Murray, Quataert & Thompson 2005).

Supporting this scenario are observations of strong outflows in local active galactic

nuclei (AGN), both on large scales (e.g., Sturm et al. 2011) and closer to the SMBHs

(e.g., Pounds et al. 2003; Tombesi et al. 2011; Gofford et al. 2013). The latter in

particular have speeds and mechanical luminosities similar to those needed for SMBH

winds to have cleared the gas from now-normal spheroids at high redshift, when the

systems were active.

The dynamics of a swept-up shell of gas depend on whether or not the region

of shocked wind material immediately behind the shell is able to cool. If the shocked

gas cools efficiently then the region is geometrically thin and the swept-up shell is

pushed outwards by the ram pressure of the wind. This momentum-driven regime is

expected to be the case initially in the case of SMBH feedback (King 2003), and thus

many authors have considered the M
BH
–σ relation that results if the feedback is en-

tirely momentum-driven (e.g., Fabian 1999; King 2003, 2005; McQuillin & McLaughlin

2012). In McQuillin & McLaughlin (2012) we considered shells moving outwards in

non-isothermal, spherical dark matter haloes that have peaked circular speed curves.

We showed that the critical SMBH mass above which any shell can escape tends to

the limiting value (for haloes much more massive than the SMBH, independent of any
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further details of the dark matter density profile)

Mcrit =
f0κ

πG2

V 4
c,pk

4
≃ 1.14× 108M⊙

(
f0
0.2

)(
Vc,pk

200 km s−1

)4

. (4.1)

Here, Vc,pk is the peak value of the circular speed in the dark matter halo; κ is the

electron scattering opacity; and f0 is a spatially constant gas-to-dark matter mass

fraction. The peak circular speed defines a natural “characteristic” velocity dispersion

for a non-isothermal galaxy: σ0 ≡ Vc,pk/
√
2. Equation (4.1) then implies an M

BH
–σ

relation, which has a slope and an intercept that are near the observed values (see

Figure 4.2 below).

If the shocked gas cannot cool then the region behind the shell is geometrically

thick and hot. The outflow is energy-driven and the shell is pushed outwards by the

thermal pressure of the shocked material. In the context of SMBH feedback, an initially

momentum-driven shell is expected to transition to energy-driven, probably quite early

on when the shell is still at relatively small galactocentric radius (§4.2 below; cf. King

2003, Zubovas & King 2012). Thus, in this chapter we investigate the implications of

purely energy-driven feedback for the M
BH
–σ relation.

In §4.2 we derive the large-radius coasting speed, v∞, of an energy-conserving

shell in a dark-matter halo modelled as a singular isothermal sphere with velocity

dispersion σ0. We find that for the shell to coast at the escape speed of a truncated

isothermal halo (i.e., v∞ = 2σ0) requires

(
M

BH

108M⊙

)(vw
c

)
≃ 6.68× 10−2

(
f0
0.2

) (
σ0

200 km s−1

)5

, (4.2)

where M
BH

is the (fixed) SMBH mass driving a wind of speed vw. This MBH
–σ relation

differs from that resulting from momentum-driven outflows (equation [4.1]), both in

the power on σ0 and in the explicit dependence on vw.

In §4.3 we apply our escape condition for energy-conserving feedback to the M
BH
–

σ relation defined observationally by a standard sample of low-redshift, quiescent early-

type galaxies and bulges (Gültekin et al. 2009). We use equation (4.2) to infer the black

hole wind speeds that would have had to occur during the main epoch of galaxy and
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SMBH formation, if this simple model is to account for the individual M
BH

and σ

values for each galaxy or bulge in the Gültekin et al. sample. This gives a distribution

of vw/c for these galaxies in the past. In §4.4 we compare this distribution directly to

the distributions of vw/c observed for fast outflows in different samples of local AGN

(Tombesi et al. 2011; Gofford et al. 2013). Our main result is a remarkable similarity

between these distributions. In particular, the median SMBH wind speed we infer for

the normal galaxies of Gültekin et al. is vw = 0.035c, while the median of the outflow

speeds in low-redshift AGN is vw = 0.1c according to Tombesi et al. or vw = 0.056c

according to Gofford et al.

4.2 Energy-driven outflows

In the self-regulated feedback scenario the black hole wind sweeps up a shell of am-

bient gas as it moves outwards. This gives rise to two shock fronts, one propagating

forwards into the ambient medium and one propagating back into the wind material.

The resulting shock pattern has a four-zone structure: 1) the freely flowing wind; 2) the

shocked wind region lying between the wind shock and the contact surface that sepa-

rates material originally in the wind from material originating in the ambient medium;

3) the shocked ambient medium, lying between the contact surface and the ambient

shock, also containing the original swept-up shell that gave rise to the shock fronts;

and 4) the undisturbed ambient medium.

In detail, the dynamics of the swept-up shell depend on three timescales: the

flow time of the shell, tflow = rs/vs, where rs is the radius of the shell and vs is the shell

velocity; the dynamical time of the wind, tdyn = rsw/vw, where rsw is the radius of the

wind shock and vw is the wind velocity; and the cooling time of the shocked wind, tcool

(Koo & McKee 1992; Faucher-Giguère & Quataert 2012).

If tcool ≪ tdyn, then the shocked wind region cools before more energy is injected

into the region from the freely flowing wind. The material in the region is then confined

to a thin shell (so rsw ∼ rs) and the shell is effectively driven outwards by a transfer of
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momentum from the wind impacting on its inner side, corresponding to a momentum-

driven outflow.

If, instead, tcool ≫ tflow, then the most recently shocked material cannot cool

in the time it takes to travel across the shocked wind region. The region is thick

and hot and drives the shell outwards with its thermal pressure, corresponding to an

energy-driven outflow.

In the intermediate case, tdyn <∼ tcool <∼ tflow, the shell is in a partially radiative

phase where most of the material cools and condenses into a thin shell but the most

recently shocked material has not cooled and occupies most of the volume of the region.

In this regime the outflow conserves neither energy nor momentum.

For a wind from an SMBH, with cooling primarily by inverse Compton scattering

(King 2003), the cooling rate is (e.g., Longair 2011)

dE

dt
=

4

3
κmp c urad

(ve
c

)2( E

mec2

)2

, (4.3)

where ve is the velocity of a post-shock electron; E is the post-shock electron energy;

urad is the radiation energy density; and κ is the electron-scattering opacity. We take

urad = LEdd/(4πr
2c), where LEdd = 4πGM

BH
c/κ is the Eddington luminosity of a black

hole of mass M
BH
, and E ≃ (9/16)mpv

2
w for the electron energy. Then, the cooling

time, tcool ≡ E/(dE/dt), is less than the dynamical time of the wind, tdyn ≡ rsw/vw, at

radii

rsw <∼
3

4

GM
BH

c2

(
mp

me

)2 (vw
c

)(ve
c

)2

≃ 0.26 pc

(
M

BH

108M⊙

)( vw
0.03c

)( ve
0.85c

)2
. (4.4)

When the wind shock is inside this radius, the shocked wind region is thin, so rsw ∼ rs

and the shell is momentum-driven.

The cooling time exceeds the flow time of the shell, tflow ≡ rs/vs, at radii

rs >∼
3

4

GM
BH

c vs

(
mp

me

)2 (vw
c

)2 (ve
c

)2

≃ 11 pc

(
vs

200 km s−1

)−1(
M

BH

108M⊙

)( vw
0.03c

)2 ( ve
0.85c

)2
, (4.5)
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for typical shell velocities vs ∼ σ0 ∼ 200 km s−1. This is in rough agreement with

Zubovas & King (2012; see their equation [6]), although they replace vs with an estimate

for the terminal velocity of a momentum-driven shell and normalize to a higher fiducial

vw than we do (see Sections 4.3 and 4.4 below for more about typical wind speeds).

In any case, the radius in equation (4.5) is comparable to the sphere of influence of a

108M⊙ black hole in a stellar distribution with velocity dispersion 200 km s−1. As such,

SMBH outflows can be energy-conserving over much of their evolution, and accordingly

we focus on purely energy-driven feedback in what follows.

McLaughlin, King & Nayakshin (2006) noted that a self-regulated feedback sce-

nario can also be applied to nuclear star clusters in galaxy centres to explain theM
NC
–σ

relation observed by Ferrarese et al. (2006). In that case, cooling by atomic processes

gives a shorter cooling timescale with a strong dependence on the wind speed (equation

[9] of McLaughlin et al. ), and a slower wind speed results in a longer dynamical time.

Thus, outflows from nuclear clusters can cool efficiently and be momentum-driven to

much larger radii than in the black hole case.

Whether momentum- or energy-driven, the equation of motion for a shell of

swept-up gas moving out into the dark-matter halo of a protogalaxy against the inwards

gravitational pull of both the SMBH and the dark matter behind the shell can be

written as (see also King 2005)

d

dt
[Mg(r)v(r)] +

GMg(r)

r2
[M

BH
+M

DM
(r)] = 4πr2P . (4.6)

Here r is the instantaneous radius of the shell; M
DM

(r) is the dark matter mass inside

radius r; Mg(r) is the mass of ambient gas initially inside radius r (i.e., the mass that

has been swept up into the shell when it has radius r); v(r) = dr/dt is the velocity of

the shell; and P is the outwards pressure on the shell.

We adopt the simple description by King & Pounds (2003) of a wind driven by

radiation (continuum scattering) from an accreting SMBH, such that the wind thrust

is

Ṁout vw = τ
LEdd

c
. (4.7)

Here Ṁout is the mass outflow rate in the wind and vw is the wind velocity when it
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escapes the black hole; these are distinct from the mass growth rate dMg/dt and the

expansion speed v of the shell of swept-up ambient gas that the wind drives. The

parameter τ is the electron-scattering optical depth in the wind, measured down to its

escape radius from the black hole (thus, τ ∼1 in the single-scattering limit), multiplied

by a geometrical factor (which is also ∼1) allowing for some non-sphericity in the wind;

as discussed in Chapter 1, see §1.2.1.3 for more detail. In what follows, we retain τ in

our calculations, although ultimately we assume that τ ≈ 1.

The pressure on the right-hand side of equation (4.6) is just the wind ram pres-

sure, 4πr2P = Ṁout vw ≈ LEdd/c, for a momentum-driven shell. This is the case we

solved in McQuillin & McLaughlin (2012) for isothermal and non-isothermal dark-

matter halo models. For an energy-conserving shell, the driving pressure is instead

the thermal pressure of the shocked-wind region behind the shell. In this case, P in

equation (4.6) satisfies the energy equation,

d

dt

[
4

3
πr3

P

γ − 1

]
= Ė − P

d

dt

[
4

3
πr3
]
− GMg(r)v(r)

r2
[
M

BH
+M

DM
(r)
]
. (4.8)

In this equation, γ on the left-hand side is the ratio of specific heats. The last

three terms on the right-hand side give the rates of work done by the expanding shell

(both PdV work and the work against the gravity of the SMBH and the dark matter

behind the shell; cf. King 2005). The first term on the right-hand side is the rate of

energy input to the shocked wind region, which is given by the kinetic energy flux of

the wind:

Ė =
1

2
Ṁoutv

2
w = τ

vw
c

LEdd

2
. (4.9)

Note that this differs slightly from, e.g., King (2005, 2010) and King, Zubovas & Power

(2011), where it is either stated or implied that Ė = ηLEdd/2 with η the radiative

efficiency of accretion onto the black hole. These other papers make the additional

assumption that Ṁout = ṀEdd = LEdd/(ηc
2). In combination with equation (4.7)

above, this requires vw/c = ητ ; and putting this plus τ ≡ 1 into equation (4.9) is what

gives Ė = ηLEdd/2. However, in this work we do not assume that Ṁout = ṀEdd, nor

that vw/c = ητ necessarily; thus, vw/c remains as an explicit parameter in our analysis.
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Now we specialise to the case of a shell expanding into a dark-matter halo mod-

elled as a singular isothermal sphere (SIS), with the ambient protogalactic gas tracing

the dark matter exactly. The density of an SIS is given by ρ
DM

(r) = σ2
0/(2πGr2), so

that the mass inside radius r is

M
DM

(r) =
2σ2

0r

G
, (4.10)

and Mg(r) = f0MDM
(r) with a fiducial (cosmic) f0 ≈ 0.2. As in McQuillin & McLaugh-

lin (2012), we then define characteristic mass and radius units in terms of the charac-

teristic velocity dispersion of the halo, σ0:

Mσ ≡ f0κσ
4
0

πG2
≃ 4.56× 108M⊙

(
f0
0.2

)(
σ0

200 km s−1

)4

and

rσ ≡ GMσ

σ2
0

≃ 49.25 pc

(
f0
0.2

)(
σ0

200 km s−1

)2

.

With the identification σ0 ≡ Vc,pk/
√
2, the mass unitMσ is just the critical SMBH mass

from equation (4.1) for the breakout of momentum-driven shells from non-isothermal

dark matter haloes with peaked circular speed curves. In singular isothermal spheres,

the critical mass required for mometum-driven shells to coast at large radii with the

escape speed 2σ0 is 3Mσ (McQuillin & McLaughlin 2012; see also Silk & Nusser 2010).

We eliminate P from equation (4.8) using equation (4.6), then combine with the

dark-matter and gas mass profiles of an SIS from equation (4.10) and the energy input

from equation (4.9), together with LEdd = 4πGM
BH
c/κ. Also, we write d/dt = v d/dr

in order to solve for the velocity fields of shells, v(r), rather than for r(t) explicitly.

Then, defining dimensionless variables

M̃ ≡ M/Mσ , r̃ ≡ r/rσ and ṽ ≡ v/σ0 ,

the equation of motion for energy-driven shells in an SIS is

d2

d r̃ 2

[
r̃ 2ṽ 2 ( r̃ )

]
+

3(γ − 1)

r̃

d

d r̃

[
r̃ 2ṽ 2 ( r̃ )

]

+ 12(γ − 1)
M̃

BH

r̃
− 6(γ − 1)

τ M̃
BH

ṽw
ṽ ( r̃ )

= − 4(6γ − 5) . (4.11)
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Figure 4.1: Velocity fields ṽ versus r̃ that solve equation (4.11) for energy-driven shells

in an SIS with spatially constant gas fraction and M̃
BH
ṽw = 43/16 (≃ 2.7), 6.5 and 22,

leading to large-radius coasting speeds of v∞/σ0 = 0.5, 1 and 2 for the shells (equation
[4.13], with γ = 5/3 and τ = 1). Solutions with a range of initial conditions are shown
in each case. The radius unit rσ = 49.25 pc for a gas mass fraction f0 = 0.2 and
σ0 = 200 km s−1.

In the limit of large radius, the term M̃
BH
/ r̃ → 0 in equation (4.11), and the

remaining terms imply that the velocity of the shell tends to a constant:

ṽ −→ ṽ∞ , (r̃ ≫ 1) (4.12)

where ṽ∞ satisfies

(3γ − 2) ṽ 3
∞ + 2(6γ − 5) ṽ∞ = 3(γ − 1) τ M̃

BH
ṽw . (4.13)

Thus, any energy-conserving shell at sufficiently large radius tends to a coasting speed

that depends on the black hole mass, the velocity dispersion of the halo and the velocity

of the black hole wind.

If the values of M̃
BH

and ṽw are such that ṽ∞ from equation (4.13) is very small,

then the feedback may not be able to escape on a timescale that allows that observed
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M–σ relation to be locked in. A natural criterion for the escape of the feedback is that

it reach a coasting speed equal to the escape speed from a truncated isothermal sphere,

vesc = 2σ0. Thus, we set ṽ∞ = 2 in equation (4.13) and obtain a critical value for the

product of black hole mass and wind speed:

[
M̃

BH
ṽw

]
crit

=
1

τ

4(4γ − 3)

(γ − 1)
(4.14)

or, with all units restored,

[
M

BH
vw
]
crit

=
1

τ

4(4γ − 3)

(γ − 1)

κf0
πG2

σ5
0 . (4.15)

Setting γ = 5/3 then gives

(
M

BH

108M⊙

)(vw
c

)
= 6.68× 10−2 1

τ

(
f0
0.2

) (
σ0

200 km s−1

)5

. (4.16)

This is what we will compare to the observed M
BH
–σ relation in §4.3 below.

Equation (4.16) shows explicitly how the escape of energy-conserving shells from

an isothermal galaxy requires M
BH
vw ∝ σ5

0 in general. If vw were effectively the same

in all galaxies (or at least uncorrelated with SMBH mass or halo velocity dispersion),

then the implication is an observable relation M
BH

∝ σ5, as has been argued many

times (e.g., Silk & Rees 1998; King 2005). In more detail, however, if vw did in fact

depend on black hole mass as, say, vw ∝ My
BH
, then equation (4.16) would actually

imply

M
BH

∝ σ
5/(1+y)
0 . (4.17)

That is, if vw and M
BH

were correlated by even a weak power, the logarithmic slope of

the M
BH
–σ relation from energy-driven outflows could differ measurably from 5.

In the limit of small radius, equation (4.11) admits solutions of the form

ṽ 2 r̃ 2 −→ C − 4M̃
BH

r̃ − 2(6γ − 5)

(3γ − 2)
r̃ 2 + O( r̃ 3) , (r̃ ≪ 1) (4.18)

where the constant C represents the square of the shell momentum, [Mg(r) v(r)]
2 ∝

ṽ 2 r̃ 2, at r̃ = 0. In order for equation (4.16) to apply, a shell moving out from r̃ = 0
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Figure 4.2: Left-hand panel: The M
BH
–σ relation from the compilation of Gültekin

et al. (2009). The dashed line shows M
BH

= Mcrit from equation (4.1), the sufficient
condition for the escape of purely momentum-driven shells from non-isothermal haloes
McQuillin & McLaughlin (2012). The solid line shows the condition for the escape
of an energy-driven shell from an SIS from equation (4.16), with f0 = 0.2, τ = 1
and a typical SMBH wind speed of vw = 0.035c. Right-hand panel: The distribution
of vw/c obtained from applying equation (4.16) to the measured M

BH
and σ of the

Gültekin et al. galaxies (excluding Circinus; see text). The median of the distribution,
vw = 0.035c, is indicated by the arrow. The errorbar represents the median uncertainty,
∆(vw/c) ≃ ±0.02.

must have an initial momentum large enough to keep ṽ 2 r̃ 2 > 0 and avoid stalling

before it reaches the large radii where the coasting speed in equation (4.13) applies.

Figure 4.1 shows the velocity fields, ṽ ( r̃ ), that solve equation (4.11) with γ =

5/3, τ = 1 and dimensionless M̃
BH
ṽw = 43/16 (≃2.7), 6.5 and 22. The different curves

in each panel represent different initial shell momenta, i.e., different values of C in

equation (4.18). We have specified a fixed wind speed in all cases: ṽw = 45, which

corresponds to vw = 0.03c for σ0 = 200 km s−1. The dimensionless black hole masses

are then (again, assuming τ = 1) M̃
BH

≃ 0.06, 0.14 and 0.49. These are all below the

critical SMBH masses for the escape of momentum-conserving shells from either non-
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isothermal haloes (M̃crit = 1) or an SIS (M̃crit = 3). Given any of the black hole masses

represented in Figure 4.1, all purely momentum-driven shells would stall at relatively

small radii and go into collapse until the SMBH grew substantially (see Figure 1 of

McQuillin & McLaughlin 2012).

With γ = 5/3 and τ = 1, equation (4.13) gives the final coasting speeds of the

energy-driven shells illustrated in Figure 4.1 as v∞/σ0 = 0.5, 1 and 2 (independent of

initial conditions) in the three panels from left to right. These are confirmed by our

numerical solutions for the full ṽ ( r̃ ). In particular, all of the energy-driven solutions

in the case M̃
BH
ṽw = 22 eventually attain the speed for escape from a truncated SIS,

v∞ = 2σ0 = vesc. Energy-conserving feedback can blow out of an isothermal halo if

driven by a wind at speed vw ∼ 0.03c (of the order of the nuclear outflows observed in

local AGN; see below) from an SMBH significantly less massive than that required to

expel momentum-conserving shells from isothermal or non-isothermal haloes.

4.3 The Observed M
BH
–σ relation

The left-hand panel of Figure 4.2 shows M
BH

versus bulge-star velocity dispersion σ

for 51 normal (quiescent) early-type galaxies and bulges in Table 1 of Gültekin et al.

(2009).1 The dashed line on the plot traces the relation

(
M

BH

108M⊙

)
= 4.56

(
f0
0.2

) (
σ

200 km s−1

)4

. (4.19)

This represents the SMBH mass Mcrit of equation (4.1) above, which is sufficient for

the escape of any purely momentum-driven shell from any non-isothermal dark-matter

halo, if the peak circular speed in the halo of an observed galaxy can be estimated

as Vc,pk =
√
2 σ (McQuillin & McLaughlin 2012). In a singular isothermal sphere,

1The main outlier in Figure 4.2, marked by an open circle, is Circinus, which is in the plane of the
Milky Way. Ferrarese & Ford (2005) note that M

BH
in this case may be in error, possibly because the

inclination of the maser disc used to find M
BH

is unconstrained. Gültekin et al. (2009) discuss this
further.
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for a momentum-driven shell to reach the escape speed of 2σ at large radii requires

M
BH

≥ 3Mcrit—that is, SMBH masses a further 0.5 dex above the dashed line in Figure

4.2, which already represents an upper limit to the data. Relaxing the isothermal

assumption alleviates some of this difficulty, and additional momentum input from

bulge-star formation triggered by the outflow could further reduce the requirement on

M
BH

from that in equation (4.19) (see, e.g., Silk & Nusser 2010; and further discussion

in McQuillin & McLaughlin 2012).

By contrast, the solid line running through the data in Figure 4.2 is the SMBH

mass required for energy-driven shells to escape singular isothermal spheres, from equa-

tion (4.16) with a fixed SMBH wind speed of vw/c = 0.035 (and assuming a wind optical

depth τ = 1 and a gas-to-dark matter mass fraction f0 = 0.2). With vw/c set to a

constant to draw this line, it has a slope M
BH

∝ σ5, the usual expectation for energy-

conserving feedback. The numerical value of vw/c then sets the intercept, and the value

that we have applied is in fact the median of a distribution of wind speeds that we have

estimated individually for every galaxy in Gültekin et al. (2009).

These are all quiet, non-active galaxies and bulges. But if their black hole masses

were frozen in as part of the feedback process clearing ambient gas from the proto-

spheroids, and if this feedback was energy-driven, then equation (4.16) can be used to

infer the SMBH wind speeds in the past, when the galaxies were young and active. For

each point in the left-hand panel of Figure 4.2, we have taken the measured values of

M
BH

and σ (and set τ = 1, f0 = 0.2) to solve equation (4.16) for vw/c. The results

are shown as the normalised histogram in the right-hand panel of Figure 4.2. The

arrow there points to the median speed, vw/c = 0.035. The minimum is vw/c = 0.005,

and the maximum (with Circinus excluded) is vw/c = 0.23.2 Uncertainties in the vw/c

values follow from the uncertainties in M
BH

and σ tabulated by Gültekin et al. , and

the median errorbar, ∆(vw/c) ≃ ±0.02, is also shown in Figure 4.2.

It is often reported that power-law fits to M
BH
–σ data return exponents that are

2Applying this procedure to Circinus gives vw/c ≃ 1.2 for that galaxy. In this case, the published
SMBH mass estimate would have to be higher by a factor of >∼4 (for the same σ) or the stellar velocity

dispersion lower by a factor ≈1.3 (for M
BH

fixed) to bring the inferred wind speed down to vw/c <∼ 0.3.
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Figure 4.3: Inferred vw/c vs. observed M
BH

for the normal early-type galaxies and
bulges in Gültekin et al. (2009), with vw/c obtained from equation (4.16) for each
(M

BH
, σ) measurement. The solid line shows the correlation vw ∝ M0.2

BH
, which could

explain the slope of the best-fit power-law M
BH
–σ relation according to Gültekin et al.

The dashed line shows the weaker correlation vw ∝ M0.03
BH

, suggested by the steeper
power-law fit to M

BH
versus σ by Ferrarese & Ford (2005).

closer to 4 than to 5; and, as we noted in §4.2, even a weak correlation between black

hole mass and wind speed could result in an M
BH
–σ relation from energy-conserving

feedback having a slope <5 (equation [4.17]). Thus, Figure 4.3 plots our inferred vw/c

for the Gültekin et al. spheroids against their M
BH

values.

The fitted M
BH
–σ relation of Ferrarese & Ford (2005; their equation [20]) is

M
BH

∝ σ4.86±0.43. Taking this power at face value, our equation (4.17) implies, roughly,

vw ∝ M0.03±0.09
BH

. This scaling is drawn as the dashed line in Figure 4.3. On the other

hand, Gültekin et al. (2009) quote M
BH

∝ σ4.12±0.37 for a fit to the galaxies in their

sample minus Circinus (see the note in their Table 1). Putting this into equation (4.17)

above implies vw ∝ M0.2±0.1
BH

, which is illustrated by the solid line in Figure 4.3. Either

of these relations between vw and M
BH

appears consistent with the data; alternatively,
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Figure 4.4: Distribution of model (past) SMBH wind velocities for the normal galaxies
in Gültekin et al. (2009) (solid lines), compared to the observed distributions of vw/c in
local AGN, in samples measured by Tombesi et al. (2011) (dashed line in the left-hand
panel) and by Gofford et al. (2013) (dashed line in the right-hand panel).

neither is obviously required by the data. In fact, the Spearman rank-correlation

coefficient for these (vw,MBH
) numbers is just s = −0.03, with a significance of only

≃ 15%. Any correlation that there might be between vw and M
BH

is simply so weak

as to be swamped by the scatter in the M
BH
–σ data. This is not really surprising but

is, of course, bound up with the well-known fact of the small intrinsic scatter in the

M
BH
–σ relation.

Our analysis of the M
BH
–σ data has essentially interpreted the scatter in it (i.e.,

the spread of logM
BH

at a given log σ) as the result of variations in SMBH wind speeds

around an average vw/c ≃ 0.035. However, the histogram in Figure 4.2 and the spread

of the points in Figure 4.3 have not been corrected in any way for measurement er-

rors in M
BH
, which work to broaden the true, error-free distributions. To attempt

any correction is not in the scope of this work. But it is worth noting that the stan-

dard deviation of our log(vw/c) values is ǫ ≈ 0.4 dex, as against an rms errorbar of
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∆ log(vw/c) ≈ 0.1 dex (which is dominated by the uncertainties in logM
BH
). This

implies that there is indeed some real width to our vw/c distribution, which is rightly

comparable to the intrinsic scatter in the observed M
BH
–σ relation (ǫ0 ≈ 0.44 dex,

according to Gültekin et al. 2009).

In any case, the main and most robust result here is our value for the median

black hole wind speed, vw/c = 0.035. This not only gives a very credible fit of a simple

energy-driven feedback model to the M
BH
–σ relation; it is also similar to the typical

speeds of nuclear outflows in samples of nearby, currently active galaxies having no

overlap with the Gültekin et al. sample of quiescent early types and bulges.

4.4 Observed AGN outflow velocities

Highly ionised, “ultra-fast” outflows have been observed from the centres of many local

active galactic nuclei since the prototypes of the phenomenon were found by Pounds

et al. (2003) and Reeves, O’Brien & Ward (2003). These outflows are very massive and

have high kinetic powers of the order needed, in simple scenarios of the type discussed

in this chapter, for the clearing of gaseous protogalaxies by SMBH-powered winds. As

pointed out originally by King (2003), they appear to be an observable, present-day

analogue of the processes that may have worked to establish the M
BH
–σ relation among

now-inactive galaxies.

Two recent studies, by Tombesi et al. (2011) and Gofford et al. (2013), give

the velocities for samples of 20 and 21 AGN outflows respectively, with 6 sources in

common. We can now compare the distributions of these observed outflow speeds to

the distribution that we inferred in §4.3 for SMBH wind speeds in the past, in the

normal spheroids that define the M
BH
–σ relation.

Figure 4.4 shows this comparison, with the AGN outflow velocity distribution

from Tombesi et al. (2011) in the left-hand panel, and with that from Gofford et al.

(2013) in the right-hand panel. In each panel, the solid-line histogram is that from

Figure 4.2 above, obtained from equation (4.16) assuming that the black holes in the
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Gültekin et al. (2009) galaxies were just able to drive energy-conserving supershells to

the escape speeds of their dark-matter haloes. The dashed histograms represent the

AGN data.

The most striking aspect of Figure 4.4 is the basic agreement, to within factors

of a few at worst, in the typical vw/c of these different samples of galaxies: our median

vw/c = 0.035 for the normal early-type galaxies, versus a median vw/c = 0.1 for the

AGN outflows of Tombesi et al. (2011) and a median vw/c = 0.056 for the AGN of

Gofford et al. (2013). The overall ranges (i.e., the maxima) of the wind speeds are

also very similar. These facts are remarkable as much for the simplicity of the model

we have used to estimate vw/c in the normal galaxies, as for the complete disconnect

between the Gültekin et al. galaxy sample and the Tombesi et al. or Gofford et

al. AGN samples.

To be sure, the distributions as they stand in Figure 4.4 are not identical.

Kolmogorov-Smirnov (KS) tests return a formal probability of only PKS ≃ 0.3% that

our distribution of vw/c for the Gültekin et al. galaxies is drawn from the same parent

distribution as the Tombesi et al. sample, and PKS ≃ 25% for equality between our

vw/c values and the Gofford et al. sample. The main reason for this appears to be

the relatively small numbers, in the present sample, of normal galaxies with inferred

vw/c >∼ 0.1—or, conversely, a dearth of AGN (in the Tombesi et al. sample especially)

with slower vw/c <∼ 0.1.

Whatever shortcomings our very simple analysis might have, it requires that nor-

mal galaxies with “underweight” black holes falling significantly below the meanM
BH
–σ

relation have higher-than-average vw/c. If several such galaxies were to be added to

the Gültekin et al. sample, they could fill out the high-velocity tail of our model vw/c

distribution. As for the AGN, it is not clear how selection effects, observational biases

or limitations due to instrumentation may have either affected the measurement of rel-

atively slow outflows, or perhaps even prevented their inclusion in studies designed to

focus on “ultra-fast” systems. It is also worth noting that the probability that the vw/c

measurements of Tombesi et al. and Gofford et al. are drawn from the same parent

distribution is a formally inconclusive PKS ≃ 28% —the same as in the comparison
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between the Gofford et al. distribution of vw for their AGN and ours for the normal

galaxies. As such, it is not clear that any of the data are yet sufficient to allow a ro-

bust comparison at a very detailed level between distributions of observed SMBH wind

speeds and those inferred from any model. This makes it even more noteworthy that

the median of the vw distribution we have obtained in this work lies within a factor

≈1.5–3 of the median vw of two different observed distributions.

Ultimately, our results are encouraging for the general idea that there is a parallel

between the strong nuclear outflows found in local AGN and the kind of black hole

feedback that is routinely assumed to have been a key part of galaxy formation and

the establishment of the M
BH
–σ relation. They also lend support to the relevance of

energy-driven feedback specifically, and to the simple sort of modelling that we have

applied to assess its role quantitatively.

4.5 Summary

We have looked at the behaviour of energy-conserving supershells of swept-up ambient

gas driven into isothermal protogalaxies by black hole winds. At large radii, such shells

tend to a constant coasting speed, v∞, that depends on the black hole mass, M
BH
, the

black hole wind speed, vw, and the velocity dispersion of the halo, σ0. For a shell

to coast at the escape speed of a truncated isothermal halo (i.e., v∞ = 2σ0) requires

M
BH
vw ∝ σ5

0 as in equations (4.15) and (4.16).

We applied this escape condition for energy-conserving feedback to the observed

M
BH
–σ relation for the sample of quiescent early-type galaxies and bulges of Gültekin

et al. (2009). We used equation (4.16) to infer the black hole wind speed that each

galaxy would have had during an active phase if our simple model is to account for the

measured value of M
BH

in the galaxy, given its observed σ. In this approach, scatter

in the observed M
BH
–σ relation directly reflects a distribution of wind speeds from

the SMBHs in the protogalaxies. We compared the distribution of wind velocities we

obtained for the normal galaxies in Gültekin et al. to the observed distributions of
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outflow velocities in two different samples of local AGN (Tombesi et al. 2011; Gofford

et al. 2013). The distributions are strikingly similar. Most notably, the median of our

inferred wind velocities, vw = 0.035c, is within a factor ≈ 1.5–3 of the median of the

observed distribution of wind speeds of both Tombesi et al. (vw = 0.1c) and Gofford

et al. (vw = 0.056c).

4.A Terminal speeds of energy-driven shells

In McQuillin & McLaughlin (2013) we derived the large radius coasting speed of an

energy-driven shell in an isothermal halo, taking into account the gravity of the dark

matter. Here, we compare our results to other derivations of energy-driven coasting

speeds, in particular Silk & Rees (1998), King (2005), King et al. (2011) and Faucher-

Giguère & Quataert (2012).

Silk & Rees (1998) give the velocity of a shell driven by a quasar wind into an

isothermal halo as

vs =

(
fwLEdd8π

2G

f0σ2

)1/3

(4.20)

where they have taken the wind luminosity to be a fraction fw of the Eddington lumi-

nosity, with fw = Ṁoutv
2
w/LEdd. By expressing LEdd in terms of ṀEdd, in our notation

we find

fw = η−1

(
Ṁout

ṀEdd

)(vw
c

)2
= τ

(vw
c

)
(4.21)

Then, for the coasting speed in equation (4.20) to equal the escape speed of the

halo requires

M
BH
vw = τ−1 κf0

4π3G2
σ5 (4.22)

which has the scaling we expect, though a different normalisation than our equation

(4.15), which includes the effects of the dark matter that are not included in the Silk

& Rees (1998) analysis. Equation (4.22) gives an M–σ relation

(
M

BH

108M⊙

)(vw
c

)
= 7.7 × 10−5 τ−1

(
σ

200 km s−1

)5

(4.23)
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which is ∼ 3 orders of magnitude below our result.

If we use the energy-driven M–σ relation derived from Silk & Rees (1998) to infer

wind speeds for the galaxies in the Gültekin et al. (2009) sample, we find a median

wind velocity of just vw ∼ 4 × 10−5 c, far below the observed medians of 0.1 c from

Tombesi et al. (2011) and 0.056 c from Gofford et al. (2013).

King (2005) and King, Zubovas & Power (2011) look at energy-driven outflows

only in the specfic case that the black hole has reached the critical Mσ mass during

an momentum-driven phase and then switched to an energy-driven regime. They also

assume that Ṁout ≃ Ṁacc so that τ ∼ 1 implies vw/c ∼ η ≃ 0.1. Then, in our notation

they are looking at the case M̃
BH
ṽw = 150, which is greater than the constraint required

for escape. In this case, equation (4.13) gives a terminal shell speed v∞ ≈ 4.4σ0, far

above the escape speed of an isothermal halo.

Faucher-Giguère & Quataert (2012) present in their appendix energy conservation

conditions for self similar outflows. They assume that half of the kinetic energy injected

by the black hole goes into the kinetic motion of the swept up gas. They take this

approximation fromWeaver et al. (1977) who solve the energy equation dE = dU−PdV

(which neglects the work against gravity), and find U = (5/11)Lint. Applying the

density profile of an SIS to their results gives a shell speed of

vs =

(
9πG2

f0κσ2
0

τM
BH
vw

)1/3

(4.24)

where τ has the same definition as in our calculations when the AGN luminosity is

equal to the Eddington luminosity. Requiring the shell velocity to equal the escape

speed of the halo gives

M
BH
vw = τ−18f0κσ

5
0

9πG2
(4.25)

which again has the scaling we expect, though a different normalisation than our result.

This gives and M–σ relation

(
M

BH

108M⊙

)(vw
c

)
= 2.7 × 10−3 τ−1

(
σ

200 km s−1

)5

(4.26)

which is a factor of ∼ 2.5 below our relation. When using this relation to calculate
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winds speeds for the Gültekin et al. (2009) galaxies we find a median wind speed of

∼ 10−3c, which is again below the median observed velocities of ∼ 0.056 c and ∼ 0.1 c.
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5 Energy-driven Outflows in

Non-isothermal Galaxies

In Chapter 4 we looked at purely energy-driven outflows in dark matter haloes modelled

as singular isothermal spheres. We found that if a shell can reach large radius without

stalling it will coast at a finite speed that depends on the black hole mass, the velocity

dispersion and the black hole wind speed. By requiring the shell coasting speed to equal

the escape speed of the halo we found an M
BH
–σ relation of the form M

BH
vw ∝ σ5.

Using this relation, we inferred the distribution of wind speeds that a sample of now

quiescent galaxies would have had during an active phase. These wind speeds are in

good agreement with observed wind speeds in local AGN, with a median of vw = 0.035 c,

which is within a factor ∼ 1.5− 3 of the median observed wind speed of vw = 0.1 c and

vw = 0.056 c (Tombesi et al. 2011; Gofford et al. 2013).

In the case of the purely momentum-driven outflows considered in Chapter 3, we

identified several key differences in the analyses between outflows modelled in isother-

mal spheres and in non-isothermal haloes. As in the energy-driven case, we found that

momentum-driven shells in an isothermal halo coast at a constant speed at large radius.

When considering such outflows in non-isothermal haloes, we found that if the shell

can reach large radius without stalling then it will always accelerate and eventually

exceed the escape speed of the halo. This can be done with a CMO mass less than the

mass required to drive a shell to the escape speed of an isothermal halo.

With this in mind, it is of interest to look at the effects of relaxing the isothermal

assumption for energy-driven outflows.
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5.1 Equation of motion

We recall that the equation of motion of shell moving outwards into the dark matter

halo of a protogalaxy is

d

dt
[Mg(r)v(r)] +

GMg(r)

r2
[M

BH
+M

DM
(r)] = 4πr2P , (5.1)

where for an energy-driven outflow P is the thermal pressure that drives the shell,

which satisfies the energy equation

d

dt

[
4

3
πr3

P

γ − 1

]
= Ė − P

d

dt

[
4

3
πr3
]
− GMg(r)v(r)

r2
[M

BH
+M

DM
(r)] . (5.2)

Here, γ is the ratio of specific heats and Ė = τ(vw/c)(LEdd/2) is the kinetic energy

flux of the wind (equation [4.9]).

As in Chapter 3, we write Mg(r) = f0h(r)MDM
(r), where f0 is the fiducial gas

fraction (∼ 0.2) and h(r) is a function that describes how the gas traces the dark matter.

Also as in the case of momentum-driven shells in non-isothermal haloes, we refer all

masses, radii and velocities to the peak of the circular speed curve, V 2
c = GM

DM
(r)/r.

Recalling §3.5.1 (equations [3.19] - [3.24]), we denote the location of the peak in the

circular speed curve by rpk and the value V 2
c (rpk) ≡ V 2

c,pk. We define the characteristic

velocity dispersion σ2
0 ≡ V 2

c,pk/2 to define unique mass and radius units Mσ and rσ. We

then also have that Ṽ 2
c,pk = 2 and M̃

DM
(r̃pk) ≡ M̃pk = 2r̃pk. We define x = r/rpk and

we introduce a dimensionless mass profile m(x) so that M̃
DM

(x) ≡ M̃pkm(x), where by

construction M̃
DM

(x = 1) ≡ M̃pk and m(x = 1) = 1.

We use equation (5.1) to eliminate P from (5.2). Combining this with the above

definitions, the equation of motion of an energy-driven shell in any non-isothermal dark

matter halo with a singly peaked circular speed curve is

d2

dx2

[
h2m2ṽ 2(x)

]
+

(
3(γ − 1)

x
+

hm(x)

x

d

dx

[
x

hm(x)

])
d

dx

[
h2m2ṽ 2(x)

]

+4
hm(x)

x2

(
m2(x)

dh

dx
+ 2hm(x)

dm

dx
+

M̃
BH

M̃pk

h(x)
dm

dx
+

M̃
BH

M̃pk

m(x)
dh

dx

)

= 6(γ − 1)
hm(x)M̃

BH
ṽw

τ
xṽ(x)− 4(6γ − 7)

h2m2(x)

x3

[
m(x) +

M̃
BH

M̃pk

]
.(5.3)
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This form of the equation of motion allows us to select any dark matter mass profile

that has a single peak in its circular speed curve and also allows for the segregation of

gas and dark matter, though we focus on the case where h(x) ≡ 1. In general equation

(5.3) must be solved numerically for a given dark matter profile. In §5.1.2 - 5.1.4 we

will look at the solutions of equation (5.3) with the dark matter profiles of Hernquist

(1990), Navarro, Frenk & White (1996, 1997) and Dehnen & McLaughlin (2005).

5.1.1 Velocity fields at small radius

As in our analysis of the limiting behaviour of momentum-driven shells in a non-

isothermal halo in §3.4.1.1, in the limit of small radius, we can assume to leading order

that

m(x) → Axp , (x ≪ 1) (5.4)

where p > 1 as we are considering haloes that are shallower than isothermal in the

centre. Defining q̃ 2 ≡ m2(x) ṽ 2(x), equation (5.3) for the motion of an energy-driven

shell in a non-isothermal halo becomes at small radius

d2q̃ 2

dx2
+

(1− p+ 3[γ − 1])

x

d q̃ 2

dx
+ 4A2px2p−3

[
2Axp +

M̃
CMO

M̃pk

]

+4(6γ − 7)A2x2p−3

[
Axp +

M̃
CMO

M̃pk

]
= 6(γ − 1)M̃

CMO
ṽw

A2x2p−1

q̃
. (5.5)

We assume that at small radius q̃ 2 tends to a power law of the form:

q̃ 2 −→ C + B1x
β + B2x

2β +O(x3β) , (5.6)

so that C ≡ m2(0) ṽ 2(0). Then we have

d q̃ 2

dx
= βB1x

β−1 + 2βB2x
2β−1 +O(x3β−1)

d2q̃ 2

dx2
= β(β − 1)B1x

β−2 + 2β(2β − 1)B2x
2β−2 +O(x3β−1)

q̃ −1 = C−1/2

(
1− 1

2

B1

C
xβ +

[
1

2

B2

C
+

3

8

B2
1

C

]
x2β +O(x3β)

)
. (5.7)
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Substituting these expansions into equation (5.5) and equating the leading terms gives

q̃ 2(x) ≡ m2(x) ṽ 2(x) −→ C − 4A2

2p− 1

M̃
CMO

M̃pk

(p+ 6γ − 7)

[p− 1 + 3(γ − 1)]
x2p−1 (5.8)

As for energy-driven shells in an isothermal halo, a shell moving from x = 0 must have

a large enough initial momentum to keep m2(x) ṽ 2(x) > 0 if it is to reach large radius

and escape. Equation (5.8) gives the initial condition we use to start our numerical

integrations to solve equation (5.3) for the dark matter haloes of Hernquist (1990),

NFW and Dehnen & McLaughlin (2005) in the following sections.

5.1.2 Hernquist model haloes

The first specific non-isothermal halo we consider is that of Hernquist (1990). As

has been discussed previously (§3.4.2), in our notation referring all masses, radii and

velocities to the peak of the rotation curve, the mass profile of a Hernquist sphere is

given by

M̃
DM

(x) = M̃pk
4x2

(1 + x)2
≡ M̃pkm(x) (5.9)

In the limit of small radius, m(x) → 4x2, so A = 4 and p = 2 in equation (5.8), and

ṽ 2 −→ C

16
x−4 − 4

3

M̃
BH

M̃pk

(6γ − 5)

(3γ − 2)
x−1 , (x ≪ 1) (5.10)

which is the initial condition we use in our numerical integration of equation (5.3) for

the motion of a shell in a Hernquist halo.

Figure 5.1 shows the velocity fields, v2(r), that solve equation (5.3) for the Hern-

quist (1990) dark matter profile with M̃pk = 4000. This corresponds to Mpk ∼
2 × 1012M⊙ in a halo with σ0 = 200km s−1 and recalling M̃pk = 2r̃pk, this gives

rpk ∼ 100 kpc. Each panel of Figure 5.1 shows solutions with M̃
BH
ṽw = 0.45, 2.7

and 22 for a range of initial momenta (i.e., a range of C values). All solutions have

ṽw = 45, corresponding to vw = 0.03 c for σ0 = 200 km s−1, so that M̃
BH

= 0.01, 0.06

and 0.49 in each case.
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Figure 5.1: Velocity fields for energy-driven shells in a Hernquist (1990) dark matter

halo with a spatially constant gas fraction and M̃pk = 4000, which corresponds to a
halo with Mpk ∼ 2× 1012M⊙ and rpk ∼ 100 kpc for σ0 = 200 km s−1. Each panel shows

solutions with M̃
BH
ṽw = 0.45, 2.7 and 22 for an range of initial momenta. In each case,

ṽw = 45, corresponding to an outflow velocity of 0.03 c for σ0 = 200 km s−1, so that
M̃

BH
= 0.01, 0.06 and 0.49.

The left-hand panel of Figure 5.1 shows solutions with M̃
BH
ṽw = 0.45. Most

of these represent shells that stall and are unable to escape. Shells with small initial

momenta (i.e., C ≪ 1) are formally able to escape, though their velocities are near

zero for much of their evolution. From x = 0.5 to x = 1, corresponding to a distance

of ∼ 50 kpc, the shell travels at ∼ 0.1σ0 ∼ 20 km s−1, so it takes ∼ 3× 109 yrs to reach

the peak of the rotation curve. It is notable that this minimum velocity is comparable

to the coasting speed of an energy-driven shell in an isothermal halo driven by this

M̃
BH
ṽw, where ṽ∞ ∼ 0.1 (equation [4.13] with M̃

BH
ṽw = 0.45). The same is true
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for momentum-conserving outflows where the minimum velocities of shells with small

initial momenta in a non-isothermal halo are comparable to the large radius coasting

speed of a momentum-driven shell driven by the same CMO mass in an isothermal

halo. The uppermost curve in the left-hand panel represents the escape of a shell with

significant velocity at all radii, though this is only a formal result as it represents a

shell with v ∼ 106c at a radius of ∼ 1pc.

The middle panel of Figure 5.1 shows solutions with M̃
BH
ṽw = 2.7. We can see

here that although some solutions come close to ṽ = 0, all solutions represent shells

that are in principle able to escape. The minimum velocity of shells with small initial

momenta is comparable to the coasting speed in an isothermal halo where ṽ∞ ≃ 0.5

for M̃
BH
ṽw = 2.7. Curves with this minimum velocity represent shells that begin the

acceleration that allows them to escape at x ∼ 1. Shells with larger initial momenta

can begin to accelerate at radii smaller than this but still at large radii in the halo.

Finally, the right-hand panel of Figure 5.1 shows solutions with M̃
BH
ṽw = 22.

Here we see that all solutions represent shells that easily escape to large radius. Again,

solutions with small initial momenta have minimum velocities comparable to the coast-

ing speed in the isothermal case, ṽ∞ = 2 for M̃
BH
ṽw = 22, the condition for the escape

from a truncated isothermal halo.

In all three cases, as with momentum-driven shells in non-isothermal haloes, if

the shell can reach large radii without stalling then it will accelerate and eventually

exceed the escape speed of the halo. In a Hernquist halo m(x) → 4 at large radius,

and in a similar way to §5.1.1. we can find the large radius speed by assuming q̃ 2(x)

follows a power law of the form

q̃ 2 −→ xβ
[
B1 + B2x

−1 + B3x
−2 +O(x−3)

]
. (5.11)

Subsituting this expansion and its derivatives into equation (5.3) for the motion of an

energy-driven shell, with m(x) = 4 we find the large radius speed of the shells tends to

ṽ 2 −→
[
96(γ − 1)M̃

BH
ṽw

2γ + 2/9

]2/3
x2/3

16
, (x ≫ 1) (5.12)



126

Figure 5.2: Velocity fields for energy-driven shells in an NFW dark matter halo with
a spatially constant gas fraction and M̃pk = 4000. Each panel shows solutions with

M̃
BH
ṽw = 0.45, 2.7 and 22 and a range of initial momenta. In each case, ṽw = 45,

corresponding to an outflow velocity of 0.03 c for σ0 = 200 km s−1, so that M̃
BH

= 0.01,
0.06 and 0.49. The radius unit rpk ≃ 100 kpc.

so that, again as in the case of momentum-driven outflows, all shells tend to the same

large radius v(r), independent of the initial conditions (i.e., the value of C).

5.1.3 NFW model haloes

We look next at the dark matter density profile of Navarro, Frenk & White (1996,

1997; NFW), which has the mass profile (§3.4.3)

M̃
DM

(x) = M̃pk
ln(1 +Rx)−Rx/(1 +Rx)

ln(1 +R)−R/(1 +R)
≡ M̃pkm(x) (5.13)
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where R = 2.16258. At small radii, the dimensionless mass profile, m(x), tends to

m(x) −→ R2x2

2

[
ln(1 +R)− R

1 +R

]−1

(x ≪ 1) (5.14)

Then, from equation (5.8) with A = [R2/2][ln(1 + R − R/(1 + R)] and p = 2, the

velocity field at small radius tends to

ṽ 2 −→ 4C

R2

[
ln(1 +R)− R

1 +R

]2
x−4 − 4

3

M̃
BH

M̃pk

(6γ − 5)

(3γ − 2)
x−1 , (x ≪ 1) (5.15)

which is the initial condition we use in our numerical integration of equation (5.3) for

an NFW halo.

Figure 5.2 shows the velocity fields that solve equation (5.3) in an NFW dark

matter halo with M̃pk = 4000. The panels from left to right show M̃
BH
ṽw = 0.45,

2.7 and 22. All three panels have ṽw = 45, corresponding to an outflow velocity of

vw = 0.03 c for σ0 = 200 km s−1, so that M̃
BH

= 0.01, 0.06 and 0.49.

Figure 5.2 is qualitatively similar to Figure 5.1 for velocity fields in a Hernquist

dark matter halo. The left-hand panel, with M̃
BH

= 0.01 shows many solutions which

stall (i.e., ṽ = 0) at finite radius, some that escape but have near zero velocities for

much of their evolution and one that accelerates when it is at a significant velocity.

This solution is again a formal result which is not physically possible (v ∼ 106c at 1pc).

The shell that escapes is slow moving and again takes a considerable amount of time

to reach the peak of the rotation curve, at least ∼ 3× 109 yrs. The middle panel, with

M̃
BH

= 0.06 shows solutions which represent all shells escaping, though some come

close to stalling. The right-hand panel of Figure 5.2 shows solutions with M̃
BH
ṽw = 22,

the critical value in the isothermal case, which all escape easily.

As in the Hernquist halo, shells with small initial momenta have minimum veloc-

ities that are comparable to the coasting velocity of shells driven by the same M̃
BH
ṽw

in an isothermal halo, which is analogous to the momentum-driven outflows considered

in Chapter 3. These shells begin to accelerate near the peak of the rotation curve,

whereas shells with higher initial momenta can begin to accelerate at smaller radii.
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Again, as in the case of momentum-driven outflows, all shells accelerate if they

can reach large radius without stalling. At large radius the NFW mass profile diverges

logarithmically, but the solutions are qualitatively similar to those in a Hernquist halo

and we can see from Figure 5.2 that all shells that reach large radius tend to the same

v(r), regardless of the initial conditions.

5.1.4 Dehnen & McLaughlin model haloes

The last specific non-isothermal dark matter profile we consider is that of Dehnen &

McLaughlin (2005) which, in our dimensionless units, has the mass profile (§3.4.4)

M̃
DM

= M̃pk

(
20

11

)5
(

11
9
x4/9

1 + 11
9
x4/9

)5

≡ M̃pkm(x) (5.16)

In the limit of small radiusm(x) → (20/9)5x20/9. From equation (5.8) with A = (20/9)5

and p = 20/9, the velocity field of the shell tends to

ṽ 2 −→ C

(
9

20

)10

x−40/9 − 36

31

M̃
BH

M̃pk

(6γ − 43/9)

(3γ − 16/9)
x−1 , (x ≪ 1) (5.17)

which, as in the Hernquist and NFW haloes, is the initial condition we use in our

numerical integration of equation (5.3) for Dehnen & McLaughlin (2005) haloes.

Figure 5.3 shows the velocity fields that satisfy equation (5.3) for the dark matter

profile of Dehnen & McLaughlin (2005) with M̃pk = 4000. As previously, each panel

shows solutions with ṽw = 45, M̃
BH

= 0.01, 0.06 and 0.49 and for a range of C values

Figure 5.3 is similar to Figures 5.1 and 5.2. The left panel, which has M̃
BH
ṽw =

0.45 shows many solutions that stall at finite radius. Those with small initial momenta

are technically able to escape though their velocities are near zero for much of their

evolution and it takes at least ∼ 3× 109 yrs to reach the peak of the rotation curve. It

takes larger values of C to be able to escape with velocity much larger than zero at all

radii in this case but this gives unphysically large velocities at small radii (v ∼ 106c at

radii of order 1pc). The middle panel, with M̃
BH
ṽw = 2.7, shows that all shells are able

to escape to large radius, though some come close to stalling. The right-hand panel



129

Figure 5.3: Velocity fields for energy-driven shells in a Dehnen & McLaughlin (2005)

dark matter halo with a spatially constant gas fraction and M̃pk = 4000. Each panel

shows solutions with M̃
BH
ṽw = 0.45, 2.7 and 22 and a range of initial momenta. In

each case, ṽw = 45, corresponding to an outflow velocity of 0.03 c, so that M̃
BH

= 0.01,
0.06 and 0.49. The radius unit rpk ≃ 100kpc.

shows solutions with M
BH

= 22, the critical case in an isothermal halo, and all shells

are easily able to escape. Again, as in the Hernquist and NFW haloes, shells with

small initial momenta have minimum velocities that are comparable to the large radius

coasting speed of shells driven by the same M̃
BH
ṽw in an isothermal halo. These shell

begin to accelerate close to the peak in the rotation curve though shells with larger

initial momenta can start to accelerate at smaller radii.

In the limit of large radius in a Dehnen & McLaughlin (2005) halo, m(x) →
(20/11)5. In the same way as with the Hernquist model halo, we find that at large
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radius the shell velocity tends to

ṽ 2 −→
[
6(20/11)10M̃

BH
ṽw

2γ + 2/9

]2/3
x2/3 , (x ≫ 1) (5.18)

which again is independent of the initial conditions.

5.2 Wind speeds and the M–σ relation

In all three of the specific haloes we considered above we found that energy-conserving

feedback can be driven to escape with M̃
BH
ṽw ∼ 2.7, giving an M–σ relation of the

form (
M

BH

108M⊙

)(vw
c

)
≃ 8.20 × 10−3 1

τ

(
f0
0.2

)(
σ

200km s−1

)5

, (5.19)

which is a factor ∼ 8 below the relation we derived for energy-driven outflows in

isothermal haloes, if σ0 = Vc,pk/
√
2.

In the same manner as Chapter 4, we can use equation (5.19) to infer the wind

speeds a sample of now quiescent galaxies would have had during an active phase.

Applying equation (5.19) to the 51 galaxies in the Gültekin et al. (2009) sample gives

a distribution of wind speeds with a median of ∼ 0.004 c, which is about an order of

magnitude below the median in the isothermal case.

As in the analyses of Chapters 3 and 4, these results are for time-independent

winds from black holes. A black hole mass and wind speed of M̃
BH
ṽw ∼ 2.7 is able

to drive an energy-conserving shell to escape, but it takes a considerable amount of

time to drive the shell from the halo, during which the black hole mass is growing.

This means that the black hole mass observed in a now quiescent galaxy is expected to

be larger than the mass that originally drove the shell to escape, i.e., larger than the

“critical” mass in equation (5.19), which with the corresponding wind speed, allows for

the escape of energy-conserving feedback.

By integrating v(r) to find r(t) for a shell driven by M̃
BH
ṽw = 2.7, we find the

time it takes a shell to reach the peak of the rotation curve, which is approximately
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where a shell with a small initial momentum (i.e., small C) starts to accelerate, is

∼ 7 × 107 yrs. This is equivalent to ∼ 1.5 Salpeter times so that the black hole mass

has grown by a factor ∼ e1.5 ≃ 4.5 when the shell begins the acceleration that allows it

to escape. We note that the time it takes an energy-driven shell to reach rpk is much

shorter than a momentum-conserving shell driven by the same black hole mass, which

takes ∼ 7− 8 Salpeter times to reach the same radius in the halo.

In the momentum-driven case, the growth of the black hole throughout the motion

of the shell implies that theM–σ relation derived in that case is a lower limit to observed

relations, as the black hole could grow up to a factor ∼ e7−8 times more massive when

the shell escapes. As discussed in §3.5.2, this difficulty could be compensated for by

two effects: 1) if black holes grow from much smaller seeds then a momentum-driven

shell may already be at large radius when the black hole reaches the critical mass,

and 2) if the shell transitions to an energy-driven phase, the thermal expansion of the

shocked wind will cause the shell to accelerate, reducing the time it takes to escape.

In the energy-driven case we have to consider the dependence of the M–σ relation

on the wind velocity. If the black hole has grown a factor ∼ e1.5 times more massive

than the critical mass by the time the shell escapes, then applying equation (5.19)

directly to the observed black hole masses and velocity dispersions of Gültekin et al.

(2009) leads to smaller inferred wind speeds. If we say the black holes in the Gültekin

et al. sample have grown a factor of ∼ 5 above the critical black hole mass then the

wind speeds inferred by equation (5.19) would be a factor of ∼ 5 higher, giving a

median wind speed of ∼ 0.02 c which is comparable to observed wind speeds in local

AGN (vw ∼ 0.1 c Tombesi et al. 2011; vw ∼ 0.056 c Gofford et al. 2013).

These considerations highlight the need for a fully time-dependent treatment of

the self-regulated feedback scenario so that the SMBH can be allowed to grow and the

corresponding increase in kinetic energy flux of the wind (recall Ė ∝ M
BH
vw) can be

included in the equation of motion of the shell.
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Figure 5.4: Velocity fields for momentum- (left panel) and energy-driven (right panel)

shells in an isothermal halo for a range of initial momenta. In both cases M̃
BH

= 1 and
for the energy-driven outflows ṽw = 45, corresponding to a wind speed of ∼ 0.03 c for
σ0 = 200 km s−1. The radius unit rσ ∼ 50 pc in a halo with σ0 = 200 km s−1.

5.3 Momentum and energy-driven outflows

As discussed in Chapter 2, it is generally expected that an initially momentum-driven

shell will transition to an energy-driven regime. The idea behind a transition in an

isothermal halo is that it will cause the momentum-driven shell to accelerate to the

higher coasting speed of an energy-driven shell. This could help to alleviate the diffi-

culty identified by Silk & Nusser (2010) of driving the shell to the escape speed of an

isothermal halo, which requires a black hole three times more massive than the critical

Mσ mass.
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The latter issue is partly resolved by considering outflows in non-isothermal

haloes. As we saw in Chapter 3, momentum-driven outflows in non-isothermal haloes

will always accelerate if they can reach large radius without stalling and eventually

exceed the escape speed of the halo. However, as a transition is expected, it is still of

interest to consider the effects it could have on the M–σ relations.

First, we look briefly at the plausibility of a transition in an isothermal halo

when the black hole is at the Mσ mass, which is the scenario envisioned by King et

al. (2011) and Zubovas & King (2012). Figure 5.5 shows the momentum- (left panel)

and energy-driven (right-panel) solutions for shells driven by M̃
BH

= 1 and ṽw = 45 in

an isothermal halo.

As we know from Chapter 3, the coasting speed of a momentum-driven shell at

large radius with M̃
BH

= 1 is formally zero, so all solutions represent shells that stall at

some finite radius. For a transition to be successful in this case the shell must become

energy-driven before it stalls in the momentum-driven phase. For a wind speed of

0.03 c, the shell is only momentum-driven to r <∼ 1 pc ∼ 0.02rσ (equation [2.39]) and

can transition to energy-driving at r >∼ 11 pc, depending on the shell velocity. From

our analysis in §3.5.1 we know that for a shell driven by M̃
BH

= 1 to stall beyond

r ∼ 10 pc ∼ 0.2 rσ requires C > 0.4, several examples of which are shown in Figure

5.4. In these cases the shell could transition to an energy-driven phase where the large

radius coasting speed is ṽ∞ = 2.75, which is sufficient for the escape of the shell.

Thus, a transition to energy-driving when M̃
BH

= 1 is possible and would allow

the shell to reach the escape speed of an isothermal halo. Escape for smaller black hole

masses would become increasingly more difficult as higher initial momenta would be

required to keep the shell from stalling before the transition is made. For M̃
BH

<∼ 0.49,

escape would be impossible without black hole growth as the shell would not be able

to reach the escape speed of the halo in the energy-driven phase. In non-isothermal

haloes where both momentum- and energy-driven shells accelerate at large radius, this

may not be a problem. As such, we now look at the possibility of transitions in non-

isothermal haloes.

As discussed in Chapter 3 and above, the solutions to equations (3.25) and (5.3)
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Figure 5.5: Velocity fields for momentum- (left panel) and energy-driven (right panel)

shells in a Hernquist halo with M̃pk = 4000 for a range of initial momenta. In each

case, M̃
BH

= 1 and for the energy-driven outflows ṽw = 45, corresponding to a wind
speed of ∼ 0.03 c for σ0 = 200 km s−1.

for the motion of momentum- and energy-driven shells are qualitatively similar in the

different halo types that we consider. As such, in this discussion we shall use solutions

in a Hernquist halo as an example.

We consider again the case of shells driven by a black hole mass M̃
BH

= 1 and wind

speed ṽw = 45. Figure 5.5 shows the velocity fields v2(r) of momentum-driven shells

(left panel) and energy-driven shells (right panel) in a Hernquist halo with M̃pk = 4000.

We can see immediately that as in the case of outflows in an isothermal halo,

the velocities of the momentum-driven shells are far below the energy-conserving shells

driven by the same black hole mass. Thus, as in the isothermal case, a transition from
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Figure 5.6: Velocity fields for momentum- (left panel) and energy-driven (right panel)

shells in a Hernquist halo with M̃pk = 4000 for a range of initial momenta. In each

case, M̃
BH

= 0.06 and for the energy-driven outflows ṽw = 45, corresponding to a wind
speed of ∼ 0.03 c for σ0 = 200 km s−1.

momentum- to energy-driving would cause the shell to accelerate. Though a transition

is not necessary to ensure the escape of an intially momentum-driven shell in this case,

as M̃
BH

≃ 1 is sufficient to drive a momentum-conserving shell to escape in a halo with

Mpk ≫ Mσ, it would reduce the time it takes for the shell to escape the halo and thus

reduce the amount by which the black hole can grow before the shell escapes.

In order to escape after a transition, the conditions for the escape of the shell

during the energy-driven phase must be met. In non-isothermal haloes we found that

the feedback can escape for M̃
BH
ṽw ≃ 2.7, which with ṽw = 45 corresponds to M̃

BH
=

0.06. Figure 5.6 shows the momentum- (left panel) and energy-driven (right panel)
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solutions in this case.

As we expect for M̃
BH

< 1 in the momentum-driven case, the shells all stall at

a finite radius. As in the isothermal case with M̃
BH

= 1, for the shell to escape the

transition to energy-driving must occur before the shell stalls. The earliest stall occurs

at ∼ 0.1rpk ∼ 10 kpc, which is well beyond the radius at which the shell becomes

energy-driven (Chapter 2, equation [2.40]). It is therefore possible for an initially

momentum-driven shell with M̃
BH

= 0.06 to transition to an energy-driven regime that

drives the shell to escape.

If the initial momentum-driven phase does set the M
BH
–σ relation, as suggested

by King (2005) and Zubovas & King (2012), then this would give

M
BH

= 2.73× 107M⊙

(
f0
0.2

)(
σ0

200km s−1

)4

(5.20)

which is a factor ∼ 4−5 below the M
BH
–σ relation of Gültekin et al. (2009) in normal-

isation, and an order of magnitude below McConnell & Ma (2013) who find a steeper

slope than Gültekin et al. As with the discussion above, we would expect a relation

such as equation (5.20) to be a lower limit to the observed relation because we have

not considered the growth of the black hole in the time it takes for the shell to escape

and establish the M–σ relation.

5.4 Summary

We have looked at the effect on energy-driven outflows of relaxing the assumption that

dark matter haloes are described by isothermal spheres.

In the isothermal case (Chapter 4), we found that shells that can reach large

radius will coast at a finite speed. In the non-isothermal haloes discussed here, we

find that the energy-driven shells that make it to large radius will accelerate. This

is analogous to the case of momentum-driven shells, which coast at large radius in

isothermal haloes and accelerate in non-isothermal haloes.

In each of the three specific non-isothermal haloes that we have considered
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(Hernquist 1990; Navarro, Frenk & White 1996, 1997; Dehnen & McLaughlin 2005),

with M̃pk = 4000 we found that all energy-driven shells escape when M
BH
vw ≃

2.7f0κV
4
c,pk/(4πG

2) (equation [5.19]). Using this relation to infer black hole winds

speeds for the galaxies in the Gültekin et al. (2009) sample gives a median wind veloc-

ity of vw ∼ 0.004 c, which is an order of magnitude below the median velocity found in

the isothermal case (Chapter 4). However, it takes approximately 1.5 Salpeter times

for the shell to reach the peak of the rotation curve where it begins to accelerate. This

means the black hole mass grows by a factor of ∼ 4− 5 by the time the shell escapes

so observed black hole masses are that much larger than the mass that sets the M
BH
–σ

relation. This simple argument suggests that the wind speeds would be a factor ∼ 4−5

higher, i.e., a median of vw ∼ 0.02 c, than inferred by a direct application of equation

(5.19) to the Gültekin et al. (2009) sample, which is in agreement with the median of

observed wind speed distributions, as discussed in Chapter 4.

We have also discussed the effect of a transition from a momentum- to energy-

driven outflow. We found that it may be possible for an initially momentum-conserving

outflow driven by a black hole mass of just M
BH

= 0.06Mσ to escape if a transition to

energy-driven occurs. By equation (2.40) from Chapter 2, the change to energy-driving

would occur long before the shell stalls in the momentum-driven phase. With a wind

speed vw = 0.03 c and M
BH

= 0.06Mσ, the energy-driven phase would allow the shell

to reach large radii and accelerate, eventually exceeding the escape speed of the halo.

If the momentum-driven phase establishes the M
BH
–σ relation (as suggested by King

2005; Zubovas & King 2012), then M
BH

= 0.06Mσ would give an M
BH
–σ relation that

is a factor of a few below the relation observed by Gültekin et al. (2009). The same

time-dependent considerations discussed above imply that this would be a lower limit

to the observed relation.

Both these points, the black hole growth and the transition scenario, highlight

the need for a fully time-dependent treatment of the self-regulated feedback scenario,

as we will discuss in Chapter 6.
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6 Summary and Discussion

6.1 Summary

Most massive galaxies harbour supermassive black holes (SMBHs) at their centres while

less massive galaxies are host to massive nuclear star clusters (NCs). As discussed in

Chapter 1, the properties of these central massive objects (CMOs: either an SMBH or

an NC) are observed to correlate with properties of their host galaxies. The main aim

of this work has been theoretical derivations of the M
CMO

–σ relation, a tight correlation

observed between the CMO mass, M
CMO

, and the stellar velocity dispersion, σ, of the

the host galaxy spheroid (i.e., the bulge of a spiral galaxy or the whole of an elliptical

galaxy).

We have looked in detail at the dynamics of swept-up shells driven from galaxy

nuclei by steady winds from CMOs. In Chapter 2 we reviewed general outflow physics,

which allowed us to address the question of whether outflows from CMOs are energy-

or momentum-driven. We showed that in the case the CMO is an NC the outflow may

be momentum-driven out to several tens of kiloparsecs in its host galaxy. Conversely,

when the CMO is a black hole the outflow is initially momentum-driven but may quickly

transition to an energy-driven regime which could dominate most of its evolution. As

such, we have looked at the cases when the shell is purely momentum-driven and when

the shell is purely energy-driven.

In Chapter 3 we looked at the M–σ relation that results from purely momentum-

driven outflows, particularly applicable to NC driven outflows. Momentum-drivenM–σ

relations have been derived previously by several authors (e.g, Fabian 1999; King 2003,

2005; Murray et al. 2005; McLaughlin et al. 2006; Silk & Nusser 2010), though only

in analytic detail in the case that the host galaxy is modelled as a singular isothermal

sphere (SIS). Our main aim in this Chapter was to investigate the effect on the M–σ

relation of relaxing the assumption that dark matter haloes are described by SISs.

We began by revisiting the case of a momentum-driven outflow in a galaxy mod-
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elled as an SIS. We showed that in this case the shell tends to a constant coasting

speed at large radii which is dependent on the CMO mass and the velocity dispersion

of the halo. The large radius coasting speed is non-zero when the CMO is above the

critical mass

Mcrit = Mσ ≡ κf0
λπG2

σ4
0 ≃ 4.56× 108 M⊙ λ−1

(
f0
0.2

)(
σ0

200km s−1

)4

, (6.1)

where f0 is a fiducial gas fraction (≈ 0.2), σ0 is the velocity dispersion that characterizes

an SIS and the parameter λ ∼ 1 for SMBHs or λ ≃ 0.05 for NCs. This is the same

as the critical CMO mass that has been derived previously (King 2005; McLaughlin et

al. 2006), which gives M
CMO

–σ relations that lie a factor of a few above the observed

relations. However, we showed that in a galaxy modelled as an isothermal sphere

this critical mass is necessary but not sufficient to drive the swept-up shell to large

radii, which also depends on the initial momentum of the shell when it is close to the

CMO. Furthermore, for the large radius coasting speed of the shell to exceed the escape

speed of a truncated isothermal halo actually requires M
CMO

> 3Mcrit, giving M
CMO

–

σ relations an order of magnitude above the observed relations, which is essentially

the objection raised by Silk & Nusser (2010) to CMOs being the sole contributors in

establishing the M–σ relations.

In more realistic dark matter haloes, which have a single peak in their circular

speed curve, V 2
c (r) = GM

DM
(r)/r, we found that if a momentum-driven shell can reach

large radius without stalling, then it will accelerate and eventually exceed the escape

speed of the halo, negating part of the problem with the SIS analysis. The CMO

mass then needs to be large enough to drive the shell to the radius where it begins to

accelerate. In any dark matter halo with a single peak in V 2
c (r), any momentum-driven

shell, regardless of the initial momentum, can be driven to escape when the CMO is

above the critical mass

Mcrit = Mσ

[
1 +

(
Mσ

Mpk

)
+O

(
M2

σ

M2
pk

)]
. (6.2)

The mass unit Mσ is now defined as

Mσ ≡ κf0
λπG2

V 4
c,pk

4
, (6.3)
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where Vc,pk is the peak value of the circular speed and Mpk is the mass of dark matter

inside this peak. Unlike in the SIS case, this critical mass is by itself sufficient for the

escape of any purely momentum-driven shell.

In the limit that Mpk is much larger than Mσ, equation (6.2) gives a relation

between the CMO mass and the peak circular speed of the dark matter halo:

M
CMO

= 1.14× 108 M⊙ λ−1

(
f0
0.2

)(
Vc,pk

200km s−1

)4

, (6.4)

which is within a factor of a few of correlations observed between M
CMO

and the large-

scale circular speed, Vc,a, which at large radius probes the distribution of dark matter

that dominates the galaxy potential (Volonteri et al. 2011).

In Chapter 4 we considered purely energy-driven outflows from SMBHs, as an

initially momentum-driven shell may transition to energy-driven at radii comparable

to the sphere of influence of the black hole. We considered the case of energy-driven

outflows in a galaxy modelled as an SIS and as in the momentum-driven case, we

found that the shell coasts at a constant speed at large radii. By requiring the coasting

speed to equal the escape speed from a truncated SIS, we found that the escape of the

swept-up shell depends on the black hole mass, the velocity dispersion and the black

hole wind speed as

[M
BH
vw]crit = 22

κf0
πG2

σ4
0 , (6.5)

where the equality holds for a ratio of the specific heats γ = 5/3.

We took a sample of quiescent early-type galaxies and bulges, from the compila-

tion of Gültekin et al. (2009), with measured black hole masses and velocity dispersions

and used equation (6.5) to infer the black hole wind speeds these galaxies would have

had when they were active. We found a remarkable agreement between our distribution

of black hole wind speeds and the distributions of wind speeds observed in local AGN.

In particular, our median outflow velocity, vw = 0.035c, is in good agreement with the

medians of observed distributions, vw = 0.05c for Gofford et al. (2013) and vw = 0.1c

for Tombesi et al. (2011).

In Chapter 5 we looked at the effect of relaxing the isothermal assumption for

purely energy-driven outflows. As with momentum-driven outflows, we found that if an
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energy-driven outflow in non-isothermal halo can reach large radii then it will accelerate

and eventually exceed the escape speed of the halo. In the three specific haloes that

we considered with Mpk = 4000Mσ (suitable for a Milky Way sized halo) and σ0 =

Vc,pk/
√
2, we found that the feedback can escape when M

BH
vw >∼ 2.7κ f0 σ

5
0/(π G2). If

we apply the same process as in Chapter 4 to infer a distribution of wind speeds for

the Gültekin et al. (2009) galaxies then we find a median wind speed of just 0.004 c,

which is an order of magnitude below the median in the isothermal case. We do expect

this to be a lower limit because we have only considered time-independent outflows.

By integrating to find r(t), we found that it takes a shell driven by this black hole

mass and wind speed ∼ 1.5 Salpeter times to reach the peak of the rotation curve

where it begins to accelerate. The observed black hole mass would then be a factor

∼ 4− 5 times larger than the mass the sets the M
BH
–σ relation. Conversely, applying

this escape condition directly to the Gültekin et al. (2009) sample results in smaller

outflow velocities by the same factor of ∼ 4− 5.

We also discussed the effects of a transition from momentum- to energy-driving.

In the case of outflows in an isothermal halo, the coasting speed in the energy-driven

phase is higher than for a momentum-driven shell. A transition from momentum- to

energy-driven would cause the shell to accelerate to the higher coasting speed. If the

conditions in the energy-driven phase satisfy the escape criteria then the shell could

escape.

In the non-isothermal case the shell will accelerate at large radii when momentum-

or energy-driven but the same applies, the shell must satisfy the escape condition for

energy-driven outflows when it has made the transition. The minimum black hole mass

and wind speed that allow the escape of energy-conserving feedback in the haloes we

have considered are M
BH

= 0.06Mσ and vw = 0.03 c. We found that it is possible for

a shell driven by a black hole mass M
BH

= 0.06Mσ to transition from momentum- to

energy-driving before the shell stalls in its momentum-driven phase. The shell would

then accelerate to the higher speed of an energy-driven outflow and eventually escape

the halo. If the initial momentum-driven phase establishes the M
BH
–σ relation, then

M
BH

= 0.06Mσ gives an M
BH
–σ relation a factor of a few below the relation compiled
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by Gültekin et al. (2009). Again, we would again expect this to be a lower limit as

we have not considered the growth of the black hole in the time it takes the shell to

escape the halo.

6.2 Momentum- versus energy-driven outflows

We have considered the M–σ relations that result from either purely momentum- or

purely energy-driven outflows. We showed in Chapter 2 that for outflows driven by

SMBH winds the shell is initially momentum-driven, as shown by King (2003), but

that it can become energy-driven within tens of parsecs (cf. Zubovas & King 2012).

In the NC case we found that the outflow is momentum-driven out to several tens of

kiloparsecs, in the same way as McLaughlin et al. (2006). However, for either CMO

type the radius inside which the shocked wind cools efficiently (equation [2.30] for NCs,

equation [2.39] for SMBHs), and the radius at which the shell becomes energy-driven

(equation [2.31] for NCs, equation [2.40] for SMBHs) are quite sensitive to the wind

velocity.

In the black hole case, we calculated the radius where the shell becomes energy-

driven using a shell speed of vs ∼ σ0 ∼ 200 km s−1 and a wind speed of vw = 0.03 c,

the median of our distribution of wind speeds inferred from the Gültekin et al. (2009)

galaxies in Chapter 4, and found the shell is energy-driven beyond

rs ≃ 11 pc

(
vs

200 km s−1

)−1(
M

BH

108M⊙

)( vw
0.03c

)2 ( ve
0.85c

)2
, (6.6)

which is similar to the sphere of influence of a 108M⊙ black hole in a halo with velocity

dispersion σ = 200 km s−1, rinf = GM
BH
/σ2 ≃ 10.8 pc.

This radius is dependent on the wind speed and the inverse of the shell speed,

so that a faster wind speed or slower shell speed would lead to the shell becoming

energy-driven at a larger radius.

For example, Zubovas & King (2012) find that the shell becomes energy-driven at

r ∼ 520 pc when the wind speed is ∼ 0.1 c and the shell velocity equals the momentum-
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driven coasting speed of King (2003; equation [14], vs = [GLEdd/(2 f0 σ
2
0 c)]

1/2
, which is

∼ 130 km s−1 forM
BH

= 108 M⊙ and σ = 200 km s−1). The use of the momentum-driven

coasting speed is not entrirely appropriate because, before the shell becomes energy-

driven, it goes through a partially radiative phase during which it conserves neither

momentum nor energy (Koo & McKee 1992; Faucher-Giguère & Quataert 2012). We

also note that the coasting speed from King (2003) does not include the gravitational

effects of the dark matter. Zubovas & King (2012) also note that the radius where

the shell becomes energy-driven is dependent on the wind velocity, which is observed

to vary between ∼ 0.03 c and ∼ 0.2 c (e.g., Tombesi et al. 2011; Gofford et al. 2013),

leading to variations between ∼ 10 pc and ∼ 500 pc from equation (6.6).

Due to the difference in cooling processes and a slower wind speed, in the nuclear

cluster case the radius out to which the shocked gas cools efficiently and the radius

where the shell becomes energy-driven are strongly dependent on the inverse of the

wind velocity (r ∝ v−6.5
w and r ∝ v−5.5

w v−1
s respectively), so faster wind speeds lead to

the shell becoming energy-driven sooner.

With this in mind, it is important to consider the effect on the M–σ relation of

an outflow that switches from initially momentum-driven to an energy-driven regime.

A transition from a momentum- to energy-driven outflow has been invoked as a

way of reducing the normalisation of the theoretical M–σ relation from momentum-

driven outflows in isothermal spheres, while preserving the M
CMO

∝ σ4 scaling (King

2003, 2005; Power et al. 2012), though more recent compilations of the observed M–σ

relation for black holes favour a slope of ∼ 5 rather than ∼ 4 (McConnell & Ma 2013;

see §6.3). For nuclear clusters, where the observed M–σ relation has a slope closer to

∼ 4 (Ferrarese et al. 2006), such an effect could help to bring the theoretical relation

more in line with observations.

The idea behind a transition is that when the CMO is at the critical mass that

establishes the M–σ relation (equation [6.1]), the switch to energy-driving causes the

shell to accelerate to a higher speed because of the thermal expansion of the shocked

wind region, which could drive the shell to escape.
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We have found that energy-driven shells have velocities higher than momentum-

conserving shells driven by the same black hole mass. For example, in an SIS a

momentum-driven shell will coast at 2σ0 when the black hole has a mass 3Mσ, whereas

an energy-conserving shell driven by the same black hole mass and a wind speed

vw = 45σ0 will coast at ∼ 4.23σ0.

Furthermore, during the momentum-driven phase a CMO with a mass less than

Mcrit could drive the shell to the radius where the transition occurs. Then the switch

which causes the shell to accelerate and escape occurs for a CMO mass less than Mcrit,

hence reducing the normalisation of the predicted M–σ relation. The switch to energy-

driving and acceleration of the shell to a higher coasting speed could also help overcome

the fact that a CMO mass ≥ 3Mcrit is required to drive a momentum-driven shell to a

coasting speed that equals (or exceeds) the escape speed of an isothermal halo.

One caveat with this scenario is that after the transition the CMO mass and

wind speed must be sufficient to drive the energy-conserving shell to escape. As we

showed in Chapter 4, energy-driven shells coast at a constant speed at large radius

in isothermal dark matter haloes. If the product of CMO mass and wind speed is

too small, < 22f0κσ
5/(πG2) (equation [6.5]), then even with a transition to energy-

driving the shell will not reach the escape speed of a truncated isothermal sphere. For

a wind speed of 0.03 c, this corresponds to a CMO mass ≃ 0.49Mσ. If the CMO mass

in the momentum-driven phase were less than this, then after a transition the shell

would still not be able to achieve the escape velocity of the halo. Moreover, during

the momentum-driven phase we know that all shells driven by this mass would stall

(see §3.3), and those with intial momenta near zero could stall before the transition

occurs. Interesting though, M
BH

= 0.5Mσ gives an M–σ relation that is very close to

the observed relation of Gültekin et al. (2009).

Part of this issue could be resolved by considering shells that are driven into

non-isothermal haloes. Whether momentum- or energy-driven, if a shell can reach

large radius in a non-isothermal halo without stalling it will always accelerate and

eventually exceed the escape speed of the halo. Then the shell just has to transition

to energy-driven before it stalls.
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In Chapter 5, we looked at the momentum- and energy-driven solutions for shells

driven by the same black hole mass into a non-isothermal halo. We found that as

in the isothermal case, the velocity of an energy-driven shell is much higher than

a momentum-driven shell driven by the same black hole mass. In the non-isothermal

haloes that we considered (Hernquist 1990; NFW; Dehnen & McLaughlin 2005; all with

Mpk = 4000Mσ), energy-driven feedback can escape with M
BH

= 0.06Mσ and vw =

45σ0. We found that momentum-driven shells would reach the radius at which they

transition to energy-driven before they would stall. Thus momentum-driven feedback

from a black hole with a sub-critical mass could still escape if the transition to energy-

driven occurs.

It is unclear in this scenario how long the outflow has to be momentum-driven to

preserve the M
CMO

∝ σ4 scaling that results from purely momentum-driven outflows,

which is perhaps appropriate to the nuclear cluster case (see also §6.3). If, as we have

found, nuclear cluster driven outflows are momentum-conserving to radii of several

tens of kiloparsecs, i.e., beyond the effective radius inside which σ is measured, then

we would expect M
NC

∝ σ4 as momentum-driving dominates the evolution of the

outflow. We recall that the radius at which a shell driven by a nuclear star cluster

becomes energy-driven is

rs ≃ 70 kpc

(
λ

0.05

)(
M

CMO

108M⊙

)(
vw

300 km s−1

)−5.5(
vs

200 km s−1

)−1(
Z

Z⊙

)0.6

. (6.7)

If the wind speed is higher than our fiducial value of 300 km s−1, then the outflow

becomes energy-driven at a smaller radius, for example, if vw ∼ 500 km s−1 then the

outflow is energy-driven beyond a radius of ∼ 1.5 kpc, for vw ∼ 800 km s−1 the outflow

is energy-driven for r >∼ 75 pc. Given this, it is not immediately obvious which phase of

feedback dominates the evolution of an outflow driven by a nuclear cluster and hence

sets the M
NC
–σ scaling.

We found that outflows from black holes can be momentum-driven inside ∼
0.26pc and can become energy-driven at ∼ 11 pc, which is of the order of the sphere of

influence of a 108 M⊙ black hole in a halo with velocity dispersion 200 km s−1. In this

case, we presume energy-driving will dominate the evolution of the outflow resulting in
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an M–σ relation where M ∝ σ5, which is in better agreement with the most recently

compiled M
BH
–σ relation. However, if the wind speed is higher then the shell becomes

energy-driven at a larger radius, such as the case considered by Zubovas & King (2012)

who find the shell is momentum-driven inside ∼ 500 pc when the wind speed is ∼ 0.1 c.

If we consider a galaxy with an effective radius re ∼ 2 kpc, which is the radius

inside of which σ is measured, that is described as an isothermal halo, the gas mass

inside this radius is ∼ 7× 109M⊙. If the shell becomes energy-driven at r = 11 pc (as

for vw = 0.03 c) then the shell mass is ∼ 4 × 107 M⊙, which is only 0.5% of the mass

inside the effective radius. If the shell becomes energy-driven at the larger radius of

r = 120 pc (as for vw = 0.1 c) then the shell mass at the transition is 6% of the mass

inside the effective radius. In either case, most of the gas will be swept-up when the

shell is energy-driven, which will presumably have an effect on the observed M
BH
–σ

relation. In the nuclear cluster case with vw = 300 km s−1, all of the mass inside re

would be swept-up during a momentum-driven phase, leading to M
NC

∝ σ4.

As discussed in Chapter 5, if a shell driven by a black hole quickly transitions to

an energy-conserving regime, it takes ∼ 1.5 Salpeter times for the shell to reach the

peak of the rotation curve where it begins the acceleration that allows it to escape.

During this time the black hole would grow a factor ∼ 4 − 5 times more massive,

meaning ∼ 80% of its mass is gained during an energy-driven phase. This could mean

that energy-driving is the dominant feedback mechanism and the M
BH

∝ σ4 scaling

from the initial momentum-driven phase may not be preserved.

Silk & Nusser (2010) object to a transition from momentum- to energy-driven

outflows based on their own analysis of the cooling rate of the shocked wind region.

They note that if momentum-driven feedback from the black hole alone is to clear

the galaxy of gas, the resulting M
BH
–σ relation is an order of magnitude above the

observed relation. They propose that additional momentum input from star formation

triggered by the outflow is the key to establishing the M–σ relation. However, as

noted by several authors (e.g., Zubovas & King 2012), Silk & Nusser appear to have

calculated the cooling rate of the shocked ambient material using the cooling function of

Sutherland & Dopita (1993), which we used to calculate the cooling rate of the shocked
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wind in the nuclear cluster case. This cooling function, which includes various atomic

process but no reltivistic effects (see §2.3.1) extends to temperatures∼ 107−108 K. This

is below the shock temperature in the black hole case (T ∼ 109 K, equation [2.32]), so

such a cooling function may not be suitable in this case. Even so, it is still important

to note that additional sources of momentum input, such as positive feedback from

star-formation which could be triggered by the outflow, could be an effective way of

reducing the normalization of the M–σ relation.

In a more detailed analysis of the cooling of high velocity shocked winds in AGN,

Faucher-Giguère & Quataert (2012) show that the electrons and protons can be de-

coupled for long enough timescales that the shocked material actually forms a two-

temperature plasma which greatly effects the cooling rate. As long as the shocked

gas does not become substantially mixed with cooler gas, Faucher-Giguére & Quataert

find that inverse Compton scattering is the dominant cooling process, though the elec-

tron energy is lower than we assumed in Chapter 2 (cf. King 2003) because of the

two-temperature effects. They find that the cooling time can be longer by a factor of

>∼ 10− 100 compared to if the electrons and protons have the same temperature at all

times. This suggests that the cooling of the shocked wind is less efficient than we have

assumed and thus that the outflow becomes energy-driven at even smaller radii than

we found.

Faucher-Giguère & Quataert (2012) show that the cooling is inefficient in a

wide range of circumstances (varying wind velocities and the density of the ambi-

ent medium), meaning energy-driving may be the dominant form of feedback in more

scenarios than previously thought.

6.3 Observed M–σ relations

The question of whether it is momentum- or energy-driven feedback that establishes

the M–σ relation couples with the discussion of the slope of the observed relations.

The most recent compilation of the M
NC
–σ relation by Scott & Graham (2013)
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suggests that nuclear clusters follow a much shallower relation than theM
NC

∝ σ4.27±0.61

found by Ferrarese et al. (2006). Scott & Graham suggest a relation of the form M
NC

∝
σ2.11±0.31 which does not seem to fit with the theoretical M–σ relations that result from

either momentum- or energy-driven feedback. However, the Scott & Graham sample,

which builds on that of Ferrarese et al. (2006), includes several galaxies that also host

SMBHs. The masses of these black holes fall within the data that define the M
BH
–σ

relation of McConnell & Ma (2013). In these cases, we suggest it is the mass of the

dominant component (if not the sum of black hole and nuclear cluster masses) that

needs to considered for the M–σ relation. We discuss this further in §6.5.
In the black hole case Gültekin et al. (2009) report M

BH
∝ σ4.24±0.41, which seems

in line with the M–σ relation that results from momentum-driven feedback, though we

noted in Chapter 4 (equation [4.17]) that energy-driven outflows can imply an M
BH
–σ

relation with a slope less than 5 if M
BH

and vw are correlated by even a very weak

power. More recently, with a larger sample including several updated masses from

the Gültekin et al. (2009) sample, McConnell & Ma (2013) found the much steeper

M
BH

∝ σ5.64±0.32, which seems to favour the energy-driven scenario.

Zubovas & King (2012) suggest that there are actually three different M
BH
–σ

relations for different galaxy types in different environments. The three relations cor-

respond to spiral galaxies with evolved bulges, ellipticals in cluster centres and field

ellipticals. Their results also imply a fourth M
BH
–σ relation for cluster spirals, though

they note that such galaxies are expected to be rare due to high merger probabili-

ties. Each of these M
BH
–σ relations has a slope ∼ 4 but each has a slightly different

normalisation.

Figure 6.1 shows the M
BH
–σ relation of McConnell & Ma (2013) and the short-

dashed (blue) lines show the four separate M
BH
–σ relations proposed by Zubovas &

King (2012) which are for (from top to bottom) cluster ellipticals, field ellipticals,

cluster spirals and field spirals.

The effect of combining of these individual M–σ relations may be to increase the

slope of the observed relation, though the exact slope would depend on the numbers

of galaxies in each group.
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Figure 6.1: The points show the data that define the M
BH
–σ relation of McConnell &

Ma (2013). The short-dashed (blue) lines show the four M
BH
–σ relations suggested by

Zubovas & King (2012), which from top to bottom represent cluster ellipticals, field
ellipticals, cluster spirals and field spirals. The dot-dashed (red) lines show our M

BH
–σ

relation for energy-driven outflows in an isothermal halo with vw = 0.03 c [equation
(6.5)] for the same galaxy types and environments considered by Zubovas & King
(2012).

McConnell & Ma (2013) do consider the M
BH
–σ relations for the sub-samples of

early- and late-type galaxies and they find that the black hole masses in the early-

type galaxies are about two times more massive than in late-type galaxies at the same

velocity dispersion, as suggested by Zubovas & King (2012). However, for each of the

early- and late-type galaxies they find M
BH

∝ σ5.20±0.36 and M
BH

∝ σ5.01±1.16, which is

steeper than the relations suggested by Zubovas & King (2012).
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The M
BH

∝ σ4 relations of Zubovas & King (2012) are established by an initial

momentum-driven phase of the outflow, as discussed above. The different intercepts

in their relations come from two considerations. First is the consequence of a major

merger which can trigger star-formation and a burst of quasar activity which could

clear the remaining gas from galaxy so it becomes a red-and-dead elliptical. They find

it takes approximately 2 Salpeter times to clear the gas after a merger, meaning the

black hole mass can grow to ∼ 7.5Mσ in these galaxies. The second is the result of

either gas depletion from star-formation or gas replenishment in galaxy clusters. Both

of these affect the gas fraction, f0, in the galaxy, which affects the normalisation of

the resulting M
BH
–σ relations. Zubovas & King estimate that gas depletion by star-

formation leads to a gas fraction a factor ∼ 2.5 below that cosmic value f0 = 0.16. This

implies that in field spiral galaxies, where internal gas depletion dominates, we might

expect the black hole mass to be a factor ∼ 2.5 lower than the predicted value. In

the cluster environment, Zubovas & King suggest that gas replenishment from cooling

flows can balance the depletion from star formation at gas fractions ∼ 0.2, preserving

the predicted value of the M–σ relation.

None of these considerations is dependent on the outflow being momentum-

driven. If the outflow quickly transitions to an energy-driven phase each of these effects

could result in three (possibly four) M
BH
–σ relations with slopes of ∼ 5, as shown by

the dot-dashed (red) lines in Figure 6.1, which again from top to bottom represent

cluster ellipticals, field ellipticals, cluster spirals and field spirals. These relations are

closer to those found by McConnell & Ma (2013) for the sub-samples of early- and

late-type galaxies, and they could combine to give a relation steeper than 5, again in

agreement with McConnell & Ma.

6.4 Galaxy outflows

In our analysis we have focussed on the scaling relations that result from momentum-

or energy-conserving feedback from CMOs. Recent observations show that AGN can
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also drive galaxy-scale outflows, which can be connected to the self-regulated feedback

scenario.

Such large-scale outflows are observed to have velocities of ∼ 1000 km s−1 at radii

of ∼ 2− 3kpc (e.g., Rupke & Veilleux 2011). In simulations of major mergers Debuhr,

Quataert & Ma (2012) study the effects on the host galaxy of AGN winds. With an

initial wind velocity of ≃ 10000km s−1 = 0.03 c, they find that the wind sweeps up the

ambient gas leading to a large-scale outflow with a velocity of ∼ 1000 km s−1.

As discussed above, it is generally agreed that at large radii the shells driven

by AGN feedback are energy-conserving. In Chapter 4 we showed that energy-driven

shells in an isothermal halo will coast at a constant speed at large radius. If the product

of the black hole mass and black hole wind speed is high enough then such shells can

be driven to escape the halo, resulting in a galaxy-scale outflow which could be linked

to the observed large-scale outflows. For energy-driven outflows in an isothermal halo

with σ0 = 200km s−1 to have velocities of ∼ 1000 km s−1 on kiloparsec scales requires

M
BH
vw ≃ 200Mσσ0 (from ṽ∞ = 5 in equation [4.13]). For a wind speed of 0.03 c,

this implies a black hole mass of M
BH

∼ 4Mσ, or for a higher wind speed of 0.1 c,

M
BH

∼ 1.5Mσ. If the large-scale outflow were momentum-driven, to reach a large

radius velocity of ∼ 1000km s−1 in an isothermal halo would require M
BH

∼ 12Mσ

(equation [3.12]).

Energy-driven shells in a non-isothermal halo will accelerate at large radius if

they can avoid stalling and will eventually exceed the escape speed of the halo. This

again would result in a galaxy-scale outflow which could be linked with observations.

At radii of the order a few kpc, energy-driven outflows in non-isothermal haloes have

not begun the acceleration that allows them to escape but could have velocities of

∼ 1000km s−1 (see e.g., Figure 5.1). Whether a such a shell would escape or stall at

some large radius in the halo depends on the value of M
BH

and vw that drive the shell.

King et al. (2011) note that when these massive outflows are observed there is

often little or no AGN activity (e.g., Tremonti, Moustakas & Diamond-Stanic 2007).

In order to understand the connection between the massive outflow and its possible

origin, King et al. looked in detail at the behaviour of an energy-driven shell when the
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AGN switches off. They consider an energy-driven shell in an isothermal halo that is

driven by a black hole at the critical Mσ mass (equation [6.1]). After 106 yrs the AGN

switches off and the shell is driven outwards by the residual thermal pressure in the

shocked wind region. King et al. find the shell can expand for ∼ 10 times longer than

the original driving time, which could explain why massive outflows are sometimes

observed when there is little nuclear activity.

If the residual pressure in the shocked gas were insufficient to drive the shell, it

could stall at large radius in the galaxy halo. This could provide an explanation for

large gas reservoirs observed at large radii in galaxies (e.g., Tumlinson et al. 2011) and

gas reservoirs seen in simulations (e.g., Stinson et al. 2012), a point noted by Sharma

& Nath (2013).

Sharma & Nath (2013) consider winds driven by energy and mass injection from

multiple supernovae, as well as momentum injection due to radiation from a central

black hole. They only include momentum input from the black hole and they do not in-

clude cooling of the wind in their analysis. Sharma & Nath consider energy/momentum

injection for a central region, which for the SNe winds could be connected to a nuclear

cluster. They do note that other star clusters distributed throughout the galaxy would

provide additional momentum input, though modelling the additional feedback is be-

yond the scope of their work.

They find that the feedback from supernovae and AGN operate effectively in low

and high mass galaxies respectively. In an intermediate mass range (1011.5− 1012.5M⊙)

winds from quiescent star forming galaxies cannot escape but are still driven to large

radius in the halo. As noted above, this could provide an explanation for large gas

reservoirs observed at large radii in galactic haloes.

6.5 Co-existing SMBHs and NCs

In Chapter 1 we presented the observed M–σ relations for black holes and nuclear

star clusters (Figure 1.3). The nuclear clusters from Ferrarese et al. (2006) follow a
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similar but offset relation to the M–σ relation defined by the most recent black hole

compilation of McConnell & Ma (2013). When including the nucleated galaxies from

Scott & Graham (2013), the slope of the Mnc–σ relation becomes much shallower,

with M
NC

∝ σ2.11±0.31. A relation of this form does not seem to fit with either the

momentum- or energy-driven scenarios that we have considered. However, as we noted

in Chapter 1 (§1.1.3), several of the galaxies from the Scott & Graham sample also

harbour SMBHs in their nuclei.

Figure 6.2 shows the M–σ relations for SMBHs (McConnell & Ma 2013; filled

grey circles, solid grey line) and for the nuclear clusters of Ferrarese et al. (2006; open

grey circles, dotted grey line). The (red) squares show the galaxies of Scott & Graham

(2013) that host both a nuclear cluster and an SMBH. The open (red) squares show the

masses of the nuclear clusters that appear to reduce the slope of the Mnc–σ relation

from ∼ 4 to ∼ 2. However, the black holes masses in these galaxies, shown by the

filled (red) squares, fall amongst the data that define the black hole M–σ relation of

McConnell & Ma (2013).

This raises the question of whether it is the nuclear cluster, the black hole or the

combination of the two that sets the M–σ relations in these galaxies where the two

types of CMO co-exist.

In their analysis of the M
NC
–σ relation in isothermal haloes, McLaughlin et

al. (2006) address the point that nuclear clusters are rarely observed in massive galax-

ies. They argue that in the self-regulated feedback scenario the shell must become

energy-driven before it reaches the virial radius of the galaxy so that it can accelerate

and escape. They find Rvir ≈ 540 kpc(1 + z)−1.1(σ/200km s−1) from the relations of

Bryan & Norman (1998), which when combined with the radius at which the shell be-

comes energy driven (equation [6.7]) implies that this only works for nuclear clusters in

haloes with σ <∼ 160 km s−1. For typical nuclear clusters that are ∼ 5Gyr old, z = 0.5

and this becomes σ <∼ 130km s−1. In isothermal haloes with velocity dispersions higher

than this a shell driven by a nuclear cluster reaches the virial radius before it tran-

sitions to the energy-driven phase that allows it to escape, so it cannot achieve the

blow out that sets the M–σ relation. However, we have shown that both momentum-
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Figure 6.2: The mass of the central object, M
CMO

, plotted against the velocity disper-
sion, σ, of the galaxy bulges averaged within the effective radius, Re. The filled (grey)
circles represent SMBHs from the compliation of McConnell & Ma (2013) and the solid
(grey) line shows their best fit. The open (grey) circles show the nuclear clusters from
Ferrarese et al. (2006) and the dotted (grey) line shows their best fit to their data.
The (red) squares represent galaxies from the compilation of Scott & Graham (2013),
which host both NCs and SMBHs. The open (red) squares show the nuclear cluster
masses and the filled (red) squares show the black hole masses in the Scott & Graham
(2013) sample.

and energy-driven shells in non-isothermal haloes are able to accelerate at large radius,

overcoming this difficulty.

Nayakshin, Wilkinson & King (2009) discuss the observation that most nuclear

clusters have masses <∼ 108M⊙ while SMBHs often have masses >∼ 108M⊙. They suggest
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that this change over from nuclear cluster to SMBH dominated galaxies reflects a com-

petition between the NC and SMBH feedback. When one of these objects reaches their

M–σ mass it drives away the gas fuelling its growth and the growth of its ‘competitor’.

This then leaves the competitor underweight with respect to its M–σ mass.

In detail, Nayakshin et al. (2009) rely on the different timescales on which the

black holes and nuclear clusters evolve. The black hole growth is governed by the

Salpeter timescale

tSalp =
M

BH

ṀEdd

=
M

BH
ηc2

LEdd

= 4.5× 107 yr
( η

0.1

)
. (6.8)

This is a lower limit as the timescale will increase if the black hole is accreting at a

sub-Eddington rate.

Star formation occurs on the free-fall or dynamical time of the system

tdyn =
rs
σ

= 4.9× 106 yr

(
rs
kpc

)(
σ

200 km s−1

)−1

(6.9)

where rs and σ are the scale length and velocity dispersion of the bulge. Whether this

dynamical time is applicable to nuclear clusters on scales <∼ 10pc is unclear, especially

given the debate over their formation mechanism, as discussed in Chapter 1. In this

case, Nayakshin et al. (2009) estimate the dynamical time as a function of velocity

dispersion using the observed scaling relations L–rs and L–σ where L is the total

luminosity of stellar spheroid. These relations are projections of the two-dimensional

plane occupied by stellar spheroids in the space defined by L, rs and σ, known as the

Fundamental Plane.

By relating the dynamical time to the velocity dispersion, Nayakshin et al. (2009)

find tSalp > tdyn in bulges with σ <∼ 150km s−1 so that the nuclear cluster evolves more

quickly than the black hole. In this case feedback from the NC clears the gas from

the nucleus cutting off fuel to the SMBH. In larger bulges with σ >∼ 150km s−1 they

find tSalp < tdyn. In this case the black hole grows quickly to its M–σ mass and while

nuclear clusters may also exist in the nucleus their feedback becomes negligible and

they are underweight in the bulge.
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This scenario fits with the galaxies in the Scott & Graham (2013) sample which

host both an SMBH and a nuclear cluster. Figure 6.2 shows that in galaxies with

σ >∼ 150 km s−1 the black holes in the Scott & Graham data (filled red squares) lie on the

M–σ relation defined by the McConnell & Ma (2013) data, while the nuclear clusters

(open red squares) are underweight with respect to the M–σ relation of Ferrarese et

al. (2006). For the two galaxies with σ <∼ 150km s−1, though the black hole masses

do fall on the M
BH
–σ relation of McConnell & Ma, they are less massive than nuclear

clusters which lie on the M
NC
–σ relation of Ferrarese et al.

As such, it is not really appropriate to define an M
NC
–σ relation that includes

these underweight nuclear clusters from galaxies where self-regulated feedback from an

SMBH is likely to be setting the M–σ relation.

6.6 Open questions and future work

Our results predict relations between CMO masses and the properties of the dark mat-

ter haloes of their host galaxies. In comparing our predicted relations to the observed

relations we have associated the velocity dispersion, σ0, with the observed stellar veloc-

ity dispersion, σeff , and the peak circular speed of the dark matter halo, Vc,pk, with the

asymptotic circular speed, Vc,a. By doing so we find that our relations that result from

momentum-driven outflows lie a factor ∼ 3− 4 above the observed M
BH
–σ relation of

Gültekin et al. (2009) and the M
BH
–Vc,a relation of Volonteri et al. (2011). The M–σ

relation that results from energy-driven feedback is within a factor of a few of the most

recent compilation of the M
BH
–σ relation of McConnell & Ma (2013).

However, it is important to find the correct relations between the theoretical and

observed quantities which will be dependent on the choice of dark matter halo. The

theoretical quantities we use are three dimensional. It would be of interest to calculate

how quantities such as the 3D velocity dispersion translates to observable, line-of-sight

velocity dispersion and the effect this might have on the predicted M–σ relation.

We, like other authors, have also assumed that the gas traces the dark matter
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directly, though our general equations of motion allow for the segregation of gas and

dark matter through the function h(r), which describes how the gas traces the dark

matter. The gas in a galaxy will cool and condense to become more centrally concen-

trated than the dark matter. In comparison to our model the swept-up shell in this

case would be more massive at a given small radius which could make it more difficult

for the CMO to drive it to escape. On the other hand, for a shell of a given mass

there would be less dark matter inside than in our model where the gas traces the

dark matter directly, which could make it easier to escape. A detailed treatment of the

case when h(r) 6= 1 would be required to find out whether the expected scalings for

momentum- and energy-driven feedback would survive.

As mentioned previously, additional sources of momentum input could be impor-

tant in establishing the M–σ relation, such as from star formation triggered by the

outflow, as proposed by Silk & Nusser (2010) who object to a transition to energy-

driving. Although they also do not consider energy-driving, Sharma & Nath (2013)

have noted that feedback from star clusters distributed through the galaxy could also

have an effect on the galaxy outflow, though such a mechanism cannot be modelled

analytically. This kind of positive feedback would aid in the escape of the shell and

possibly reduce the CMO mass required to drive the shell to escape.

The self-regulated feedback scenario would certainly benefit from a fully time-

dependent treatment, which could address several issues. Firstly, we have assumed

the CMO mass and associated wind thrust remain constant throughout the motion of

the shell. Zubovas & King (2012) consider the case of a wind speed vw ≃ 0.1 c and a

black hole that has grown to the critical mass in equation (6.1) during a momentum-

conserving phase and then switches to an energy-driven regime. When in the energy-

driven phase they allow the black hole mass to grow at the Eddington rate for two

Salpeter times, then the SMBH becomes inactive. In the case of a shell moving out

into an isothermal galaxy they find that the shell velocity is almost constant, only

increasing in response to the black hole growth. For this M
BH

and vw, in the time-

independent case we find the shell coasts at ∼ 4.23σ0, which is ∼ 900km s−1 in a halo

with σ = 200km s−1. This appears to be consistent with Zubovas & King whose Figure
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1 (left column, middle and bottom panels) shows a shell in an isothermal with a velocity

that reaches ∼ 900km s−1 and slowly increases until the AGN switches off.

If SMBHs grow from smaller seeds, then a swept up shell may already be at large

radius by the time the SMBH reaches the critical mass that allows the shell to escape.

Then it is a question of how much more can the SMBH grow before the shell is driven

to escape. Also in this kind of scenario, the black hole growth and increasing wind

thrust could prevent a momentum-conserving shell driven by a low mass black hole

from stalling before it can become energy-driven, perhaps reducing the normalisation

of the M–σ relation.

In the nuclear cluster case we have assumed that the feedback from the cluster

is instantaneously ‘switched on’ and stays on. As in the black hole case, we have also

assumed that the associated wind thrust remains constant throughout the motion of the

shell. It could be that initially the feedback has to build up to the constant value that

we have used throughtout our analysis. If this is the case, the wind can begin to sweep

up and drive out a shell before it reaches the constant wind thrust value. The feedback

of the nuclear cluster is also limited by the lifetime of the stars that contribute to the

superwind. As the cluster evolves the wind thrust will be reduced and the creation

of more massive stars would be required to maintain a roughly constant wind thrust.

As in the black hole case, it may be that additional feedback from star formation aids

the escape of the shell. In a time-dependent treatment, the detailed evolution of the

cluster could be applied, allowing us to better estimate a short fall in the momentum

required to drive the shell to escape. Including a detailed treatment of the cooling

processes would also allow us to identify any change to an energy-driven regime and

whether, as is argued in the simpler case of constant wind thrust, a transition could

alleviate some of this difficulty.

A key question in the self-regulated feedback scenario is still whether the out-

flow conserves momentum or energy. The on going discussion regarding the slope of

the observed M–σ relations (e.g., for nuclear clusters: Ferrarese et al. 2006; Scott &

Graham 2013; for black holes Gültekin et al. 2009; McConnell & Ma 2013) adds to the

uncertainty in the feedback mechanism.
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A time-dependent analysis including the detailed cooling in both the nuclear clus-

ter and the black hole case would allow further investigation into the driving mechanism

of the shell in each case. This would also address some of the other issues discussed

above such as the time-dependence and lifetime of the wind thrust. By translating the

relations derived in such an analysis into observable quantities would allow us to see

how close the self-regulated feedback scenario comes to describing the observed M–σ

relations.
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Peng E. W., Tonry J. L., West M. J., 2004, ApJS, 153, 223
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