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Abstract. The study of transiting extrasolar planets is only 15 years old, but has
matured into a rich area of research. I review the observational aspects of this work,
concentrating on the discovery of transits, the characterisation of planets from photom-
etry and spectroscopy, theHomogeneous Studies project, starspots, orbital obliquities,
and the atmospheric properties of the known planets. I beginwith historical context and
conclude with a glance to a future of TESS, CHEOPS,Gaia and PLATO.

1. History and context

The first widely accepted detection of an extrasolar planet orbiting a normal star was
made byMayor & Queloz(1995), using high-precision radial velocity (RV) measure-
ments. They found an object with a minimum mass ofMb sini = 0.47 ± 0.02 MJup
orbiting the solar-like star 51 Peg every 4.2 days. Earlier discoveries had been made,
but were either treated with caution, had a significantly larger mass, or were orbiting
pulsars (seeWright & Gaudi 2013for an historical account). The second 51 Peg-type
planetary system followed quickly afterwards (Marcy & Butler 1996) and by the start
of the year 2000 a total of 25 planets had been detected, all bythe RV method. Whilst
valuable discoveries, only their minimum mass, orbital period, eccentricity and semi-
major axis could be measured; their radius and thus density were unattainable.

One of the early RV planets was HD 209458, and in late 1999 it was found to
transit its host star (Henry et al. 2000; Charbonneau et al. 2000). Transiting extrasolar
planets (TEPs) are intrinsically more useful because the depth of the transit depends
on the planetary radius, ultimately allowing measurement of its density, surface gravity
and true mass. The second known TEP was unveiled three years later and in a very
different way, by RV follow-up of a star showing transits (Konacki et al. 2003).

Whilst the initial rate of discovery of exoplanets was slow,it has shown expo-
nential growth and now exceeds 1800 objects of which over 1150 are transiting1. Fig.1
shows the discovery rate of the known TEPs and breaks this down into the contributions
from different consortia. The roughly exponential discovery rate gives a constant slope
in this logarithmic plot, with the exception of the 851 planets in 340 multiple systems
which were statistically validated byRowe et al.(2014) in early 2014. The greatest
number of discoveries have come from theKepler satellite (Borucki et al. 2010), whose
large aperture and space-based location yielded data of extremely high precision, duty

1Data from TEPCat (Southworth 2011) at: http://www.astro.keele.ac.uk/jkt/tepcat/
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Figure 1. The discovery rate of the known TEPs, illustratingthe roughly expo-
nential growth. The coloured lines show the breakdown for each consortium.

cycle, and time coverage. The second most productive consortium is SuperWASP (Pol-
lacco et al. 2006), followed by HAT (Bakos et al. 2002); these groups rely on small
ground-based robotic telescopes equipped with telephoto lenses.

Fig.2 shows the sky positions of the known TEPs, again colour-coded according to
discovery consortium. The stand-out feature is the agglomeration ofKepler discoveries
(green points at RA= 19–20 h and Dec= 40–50◦). The smaller brown groupings near
the two intersections of the celestial equator and Galacticplane are due to the CoRoT
satellite (Moutou et al. 2013), and the spread of blue in the Southern hemisphere come
from the SuperWASP-South installation in South Africa.

Fig.3 shows the masses and radii of the known TEPs (main part of the diagram)
and their host stars (dense assembly of points at the top-right). The fractional scatter
in the properties of the planets is much more than that in the properties of their well-
behaved FGK dwarf hosts, an indicator of the complexity of the physical effects which
affect giant planets. The huge scatter in the properties of low-mass planets is due partly
to the difficulty in characterising these small and low-mass objects, and partly to their
extreme and poorly understood diversity (e.g.Masuda 2014).

2. Discovering and characterising transiting extrasolar planets

Early work on the identification of TEPs concentrated mostlyon the ‘hot Jupiters’,
which I consider to be gaseous planets of mass greater than 0.3 MJup and orbital period
less than 10 d. These are the most easily identifiable planetsbecause their relatively
large radii lead to deep transits, and their masses and shortorbital periods cause a
comparatively large reflex velocity in the host stars. EightTEPs were first identified
using RV measurements and subsequently found to transit, including the two most-
studied examples [HD 209458 and HD 189733 (Bouchy et al. 2005)].

Planet detection via RV measurements is inherently expensive, requiring large
telescopes and ultra-stable spectrographs, which are capable of observing only one



Transiting extrasolar planets 3

Figure 2. The sky positions of the known TEPs, colour-coded according to the
discovery consortium (key along the base of the plot). The celestial equator is shown
with a grey solid line and the Galactic plane with a grey dashed line. Symbol size
depends onV-band apparent magnitude, with bright stars having larger point sizes.

target at once. As only a small fraction of stars host TEPs, this approach is an ineffi-
cient method of detection. The great majority of TEPs have therefore been found from
large-scale photometric surveys, such as OGLE (Udalski et al. 2002), Kepler, WASP
and HAT, which have the advantage of monitoring thousands ofstars simultaneously.
A major disadvantage of finding TEPs from photometric surveys is that not all tran-
sit events are due to planets. False positives can be caused by low-mass stars (late-M
dwarfs have radii close to that of Jupiter; recall Fig.3), faint eclipsing binaries whose
light contaminates that of the target star, and instrumental effects. Planet candidates
therefore have to be studied in detail to confirm their planetary nature.

Kepler’s space location and relatively high spatial resolution result in it having a
low rate of false positives (seeMorton & Johnson 2011but alsoSanterne et al. 2012
andCoughlin et al. 2014). For the CoRoT satellite, which has an inferior spatial res-
olution, 73± 7% of candidates are false positives and only 6% are confirmedplanets
(Moutou et al. 2013), with the remainder being unsolved. The estimated false-positive
rate for WASP-South is representative of a typical ground-based survey: roughly 1 in
14 candidates turns out to be of planetary mass (Hellier et al. 2011a).

2.1. Spectroscopic radial velocity measurements

Once a transit event has been found, the planetary nature of the transiting object needs
to be proved by measuring its mass. This can be done by obtaining multiple RV mea-
surements using one of the current generation of high-resolution spectrographs such as
Keck/HIRES, CORALIE or HARPS (seePepe et al. 2014, for a recent review). The
extremely high RV quality of which these instruments are capable allows the orbital
motion of the host star to be measured. With some knowledge ofthe mass of the star,
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Figure 3. The mass-radius diagram for the known TEPs and their host stars.
Objects studied in the HSTEP project (Sect.3) are shown in blue, and other objects
are shown in red. The Solar-system bodies are indicated by green circles.

its orbital velocity amplitude (KA) indicates the mass of the transiting object2. The RVs
also yield the planet’s orbital eccentricity (e) and argument of periastron (ω).

A bonus feature of the high-resolution spectra is that they can be used to determine
the atmospheric parameters of the host star: its effective temperature (Teff), surface
gravity (logg) and metallicity ([M/H] or [Fe/H]). This process is typically achived by
comparing the observed spectra to synthetic spectra eitherdirectly or via the measured
equivalent widths of spectral lines (e.g.Torres et al. 2012). These quantities, especially
Teff , are vital for determining the mass of the star and thus the mass of the planet.

An alternative approach to RV measurements has been pursuedfor most of the
Kepler planet candidates, necessitated by the faintness of most ofthese objects which
makes high-resolution spectroscopy prohibitively expensive (often completely impos-
sible) with current facilities. A large number ofKepler candidates have been ‘validated’
by demonstrating the low probability of them being a false positive, instead of proving
their planetary nature with a mass determination. TheKepler candidates are well suited
to this approach because they are relatively small (too small to be a low-mass star) and
very unlikely to be a result of contamination by a third object. The contamination can
be investigated by high-resolution imaging and checking for apparent shifts in the po-
sition of the star during transit, effectively shrinking the sky area where contaminating
objects can plausibly be located to a very small – and therefore unlikely – solid angle.

2.2. Follow-up light curves

Once a transiting object has been identified and proven to be of planetary origin via
RV measurements, the next step is to obtain a high-quality light curve. The shape
of the transit is a crucial piece of information for deducingthe physical properties of
the system, but discovery light curves from ground-based surveys are typically very

2Subscripted letters ‘A’ and ‘b’ indicate properties of the host star and planet, respectively.
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Figure 4. Example light curves of WASP-2. Left: SuperWASP data which led
to its discovery (Collier Cameron et al. 2007). Centre: follow-up light curve from a
1.2 m telescope operated in focus (Charbonneau et al. 2007). Right: follow-up light
curve from a defocussed 1.5 m telescope (Southworth et al. 2010).

scattered (see Fig.4). A method of obtaining high-precision photometry which isnow
widely used is that oftelescope defocussing (e.g.Alonso et al. 2008; Southworth et al.
2009), whereby the point spread function (PSF) is broadened to cover hundreds or even
thousands of pixels. There are two main advantages of this method. Firstly, flat-fielding
noise is averaged down by the square-root of the number of pixels, i.e. several orders of
magnitude. Secondly, longer exposure times are possible without saturating individual
pixels, so less time is lost to reading out the CCD and more time is available to observe,
thus decreasing the photon and scintillation noise.

As an example oftelescope defocussing, Fig.4 shows three light curves of the
transit of WASP-2. The first panel shows the data used to detect the transit – this was
obtained using the SuperWASP-North installation which consists of 200 mm telephoto
lenses with a plate scale of 14′′ px−1. The second panel shows an example of a follow-
up light curve from a 1.2 m telescope operated in focus (Charbonneau et al. 2007),
reaching a very creditable scatter of 1.9 mmag per point. Thethird panel displays a
light curve obtained with a defocussed 1.5 m telescope (Southworth et al. 2010), which
achieves a scatter of only 0.46 mmag per point. Fig.5 shows an example PSF and the
resulting light curve of a transit of WASP-50 obtained with NTT/EFOSC2.

Once the shape of the transit has been observed, several important pieces of in-
formation can be extracted from it. Firstly, the depth of thetransit is a strong indicator
of the ratio of the radius of the planet to that of the star (a quantity calledk), as the
flux deficit indicates what fraction of the stellar surface isblocked by the dark planet.
Secondly, the duration of the transit indicates how long it took the planet to pass in front
of the star. This is closely related to the size of the star: the actual quantity measured is
the fractional radiusrA =

RA
a whereRA is the true radius of the stars anda is the orbital

semimajor axis. This quantity is often inverted and labelled a
R⋆

. Thirdly, the duration
of the partial phases of the transit (when only part of the planet is in front of the star) is
a gauge for which part of the stellar disc the planet transits, i.e. the orbital inclination
of the system (i). The orbital inclination is related to the impact parameter (b) by:

b =
1− e2

1± e sinω
cosi
rA
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Figure 5. Left: example defocussed PSF of WASP-50 taken using
NTT/EFOSC2. Right: resulting light curve with a scatter of 0.24 mmag (Tregloan-
Reed & Southworth 2013). The line shows the best fit calculated using thejktebop
code.

where the± is ‘+’ for the transit and ‘−’ for the occultation (secondary eclipse).
An important attribute of the fractional radius of the star is that it is very closely

related to the stellar density,ρA (Seager & Mallén-Ornelas 2003). From Kepler’s third
law and the definition of density we can derive the relation:

rA =
R 3

A

a3
=

3π

GP2

1
ρA

(

MA

MA + Mb

)

whereG is the Newtonian gravitational constant,P is the orbital period, andMA and
Mb are the masses of the star and planet. AsMb ≪ MA , the quantity in brackets can be
ignored. An alternative formulation well suited to light curve analysis is:

ρA +

(

RA

Rb

)3

ρb =
3π

GP2

(

a
RA

)3

⇒ ρA + k3ρb =
3π

GP2r 3
A

wherek is usually small, sok3 is negligible,and thek3ρb term can be ignored.
The photometric parameters (rA , k and i) can be obtained by fitting transit light

curves with a simple geometric model such as thejktebop program (Southworth 2008,
2013) or theoccultsmall subroutine (Mandel & Agol 2002). The orbital ephemeris
(period P and reference time of mid-transitT0) is easily obtained in the same way.
There do, however, exist several complications.

Limb darkening is one nuisance parameter which must be included in the model,
and theoretically-derived coefficients are available for several approximation ‘laws’
(e.g. Claret & Bloemen 2011). The use of theoretical coefficients is generally fine
for data of ground-based but not of space-based quality (Southworth 2008).

Orbital eccentricity affects the transit durations, because the orbital speed of the
planet is no longer constant. It is essentially impossible to fit for this effect using only
transit light curves (Kipping 2008). One must use the information provided by the RVs
of the host star, either directly or by applying constraintsto the light curve fit.

Cadence. Some space-based light curves have a poor time sampling; most egre-
giously theKepler long-cadence data with effective interagration times of 1765 s (Jenk-
ins et al. 2010). In these cases one must integrate the model to match the nature of
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Figure 6. Typical light curves of a totally-eclipsing and a partially-eclipsing
planetary system with the correct names of the eclipses indicated.

the data or suffer potentially large errors in the results.Southworth(2011) showed that
ignoring this problem gave photometric parameters wrong by30% for a typical case.

Contaminating light. Faint stars close to TEP systems may contaminate light
curves, causing the transit to be diluted and the planetary radius to be underestimated
(Daemgen et al. 2009). This cannot be fitted for directly in the transit light curve (South-
worth 2010) as it is completely correlated with other parameters. But if faint stars can
be detected using high-resolution imaging (e.g.Southworth et al. 2010; Lillo-Box et al.
2014), their light can be accounted for in the model fit.

I finish this section by discussing the terminology for the different types of eclipses
seen in TEP systems. The correct terminology (see Fig.6) has been established for
many years for for eclipsing binary systems (e.g.Hilditch 2001), and of course for solar
and lunar eclipses. A ‘transit’ is when a smaller object (e.g. planet) passes completely
in front of a larger object (e.g. star). An ‘occultation’ is when the planet passes behind
the star. ‘Partial eclipses’ can occur when part of one object never eclipses or is eclipsed
by the other object. Eclipsing systems can have only one transit per orbit, so references
to a ‘primary transit’, ‘anti-transit’ or ‘secondary transit’ are incorrect.

2.3. Determining the physical properties of transiting planets

Fitting the RVs of the host star gives the parameters of the spectroscopic orbit:KA , e
andω. The combination termse cosω ande sinω are often used instead ofe andω
themselves because they are less strongly correlated and not biased to higher values of
e. Fitting the transit light curve gives the photometric parametersrA , k andi. We also
have extra information from the spectra of the host star: itsTeff , logg and [M/H].

This situation is essentially that of an eclipsing binary system where only one star
is seen in the spectra. The lack of RVs for the secondary component meansKb cannot be
measured, so we are one piece of information short of being able to determine the phys-
ical properties of the system. Thankfully, anadditional constraint can been obtained
using the spectroscopic properties of the host star and either empirical calibrations of
stellar properties or theoretical stellar evolutionary models. An elegant way to do this
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is to guess a value ofKb and use the other quantities (P, KA , e, rA , k andi) to determine
the mass and radius of the star and planet using standard formulae (e.g.Hilditch 2001).
MA, RA andTeff can then be checked for consistency with theadditional constraint,
andKb iteratively adjusted to maximise this consistency.

Most studies of TEPs have used theoretical stellar models toprovide theadditional
constraint, in which case the advantage of conceptual simplicity is offset by the fact that
it is not trivial to interpolate to arbitrary values within atabulated grid of theoretical pre-
dictions. The reliance on stellar theory is worrying, as it is difficult to assess the effect
of this on the results. One option is to try multiple sets of models and see how well they
agree:Southworth(2010) found aminimum scatter of 1% forMA, 0.6% forMb and less
for other quantities. However, this only provides a lower limit on the true uncertainties
because different sets of theoretical models have many areas of commonality such as
computational approach, opacities and parameterisation of mixing.

An alternative to stellar theory is to construct (semi-)empirical calibrations of
stellar properties based on the values measured for detached eclipsing binary systems
(dEBs). This approach has its own advantange and disadvantage: the continuous nature
of the calibrations means interpolation is not required, but it is not clear if the properties
of low-mass stars are well-represented by dEBs (Torres 2013). Calibrations were first
used bySouthworth(2009), based on a simple mass-radius relation for late-type dwarfs.
The problem with this approach is that the neglect of stellarevolution meant the results
were not very reliable. A better approach was proposed byTorres et al.(2010), who
calculated calibrations for stellar mass and radius as a function ofTeff , logg and [Fe/H].
Enoch et al.(2010) further improved this approach by usingρA instead of logg, moti-
vated by the fact thatρA is directly obtained from transit light curves whereas logg can
be inferred to only a lower precision by spectral analysis. Finally, Southworth(2011)
followed the approach ofEnoch et al.(2010) but based it on many more objects (180
versus 38 stars, sourced from the DEBCat3 catalogue of measured physical properties
of well-studied dEBs).

Several quantities can be measured without requiring theadditional constraint.
The stellar density,ρA , was already discussed in Sect.2.2. The surface gravity of the
planet can be obtained using only measured quantities (Southworth et al. 2007):

gb =
2π
P

√
1− e2 KA

r 2
b sini

whererb =
Rb
a is the fractional radius of the planet.

The planetary equilibrium temperature is also independentof the scale of the system:

Teq = Teff

√

RA

a

[

f (1− AB)
]1/4
= Teff

√
rA

[

f (1− AB)
]1/4

whereAB is the Bond albedo andf is the heat redistribution parameter (e.g.Sheets &
Deming 2014). A common approach is to assumef (1 − AB) = 1 in which case the
equation becomes very simple:Teq =

√
rATeff .

3DEBCat (Southworth 2014b) can be found at:http://www.astro.keele.ac.uk/jkt/debcat/
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3. Homogeneous Studies of Transiting Extrasolar Planets (HSTEP)

Back in 2006-7 it became clear that the number of known TEPs was increasing quickly,
and that studies of these objects were done in a variety of different ways, especially con-
cerning theadditional constraint. This variety of approaches led inexorably to inhomo-
geneous results, so the properties of different TEPs were not directly comparable. The
obvious solution was an homogeneous analysis. For this, I select good published light
curves and model them using thejktebop code. Careful attention is paid to the inclusion
of limb darkening, numerical integration to account for long exposure times, correction
for contaminating ‘third’ light, and in accounting for eccentric orbits. Four error analy-
sis methods are implemented: Monte Carlo simulations, residual-permutation, multiple
analyses of the same data using different choices of limb darkening, and separate anal-
yses of different datasets for the same TEP (Southworth 2008).

Once the photometric parameters have been obtained, I add published spectro-
scopic results (KA , Teff , [Fe/H]) and calculate the physical properties of the systems.
Statistical errors are prepagated from all input values by aperturbation analysis which
yields a full error budget for each output value (Southworth et al. 2005; Southworth
2009). This process is done using each of five sets of theoretical stellar models, allow-
ing a systematic error to be assigned to each output parameter based on the variation
between the five results. Further details can be found in the original papers, and a
summary has been given bySouthworth(2014a).

At this point, a total of 89 planetary systems have been studied in the course of
HSTEP (Southworth 2008, 2009, 2010, 2011, 2012), most based on published data but
some on new light curves obtained for the project (seeSouthworth et al. 2014, and
references therein). A paper in preparation will push this number up to 120 systems.

One feature of the HSTEP results is that the error estimates for the calculated
parameters often are much larger than those for published works; in many cases the re-
sults agree according to the HSTEP errorbars but not according to the published error-
bars. This implies that published errorbars can be rather too small: particular offenders
are CoRoT-5, CoRoT-8, CoRoT-13, Kepler-5 and Kepler-7 fromPaper IV (Southworth
2011), and CoRoT-19, CoRoT-20, Kepler-15, Kepler-40 (KOI-428)and OGLE-TR-56
from Paper (Southworth 2012). Three of these systems deserve special mention.

CoRoT-8. I found a planet radius of 1.25± 0.08 RJup (Southworth 2011, sect. 6.8)
versus 0.57±0.02 RJup from Bordé et al.(2010). The orbital ephemeris in the discovery
paper is incorrect, predicting the transits in the CoRoT data to occur 0.06 d too early.

CoRoT-13. The CoRoT satellite obtained two light curves for this object, which
strongly disagree on the transit shape. I adopted the results from the better of the
two, finding a planet radius of 1.252± 0.076 RJup (Southworth 2011, sect. 6.13) versus
0.885± 0.014 RJup in the discovery paper (Cabrera et al. 2010). Whilst CoRoT-13 was
thought to be an extremely dense planet with a massive core ofheavy elements, my
results are consistent with a typical gas giant slightly less dense than Jupiter.

OGLE-TR-56. This was the second known TEP (Konacki et al. 2003) and its
faintness means large telescopes are required to obtain good transit light curves.Adams
et al. (2011) obtained many excellent light curves, and determined the physical prop-
erties of the system based on these and on an assumedMA andRA. The problem was
that the chosenMA and RA (from Torres et al. 2008) were inconsistent with theρA
from the light curve. The HSTEP analysis changed the measured planetary radius from
1.378± 0.090 RJup to 1.734± 0.061 RJup (Southworth 2012, sect. 5.21).
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Figure 7. Homepage of the TEPCat catalogue of transiting extrasolar planets.

By far the most common method of obtaining errorbars on measured parameters
of TEPs and their host stars is that of MCMC (Markov chain Monte Carlo), a very pow-
erful technique for both model optimisation and calculation of the posterior probability
density for parameter values. A common feature of the HSTEP reanalysis of published
data is agreement with published results within the HSTEP errorbars but not with the
often very small errorbars calculated using MCMC in these publications. This suggests
that the error analysis methods using the HSTEP project are robust, but that those aris-
ing from MCMC analysis sometimes are not. Like any other statistical tool, MCMC
has to be used carefully to ensure good results.

3.1. TEPCat: the catalogue of physical properties of transiting extrasolar planets

By Paper IV (Southworth 2011) it was obvious that readers could not reasonably be
expected to trawl through all four papers to compile the fullresults from the HSTEP
project. I therefore created the TEPCat catalogue4 to make these results available in
convenient formats (Fig.7). It was also a good site for placing a compilation of the
physical properties ofall known TEPs and their host stars, a database which I was
already keeping for my own use. At this point TEPCat containstables inhtml, ascii
andcsv formats with the best available values for the stellar properties (Teff , [Fe/H],
MA, RA , logg, ρA), planet characteristics (Teq, Mb, Rb, gb, ρb), orbital parameters (P,
T0, e, a) and references for all confirmed TEPs. A catalogue of orbital obliquities from
the Rossiter-McLaughlin effect is also maintained, along with various goodies such as
plots, links, explanation, and the set of physical constants used in the HSTEP project.

4TEPCat (Southworth 2011) can be found at:http://www.astro.keele.ac.uk/jkt/tepcat/
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Figure 8. Sky-projected orbital obliquity measurementsλ. Red and blue are
used for systems where the host star is cooler or hotter than 6250 K. The grey dashed
line indicates perfect alignment and the grey dotted lines show the±90◦ boundaries
outside which orbits are retrograde. Data were taken from TEPCat.

4. Rossiter-McLaughlin effect

Rossiter(1924) andMcLaughlin(1924) contemporaneously discovered an RV anomaly
during primary eclipse, in the eclipsing binariesβLyrae andβPersei. This is caused by
the eclipsing object blocking out part of the rotating surface of its companion, removing
flux from part of its spectral line profiles and thus biasing measured RVs away from the
Keplerian value. The effect is much smaller in TEPs (typically less than 50 m s−1 versus
13 km s−1 for βLyrae) but easier to study because the spectral line profilescome from
only one object (the host star). The Rossiter-McLaughlin (RM) effect has now been
observed in a total of 91 TEPs (e.g.Triaud et al. 2010; Albrecht et al. 2012), mostly by
RV measurements. This approach can only give the sky-projected value (λ) of the true
orbital obliquity (ψ).

Whilst early RM measurements (the first beingQueloz et al. 2000) indicated
aligned orbits, a significant number of misaligned and even retrograde planets are now
known (the first being WASP-17;Anderson et al. 2010). Winn et al.(2010) found that
misaligned orbits occur mostly for hotter host stars (Teff > 6250 K), althoughTriaud
(2011) asserted that this was caused by the younger age of such systems. Tidal dissipa-
tion is a critical part of interpretingλ measurements (seeAlbrecht et al. 2012).

5. Starspots

An alternative way to measure the RM effect is via transits with starspot anomalies. If
a planet transits a dark spot on the stellar surface, it temporarily blocks slightly less of
the overall starlight. The overall brightness of the systemblips upwards, by an amount
which depends on the size of the spot and its brightness relative to the rest of the stellar
surface. Multi-band photometry of this effect allows the spot temperature to be obtained
(e.g.Mancini et al. 2014) and the spot position to be measured precisely.
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Figure 9. Three transits of WASP-19 taken over five nights byTregloan-Reed
et al.(2013). Starspot anomalies are visible in the first two transits.

If several transits are observed over a short period of time,the change in position
of a starspot could be tracked. This directly yields the motion of the spot as the star
rotates, relative to the planet’s orbit, allowingλ to be measured (Nutzman et al. 2011;
Sanchis-Ojeda et al. 2011) as well as the rotation period of the star (Silva-Valio 2008).
Tregloan-Reed et al.(2013) constructed a physically realistic model of this situation
(prism) and used it to measureλ = 1.0◦ ± 1.2◦ from two transits of WASP-19 (Fig.9),
a much more precise value than the RM alternative ofλ = 4.6◦ ± 5.2◦ (Hellier et al.
2011b). Having three or more observations of the same starspot at different positions
would allowψ as well asλ to be obtained.

6. Occultations

Although planets are much fainter than their host stars, it is possible to detect the dips
in brightness as they are eclipsed by their star. These miniscule occultations can only be
measured using very high-precision photometry, but are nevertheless a valuable source
of two types of information.

Firstly, the time of mid-occultation constrainse and ω for eccentric systems.
Specifically, the difference in orbital phase between the occultation and the halfway
point between the two adjacent transits gives the combination terme cosω indepen-
dently of RV measurements:

∆φ =

( toccult− ttransit

P

)

− 0.5 =

(

1+ csc2 i
π

)

e cosω

Here,φ means orbital phase, andttransit andtoccult indicate the eclipse midpoints
Secondly, the depth of the occultation gives the brightnessof the planet (at a given

wavelength or passband) relative to that of the star. This means that the spectrum of the
planet can be constructed from occultation observations ata range of wavelengths. The
spectrum is that of the irradiated ‘dayside’ of the planet. As a rough approximation,
reflected light from the star dominates at optical wavelengths (e.g.Angerhausen et al.
2014) and thermal emission dominates in the infrared (e.g.Charbonneau et al. 2008).
Planetary spectra can be used to investigate the chemical composition and structure of
their atmospheres (e.g.Ranjan et al. 2014; Madhusudhan & Seager 2010).
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7. Transmission spectroscopy

Whilst occultations can be used to measure the flux emitted bythe planet, observations
of the depth of the transit as a function of wavelength allow the opacity spectrum of
a planetary atmosphere to be measured. Occultations probe the dayside of the planet
whereas transmission spectroscopy is sensitive to the properties of the atmosphere at
the terminator (the limb of the planet). This effect is difficult to observe, but is helped
by the very extended atmospheres of some planets. The best example is WASP-17
(Anderson et al. 2010), which is the largest known planet atRb = 1.932± 0.053 RJup

(Southworth et al. 2012). Its low surface gravity ofgb = 3.16±0.20 m s−1 yields a huge
atmospheric scale height of 2000 km (0.028 RJup). The largest features in the optical
and near-infrared spectrum of a hot Jupiter can be 5–10 atmospheric scale heights (Sing
et al. 2011, 2014), which are detectable using ground-based large telescopes.

Theoretical spectra of irradiated giant planets show characteristic features at op-
tical wavelengths due to sodium and potassium (Fortney et al. 2008), possibly sulphur
compounds (Zahnle et al. 2009), and Rayleigh and Mie scattering in the blue. Infrared
wavelengths are predicted to show features due to moleculessuch as H2O, CO, CO2
and CH4, depending on the atmospheric temperature. This is an active area of research
which has generated a wide variety of results: some planets show flat transmission
spectra indicative of high-altitude clouds (Kreidberg et al. 2014; Knutson et al. 2014),
some show signatures of molecules (Tinetti et al. 2010; Wakeford et al. 2013), some
show Rayleigh or Mie scattering (Pont et al. 2013; Sing et al. 2013), and at least one
planet shows all of these features (Sing et al. 2014).

8. Future

We have passed through the initial stages of development of the study of transiting
planets and are now in the early characterisation phase. Theeasy-to-find TEPs are
being identified in bulk by ground-based surveys (e.g.Bakos et al. 2012; Hellier et al.
2012) and our boundaries of ignorance are being gradually pushedback by discoveries
in new areas of parameter space (e.g.Doyle et al. 2011; Sanchis-Ojeda et al. 2013;
Ciceri et al. 2014). Exhaustive examinations of a small subset of TEPs have established
them as tracers of the formation, structure and evolution ofgiant planets. The best-
studied TEPs have mass and radius measurements to a few percent precision, projected
or true orbital obliquity measurements, and atmospheric abundances of some atoms
and molecules through transit and occultation spectroscopy. Whilst Kepler has truly
revolutionised the study of TEPs, ground-based surveys remain relevant as they observe
many more targets so can find rarer types of planet.

In the near future, theGaia satellite will fill an important hole in our understanding
of TEPs and their host stars. TheGaia parallax measurements will give direct distance
and thus luminosity estimates. AsL = 4πR2T 4

eff , these parallaxes can replace theaddi-
tional constraint which troubles existing mass and radius measurements of TEPs (see
Sect.3). The high photometric precision ofGaia will also enable it to be used to dis-
cover TEPs (seeDzigan & Zucker 2012), although it is likely that huge observational
resources would be needed to follow up the identified planet candidates.

Although the main missions ofKepler and CoRoT have been terminated by tech-
nical problems, their archives remain rich in untapped results. Kepler has been rein-
carnated as the K2 mission, with lower photometric precision but still much better than
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achievable from the ground. CHEOPS (Broeg et al. 2013) is slated for launch in 2017,
for a 3.5 yr mission to detect transits in low-mass planets discovered by the RV method.

The next landmark mission is TESS (Ricker et al. 2014), also due for launch in
2017. TESS will photometrically observe 26 fields covering most of the sky, concen-
trating on bright stars but for much shorter time intervals (27 days near the ecliptic rang-
ing to one year around the celestial poles). Further ahead, the PLATO mission (Rauer
et al. 2014) is planned for launch in 2024 as a precision photometry survey instrument.
PLATO will have a much larger field of view thanKepler: it will observe brighter stars
which makes follow-up observations much easier. It will also observe patches of sky
for several years, thereby avoiding the low sensitivity to long-period planets suffered
by TESS. Our knowledge of transiting planets is set to improve immensely.
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