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Highlights (for review)

. We have successfully applied a r-adaptive moving mesh method based on

MMPDESs and mesh density functions to a coupled system of higher order
parabolic PDEs. To our knowledge this is the first attempt to implement
r-adaptive schemes to such PDEs.

. Numerical experiments show the adaptive moving mesh method to accu-

rately resolve the multiple one-dimensional structures observed in the test
problems. Moreover, it also reduces the computational effort in compari-
son to the numerical solution using the finite difference scheme on a fixed
uniform mesh.

. A significant result is related to adaptation of the curvature mesh den-

sity function to accurately resolve the solution at multiple locations using
piecewise constant weight parameters.

. We have also adapted the curvature mesh density function to include

multiple solution components. This enabled us to accurately resolve the
complicated multiple structures in the solution components compared to
numerical solutions using a uniform mesh.
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Abstract

We present an adaptive moving mesh method for the numerical solution
of thin liquid film spreading flows with surface tension. We follow the r-
adaptive moving mesh technique which utilises a mesh density function and
moving mesh partial differential equations (MMPDESs) to adapt and move
the mesh coupled to the PDE(s) describing the thin film flow problem. Nu-
merical experiments are performed on two one dimensional thin film flow
equations to test the accuracy and efficiency of the method. This technique
accurately resolves the multiple one-dimensional structures observed in these
test problems. Moreover, it reduces the computational effort in comparison
to the numerical solution using the finite difference scheme on a fixed uniform
mesh.

Keywords: Thin film flows; surface tension; adaptive moving mesh;
r-adaptive method; moving mesh PDEs (MMPDESs); mesh density function

1. Introduction

Thin liquid film flows driven by external forces, such as gravity or surface
tension gradients (e.g., due to surfactant concentration gradients), are im-
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portant in a wide range of industrial [1, 2], biomedical [3, 4], geophysical
and environmental applications [5]. They display interesting dynamics, such
as wave propagation and steepening, finite time singularities leading to film
rupture and spatial “fingering” instabilities (see [6, 7] for an excellent review
on these).

A particular class of thin film flow problems that is of particular interest
both in the physical and mathematical context are those that include mov-
ing contact lines [8] and surface tension effects [2]. Typically in these prob-
lems, surface tension is only important in regions of very short length scales,
particularly, near the contact lines, where the film’s free surface exhibits in-
ternal layers with large spatial variation in the film’s free surface curvature
and away from these internal layers surface tension is relatively unimpor-
tant and the curvature is almost negligible. In such flows, the evolution of
these internal layers has been associated with the onset of a transverse spa-
tial fingering instability [9-15], hence their accurate resolution is important
to understand the mechanisms behind this instability. For the numerical
solution of these problems, one can then use a locally refined mesh in the
regions of large spatial variation and a coarser mesh elsewhere. In contrast,
a uniform mesh solution would use an unacceptably large number of mesh
points especially due to the relatively large spatial scale and long time scale
typical in spreading flows. The main motivation for this paper is to develop
a numerical solution technique for thin film spreading flows which employs a
moving and adaptive mesh that would accurately resolve such internal layers
in a computationally efficient way compared to a fixed and uniform mesh.

A long wavelength or lubrication approximation is commonly employed to
derive the thin film flow equations [6, 7]. When surface tension is included,
this reduces the governing fluid flow equations and boundary conditions to a
fourth order nonlinear parabolic PDE representing the evolution of the film’s
free surface [16]. In most problems, this may be coupled to a parabolic PDE
(usually of second order), for example, representing the surfactant concentra-
tion. In the context of thin film spreading flows, there have been numerous
numerical experiments using the finite difference method on a fixed uniform
or nonuniform mesh in both one and two dimensions ([10-15, 17-24], to
name a few). Other methods that have also been applied include the finite
element method [25, 26] and spectral methods [27]. In comparison, very few
numerical studies have considered an adaptive mesh. The works of Warner
et al. [12, 19], Edmonstone et al. [13, 20, 21] and Mavromoustaki et al.
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[24] use general purpose publicly available solvers for parabolic PDEs which
have built-in adaptive mesh capabilities (PDECOL [28] based on collocation
methods; TOMST731 [29-32] based on a monitor function to adapt mesh and
a Lagrangian method for moving the mesh points). Sun et al. [33] use a
h-adaptive finite element mesh refinement method based on an optimal in-
terpolation error estimate for a two dimensional thin film equation of gravity
driven flow down an inclined plane. Li et al. [34] have also developed a
h-adaptive finite difference method for this equation using a fully discrete
and nonlinear multigrid scheme and adaptive mesh refinement method. The
above adaptive mesh schemes were able to capture and resolve the moving
contact line and the associated fingering instability accurately and compu-
tationally efficiently compared to a fixed uniform grid scheme. Lee et al.
(35, 36] solved a thin film flow problem over a plane containing single and
grouped topographic features using a full approximation storage multigrid
algorithm and employing automatic mesh adaptivity.

In this paper, we follow the r-adaptive moving mesh technique [37, 38] which
utilises a mesh density function and moving mesh partial differential equa-
tions (MMPDESs) to adapt and move the mesh coupled to the PDE(s) de-
scribing the thin film flow problem. We believe that r-adaptive schemes are
better suited for thin film flow equations compared to the h (or hp)-adaptive
schemes mentioned above. The performance of h-adaptive schemes depends
on the availability of a good a posteriori indicator of the solution error. In
contrast, r-adaptive schemes refine the mesh based on a mesh density func-
tion that directly tracks a particular solution characteristic (for example, the
curvature of the film’s free surface) and hence could resolve the internal layers
more accurately. The MMPDESs usually take the general form of a nonlinear
diffusion equation [37, 38] which is coupled to the thin film equations. This
can be easily implemented within the existing finite difference framework
well suited for these problems. h-adaptive schemes, on the other hand, are
usually implemented using the finite element method. Although r-adaptive
methods are a recent development and have not been used as frequently as
h or hp- refinements, they have been successfully applied in various appli-
cations, such as computational fluid mechanics [39], convective heat transfer
[40] and meteorological [41, 42] problems. The r-refinement techniques also
form the basis of general purpose publicly available solvers for one dimen-
sional parabolic PDE systems, for example, MOVCOL [43] and TOMS731
[32]. However, they have been only tested for second order parabolic PDEs




(for example, the Burger’s equation) and to our knowledge this is the first
attempt to implement r-adaptive schemes and MMPDEs to higher order
parabolic PDEs.

As a test problem, we consider the spreading of a surfactant laden liquid
drop or sheet down an inclined substrate prewetted with a precursor liquid
film due to gravity and surface tension gradients (due to gradients in sur-
factant concentration). Previous one dimensional numerical simulations and
mathematical analysis have revealed multiple propagating wave like struc-
tures joined together by internal layers where surface tension is important
[13, 15, 20-24]. Numerical simulations of the two dimensional flow show a
transverse spatial fingering instability that develops near the moving effec-
tive contact line (where the drop connects onto the precursor film ahead of
it) [13, 20, 21]. In this paper we focus on implementing the r-adaptive mov-
ing mesh method for the one dimensional problem; extending this to two
dimensions is currently being undertaken and will be reported elsewhere.

The rest of the paper is organized as follows. In section §2, we provide a
brief overview of moving mesh partial differential equations (MMPDESs) and
mesh density functions. In §3, we briefly describe the governing equations
and boundary conditions for one dimensional gravity and surface tension
gradient driven thin liquid film flow using a lubrication theory model. In §4,
the spatial discretisation of the governing equations and the MMPDESs using
the finite difference method is presented. In §5, we present the numerical
results. Conclusions are given in §6.

2. Moving Mesh Partial Differential Equations (MMPDESs) and
mesh density functions

The underlying principle behind r-adaptive moving mesh methods considered
here is that the mesh moves continuously in time while adapting to the evolv-
ing structures in the solution. Using the equidistribution principal (in which
a continuous function defined over an interval is evenly distributed between
the subintervals determined by the mesh points), a number of moving mesh
equations (MMPDES) can be developed for time dependent problems. These
are continuous forms of mesh movement strategies formulated in terms of
coordinate transformations [37, 38]. The mesh adapts itself based on a mesh
density function which is related to a specific solution characteristic.




In one dimension, the MMPDESs can be represented as a coordinate trans-
formation:

r=x(1):£€Q.=[0,1] =2 €Q,=[a,b], t >0,

where z and ¢ are the spatial variables, ¢ is time, (2. and €2, are referred
to as the computational and physical domains, respectively, and a fixed uni-
form mesh is used to represent any discretisation of €2.. We list four of the
commonly used one dimensional MMPDEs, the so-called MMPDEs 4, 5 and
6 and modified MMPDES. For details of their derivations and other theo-
retical considerations, the interested reader is referred to the book, Adaptive
Moving Mesh Methods, by Huang & Russell [37] and the review paper by
Budd et al. [38], who have made seminal contributions in this area over the
past twenty years.

MMPDE4 : (prye )¢ = —%(fws)&a (1)
MMPDE5 :  z; = %(ﬁxg)g, (2)
MMPDEG6 :  zt¢e = —%(ﬁxg)g, (3)
modified MMPDE5 :  z, = ;T(ﬁxé)é (4)

Here, p(z,t) is a mesh density function (defined below) and 7 > 0 is a
user-specified parameter. 7 adjusts the response time of mesh movement to
changes in the monitor function p(z,t) [37]. The smaller 7, the more quickly
the mesh responds to changes in p(z,t). Likewise, the mesh moves slowly
when a large value of 7 is used. MMPDES5 and modified MMPDES5 given
in Egs. (2),(4) are generally quite stiff and a regularised form is used in
practice,

1
regularised MMPDED @ z; — 121 ee = —(pe)e, (5)
T
1
regularised modified MMPDEDS @ z; — vz ¢e = —(pe)e. (6)
pT

Here, the parameter ; > 0 is related to the mesh density function p (see
[38] and references therein). The boundary conditions for the above second




order PDEs are
z(0,t) =0, x(1,t)=0. (7)

The initial condition is

l’(&, 0) = (b - a>§ +a, (8>

which represents a uniform initial mesh on the physical domain €2, = [a, b].
We note here that a nonuniform initial mesh can also be used which is ob-
tained by solving in pseudo time the chosen MMPDE (with the uniform mesh
as the initial condition) with the solution fixed (hence, p is also fixed) at its
initial condition.

The choice of the mesh density function p is essential for the success of
adaptive moving mesh methods. They can be chosen based on error estimates
(for example, polynomial interpolation or truncation error) or on the solution
characteristics of the underlying PDE (for example, arc length or curvature).
In the latter case, the mesh density function can be defined by the solution
u(z,t) (say) of the underlying PDE and possibly its derivatives. The choices
of p in one dimension that are commonly used are:

arc length : p(z,t) = /1 + au2, 9)

1
curvature :  p(z,t) = (o + Bul,)™ , where n =2 or 4, (10)

1,0\ 1
optimal : p(z,t) = (1 + auiz) , o= LL_ b/ ufmdx] . (11)

Here, o and 3 are adaptivity parameters (or weight parameters) of the mesh
density function [37, 44, 45]. These are usually taken to be constant but
could be dependent on the spatial variable x if there are multiple regions over
which the solution characteristics vary rapidly (see example in §5). The above
monitor functions can be extended to include multiple solution components
(see example in §5). In addition, it is common practice in the context of
moving mesh methods to smooth the monitor function in order to obtain a
smoother mesh and also to make the MMPDESs easier to integrate. This is
discussed in §4.




3. Thin film equations for gravity and surfactant-related spreading

We consider the one-dimensional thin liquid film flow of a surfactant-laden
drop or sheet spreading down an inclined and pre-wetted substrate due to
gravity and surfactant-related effects (see Fig. 1). The bulk flow is governed

surfactant (a)

inclined substrate

precursor film
surfactant (b)

z=h(xt)

precursor film
drop

Figure 1: Schmatic of a surfactant-laden drop or sheet spreading down an inclined and
pre-wetted substrate using (a) constant flux and (b) constant volume boundary conditions.

by the Navier-Stokes equations. The surfactant is considered insoluble (i.e.,
it is present only on the free surface) and its transport on the free surface
is modelled using an advection-diffusion equation. We also assume that the
substrate is pre-wetted with a thin precursor liquid film. Lubrication (or
long wavelength) theory can be applied to reduce the governing equations
and boundary conditions at the free surface to give the evolution equations
for the film’s free surface and the surfactant concentration. The interested




reader can refer to [13, 20, 46, 47] for their derivation. These can be written
in non-dimensional form as:

h3 h3 h2 h5

hi + | Ca—hypy — G cos(0)—=—h, — =1, + Gsin(d) —| =0, (12)
3 3 2 31,
h? h? h?

Iy + {C’a?Fhmx — GCOS(Q)?th — hI'T, + Gsin(0) ?F] =0, (13)

Here, h = h(x,t) and I' = I'(z, ) are the film height and surfactant concen-
tration, respectively, x is the spatial variable and ¢ is time. The dimensionless
parameter Ca, is the inverse Capillary number (relates surface tension and
viscous forces), G is a Bond number (relates gravity and viscous forces), 6,
is the inverse of the Péclet number (compares the magnitude of changes to
surfactant concentration due to diffusion and advection by surface flow) and
6 is the substrate inclination angle. Egs. (12),(13) are two coupled nonlinear
parabolic PDEs of fourth and second order in space, respectively. The fourth
order term in Eq. (12) is related to the curvature of the film’s free surface
and is due to surface tension. Typically Ca < 1, so there exist internal layers
where curvature is important.

We prescribe two sets of boundary conditions (BCs) for the above PDEs,
namely constant flux and constant volume. Constant flux BCs correspond
to constant supply of fluid and surfactant at one end of the domain (see
Fig. 1(a)) while constant volume prescribes no flux BCs at both ends of the
domain (see Fig. 1(b)). We also assume that the plane is pre-wetted with a
precursor film of thickness b < 1 (represents ratio of precursor film thickness
to initial drop or sheet thickness) and it is surfactant free. These boundary
conditions are prescribed as follows: The constant flux boundary conditions
are given by:

h(0,t) =T(0,t) = 1, h(L,t) = b,T(L,t) = 0, hpea(0,1) = heae(L,t) =0, (14)

where L is the length of the computational domain. These BCs represent a
fixed fluid and surfactant flux source far upstream and a flat precursor film
and zero surfactant concentration far downstream. The constant volume
boundary conditions are given by

h(£L,t) = b, hyye(£L,t) = 0,1(£L,t) = 0, (15)




where +£1 are the boundaries of the physical domain.

The initial conditions for h and I' corresponding to constant flux boundary
conditions are given by (following [13, 20, 46, 47]):

h(z,0)=(1—a2®>—=bH(1 —2)+b, T'(z,0)=H(l —2x), (16)

where H(x) is the Heaviside function. The initial condition for h represents
a drop connecting onto a thin precursor film and for the surfactant concen-
tration represents a large gradient at the location where the drop connects
onto the precursor film. The initial conditions for A and I' corresponding to
constant flux boundary conditions are given by (following [13, 20, 46, 47]):

h(z,0) = (1 —2*)[H(1 —2) — H(=1 —2)] + b[H(z — 1) + H(—1 — )], (17)
[(2,0)=H(l—12)— H(—x—1), (18)

where x = +1, is the initial location where the parabolic-shaped drop con-
nects to the precursor film both upstream and downstream. The initial con-
dition for I assumes a uniform surfactant concentration between x = +1 and
zero surfactant concentration ahead and behind it and is characterised by a
steep gradient at x = +1.

4. Finite difference semi-discretisation scheme on a moving adap-
tive mesh

The adaptive moving mesh method uses a coordinate transformation from
the computational domain with coordinate &, to the physical domain with
coordinate z: = = z(£,t): Q. = [0,1] — Q, = [0,L], t > 0. Then the
solution can be written as: (h,I')(x,t) = (h,I')(x(£,1),t). A moving mesh
on the physical domain associated with the solutions A and I' is described
as: Jyp(t): 2;(§) = x(&;,t), 5 =1,..., N + 1, where the boundary nodes are
given by: x; =0, zy41 = L. A uniform mesh on the computational domain
is described as: Jgp: & = (j —1)L/N,j =1,--- N + 1. Using the chain
rule, Egs. (12),(13) can be written in the computational coordinate ¢ as:

he Qe Te 5%

hy — —=o = ——, TI't'— —x=

(19)
.1'5 .1'5 l’é .1'5




S = Ca (hQ—F) 1 <h_§)f

2T he Te BT
A () 6 = a1
)| ﬁl( ) (04 ) 40, )

2
3

In the above, oy = G'sin(#) and 3; = G cos(6).

A conservative finite difference semi-discretisation scheme for the spatial
derivatives in Eqs. (19)-(21) on the uniform mesh J - using centred finite
differences can be written as, keeping the time derivative continuous,

(Ahj — Ahj 1)

AQj
h, : — R &
ba (AZL'] — ij_l)xtd ij N ij_17

j=2...,N, (22)

[, AL ZATL) A

(AZL']‘ — A(L’j_l) td AZL’j — A(L’j_lj

where A(zj, hy, T, Q5,S;) = (xj41 — x5, hjy1 — hy, Qi1 — Qj, Sjy1 — 5)).

h3 1 (Z_z)g h? hg
oeo(t) {5 )0,
3 /)iy Teg Le 3/ jrrja \Te/

éhj

h? r h3
2 gtz \Te/s 3 j+1/2

he
h2T 1 (x_> h?T h
s-a(m) (S e ) -
j+1/2 T Le¢ 2 j+1/2 \Te/

2
£7j

r h?T .
2J J+1/2

3

j=2,...,N, (23

10




The spatial derivatives appearing in ; and S; are discretised as follows:

(%)
ol Bl B G | Eoverd 69 MEovd 69
Tej | we Azj = Axj1 ) \Tejer \Te ) e jo1 Teg \Te)¢;)

57]’

Tej \Te¢ £ A.ﬁlﬁj — Aﬂfj_l ij ij—l ’
he Ah; (T AT,
—) =1 —=) =— =1,...,N. 2
(ZE5> . A(L’j’ <$5 . AZL’]‘7 J ’ ’ ( 6>
7] 7]

In the above, we approximate terms denoted by (a);,

1 using spatial averages:
(a)j+1/2 = (aj41 +a;)/2 or (a)j+1/2 = @($j+1/2)= where ;112 = (zj41 +
x;)/2. A similar approximation is used for terms denoted by (a);_ 1. It has
been shown that there are particular choices for the approximation of (h?*) i+l
that have special properties, for example, the so-called positivity-preserving
scheme, meaning that if one starts from strictly positive data for h, the
scheme will help preserving this property. The interested reader is referred
to the works by Zhornitskaya & Bertozzi [48] for details. Evaluating Egs.
(22),(23) at j = 2, N require fictitious points (h, ) and (h, )Ni2. hon+2
are obtained by discretizing the boundary conditions h,,, = 0 at z = 0, L
using centred finite differences. We assume that the adaptive mesh is uniform
near © = 0,L (i.e., z¢ = 1), so xon1o are obtained by discretizing this
using centred finite differences. The boundary conditions h(0,t) = I'(0,t) =
1, h(L,t) = b and T'(L,t) = 0 are replaced by their ODE form: h;; =
0, ht,N+1 = 07 Ft,l = 0, Ft,NJrl =0.

Other semi-discretisation finite difference schemes have also been considered
for the spatial derivatives in Eqs. (12),(13). For example, in Appendix
A we write a non-conservative scheme. In all the numerical experiments
we performed, the semi-discretisation scheme given in Egs. (22)-(26) gave
the best performance in terms of accuracy and convergence, and ensured
conservation of fluid volume. We only report results based on the conservative
scheme in §5.

The equidistributing coordinate transformation x = x(&,t) is obtained by
solving the MMPDEs given in Egs. (1)-(6). A semi-discretisation scheme
using centred finite differences to discretise the spatial derivatives in Eqgs.

11




(1)-(6) is as follows, keeping the time derivative continuous:

MMPDE4 : 7[pj41/28%15 — pj—1/28%¢ 1] = —[pj1282; — pj—1/2A7;1],
j=2. .. N. (27)

1

MMPDES5 : TXt5 = A—£2

[ﬁj+1/2A$j - ﬁj—1/2ij—1]7 Jj=2,...,N. (28)

MMPDESG : T(A.Q?t’j — Axt,jfl) = —[ﬁj+1/2Al’j — ﬁj_l/gAZ'jfl],
j=2...N. (29)

1
piAE?
j=2 .. N (30)

modified MMPDES5 : TXt5 = [ﬁj+1/2A(L’j = ﬁj—l/?ij—l]a

The regularised MMPDE5 and modified MMPDES are discretised as

regularised MMPDES : 7[z;; — %}(Awm — Az jq)] =

1

A—g[ﬁj+1/2ij — ﬁj_l/Qijfl], j = 2, ceey N (31)

regularised modified MMPDE5 : 7z, ; — L(A:)&m — Ay )] =

ING
1 . .
m[ﬂj+1/2A% — pj-128751],
J
j=2,... N (32)

In the above, Awy; = @11 — Ty, Pjr1/2 = (ﬁjﬂ + ﬁj)/Q and pj_1/0 =
(Dj—1 =+ p5)/2-
The mesh density function p(z,t) given in Eqgs (9),(10) are discretised using
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finite differences as:

Arc length mesh density function : p(x;,t) = \/a + BhZ ;, (33)

(Ah] — Ah]_1>/(ij — ij—l)a .] = 27 LR N)
heji=< Ahy/Axy, j=1,
Ahy/Azy, j=N+1.

Curvature mesh density function : p(z;,t) = (a + Sh? Vo, n=2,4 (34)

zx,j
2/(Azj 4+ Ax; )] [Ah;/Azj — Ahjy /A ],
2 [Azy (A + Ahy) — (Azs + Aay)(Ahy)] /
hmc,j = [(ACL’Q + A(L’l)AZEQAZL’l] s ] = ]_,
—2 [A.Q?N(Ah]v + AhN,l) — (ALBN + Afol)AhN] /
[(ALEN -+ ALENfl)ALENALENfl] N ] =N + 1.

Il
=

To obtain a smoother mesh and also make the MMPDESs easier to integrate,
it is common practice in the context of moving mesh methods to smooth the
mesh density function. A simple but effective smoothing scheme suggested
by Huang [37, 49] is based on weighted averaging,

. k—j
itp o [ 4\ F
k=j—p Pk \ THy

) k—j|
Jj+p v k=]
k=j—p \ 1+~

where p is a non-negative integer called the smoothing index and v is a
positive smoothing parameter. Several sweeps of the scheme may be applied
at each integration step.

Egs. (22),(23) and Egs. (27)-(32), form a coupled system of 3(N+1) ordinary
differential equations (ODEs) for the solution hq, ..., Any1, [, ..., [nyq and
the mesh x1,..., 2Ny, with initial conditions for h and T' given by Eq. (16)
or Egs. (17), (18) and z(¢,0) = L&. A non-uniform initial mesh was also used
which was obtained by solving in pseudo-time the chosen MMPDE (with the
uniform mesh as the initial condition) with h and I' fixed (hence, the mesh
density function p is also fixed) at its initial condition. This did not have
any significant influence on the solution or the performance of the solver in
comparison to the uniform initial mesh. We solve the resulting ODEs simul-

p; = j=1,...,N+1, (35)
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taneously using the stiff ODE solver DASSL [50] or DASPK [51]. These
solvers use either a direct (DASSL) or iterative (DASPK - based on precon-
ditioned Krylov subspace method) method to solve the linearised system of
equations. DASPK also allows approximating the Jacobian using an Incom-
plete LU factorisation. This has a significant influence on the performance
in comparison to DASSL. However, we need to choose a sufficiently large
fill-in for the LU factorisation of the Jacobian, otherwise the convergence of
the iterative solver is very slow. We use a staggered system for numbering
the unknowns, hy,I'y, 21, ho, I, 2o, ..., Ans1, Dvi1, €11, Which provides a
smaller bandwidth for the Jacobian matrix (note: the bandwidth=13 for the
semi-discretisation in Eqs. (22),(23); it could be larger if smoothing of mesh
density function is used. This is in comparison to, for example, the num-
bering hl, hg, ceey hN+1, Fl, FQ, cey PN+1, T1,L2y .y TN41, which although
sparse has a much bigger bandwidth. This significantly improves the perfor-
mance of the ODE solver.

5. Numerical results

In this section, we perform numerical experiments on the coupled thin film
spreading flow problem for the free surface thickness h and surfactant con-
centration I' given by Egs. (12),(13). In all the results presented below, the
system parameter values are: Ca = 1073 (indicating smaller surface tension
relative to viscous forces), § = 90° (representing a vertical substrate), G = 1,
(so, a; = 0, B; = 1), b = 1072 (precursor film thickness is 1/100 times smaller
than the initial drop or sheet thickness) and 6 = 107 (indicating surfactant
diffusion is very small). The mesh density function smoothing parameters
are p =2 and v = 2.

We first consider only the gravity-driven flow problem (by setting I' = 0 in
Egs. (12),(13)) which reduces the system to a single fourth order parabolic
PDE for h. A travelling wave solution exists for this problem when constant
flux boundary conditions (Eq. (14)) are applied [11, 52]. Figure 2(a) shows
this solution which is characterised by a shock-like structure with h = 1
uniform upstream of the moving effective contact line and h = b downstream
of it. Surface tension plays an important role near the effective contact line
with a pronounced bulge in h, the so-called capillary ridge, and a capillary
wave that forms both upstream and downstream of the capillary ridge. The
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width of the capillary ridge region scales like Ca'/? and hence becomes much

smaller and the slope gets steeper as Ca — 0. This travelling wave solution
is used as an exact solution to compare the convergence and accuracy of the
numerical solution on an adaptive moving mesh. Figure 2(a) presents the
solution h(x,t) at time ¢ = 10 obtained using the moving adaptive mesh
scheme with N = 800 (A¢ = 0.0075 = initial Az and domain length L =
6), MMPDE4 (with 7 = 1072) and curvature mesh density function (with
a = =1and n = 2). The insets show the increased number of points that
are redistributed to the capillary ridge and the capillary wave ahead and
behind it. Figure 2(b) shows the curvature mesh density function associated
with this solution. The large values of the curvature in the capillary ridge
region results in the increased number of points redistributed in this region
(see insets in Fig. 2(a)). Figure 2(c) shows the equidistributing coordinate
transformation x = (¢, t = 10). We observe the large number of points in the
capillary ridge region (around x = 4) compared to elsewhere (compare also to
a uniform mesh represented by the dashed line). The adaptive moving mesh
scheme allocates large number of points where there is a large variation in the
solution characterized by large variations in its curvature. Figure 3 compares
the assumed exact travelling wave solution (solid line) with that computed
on a uniform mesh (dashed-dotted line) and adaptive moving mesh (dashed
line). The adaptive moving mesh solution is obtained using MMPDE4 (with
7 = 107?) and the curvature mesh density function (with a = 8 = 1 and
n = 2). The solution is translated so that the origin & = 0 is at the maximum
value of h at the capillary ridge. To make a direct comparison between the
uniform and adaptive moving mesh schemes, we fix N = 600 points for both
schemes (A¢ = 1072 =initial Az and domain length L = 6). We illustrate
the accuracy of the numerical solution by focussing on the capillary ridge and
the capillary wave ahead and behind it (see insets in Fig. 3). We observe
that the solution obtained using the moving adaptive mesh scheme is almost
identical to the assumed exact solution. The numerical solution using the
uniform mesh scheme has not converged to the exact solution for the value of
A& = 1072 used. The adaptive moving mesh scheme takes an average value
of Az = 2 x107% in the capillary ridge and capillary wave regions, hence the
almost identical match to the exact solution. However, the uniform mesh
scheme requires at least A < 1073 (N = 6000 points for this case) for this
region to be well-resolved (not shown here).

We now consider the error and convergence of the moving adaptive mesh
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scheme for varying MMPDESs (and their parameters) and mesh density func-
tion. Table 1 summarises the error measured in the Ly norm and CPU time
taken to reach t = 10 using MMPDEs 4,5,6 and modified MMPDES for sev-
eral values of 7 with N = 1000 (A¢ = 6 x 1073 =initial Az). The curvature
mesh density function is used (with @« = 8 = 1 and n = 2). The numer-
ical solution for h used in calculating the error and CPU time is obtained
at t = 10. We observe from Table 1 that MMPDE4 and MMPDEG give
more accurate solution and take less CPU time compared to MMPDES5 and
modified MMPDES5. Four values of the relaxation parameter 7 are used with
MMPDE4 and MMPDEG6 and we observe that the error gets smaller but the
CPU time increases as 7 decreases. The equations become much stiffer as 7
decreases and we were unable to obtain a numerical solution for 7 < 10~* for
MMPDE4 and MMPDEG. The same trend holds for MMPDE5 and modi-
fied MMPDES5, however, we were unable to obtain a numerical solution for
7 < 1072, Tt is worth noting that the CPU times for MMPDES5 and modified
MMPDES5 are much higher compared to the others, particularly for 7 = 107
This is due to the equations becoming very stiff for small values of 7. One
would need to use their regularised form given by Egs. (5), (6), which we
have not considered here. Therefore, it can be concluded that a value of
7 = 1072 — 1072 is optimal with respect to accuracy and CPU time taken.
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MMPDE N T CPU Error

1000 | 1 41s 3.8 x 1073
1000 | 107! | 64s 1.8 x 1074
4 1000 | 1072 | 71s 3.2 x 107
1000 | 1073 | 148s 1.0 x 1078
1000 | 1 48s 2.4 x 1073

5 1000 | 107" | 14650s | 5.9 x 1078
1000 | 1 79s 1 x107°
6 1000 | 1071 | 80s 2.2x 1078

1000 | 1072 | 130s 1.1 x 1078
1000 | 1073 | 932s 1.1 x 1078
1000 | 1 116s 2.6 x 107°
modified 5 | 1000 | 107! | 2088s | 1.4 x 1076

Table 1: Error (mesaured in the Lo norm) and CPU time taken to reach ¢ = 10 for
MMPDEs 4, 5 and 6, and modified MMPDESH varying the relaxation parameter 7. The
numerical solution for h used is obtained at ¢ = 10 and the curvature mesh density function
is used (see text for parameter values).

Also, MMPDE4 or MMPDEG6 are the best in terms of accuracy and CPU
time taken (see Table 1). Figure 4 compares the error measured in the L
norm for the numerical solutions obtained using the adaptive moving mesh
(dashed line using the arc-length mesh density function and dashed-dotted
line using the curvature mesh density function) and uniform mesh (solid line)
schemes for varying Ax. We choose o = f = 1 and n = 2 for the curvature
mesh density function; choosing n = 4 gave similar results and we do not
report them here. The numerical solution for both schemes used in mea-
suring the error is obtained at ¢t = 10 and MMPDE4 is used. We observe
that the adaptive moving mesh numerical solution is more accurate with re-
spect to the error compared to the uniform mesh scheme (see approximate
slopes shown in Fig. 4 for comparison), i.e., it achieves a higher accuracy for
the same number of mesh points. For example, the lowest error recorded is
1.6 x 1079 for Az = 5 x 1072 (corresponding to N = 1200 points) for the
adaptive moving mesh solution using the curvature mesh density function
(dashed-dotted line). The error for the uniform mesh solution (solid line)
corresponding to this Az is 2.57 x 1073. Moreover, it is also efficient in the
number of mesh points used to achieve a desired level of accuracy, i.e., it uses
less number of points to achieve the same error as the uniform mesh scheme.
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Figure 4: The Ly norm error for numerical solutions obtained using uniform mesh (solid
line) and adaptive moving mesh using the arc-length mesh density function (dashed line)
and curvature mesh density function (dashed-dotted line) as a function of Ax. Approxi-
mate slopes are shown for comparison between the three solutions. The numerical solution
is obtained at ¢t = 10 using MMPDEA4 (see text for parameter values).

For example, the lowest value of the error recorded for the uniform mesh so-
lution is 4.12 x 107% for Az = 5 x 10™* (corresponding to N = 12000 points).
The adaptive moving mesh requires Az = 0.02 (corresponding N = 300
points) to record similar error. We also observe that the adaptive moving
mesh scheme using the curvature mesh density function (dashed-dotted line)
is more accurate and efficient in the number of points used compared to that
using the arc-length mesh density function (dashed line). The approximate
slopes shown in Fig. 4 confirm this. Table 2 shows the error and CPU time
for the uniform mesh and adaptive moving mesh (using the curvature mesh
density function with « = 8 =1 and n = 2, and MMPDE4 with 7 = 107?)
schemes. The numerical solution used in recording the error is obtained at
t = 10. The error columns summarise Fig. 4 (solid line for uniform mesh
scheme and dashed-dotted line for adaptive moving mesh scheme using the
curvature mesh density function and MMPDE4). The error for the adaptive
moving mesh scheme is much smaller and is achieved using less number of
points compared to the uniform mesh scheme. However, with respect to the
CPU time taken, the adaptive moving mesh takes more time to reach t = 10
compared to the uniform mesh scheme for the same number of points. This
is due to the additional adaptive mesh equations that need to be simulta-
neously solved along with the discretized PDE. Hence, one would need to
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Error CPU time taken to t = 10
N Uniform Adaptive Uniform Adaptive
mesh moving mesh | mesh moving mesh

200 | 2.08 x 1072 2.75 x 107 2s 9s

400 | 1.11 x 1072 1.66 x 1076 6.5s 29s

800 | 4.8 x 1073 1.56 x 1078 22s 59s

1000 | 3.4 x 1073 3.2x 107 25s T1s

1200 | 2.57 x 1073 1.6 x 107° 43s 119s
3000 | 3.1 x10* - 233s -
6000 | 3.93 x 1075 = 264s -
12000 | 4.12 x 1076 - 819s -

Table 2: Comparing the error and CPU time taken to reach ¢t = 10 for the uniform mesh
and adaptive moving mesh (using the curvature mesh density function and MMPDE4)
schemes. The numerical solution is obtained at ¢ = 10 (see text for parameter values).

balance the accuracy desired and the CPU time taken to judge the efficacy
of the moving adaptive mesh scheme over the uniform mesh scheme. For ex-
ample, at N = 800 there is a threefold increase in time taken by the adaptive
moving mesh scheme to reach ¢t = 10 (less than a minute, though), however,
there is a reduction in the error by five orders of magnitude. For this case,
we can certainly conclude that the adaptive moving mesh scheme is more
computationally efficient than the uniform mesh scheme. Note that we were
unable to compute the solution at ¢ = 10 for N > 1200. For these values
of N the minimum Az becomes very small and round-off errors dominate
resulting in the numerical solution losing stability and becoming unstable.

We now consider the numerical solution of the same PDE but with constant
volume boundary conditions (Eq. (15)) and initial condition given by Eq.
(17). Informed by the above results, we use the curvature mesh density
function (with @ = 1 and 3 = 100 and n = 2) and MMPDE4 (with 7 = 107?)
for the results shown below. The upstream and downstream domain lengths
are fixed at L; = —2 and L, = 10, respectively. A uniform mesh is used
as the initial condition for MMPDEA4. Figure 5(a) shows the time evolution
of h using the adaptive moving mesh scheme. In the simulation shown the
number of points used is N = 600 (corresponding to initial Az = 0.02). The
time t ranges between 30 to 60. We observe the development of the capillary
ridge and capillary wave ahead and behind it near the drop’s leading edge
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where it connects onto the precursor film (the wave ahead of the ridge has a
much smaller width and is not seen on the scale shown). This is similar to the
previous constant flux case but here the drop height steadily decreases in time
as it spreads down the inclined substrate. We also observe a capillary wave
that develops near the trailing edge of the drop. This is of similar width to the
one near the leading edge and is also not seen on the scale shown. Figure 5(b)
shows the corresponding equidistributing coordinate transformation z(&,1).
The dashed line shows the initial uniform mesh. We observe from figure
5(b) that majority of mesh points are redistributed to the capillary ridge
and waves near the leading edge of the drop where changes in curvature are
large. There is also redistribution of points near the trailing edge where there
are also changes in curvature, although not as large as near the leading edge.
The redistribution of points is observed to be more biased towards the leading
edge of the front due to large changes in curvature there. To better control
this redistribution so that the solution near trailing edge is also accurately
resolved, we modify the parameters in the curvature mesh density function
as follows:
p(z,t) = o+ B(x)h,, (36)
where Bo, if L1 <zx<1
0, 1 1> > 1
5(@_{ By, if 1< < L,

Bo > (1 in the interval [L;, 1] ensures that more points are redistributed to
the trailing edge region (compared to the previous simulation) while the low
value of (41 in the interval [1, Ly| reduces the redistribution to the leading
edge even though there are large changes in curvature there. We note that
the choice of # = 1 is arbitrary in Eq. (37); any location at the upstream
end of the trailing edge capillary wave would suffice. The piecewise constant
values (3, and 3; are based on some a priori knowledge of the values of the
solution curvature at the leading and trailing edges of the drop. Figure 6(a)
shows the time evolution using the curvature-based mesh density function
given by Eq. (36) with a = 1, 8y = 3 and 3; = 1073, In the simulation
shown the number of points used is N = 600 (corresponding to initial Az =
0.02). The time ¢ ranges between 30 to 60. The solution structure, at least
visually, looks more accurate than that in Fig. 5(a). Figure 6(b) shows
the corresponding equidistributing coordinate transformation x(£,t). The
dashed line shows the initial uniform mesh. We clearly observe a marked
change in the redistribution of points towards the trailing and leading edges

(37)
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in comparison to that shown in Fig. 5(b). The effect of this on the accuracy
of the numerical solution is shown in Fig. 7(a,b), which plots the numerical
solution at t = 60 for the adaptive moving mesh using the curvature mesh
density function given by Eq. (36) with a = 1, By = 3 and 3; = 1073, and
Eq. (34) with a = 1 and 8 = 100, respectively. Inspection of the figures (see
zoomed-in insets at leading and trailing edge of the drop), clearly show the
well-resolved capillary wave near the trailing edge in (a) compared to that in
(b); the leading edge structures are similar in both.

0.7 (a)

/ I I I | L ‘@/V

—L'2 =1 0 1 2 3 4 5 6 7 8 9 10

Figure 7: The numerical solution at t = 60 using the mesh density function given by (a)
Eq. (36) and (b) Eq. (34) (see text for parameter values).

We now include the effect of surfactants into the problem. We first consider
the problem with no flux boundary conditions (Eq. 14). Levy and co-workers
22, 23] have analysed the travelling wave structure of this problem and have
shown the existence of multiple waves travelling with the same speed. In
principle, one can use this multiple travelling wave structure to compare
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the convergence and accuracy of the numerical solution. We do not do this
here but as an alternative use the numerical solution using a uniform mesh
with sufficiently small Az as an exact solution to compare with that using
an adaptive mesh. We note here that the mesh density functions described
in §2 are based on the solution having only a single component, i.e., only
h. When the solution has multi-components (as in the case here where the
solution has two components h and I'), these mesh density functions need to
be adapted to account for variations in the other components (which need
not necessarily be aligned to variations in one component). Therefore, the
curvature mesh density function in Eq. (34) is modified by the addition of
the curvature in I and discretized using finite differences as:

modified curvature : p(z,t) = (1 + Bh2, + wFim)%, (38)
semi-discretisation :  p(x;,t) = (1+ Sh2, ; + wfim,j)%, (39)

where the second order derivatives are discretized as in Eq. (34). Here
and w are user-specified parameters. We also used the arc-length I', instead
of it’s curvature in Eq. (38) but the redistribution of mesh points were more
sensitive to changes in the curvature of I' rather than it’s arc-length. We
use the same smoothing process for the discretized mesh density function
as described in §4 using Eq. (35). Figures 8(a,b) show the time evolution
of h(z,t) and T'(z,t) respectively, to a travelling wave solution using the
adaptive moving mesh scheme with N = 1000 points corresponding to initial
mesh size Az = 0.04 and domain length L = 40. The results are shown for ¢
ranging between 0 to 90. We use the curvature mesh density function given
by Eq. (38) (with @ = 1 and 8 = w = 10°) and MMPDE4 (with 7 = 1073).
The solution for h shows a multiple travelling wave structure characterized
by a capillary ridge and capillary waves near it’s leading edge. In addition,
a “step”-like structure where h ~ 2b (twice the precursor film thickness)
develops ahead of this leading edge [13, 20, 22, 23, 46, 47]. The solution for
I', although continuous, displays large variation in it’s gradient, particularly,
near it’s leading edge. Figures 9(a, b) present the solution h(x,t) and I'(z, t),
respectively, at time t = 90. The insets show the increased number of points
that are redistributed near the capillary ridge and capillary waves ahead and
behind it, and the step-like structure (Fig. 9(a)) which are controlled by
the curvature in A component of the mesh density function. In addition,
we see redistribution of points around the maximum in I' and it’s leading

25




=15

h(x(§

Increasing time——— >

8 10

12

14
z(&)

16

o
“

increasing time 4% ? % ﬂ 4ﬂﬂ¢¢

e

Z

]
A

et

A

%

8 10

12

14
z(£)

16

28

Figure 8: Time evolution (¢ = 0—90) of (a) h(x,t) and (b) ['(z,t), subject to the boundary
conditions Eq. (14) using MMPDE4 and a modified curvature mesh density function given

by Eq. (38). See text for parameter values.

26




edge (Fig. 9(b)) controlled by the curvature in I' component of the mesh
density function. In Figs. 10(a,b) we compare the numerical solution for
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Figure 9: (a) h(z,t = 90) and (b) I'(z,t = 90). Insets in (a,b) show the zoomed-in wave-
like structures in h and steep gradient in I' around the location of it’s maximum and
leading edge. See text for parameter values.

h and T, respectively, at ¢ = 90, using a uniform mesh (with N = 10® or
Az =0.04; N =4 x 10" or Az =1073; N =4 x 10° or Az = 107%) and an
adaptive moving mesh (with N = 1000 or initial Az = 0.04). We observe
that the adaptive moving mesh numerical solution is almost indistinguishable
from the uniform mesh numerical solution corresponding to Az = 1073, 1074,
Moreover, the insets in figures 10(a, b) show that there is still an error (albeit
small) between the uniform mesh solution for Az = 1073,1074, particularly
at the capillary ridge in h and the maximum in I". This implies that the
accuracy and convergence of the uniform mesh scheme is restricted to very
small values of Az in these regions. In contrast, the adaptive moving mesh
scheme by redistributing more points to these regions (starting from a modest
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number of points, N = 1000) can very effectively control the accuracy and
convergence of the numerical solution there.
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Figure 10: A comparison of the numerical solution of (a) h(z,t = 90) and (b) I'(z, ¢t = 90)
using a uniform mesh (with N = 103 or Az = 0.04; N = 4x10* or Az = 1073; N = 4x10°
or Az = 10~*) and an adaptive moving mesh (with N = 1000 or initial Az = 0.04). The
insets show the zoomed-in solution at locations where there is large variation in h and T.
See text for parameter values.

We now consider the numerical solution of the same PDEs but with con-
stant volume boundary conditions. The upstream and downstream domain
lengths are fixed at Ly = —3 and Ly = 17, respectively. Figs. 11(a,b,c)
show the time evolution of h(z,t), I'(x,t) and z(&,t), respectively, using an
adaptive moving mesh with N = 1500 points corresponding to initial mesh
size A¢ = 0.013. The results are shown for ¢ ranging between 0 to 400. We
use the curvature mesh density function given by Eq. (38) (with o = 1 and
f =w = 10°) and MMPDE4 (with 7 = 107%). In addition to the wave-like
structures observed at the leading edge of the drop (similar to the constant
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flux case above), there is now also a front in h travelling upstream of the
trailing edge of the drop (see Fig. 11(a)). There is also a steep gradient
in T" near the trailing edge of the drop (see Fig. 11(b)) in addition to the
one near the drop’s leading edge. The corresponding equidistributing coor-
dinate transformation z(&,t) in Fig. 11(c) shows that the mesh points are
redistributed with more points in the region near the leading edge and trail-
ing edges (Ax &~ 1071), where there is a large variation in both h and T,
and fewer points elsewhere (Az = 0.1); note the initial Az = 0.013 uniform
everywhere. Figures 12(a,b) present the solution h(z,t) and I'(x,t), respec-
tively, at time ¢ = 400. The insets show the increased number of points that
are redistributed near the capillary ridge and capillary waves ahead and be-
hind it, the step-like structure ahead of the drop’s leading edge and the front
upstream of the drop’s trailing edge (see Fig. 12(a)) which are controlled by
the curvature in A component of the mesh density function. In addition, we
see redistribution of points around the maximum in I' and it’s leading edge
and trailing edge (see Fig. 12(b)) controlled by the curvature in I" component
of the mesh density function. In Figures 13(a,b) we compare the numerical
solution for h and I', respectively, at ¢ = 400, using a uniform mesh (with
N = 1500 or Az = 0.013; N = 2 x 10* or Az = 1073) and an adaptive mov-
ing mesh (with N = 1500 or A¢ = 0.013 = initial Az). We observe that the
adaptive moving mesh numerical solution is almost indistinguishable from
the uniform mesh numerical solution corresponding to Az = 1073, However,
on closer inspection there are discernible differences between the two solu-
tions for both h and I', particularly, near the leading and trailing edges of the
drop (see solid and dashed lines in the insets in Figs. 13(a,b)). We believe
that the uniform mesh solution at Az = 1073 has not fully converged in
these regions in comparison to the adaptive mesh solution where Az ~ 10~*
in these regions. We would need to use a smaller value of Ax to confirm
this which we have not done here. This again highlights the usefulness of the
adaptive moving mesh scheme in redistributing more points to these regions
(starting from a modest number of points, N = 1500) enabling to effectively
control the accuracy and convergence of the numerical solution there.

6. Conclusions

We have successfully applied the r-adaptive moving mesh method based on
MMPDEs and mesh density functions to two prototype one-dimensional thin
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film equations represented by a coupled system of higher order parabolic
PDEs. The main highlight of the results are shown in Fig. 4 and Table 2
which enable direct comparison with the uniform mesh scheme. We observe
that the error for a fixed number of mesh points is always much lower for
the adaptive moving mesh schemes compared to the corresponding uniform
mesh scheme. Alternatively, for a prescribed error, the adaptive moving mesh
scheme achieves this with far less number of points compared to the uniform
mesh scheme. However, the adaptive moving mesh scheme takes much longer
CPU times than the corresponding uniform mesh scheme due to the extra
mesh PDE that needs to be solved along with the underlying PDEs. This
difference between CPU times is not that large if the desired error is not too
small.

An appropriate choice of the mesh density function is shown to be crucial
to the accuracy of the adaptive mesh scheme. We have found the curvature
mesh density function to be most appropriate for the thin film problems
considered here. A significant result is related to adaptation of this mesh
density function to accurately resolve the solution at multiple locations. The
simplest option using a piecewise constant weight parameter allowed the mesh
points to be redistributed accordingly based on some a priori knowledge of
the solution (see Figs. 6, 7). Another option could be to use a mixed mesh
density function, i.e., combination of curvature and arc-length mesh density
functions. These would need to be explored in future. This also highlights one
of the drawbacks of r-adaptive methods which redistribute a fixed number of
points in contrast to hp-adaptive methods which allow for dynamic allocation
of mesh points. One would need to start with a large number of points if
there are multiple locations to resolve along with a judiciously chosen mesh
density function. We have also adapted the curvature mesh density function
to include multiple solution components (based on Huang & Russell [37]).
This enables us to accurately resolve the complicated multiple structures in
both solution components (which need not necessarily be aligned with each
other) compared to the uniform mesh scheme (see Figs. 10, 13).

In conclusion, our results indicate great promise in terms of simplicity in its
implementation and efficiency (in comparison to uniform mesh schemes) for
MMPDEs-based moving adaptive mesh methods to be applied on a regu-
lar basis in thin film flow problems. Although we have only considered a
specific form of the underlying PDEs, the general framework presented in
this paper can be utilised for a thin-film equation coupled to other PDEs
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such as, electric field, temperature (in non-isothermal problems), etc., of the
form considered here. Moreover, this framework can be easily extended to
two-dimensional thin film flow problems, this is currently being undertaken
and will be reported elsewhere. However, there are challenging problems in
the thin film literature (for example, those involving moving contact lines -
analogous to the case when the precursor film thickness b < 1) where this
method needs to be further tested before its success can be guaranteed.
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Appendix A. A non-conservative finite difference semi-discretisation
scheme

We can write a non-conservative semi-discretisation scheme for the spatial
derivatives in Egs. (12),(13). To do this, we write Eqgs. (12),(13) in the
following form:

h3 h3 h? h3

o _ 4 — |1 | = Al

o fgo| oo S[gR] rafg] -0 @y
h?T h’T h?T

I'y+ Ca {7])4 — B {7]%} — [(hT + 5)F$]$ + {T} =0, (A.2)
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A non-conservative semi-discretization scheme for a function of the form
lau,|, on a uniform mesh J¢ (say) using finite differences can be written as:

1 [aue 1
ey = — | 2] = —
Tej LTe le; e

9 2
(Erms) oo - yaia]
_py Au]' + Au]'_l AZL’j — Al’j_l . (A4)
Ailfj + Aﬂfj,1 Al’jAZLj;l
Using the above, a non-conservative semi-discretisation scheme for the spa-

tial derivatives in Egs. (A.1)-(A.3) on the uniform mesh Jy using finite
differences can be written as, keeping the time derivative continuous,

[aue]e ;
Le 5

1
o Wytg,jLEg,]
Le j ]

h3 h? h? h? )
ht,j [Cagpx—@?hx— ?Fx_‘_al?} ' =0, j=2,...,N, (A'5)
x,]
h2T h2T h*T
Ft,j -+ |:0an33 - ﬁlThax - (hr + 5)F$ + a17:| =0, J= 2, ’N’
z,]
(A.6)
2 2
D h 2J (Al’] + ijl) [ h’] h’] 1]
_ (Ahf' + Ahil) (A‘”J’ - M“) L j=2...,N (A7)
Al’j + Al'j,1 Al’jAl’j,1
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The spatial derivatives appearing in Eqs. (A.5)-(A.7)are discretised as fol-
lows:

) 2
[aps]eg = (m) [%‘ﬁApj - aj—%Apj—l}
Apj — Apj—l ij — Al’j_l
Y Al
4 (A(L’j — ij—l AZE‘jA(L’j_l ’ ( 8>
9 2
[ahm]z,j - (m) [Clj+%Ahj — aj_%Ahj_l]
(e (e "
A.CL']' — Aﬂfj,1 Al’jAZLj;l
) 2
[afx]x,j = (m) [ajJr%AFj h | a];%AI‘j,l}
(AL AL (A — Az (A.10)
4 Ailfj — Alﬁ;l AilfjAlb;l ’ ’
h3. ., —h3
[h?)]z -9 < j+1/2 ]—1/2) . (Al]_)
Tj41 — Tj—1

Approximations to terms of the form a;,1 /2 and a;_1 /2 are the same as defined
previously. This scheme also requires fictitious points (h,x)y and (h, x)y.2
which are the same as described previously.
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