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Abstract

Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together
in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue
components using Fourier transform infrared (FTIR) spectral evaluation of matrix composition in combination with
multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and
aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of
interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair
cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry
results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a
tissue with mixed collagen types) to evaluate the potential of this method for identification of collagen type in a minimally-
invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in
excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of
predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and
proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II
collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the
meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with
immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate
collagen type I and type II, even in the presence of proteoglycan, in connective tissues, using both imaging and fiber optic
methodology. This has great potential for clinical in situ applications for monitoring tissue repair.
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Introduction

Damage or degeneration of cartilage is frequently associated

with changes in the macromolecular structure and content of the

primary cartilage components [1], and can ultimately progress to

osteoarthritis (OA) [2]. The progression of OA has been directly

linked to the loss of proteoglycans (PGs) [3], and to changes in

collagen structure and orientation [4]. It is widely accepted that

cartilage injuries do not heal spontaneously [5], which is related to

the avascular nature of the tissue and the limited ability of mature

chondrocytes to proliferate and regenerate new cartilage [6].

Although there is no cure for OA, there have been advances in the

treatment of cartilage focal defects. Methods such as microfracture

and autologous chondrocyte implantation (ACI) can stimulate cells

to make extracellular matrix (ECM) components, and at times,

result in a spatial structure similar to normal cartilage [5,7].

Studies have shown that different modalities result in different

types of repair tissue. Microfracture generally results in fibrocar-

tilage which contains type I collagen [3], whereas following ACI, a

mixture of fibrocartilage and hyaline cartilage is generated [6].

The presence of hyaline cartilage, which is composed of type II

collagen, is better correlated with a positive clinical outcome [8–

10]. Type I and II collagen are among the fibril forming proteins

with a triple helical secondary structure in the collagen family,

however, there are some differences in their structure. The former

is a heterotrimer of COL1A1 and COL1A2 genes products, and

the latter is a homotrimer of COL2A1 gene products. Type I

collagen is usually incorporated with collagen type III and V, while

type II collagen is incorporated with type IX and XI collagens that

increase tissue load bearing properties and limit the fibril diameter

to smaller sizes compared to type I collagen. Type II collagen

contains a greater amount of hydroxylysine and glucosyl and

galactosyl residues than type I collagen, and these mediate the

connection of collagen and proteoglycan components in the

matrix [11]. Therefore, from a clinical perspective, knowledge of

the collagen type present in the repair tissue is extremely

important.

Currently, modalities to evaluate collagen quantity include

enzymatic digestion of the tissue followed by biochemical

hydroxyproline [12] or Sircol [13] assays. Evaluation of collagen
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type is typically performed by immunohistochemical (IHC)

analysis on thin tissue sections, or by tissue digest separation

methods such as high performance liquid chromatography

(HPLC) followed by collagen type detection by mass spectroscopy

(MS) [6,14,15]. These methods have different sensitivities to

collagen amount and type, but all can be time consuming and

require processing of the tissue. Fourier transform infrared (FT-IR)

spectroscopy is a powerful technique based on molecular

vibrations that has been widely used to assess biological tissue

composition [3,16–19]. FT-IR analysis relies on the unique

vibrational signature of the molecules present in the tissue, and

thus does not require the addition of an external contrast agent.

[20]. FT-IR can be utilized as a clinical tool when coupled with an

infrared fiber optic probe (IFOP) [21,22], or can be used for

analysis of harvested tissue when coupled with a microscope and

an array detector [3,16,23,24]. The latter modality, called FT-IR

imaging spectroscopy (FT-IRIS), creates ‘‘chemical’’ images of

tissues based on the absorbance of a specific molecular species at a

pixel resolution as high as 1.5 mm, in combination with

microscopic visualization of the samples [16]. FT-IRIS has been

increasingly used to characterize the structure, distribution, and

orientation of extracellular matrix molecules in histological

sections of cartilage and other connective tissues [16,25–27].

There is considerable overlap in the spectral signatures of

proteins in connective tissues, and therefore, it is not always

possible to identify a unique absorbance at a specific frequency

that is associated with a particular component. Univariate analyses

of IR spectra have been performed to evaluate collagen and

proteoglycan (PG) concentration [3,16,23,26–29]. Recent studies

have shown that application of second derivative spectra in

univariate analysis results in better measurement of matrix

component [30]. However, multivariate analysis techniques that

evaluate multiple frequencies of the spectra simultaneously are

increasingly used to improve specificity of the analysis and predict

matrix components quantitatively. Euclidean distance [31,32],

cluster analysis [24], and partial least squares (PLS) [21,33], have

all been used to analyze FT-IR spectra of cartilage. These studies

demonstrated the ability to distinguish normal, repair, young and

mature tissues, and to quantitatively analyze matrix components.

To date, however, discrimination of regions of type II collagen in

tissues with other collagen types by univariate or multivariate

analysis of FT-IR spectra has not been demonstrated.

The aim of the current study was to assess whether FTIR

spectroscopy, applied in both an imaging mode (to histological

sections) and fiber optic modality (to the tissue surface), can

differentiate collagen type I and II in connective tissues. A PLS

model was developed based on a library of IR spectra of varying

concentrations of pure tissue components including type I

collagen, type II collagen, and aggrecan (the primary PG in

cartilage). Assessment of the composition of tendon and bone

(primarily type I collagen), hyaline cartilage (primarily type II

collagen), repair cartilage (often a mix of types I and II collagen)

and meniscus (known to consist of both type I and II collagen) was

performed to validate the PLS model. In addition, multivariate

cluster analysis was performed to evaluate an alternate method for

discrimination of types I and II collagen in histological sections of

tissues. Finally, the model was validated on fiber optic probe data

acquired from an intact meniscus to demonstrate the potential of

this method for in vivo clinical use.

Materials and Methods

Overview
Infrared spectra were collected from mixtures of varying

amounts of pure type I and II collagen, and aggrecan to form a

spectral library. The spectral library was used to predict the

concentration of these components in histological sections of

connective tissues using FT-IRIS, and on the surface of meniscus

using IFOP assessment to show feasibility of this modality.

Pure components
Type I collagen, type II collagen, and aggrecan powders were

used to make mixtures that were analyzed as potassium bromide

(KBr) pellets. Two different sets of samples were prepared that

included mixtures of varying concentrations of type II collagen

(chick nasal articular cartilage, Genzyme, Boston, MA) and

aggrecan (calf nasal aggrecan, generously supplied by L. Rosen-

berg, Montefiore Hospital, Bronx, NY in a prior study [26])

(Model A), and mixtures of varying concentrations of type I

collagen (bovine skin, USB Corporation, Cleveland, OH) and type

II collagen (bovine articular cartilage, USB Corporation, Cleve-

land, OH) (Model B). Inclusion of type II collagen from two

different sources permitted us to assess the sensitivity of the

analysis to collagen source. Collagens and/or aggrecan were

mixed as 1% by weight with 100 mg KBr powder (International

Crystal Labs, Garfield, NJ) to create KBr pellets.

The composition of pellets for Model A (n = 10 pellets per

mixture) and Model B (n = 3 pellets per mixture) are summarized

in Table 1 and Table 2, respectively.

Bovine tissue
Bovine knee joints (2–3 weeks old) were obtained from a local

FDA approved abattoir (JBS Souderton, Souderton, PA). Cortical

bone was harvested from the tibia and cut into 16261 cm3

samples. The patellar tendon was harvested and cut into 2 cm2

pieces. Full depth cartilage, including the calcified cartilage layer,

was harvested from the medial and lateral femoral condyles (5 mm

diameter pieces). Lateral meniscus was harvested and cut in the

sagittal plane for FT-IRIS, and used intact for infrared fiber optic

probe (IFOP) spectroscopy. Bone and tendon were evaluated as

standards for tissues considered to have very little or no type II

collagen, while the articular cartilage matrix was considered a

standard for a tissue with very little or no type I collagen. Meniscus

was assessed as a model of a tissue that contains both type I and II

collagen in its matrix. All tissues were fixed in 10% buffered

formalin (Richard-Allan Scientific, Kalamazoo, MI) for 24 hours.

Bone and cartilage samples were decalcified in a 12.5% EDTA

solution. After formalin fixation, tissues were put into 70% ethanol

for dehydration prior to paraffin embedding. Paraffin blocks were

sectioned at 6 and 7 micron thickness on glass slides and low-

emissivity slides (low-e, Kevley Technologies, Chesterland, OH)

for histology and FT-IRIS, respectively. Tendons were sectioned

Table 1. The composition of pellets for Model A (n = 10
pellets per mixture).

Sample 1 2 3 4 5

Type II collagen (wt %) 0 25 50 75 100

Aggrecan (wt %) 100 75 50 25 0

doi:10.1371/journal.pone.0064822.t001
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longitudinally, and meniscus and articular cartilage sectioned

sagittally.

Human tissue
Full-depth core biopsy samples (1.8 mm in diameter) were

obtained from patients who had undergone autologous chondro-

cyte implantation (ACI) for a medial femoral condyle defect ,12

months previously (N = 4). All tissues were obtained under

approval of the NRES Research Ethics Committee (West

Midlands, UK). Participants provided their written informed

consent to participate in this study and the ethics committee

approved this consent procedure. The tissues were immediately

snap frozen and stored in liquid nitrogen until processed. Seven

micron thick sections were cut and collected for analyses as above.

Histological and immunohistochemical (IHC) analysis
Histologic sections of bone, tendon, meniscus and cartilage were

stained using hematoxylin & eosin (H&E) and Alcian blue (for PG

assessment) (Sigma-Aldrich, St. Louis, MO). Since both types I

and type II collagen are generally present in repair cartilage, IHC

images of the tissues were used as the gold standard for

comparison. IHC staining was performed on cryosections of

ACI biopsies using antibodies specific to type I and II collagen.

Separate tissue sections were incubated for 1 hour at room

temperature with primary antibodies against type I collagen

(monoclonal antihuman, clone no 1-8H5; ICN) and type II

collagen (CIICI; Developmental Studies Hybridoma Bank, IA)

[6]. Endogenous peroxidase was blocked with 0.3% hydrogen

peroxide in methanol before sections were incubated with the

biotinylated secondary anti-mouse antibody. The signal was

amplified using an avidin–biotin–peroxidase reagent (Vectastain

Elite ABC kit; Vector Laboratories, Peterborough, UK) and

labeling was visualized with diaminobenzidine as substrate.

Sections were then washed, dehydrated, and mounted in pertex.

‘Control’ sections of biopsy samples (to assess nonspecific antibody

binding) were treated either with normal mouse IgG, normal

rabbit serum, or phosphate buffered saline alone, in place of the

primary antibodies, and then treatment continued.

In addition, IHC staining of paraffin-embedded meniscus was

performed for type I collagen using a primary antibody against

type I collagen (anti-collagen type I, fetal mouse skin, Calbiochem,

Merck Milipore, Darmstadt, Germany).

FT-IR data acquisition
KBr pellets: FT-IR spectra from the Model A type II collagen

and aggrecan KBr pellets had been previously collected as

described in Camacho et al [26]. FT-IR spectra from the Model

B type I and type II collagen KBr pellets were collected in the mid-

IR region of 1800–900 cm21 at 4 cm21 spectral resolution using a

Spectrum 400 FT-IR spectrometer (Perkin Elmer, Shelton, CT).

The average time for data collection from each pellet was

,2 minutes.

FT-IRIS data collection: FT-IRIS data were acquired from this

sections of human and bovine tissues (n = 3 per tissue type) in the

mid-IR region, 1800–750 cm21 at 4 cm21 spectral resolution and

25 mm spatial resolution using a Spectrum SpotLight 400 FT-IR

Imaging system (Perkin Elmer, Shelton, CT). Depending on the

size of the tissue section (0.5–1.5 mm2), data collection time

ranged from ,5–20 minutes.

IFOP data collection: To validate the ability to discriminate

type I and type II collagen in intact tissues, infrared fiber optic

probe (IFOP) data were collected from bovine meniscus in the

mid-IR region of 1800-900 cm21 at 4 cm21 spectral resolution

with 256 co-added scans (average time of scan for each spectrum:

,1 minute), using a Bruker infrared spectrometer (Billerica, MA)

equipped with a mercury cadmium telluride (MCT) detector and

coupled to a chalcogenide fiber optic probe of ,6 mm diameter

(Remspec Corp, Charlton, MA) with a flat-tipped ZnS attenuated

total reflectance (ATR) crystal of 1 mm diameter. The 1 mm tip of

the probe was placed in direct contact at 90u to 24 individual

regions on the meniscus femoral surface for data acquisition.

Penetration of infrared radiation in IFOP data collection is

restricted to the tissue surface to a depth of ,10 microns [34].

Prior to multivariate analyses (described below), the spectral

regions of the amide I protein absorbance (1718–1594 cm21), the

amide II protein absorbance (1594-1492 cm21), and the PG sugar

ring absorbance (1140-985 cm21) were investigated to qualita-

tively assess component distribution in IR images [16].

Multivariate analysis (PLS)
FT-IR spectra obtained from KBr pellets of pure component

mixtures in the 1800-900 cm21 range were used to create PLS

models to validate that the spectra from these mixtures could

indeed be differentiated based on concentration of components.

This spectral range was chosen for analysis to correspond with the

spectral range in the IFOP data. PLS analysis was originally

developed based on regression analysis and principal component

analysis (PCA), where the scores calculated by projection of the

response and independent variables to a new space of principal

components are used to find a linear regression model and predict

unknown variables. PCA is a multivariate analysis method which is

used to reveal hidden structure within data and provide visual

representation of the relationship between variables and response.

It decomposes the information carried by the original variables

and projects them onto a smaller number of latent variables called

principal components (PCs). In PLS analysis, a model is found that

correlates PCs of the matrix of variables to PCs of the response

using linear regression analysis [35–38]. A multiplicative scatter

correction (MSC), second derivative differentiation with 13-point

Savitzky–Golay smoothing, and normalization to the maximum

peak height of all spectra were applied to optimize the models.

MSC is a signal processing method which is used to remove the

scattering and offset effects in the spectra [36]. IR spectra were

employed as variables with each spectral frequency input as an x

variable, and the actual type I collagen, type II collagen or PG

content used as the response variables. All spectral variables

(frequencies) were input with equal weighting. A leave-one-out

cross validation was used to create the PLS models. In this method

of validation, a repeated analysis is done on the data, where each

time one of the samples is left out and the PLS model is optimized

based on the remaining spectra, The model is then used on the left

out sample for validation [38,39]. The number of factors for the

model was calculated to be seven, based on the minimal residual

sum of squares error (SSerr) [35].

Based on a leverage versus residual scatter plot of the PLS

model [35], no outliers were detected in the PLS cross-validation

Table 2. The composition of pellets for Model B (n = 3 pellets
per mixture).

Sample 1 2 3 4 5

Type I collagen (wt %) 100 75 50 25 0

Type II collagen (wt %) 0 25 50 75 100

doi:10.1371/journal.pone.0064822.t002
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models. The quality of the model was evaluated by assessment of

the root mean square error (RMSE), and the regression coefficient

(R2) of the cross validation model. RMSE measures the precision

of the model and is calculated according to the equation below:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(Y Pr ediction(i){Y exp eriment(i))2

N

s
ð1Þ

(i: number of samples = 1 to N) [40,41].

Once the PLS model was developed from the pure component

KBr pellet data, the model was applied to the infrared spectra

collected from different regions of the connective tissues of interest

to predict composition. The number of FT-IRIS spectra collected

spanned the length of the tissue section analyzed so that, e.g., 100

spectra collected at 25 micron pixel resolution = 2500 microns

total length. The IR spectra included 100 FT-IRIS spectra of

cortical bone, 100 FT-IRIS spectra of tendon (transverse

direction), 80 FT-IRIS spectra of articular cartilage (from

superficial zone to deep zone), 100 FT-IRIS spectra of meniscus

(from the tip of inner region towards the outer region), and 24

IFOP spectra (1 mm region per spectrum) from the meniscus

surface, from the inner to outer region. The output for the PLS

model prediction is either percent dry weight of a specific

component (for the dehydrated tissue sections), or percent wet

weight (for the in situ meniscus fiber optic probe data). IHC

images of human repair cartilage were used to assess the repair

cartilage PLS model prediction result for regions composed of

hyaline (type II collagen with greater proteoglycan) and fibrocar-

tilage (type I collagen). In meniscus, IHC images and Alcian blue

staining were used as standard methods for assessment of type I

collagen and proteoglycan distribution, respectively.

Multivariate Analysis (Cluster analysis)
Cluster analysis of infrared imaging spectra has previously been

performed to qualitatively differentiate tissue types [24]. With this

method, regions of IR images are separated into two or more

classes, or ‘‘clusters’’, with similar spectral properties. A supervised

cluster analysis was performed in this study, where four libraries of

infrared spectra were created from spectra obtained from 1. FT-

IRIS images of bone (primarily type I collagen), 2. FT-IRIS

images of regions of cartilage repair tissue that were predomi-

nantly type I collagen, 3. FT-IRIS images of regions of cartilage

repair tissue that were predominantly type II collagen, and 4. KBr

pellets of pure aggrecan. The FT-IRIS spectral libraries were

obtained from one tissue section of an ACI repair biopsy. IR

spectra of type I and II collagen-rich regions from ACI repair

tissue were chosen to create the library, instead of using pure

component spectra, to assess the ability of the cluster analysis

technique to differentiate fibrocartilage-like type I collagen from

bone type I collagen. The libraries were then used to predict a

distribution map of these tissue types in independent samples of

repair cartilage (n = 3). Cluster analysis was performed using Fuzzy

C-means, with four initial centroids and a Fuzzy index equal to

3.3. All data analysis were performed using ISys v5.0 (Malvern

Instrument, Columbia, MD), and Unscrambler v10 (Camo,

Norway).

Results

PLS models
Pure Components. IR spectra of pure component KBr

mixtures (Models A and B) with varying type II collagen content

show progressive changes in height and area under the amide I

(1718–1594 cm21), amide II (1594–1492 cm21) and PG (1140-

985 cm21) absorbance bands (Figure 1A). Based on the broaden-

ing of the absorbance bands, it appeared that scattering was

evident in the spectra of the type I and type II collagen mixtures,

possibly due to incomplete grinding of the samples. Second

derivative and MSC spectral analysis reduced the scattering

artifact, and revealed more details on peak position (Figure 1B).

Although the type II collagen second derivative spectra in models

A and B (solid dark black lines) were not identical based on relative

peak heights, the peak positions were essentially equivalent

between the two models. There were small differences in several

second derivative peak positions (ranging from 4 to 8 cm21) of the

type I and type II collagen spectra (Figure 1B), including in the

amide I and II regions, in the side chain absorbance regions (near

,1400 and 1300 cm21), and in the glycosylation regions near

1100–1000 cm21, but for the most part, significant overlap in the

spectral frequencies precluded unique association of any peak

position with a collagen type. This clearly motivated a multivariate

analysis strategy for differentiation of these collagen types in

tissues. Differences among second derivative spectra for the

collagen and aggrecan mixtures were more obvious across the

entire frequency range.

Both PLS models showed a complete discrimination among

KBr pellet samples with varying composition (Figure 1C).

However, Model A showed discrimination of percentage of type

II collagen in both Factor 1 and Factor 2, while Model B showed

discrimination of percentages of type II collagen based on Factor

1. Therefore, when using Model B for assessment of the amounts

of type I and II collagen, only Factor 1 would be considered. PLS

analysis parameters, including percentage of variation of the

model explained by each factor, are summarized in Table 3.

Bone and Tendon Composition. Using Model B, FT-IRIS

images of cortical bone and tendon both were predicted to have a

fairly uniform distribution of type I collagen, with approximately

85% type I collagen (dry weight) in each tissue (Figure S1A and

S1B). Although both tissues are considered to have no type II

collagen, just under 5% of type II collagen was predicted in both

tissues. Given that the RMSE of the models is ,5%, this is within

expected limits.

Normal Articular Cartilage Composition
The superficial, middle, deep, and calcified cartilage zone were

visualized in the FT-IRIS images from articular cartilage based on

total protein (Amide I) (Figure 2A). This is the expected normal

zonal structure of articular cartilage. The PLS model prediction

showed that type II collagen and PG content varied through the

thickness of the cartilage, with PG concentration increasing from

the superficial to middle and deep zones (Figure 2B). The deep

zone contained the highest type II collagen concentration, ,80%

dry weight, and the calcified cartilage zone contained the lowest

type II collagen concentration, ,55%. Similar concentration

profiles from the superficial to calcified zone were found using

models A and B (Figure 2C, 2D).

Human Cartilage Repair Tissue Composition. Excellent

agreement was seen between type I collagen, type II collagen and

PG content predicted in the FT-IRIS images by the PLS models,

and the component distributions as visualized in the IHC and

histology images (Figure 3A, B, C, D, F, I). Less than 5% type II

collagen was predicted in subchondral bone, likely due to error in

the model (Figure 3B). Similar to the PLS results of this tissue

section, cluster analysis on the FT-IRIS image showed greater

hyaline cartilage (type II collagen rich) in deeper regions of repair

tissue, while type I collagen rich matrix was found throughout the

repair tissue, but not in the bone (Figure 3E, G, H, J). However,

Discrimination of Type I and II Collagen
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Figure 1. PLS score plots of pure component mixtures. Baselined infrared spectra (A), 2nd derivative spectra (B) and PLS score plots of pure
component mixtures in KBr pellets for Model A (mixtures of type II collagen and aggrecan) and Model B (mixtures of type I and type II collagen).
Progressive changes in IR spectra with type II collagen variation can be seen. Asterisks in Figure 1B denote regions where second derivative spectra
do not overlap. Mixtures with different compositions are completely distinguished in the PLS models.
doi:10.1371/journal.pone.0064822.g001

Table 3. Parameters of PLS models used to predict component concentration.

R-squared RMSE (%)

% of variation
explained by Factor 1
(variables)

% of variation
explained by Factor 1
(response)

% of variation
explained by Factor 2
(variables)

% of variation
explained by Factor
2 (response)

Model A 0.97 4.36 74% 77% 25% 22%

Model B 0.98 4.88 65% 94% 18% 2%

doi:10.1371/journal.pone.0064822.t003

Discrimination of Type I and II Collagen
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there were some differences between the type I collagen and type

II collagen distribution maps in the FT-IRIS images derived from

cluster analysis, and the corresponding IHC images. This is likely

due to the fact that the library of spectra utilized for the supervised

cluster analysis were not necessarily pure components of type I or

type II collagen, but were obtained from regions in FT-IRIS

images that were primarily type I or type II collagen (as described

in the Methods section). However, bone tissue type I collagen was

only detected in the confirmed bone regions of the FT-IRIS

images of the ACI biopsy, and not within the cartilaginous tissue.

PG co-distributed primarily with the type II collagen rich regions,

as expected.

Meniscus Composition. FT-IRIS Data: Both PLS models

predicted that the inner region of the meniscus tissue section

contained greater quantities of type II collagen compared to the

outer region (Figure 4A and 4B). Conversely, less type I collagen

was predicted in the inner region compared to the outer, which

was confirmed by type I collagen IHC (Figure 4C). In addition,

proteoglycan concentration was also predicted to be greater in the

inner region relative to the outer regions. This was confirmed by

the Alcian blue staining (Figure 4D).

IFOP Data: Analysis of the intact meniscus surface by IFOP

showed a similar result to that obtained with the PLS analysis of

the meniscus tissue sections (Figure 5), where the inner region

surface was predicted to contain more type II collagen and PG

compared to the outer region surface. There were small, non-

linear fluctuations in the amount of these components observed

from the medial to more lateral regions, e.g. among spectra 19–26,

but the fluctuations were within the approximate error of

prediction of the model, ,5%, so it’s not clear whether the

variations are indeed meaningful. In these in situ surface studies,

type II and type I collagen content was found to be relatively lower

compared to what was found in the meniscus tissue sections. This

is likely due to the fact that the intact tissue is sampled wet, and

thus we obtain a wet weight percentage, as opposed to the dry

weight percentage obtained from the dehydrated tissue sections.

However, the predicted PG content was not noticeably lower for

the surface IFOP measurements (wet weight) compared to the FT-

Figure 2. Articular cartilage matrix component concentration profile predicted using PLS models. Total protein amide I FT-IR image,
where the color bar indicates the relative protein concentration as lower concentration (blue) through higher concentration (red), and Alcian blue
histology image of articular cartilage (A). FT-IRIS data were collected from the articular surface to the subchondral bone, with the positions of data
collection indicated on the IR image. Each position corresponds to a 25 micron region of data collection. PG (Panel B) and type II collagen (Panels C,
D) concentration profiles in normal articular cartilage predicted using PLS models A (Panel D) and B (Panel C) (representative data shown for one
sample). The Alcian blue-stained histology image shows the qualitative PG distribution, which is slightly higher in the deep zone, and similar to that
predicted using Model A. Models A and B predicted similar distributions of type II collagen, where the deep zone contains a greater amount
compared to the superficial and middle zones.
doi:10.1371/journal.pone.0064822.g002

Discrimination of Type I and II Collagen

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e64822



IRIS image data from the thin section (dry weight). Thus, it is

possible that the PG content on the meniscus surface is indeed

different from that sampled from the center of the meniscus in the

FT-IRIS image.

Discussion

The current study demonstrates the ability to discriminate

collagen types I and II based on spectral data for the first time.

Comparison of spectral results with immunohistochemical data,

the gold standard for differentiation of collagen types in tissue

sections, confirms that this spectral approach can be used for semi-

quantitative assessment of tissues with mixed collagen types.

Further, IFOP data obtained from intact meniscus also discrim-

inated regions of type I and type II collagen in that tissue.

Assessment of collagen types in histological tissue sections is

most commonly done using IHC techniques. There have been

Figure 3. Repair cartilage matrix component concentration profile predicted using PLS models. Type I collagen (A), type II collagen (B),
and PG (C) content of repair cartilage predicted by the PLS models show greater type II collagen is found in regions adjacent to bone (representative
data shown for one sample). Each position corresponds to a 25 micron region of data collection. Cluster analysis-derived IR images show type I
collagen (from repair cartilage spectral library), (E), type II collagen (from repair cartilage spectral library), (G), PG (from aggrecan spectral library), (H),
and type I collagen (from bone spectral library), (J), distribution in repair cartilage and subchondral bone. IHC images of type I (D) and II (F) collagen
and Alcian blue histology image (I) are used for comparison. Cluster analysis was done using Fuzzy C-means with four centroids defined. Higher
values on the cluster analysis images scale show a closer distance to the corresponding centroid (tissue type). In the type II collagen IHC image,
darker areas shows regions with more type II collagen (hyaline cartilage) and lighter areas indicate the presence of fibrocartilage-like tissue.
doi:10.1371/journal.pone.0064822.g003
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many studies over the last 30 years that have performed IHC for

evaluation of the types of collagen present in connective tissues,

but of particular interest is the distribution of collagen types in

cartilage repair tissue as a correlate to the quality of the tissue, as

shown in [6,7,42]. However, immunohistochemical analysis has

several limitations, including the dependence of the outcomes on

the experience of the investigator [43]. It was also shown that

choice of antibody panel and the interpretation of the reaction

patterns are important factors in the ability to obtain reliable

results and improve the sensitivity and specificity of the reaction

[44]. These limitations motivate our studies to develop an

alternative method to distinguish collagen types which would be

a more objective and less bias-prone approach.

The spectral similarities between type I and type II collagen

preclude evaluation of these collagen types based on one single

spectral absorbance. Even though subtle differences among

spectra were observed at several frequencies by evaluation of

second derivatives, it was not possible to attribute these differences

to specific features of the collagen molecules. Shifts in absorbance

frequencies can occur if collagen molecules are in different

hydration environments, or bound to different non-collagenous

proteins, as is the case for type I and type II collagen. Thus,

multivariate analyses, where many frequencies are utilized, have

been explored. Several studies have shown that processing of FT-

IR spectra using multivariate analysis methods provides quanti-

tative information related to cartilage and bone tissue quality.

Potter et al. utilized Euclidean distance analysis of IR imaging

spectra obtained from histological sections to map collagen and

chondroitin sulfate content of bovine nasal cartilage and

engineered cartilage based on comparison to IR spectra of pure

components [31]. Euclidean distance analysis has also been

performed on IR spectra obtained from different collagen types

in pure proteins [45], histological sections of human [32] and steer

[27] cartilage to assess the relative concentration of collagen or PG

in those tissues. Rieppo et al. performed cluster analysis to

differentiate porcine cartilage repair tissue from normal articular

cartilage [24], and Kobrina et al used this technique to

differentiate histological zones in intact articular cartilage [46].

PCA analysis of FT-IR spectra was used by Yin et al to evaluate

collagen and proteoglycan content of articular cartilage [47]. PLS

analysis has been performed to assess the matrix constituents of

engineered cartilage [33], proteoglycan content of articular

Figure 4. Meniscus histological section component concentration profile predicted using PLS models. Meniscus matrix composition
prediction: FT-IRIS data obtained from a histological section, and predicted using PLS Model A (A) and B (B) (representative data shown for one
sample). The inner region shows more PG and type II collagen compared to the outer region. The IHC image of type I collagen (C), and the Alcian blue
histology image (D) show type I collagen and PG distribution respectively, which are in agreement with the predicted type I collagen and PG
concentration, respectively. Each position corresponds to a 25 micron region of data collection.
doi:10.1371/journal.pone.0064822.g004
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cartilage [48], and cartilage degeneration using a fiber optic probe

[21]. In the aforementioned studies, although the multivariate

analyses permitted semi-quantitative assessment of differences in

proteoglycan, specific analysis of type II collagen in tissues with

other collagen types (e.g. repair cartilage) was not performed.

There are several potential sources of error in the current

studies, including technical errors, such as Beer’s law non-linearity,

instrumental misalignment, inaccurate weighing of the pure

component samples, and scattering in the KBr pellets [41], which

may have contributed to broadening of the peak positions in the

Model B spectra. However, similar results for prediction of type II

collagen in tissues were obtained with both Models A and B,

indicating that the spectral artifacts did not interfere significantly

with the analyses. Errors could also arise from ignoring the

contribution of small quantities of non-collagen or non-proteogly-

can matrix component (such as glycolipids or glycoproteins) and

cells, and using aggrecan with no link protein and hyaluronic acid

as representative of proteoglycan in all tissues. In addition, the

structure of the type I and II collagen powders used in the

standard pellets is different from that of native collagen found in

biological tissues with respect to lack of interactions with other

matrix components, and possible differences in crosslinking, which

can also result in errors in the models developed. Nonetheless our

results showed that IR spectra collected from type I and II collagen

pellets are similar enough to IR spectra of bone/tendon (type I

collagen) and normal hyaline cartilage (type II collagen),

respectively, for prediction in multivariate models. In the cluster

analysis, the IR spectral library was generated based on type I and

II collagen of ACI cartilage, as opposed to pure component

spectra. The regions where the type I and type II collagen spectra

were extracted from were chosen based on IHC identification of

collagen type. However, as previously discussed, IHC analysis also

has limitations regarding specificity. Further, the regions chosen

for extraction of type I and type II collagen spectra also no doubt

had other components present in small quantities, which would

contribute to the errors in the models developed.

The variation in type II collagen content predicted by both

models for normal cartilage was in a good agreement with the IR-

derived collagen distribution shown in Figure 2A. Collagen

content reached a maximum of ,80% in the deep zone, which

is also in agreement with the reported approximate relative

amount of dry weight collagen concentration in articular cartilage

[4]. The type II collagen quantity was at a minimum in the

calcified cartilage zone, which could reflect the presence of type X

Figure 5. Intact meniscus component concentration profile predicted using PLS models. Type II collagen (A), PG (B) and type I collagen (C)
content of lateral meniscus predicted using PLS analysis of IFOP spectra collected from the intact tissue (Model A used for panels A and B, and Model
B used for panel C). Each position corresponds to a 1 mm diameter region of IFOP data collection. Similar to the results obtained for the analysis of
meniscal tissue by IR imaging, the inner region was predicted to contain a higher concentration of type II collagen compared to the outer region.
Each position corresponds to a 1 mm sampling region by IFOP.
doi:10.1371/journal.pone.0064822.g005
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collagen as the primary protein in this region [49], although we

did not include type X collagen measurements in the current

study. The predicted amount of proteoglycan (aggrecan) and type

II collagen combined was ,90% of the matrix dry weight

throughout the superficial to deep zones which is also similar to

what has been reported previously [1]. The type II collagen

quantity measured using Models A and B, which contained

different sources of type II collagen, resulted in similar composi-

tional variations throughout the tissue depth. It is important to

note that these measurements are semi-quantitative, reflecting

percentage of a type of collagen, and not a fully quantitative

assessment. However, these data confirm that the methods

developed are not sensitive to collagen source.

A positive clinical outcome in ACI procedures has been

correlated with the amount of hyaline repair tissue [10,50,51],

whereas the presence of fibrocartilage with little hyaline cartilage

has been linked to failure of the treatment [51]. In our previous

study, we demonstrated that FT-IRIS data obtained from ACI

biopsies were equivalent to histologic or IHC parameters for

prediction of clinical outcome based on the Lysholm score [10].

The results from the current study augment those findings by

specifically assessing collagen type with FT-IR, and thus provide

another non-destructive, measure of tissue quality. Potential

clinical application was further shown by assessment of collagen

type and PG distribution in bovine meniscus in both imaging data

and in fiber optic data. Results were in agreement with previous

immunostaining studies, including evaluation of rabbit [52] and

human meniscus [53], where it was confirmed that type II collagen

is primarily localized at the interior site of the medial meniscus.

Notwithstanding these positive results, a limitation of the mid-

infrared fiber optic studies is that penetration is restricted to ,10

microns below the tissue surface, and thus only superficial

components are evaluated. In the current study, however, this

sampling modality was sufficiently sensitive for evaluation of the

distribution of matrix components in the intact tissue, as it was

shown in our previous study [54].

Although mid-infrared fiber optic spectroscopic analysis has not

yet been used clinically for evaluation of cartilage repair tissue or

meniscus, it has been used to assess cartilage degeneration [21,33].

The application of a mid-infrared fiber optic probe to evaluate

degenerative cartilage in harvested human tissues was shown in

earlier studies from our lab, [21,54], where a PLS analysis method

was used to correlate spectral data acquired from an IFOP to the

visual score [21], and histological score [54] for degenerative

cartilage. We showed that the PLS model developed based on

infrared fiber optic probe spectroscopy data was able to predict the

histological grade of degenerative tissue comparably to histological

Mankin score, the gold standard of such analysis. In addition, Bi et

al. evaluated disease progression in an OA rabbit model, using a

PLS model based on IFOP data obtained from femoral cartilage

[55].

Nevertheless, there would be some limitations in translation of

this methodology to predict collagen type in a clinical application.

Since the current configuration of the ATR probe crystal has a

1 mm diameter, this is the smallest tissue region that can be

evaluated. While this still may be sufficient for assessment of repair

of a tissue lesion, newer fiber optic configurations are being

developed with smaller sampling capability. Our previous study

demonstrated that data collected from cartilage surface reflects the

tissue quality and degree of degeneration [54], which could be

useful in clinical procedures where definition of the margins of a

lesion are required. However, it remains to be confirmed whether

this is the case for repair tissue as well, and whether surface

measurements reflect full depth tissue quality. Another potential

limitation during in vivo assessment is interference from absor-

bances present in synovial fluid and blood. These may overlap

with absorbances from the proteins in cartilage, and have to be

taken into account with development of multivariate models.

Although the current studies performed did not address these

potential concerns in data analysis, future studies will focus on

these issues.

Together, the results of the current and earlier studies lay the

foundation for in situ evaluation of cartilage repair tissue and

meniscus repair using minimally-invasive infrared spectroscopy.

The use of an IR probe to evaluate tissue composition

arthroscopically for determination of quality without the need

for tissue harvest could significantly augment clinical management

of degenerative cartilage diseases and efficacy of related thera-

peutic interventions.

Supporting Information

Figure S1 Type I and type II collagen concentration
profile in bone (Panel A) and tendon (Panel B) predicted
using PLS model B (representative data shown for one
sample). The positions of FT-IRIS data collection are indicated

on the IR image. Each position corresponds to a 25 micron region

of data collection.
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