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ABSTRACT: One aim of synthetic biologists is to create novel and
predictable biological systems from simpler modular parts. This approach is
currently hampered by a lack of well-defined and characterized parts and
devices. However, there is a wealth of existing biological information, which
can be used to identify and characterize biological parts, and their design
constraints in the literature and numerous biological databases. However, this
information is spread among these databases in many different formats. New
computational approaches are required to make this information available in
an integrated format that is more amenable to data mining. A tried and tested
approach to this problem is to map disparate data sources into a single data
set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively
in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is
amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design,
SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create
the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning
capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose
that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the
biological engineering life cycle.
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One of synthetic biology’s primary aims is the design of
predictable biological systems, thus allowing larger and

more complex systems to be successfully designed and built.1−3

Like most engineering disciplines, in synthetic biology complex
synthetic biological systems are typically developed via the
composition of simple, modular components.4−6 In order to
ensure that the resulting synthetic systems behave in a
predictable fashion, the parts and modules used for biological
systems engineering, and the context in which they are
deployed, need to be well-understood and well-characterized.7

However, the lack of well-characterized parts and modular
devices, confounded by our limited understanding of biology, is
widely recognized as limiting the scale and complexity of
current engineered biological systems.
The identification, characterization, and development of new

modular parts, devices, and systems requires access to large
amounts of biological knowledge.5,8−11 This knowledge needs
to be gathered, integrated, and made accessible to system
designers. Furthermore, this knowledge also needs to be made
available in a computationally tractable fashion in order to
support automation and computer aided design.
Providing such information is challenging. Information is

scattered over a range of different databases, which use different
formats and have different semantics.12−14 A major challenge to

synthetic biology is bringing together complex, heterogeneous,
disparate data sets in a form that will best inform the synthetic
biology design process. Moreover, these integrated data sets
need to be assembled in such a way that they are easily
computationally mined.15−17 Data mining requires data
integration techniques that align disparate representations and
semantics to produce a unified domain model. This model can
then be mined to extract the necessary information without the
need to repeatedly visit large numbers of separate data
resources.18

The integration of biological data is still a major research
challenge and has been the focus of an active research effort in
the fields of bioinformatics and systems biology. Traditional
methods include data warehousing,18−20 where data from
multiple databases is drawn together into a single database. In
another approach, termed federated data integration, the data
remain in separate databases that are queried in parallel, and the
results are integrated before being returned to the user.21−25

One of the major problems in data integration is the lack of
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agreement on data formats and variation in the meaning of the
data (termed semantics). The value of semantically well-defined
electronic representations of data for their integration is now
widely recognized,21,22,26 and a technology to exploit unified
semantics on the Internet, called Semantic Web technology, has
been developed.27 Semantic Web encourages the use of
common data representation formats for data, allowing data
to be shared across boundaries and easing the integration
process.18,28 Ontologies29 underpin the Semantic Web concept
since they can be used to standardize data representation by
adding computationally tractable meaning to the syntax of data
entities and the relationships between them.27,30 In this respect,
ontologies are increasingly being recognized as a powerful
approach to identifying, integrating, and organizing large
amounts of complex data.25,31−33

Semantic Web technologies have become increasingly
popular for modeling, accessing, and exchanging data in the
life sciences.27,34 Numerous databases now provide data in the
Resource Description Framework (RDF; http://www.w3.org/
TR/rdf-syntax-grammar) format.21 These databases use stand-
ard terms from biological ontologies31,32 for the annotation of
biological concepts and their interactions. Furthermore, off-the-
shelf tools that support Semantic Web technologies are used for
the storage22 and querying27 of, and reasoning with, biological
data.25,35,36

These technologies are also increasingly being used within
the synthetic biology community. Tool and part catalogue
developers, representatives from industry and academics, have
agreed on a format for the electronic exchange of information
about biological designs and their component parts. This
format is called Synthetic Biology Open Language (SBOL;
http://sbolstandard.org/development/developers). (At the
time of writing, SBOL developers are around 120 members
from over 50 institutions in 15 countries.)37 In SBOL, version
1.0, the core data model is small, focusing upon the exchange of
sequence-based information. The recently released version
2.038 extends the initial data model to capture additional types
of design components such as proteins and compounds and the
functional relationships between them.
SBOL is valuable for promoting the exchange of synthetic

biology designs, for example, between part repositories and
design tools. Many SBOL compliant tools are available, and
many more are under development (http://sbolstandard.org/
software/tools/). For example, existing data in SBOL format,
describing BioBricks from the Registry of Standard Biological
Parts,39 have been made available using an RDF triple store,
enabling SPARQL querying of the parts.40 The utility of SBOL
to facilitate data exchange between different tools and different
users to carry out tasks that could not be achieved using a single
tool was demonstrated recently. In this workflow, SBOL was
used to pass designs between a range of different tools to model
and combinatorially design a genetic toggle switch for
Escherichia coli, which was then codon optimized, and the
resulting designs were stored in SBOL compliant repositories.41

SBOL utilizes standard terms and a standard syntax (based
on RDF) to describe synthetic biology designs. The semantics
of SBOL entities are described using terms from external
ontologies and controlled vocabularies. These terms are useful
to unambiguously represent information about biological parts.
Ontologies can also be effectively used in other languages and
tools for synthetic biology, particularly to help facilitate the
development of automated design processes. Using ontologies,
large amounts of data about biological parts and constraints

about how they work can be presented in a form that is readily
utilizable by computational design tools. The availability of
biological knowledge in a computationally tractable manner is
important to enable the development of tools that will aid in
the design of biologically feasible systems. In the process of the
ontological modeling of data, a conceptual language is used to
define objects and their relationships in order to make data
accessible to a wide range of computational tools. The use of
logics34 allows reasoning over the data by employing reasoners,
which are used to make implicit knowledge explicit through
ontological queries. Although the use of these queries, together
with reasoners, can be a powerful tool to mine different types of
biological parts from semantically enriched integrated data sets,
this approach has not been applied in synthetic biology to the
best of our knowledge.
In this work, we demonstrate how designs for parts and

devices can be derived from integrated data sources using
Semantic Web technology to enhance the synthetic biology
design process. We build upon our previous work in the
integration of data using a warehousing approach42 to produce
a semantically well-defined knowledge base. We employ the
W3C standard specification, the Web Ontology Language
(OWL; http://www.w3.org/2004/OWL), to describe bio-
logical data and the relationships between those data items
that are relevant to the design of synthetic biology parts. The
result is a knowledge base to support both manual and
automated synthetic biology design.
In order to facilitate the development of this knowledge base,

it was necessary to define the metadata underpinning the data
entities and the relationships between them in a semantically
well-defined way. We therefore developed an ontology (called
SyBiOnt) to model the domain of genetic designs in synthetic
biology. Information about data items and their relationships
was stored as RDF in the form of subject−predicate−object
triples in a triple store database (see the Supporting
Information). We demonstrated how this data resource could
be queried using semantic reasoning and biologically rich
queries to mine the knowledge base for new genetic parts and
devices. Finally, we exported novel parts represented in the
form of the standard interchange format, SBOL.41

1. RESULTS
1.1. SyBiOnt Ontology. The basic biological parts used in

the bottom-up design of synthetic systems include genetic
features such as promoters, coding sequences (CDSs),
ribosome binding sites (RBSs), terminators, and operators.7

The relationships among these parts and the gene products
they encode, such as proteins, RNAs, transcription factors
(TFs), and enzymes, need to be captured in order to design
genetic circuits. Moreover, the incorporation of additional
information about biological pathways and gene function is
necessary to identify appropriate biological parts. Our goal
when creating SyBiOnt was to allow a data definition
framework to formalize the representation of the information
that describes these parts and the relationships among them.
SyBiOnt was designed to allow the incorporation of further
information in the form of annotations that add extra, useful
knowledge such as gene function. The ontology was developed
using OWL semantics. The rich expressivity of OWL enables
the construction of complex computational queries and
automated reasoning across the integrated data.
When using SyBiOnt, types of biological entities, such as

protein, CDS, and pathway, are represented as the first level
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superclasses that are subclasses of owl:Thing in the
ontology (Figure 1). SyBiOnt also includes classes for
reactions, pathways, microarray experiments, feed-forward
loops, data sources, and evidence types. Relationships among
these biological entities are also modeled. Such relationships
include protein−protein interactions, formation of protein
complexes, enzyme interactions with compounds, compound
transportation into cells, and TFs binding to DNA sequences.
The first level classes representing sequence-based biological

entity types, such as Promoter and CDS, are linked to terms
from Sequence Ontology (SO)32 through subclassing. For
example, Promoter is a subclass of the SO promoter term
SO_0000167. Other molecules such as proteins, TFs, RNAs,
enzymes, protein complexes, and compounds are also modeled
as OWL classes. In SyBiOntKB, TFs and their corresponding
proteins or RNAs are modeled as equivalent classes and can
therefore be used interchangeably in OWL queries. Enzymes
are special proteins that catalyze reactions and are modeled as
subclasses of the corresponding Protein classes.
Classes that are used to classify or place restrictions on

classes representing physical entities include enzyme classi-
fications, KEGG ortholog enzymes, molecular functions,
biological processes, cellular components, and the Clusters of
Orthologous Groups (COG) classes43 and categories. The
classes MolecularFunction, CellularComponent,
and BiologicalProcess are equivalent to Gene
Ontology (GO)31 classes molecular_function
( G O _ 0 0 0 3 6 7 4 ) , b i o l o g i c a l _ p r o c e s s
(GO_0008150) , and cellular_component
(GO_0005575).
1.2. Development of the SyBiOnt Knowledge Base

(SyBiOntKB). As an example of the use of the SyBiOnt
ontology, we used the formal data definition framework
provided to develop a knowledge base, termed SyBiOntKB,
to capture major aspects of the cell biology of Bacillus subtilis in
a computationally amenable form. The data to populate this
knowledge base were sourced from the previously integrated
BacillOndex data set,42 which includes information from
BacilluScope,44 DBTBS,45 the Kyoto Encyclopedia of Genes
and Genomes (KEGG),12 KEGG Expression,46 STRING,14

GO, and GO annotations.47

When building an ontology, entities can be modeled as
classes or as individuals. In this work, we modeled entities as
classes, since classes are beneficial for representing high-level

common knowledge in a way that allows automated reasoning
and inference.34 The entities modeled in SyBiOntKB, such as
CDSs and proteins, do not represent individual molecules but
types of molecules that exist in all cells. Such molecules were
therefore modeled with classes. These classes can then be
instantiated by individuals. This approach has previously been
applied to the modeling of knowledge in Open Biological and
Biomedical Ontologies (OBO) and in biomedical knowledge
bases that are annotated using the classes from OBO
ontologies.25,34,48 For example, the Spo0A protein entity in
SyBiOntKB represents a class to which all individual Spo0A
protein molecules belong. By relating the Spo0A class to the
Spo0B protein class using the “is phosphorylated by”
restriction, all Spo0A individuals inherit this relationship.
Hence, SyBiOnt and the knowledge base models described
shared features of proteins, but they do not describe all
properties of individual protein molecules.
In SyBiOntKB, restrictions were usually expressed using

OWL’s someValuesFrom (some) restriction.49 For a class A, (r
some B) restriction means that for every instance of A there is
an instance of B related to A by r. However, such a restriction
does not rule out the possibility of an individual being in the
same relationship to instances of other classes. For example, a
restriction can be used to say that the Spo0A TF binds to the
kinA operator. SyBiOntKB represents this restriction as “binds
to some kinA operator” on the Spo0A class. The statement
does not specify whether or not there are additional operators
to which the TF binds. This approach facilitates the modeling
of biological entities without making overly restrictive or
specific claims.35 Attributes of biological entities were modeled
using OWL’s hasValue(value) restrictions.
The resulting SyBiOntKB for B. subtilis includes 42259 OWL

classes, with 41 objects, 21 datatypes, and 26 annotation
properties. There are 269726 SubClassesOf, 386 Equiv-
alentClass, 169 DisjointClass, and 274003 Anno-
tationAssertion axioms. As the ontology conforms to
RDF and OWL standards, it can be manipulated using existing
ontology editors such as Proteǵe ́ (http://protege.stanford.edu),
and information can be extracted using reasoners such as
Pellet50 and HermiT.51 The ontology is also available at an
RDF repository to allow the querying of information using
standard SPARQL queries (see the Supporting Information).
The base URI of the ontology is http://w3id.org/synbio/ont.

Figure 1. Classes that represent the types of biological entities and classes from GO, SO, and SBOL ontologies included in SyBiOnt. Solid lines
represent the subclassing relationship, with the arrow pointing at the parent classes, and dashed lines show the equivalent classes.
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Figure 2 shows a subset of information about the
relationships of the MntR protein as represented using
SyBiOntKB. This information includes the molecular functions
of the protein, its location, the biological processes in which the
protein participates, the CDS encoding this protein, and any
DNA binding sequences.
1.3. Testing the Competency of SyBiOnt. The scope of

ontologies can be identified with a set of questions, called
competency questions.52 These questions do not have to be
exhaustive and can be written informally, but they serve to test
whether an ontology contains enough detailed information for
its intended application. We used SyBiOntKB to demonstrate
the validity of SyBiOnt.
SyBiOnt was designed to answer competency questions that

are of interest in the design of synthetic biological systems.
With this requirement in mind, a number of competency
questions were devised. These questions also serve to
demonstrate the power of this approach for deriving designs
for engineered biological systems. These questions, and queries
that we would make over the ontology, are listed as follows:

• Which parts are SigmaA type promoters? The SigmaA
sigma factor is the TF with the accession of
“BSU25200” and binds to Promoters, which can
be identified as SigmaA Promoters.

• Which promoters are constitutive? SigmaA Promoters
that do not have any Operators can be Con-
stitutive Promoters.

• Which parts can be used as inducible promoters?
Operators have regulation type restrictions
to indicate whether they are used positively or negatively
in regulating gene expression. A Promoter with one
Operator part that has the “Positive” regulation
type restriction is an Inducible Promoter.

• Which parts are SigmaA type inducible promoters?
Promoters that are both subclasses of SigmaA
and Inducible Promoters are candidate Promo-
ters.

• Which parts are regulated by the MntR TF? MntR binds
to some (mntA and mntH) Operators.

• What are the nucleotide sequences that the Spo0A TF binds
to? Operators that are bound by the Spo0A TF
have restrictions on the nucleotide sequence
property.

• Which parts encode two-component systems (TCSs)? These
parts are CDSs encoding Proteins that have
functions of kinase activity and response regulator
activity. GO classes GO_0000155 and GO_0000156,
respectively, represent these functions.

• Which parts can be used to upregulate the production of
ammonium? The Compound ammonia with the
accession of “C00014” is produced by Re-
action RN:R00131, which consumes the Com-
pound carbamide (C00086). Carbamide is produced
by a Reaction that is catalyzed by an Enzyme,
which is a subclass of a Protein encoded by
the argI CDS with the accession BSU40320.

• Which pathways should be targeted for the overproduction of
ammonium? Ammonium is produced by Reactions
that are member of the Arginine and proline
metabolism and Purine metabolism Pathways.

• How can the Spo0A protein, the master regulator of
sporulation, be phosphorylated to trigger sporulation?
Spo0A is phosphorylated by the KinC and
Spo0B Proteins. The Spo0B Protein is phos-
phorylated by Spo0F Protein, which is further
phosphorylated by the KinA and KinB Pro-
teins.

• What are the possible NAND gate promoters? NAND gate
Promoters can be searched for in the list of
Promoters that have two Operator parts with
Negative regulation type restrictions.

• Which parts should be upregulated to increase mannose
compound transport to the cells? The “D-mannose 6-
phosphate Compound with the accession of
C00275 interacts with a ProteinComplex.
ManP and LevF Proteins are part of this complex.

1.4. Mining SyBiOntKB for Biological Parts. SyBiOnt
can be used to answer certain types of questions in a richer
fashion than a conventional relational database. As an example,
we showed how automated reasoning over this ontology could
be used to identify parts and devices that could be used in
synthetic designs. Particularly, we focused on the automated
identification of promoters that could be used as logic gates
(such as inducible or repressible), the building blocks of many
synthetic biology designs. We then demonstrated the mining of
CDS parts based on the molecular functions of their encoded
products. In principle, the textual descriptions of classes from

Figure 2. An example of protein relationships captured in SyBiOntKB. The diagram shows a subset of the relationships for the protein MntR,
modeled as restrictions on object properties, such as encodedBy and hasFunction. The information includes the molecular functions of the
protein, where it is located, a biological process in which the protein participates, the encoding CDS, and its binding sequences.
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the ontology could be read by eye and used by humans to make
assertions manually, but the use of automated reasoning vastly
speeds up the process. Automated reasoning is a much faster
computational way of extracting information from the ontology.
The automating reasoning process requires two steps that

were carried out as follows. First, we specified a question by
stating the conditions that must be fulfilled to provide answers
to this question.53 The logical reasoner was then used to search
the ontology to provide these answers in a rapid and efficient
manner. For example, the Protein and (hasFunction
some “kinase activity”) query was used to classify
kinases (the GO term for kinase activity is GO_0000155). In
practice, to provide the correct format for the reasoner, the

query was implemented as an OWL class with the necessary
and sufficient conditions,35 which requires that all subclasses
must be Proteins and must have the hasFunction
“kinase activity” restriction.
In order to classify promoters that can be used as logic gates,

first, their operator subparts were classified. This process
requires information about whether an operator is involved in
negative or positive regulation. To enable operator classification
in SyBiOnt, operator classes have hasValue restrictions on the
regulationType property that specify that binding is for
either activation or repression with a regulationType
value of Negative or Positive, respectively (Figure 3). In total,

Figure 3. Class definitions for operator classification in the Manchester OWL syntax. NA indicates the nucleic acid sequence, and
regulationType indicates the regulation type. Operators with known sequences are therefore classified according to their regulation type
restrictions.

Figure 4. Inducible promoter class definition. Promoters with one operator for an activator are classified as inducible promoters.

Figure 5. Some of the inducible promoters mined from SyBiOntKB. The outer green rectangles and inner blue rectangles represent the promoters
and TF binding sites, respectively. The length of a box is proportional to the corresponding promoter’s sequence length.
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333 repressor and 222 activator sites, with known nucleotide
sequences, were classified.
Promoters were also classified in a similar fashion, according

to their regulation type. Classes were defined for inducible,
repressible, and constitutive promoters. In addition, a range of
classes were defined to classify promoters according to their
sigma factors.
The positions of the operators in promoters and the

cooperativity in TF binding results in different transcriptional
logic gate behaviors. Transcriptional logic gates are useful parts
for circuit implementation in synthetic biology. For example, a
promoter with two activator sites can function as an AND or an
OR gate.54−56 Conversely, a promoter with two repressor sites
can function as a NAND or a NOR gate.54,56,57 Thus, we
attempted to use reasoning over the ontology to find examples
of promoters from B. subtilis that could be used as the basis of
logic gates.
First, we set out to mine for inducible promoters with a

single operator acting as an activator site. Therefore, inducible
promoters were identified that possessed only one operator for
an activator TF (Figure 4). In total, 51 promoters were
identified. A subset of these promoters is shown in Figure 5.
This subset was termed InduciblePromoter.
Second, 85 repressible promoters that bind a repressor using

a single operator (and act as one-input inverters) were mined
by using reasoning over SyBiOntKB and classified as
RepressiblePromoter. The corresponding class defi-
nition for mining the ontology therefore specified that a
repressible promoter has only one operator for a repressor TF
(Figure S3).
Third, we mined the ontology for transcriptional AND gates

or OR gates. These kinds of gates can be formed from
promoters with multiple activator sites. For this exercise, we
limited the scope to two activator sites. In order to mine for
examples of promoters that could act as AND or OR gates, a
class InduciblePromoterWith2Operators was de-

fined and used to identify 15 promoters that possessed two
activator binding sites (Figure S4).
NAND and NOR gates can be also constructed from

promoters with multiple operators. In this case, these operators
correspond to repressor binding sites. We therefore defined a
RepressiblePromoterWith2Operators class to
identify promoters of this type. Twenty-five promoters that
possessed two repressor binding sites were identified in
SyBiOntKB (Figure S5).
Promoters were also classified based on the sigma factors of

RNA polymerase that can be used to add specificity for a given
promoter class. For example, the SigAPromoter is a promoter
to which the RNA polymerase subunit sigma A binds. Sigma
factors in SyBiOntKB are represented as transcription factors
and can be identified using their accession identifiers (e.g.,
BSU25200 for sigma A). Such a promoter may be a core SigA
promoter or a composite promoter that includes a core SigA
promoter (Figure 6). Similarly, classes were defined for other
sigma factors. In total, 465 SigA, 67 SigB, 33 SigD, 97 SigE, 30
SigF, 63 SigG, 31 SigH, 1 SigI, 71 SigK, 10 SigL, 8 SigM, 0
SigV, 39 SigW, 16 SigX, 2 SigY, 0 SigZ, and 1 YlaC type
promoters were classified.
Constitutive promoters are dependent only upon RNA

polymerases, and their definition does not rely upon
information about transcriptional regulation. In B. subtilis,
SigA promoters without any TF binding sites are constitutive
promoters. To classify constitutive SigA promoters, the
ConstitutiveSigAPromoter class was defined as a
subclass of both the SigAPromoter and Constituti-
vePromoter classes. In addition, a restriction class was
added to specify that these promoters cannot have any
operators (Figure S8). As a result, 311 constitutive promoters
were identified.
Many synthetic biology projects focus upon the use of

regulators such as transcriptional activators and repress-
ors56,58−61 and sensory systems such as two-component
systems (TCSs).62−66 Similar to TFs, TCSs have the potential

Figure 6. Classification of promoters based on sigma factors. The right pane displays the definition of the SigAPromoter class used for the
classification of SigA promoters.

Figure 7. OWL expression for the RepressorEncodingCDS defined class. A CDS that encodes for a protein binding to at least one repressor
site is classified as RepressorEncodingCDS.
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to be used as modular biological parts.62 These systems can be
introduced into other host cells that do not have any analogous
systems, hopefully providing well-isolated circuits. To contrib-
ute to the list of available CDS parts in these categories, CDSs
were classified as transcriptional activator-, transcriptional
repressor-, kinase-, or response regulator-encoding CDSs. In
order to classify CDS parts that encode transcriptional
repressors, the RepressorEncodingCDS class was
defined as a CDS that codes for a protein that binds to at
least one repressor site (Figure 7). These repressor sites have
known nucleotide sequences. Therefore, reliable parts that
encode and provide binding sites can be retrieved as pairs.
Similarly, the ActivatorEncodingCDS class was defined
as a CDS that codes for a protein that binds to at least one
activator site (Figure S9). Using the reasoners, 44 activator- and
55 repressor-encoding CDSs were identified.
When using SyBiOnt, CDSs that encode TCS kinase and

response regulators are classified based on the relevant GO
terms. A CDS that encodes a protein that has the
GO_0000155 molecular function (two-component system
sensor activity) is classified as a KinaseEncodingCDS class
(Figure 8). Similarly, a CDS that encodes a protein that has the
GO_0000156 molecular function (two-component response
regulator activity) is classified as a ResponseRegulator-
EncodingCDS class. Using this approach, in total, 40 kinase-
and 38 response regulator-encoding CDSs were identified.
SyBiOnt includes a variety of information about biological

entities, attributes, and relationships that can be used to
automate the identification of CDS parts. COG numbers and
the GO molecular function, biological process, and cellular
component terms can be used to classify gene products and
hence to find the CDS that encodes a given protein with a
given function. Furthermore, classes such as RNA, TF, and
Enzyme may be used to specify the roles of gene products
more explicitly.
1.5. Mapping SyBiOnt to the SBOL Data Model. One of

the advantages of representing knowledge in a computationally
tractable format is that it can be readily exported in a different

exchange languages. In order to demonstrate this process, we
exported the SyBiOnt ontology in SBOL format. While there
are a range of data formats capable of representing genetic
designs (Genbank, EMBL, etc.), we chose SBOL since it was
developed specifically for representing synthetic biology
designs. The ability to represent these designs in standard
formats makes it easier to exchange designs among these tools,
part catalogues, and synthesis companies, ultimately enhancing
reproducibility of synthetic biology designs. SBOL was
developed to address this issue and provide a standard format
for the exchange of synthetic biology designs.37 Sequence-based
features and their part-whole hierarchy of part composition
were expressed in SBOL. These SBOL encoded parts could
then be exported and imported for reincorporation into
SyBiOntKB as required.
In the SyBiOnt ontology, promoters, CDSs, terminators,

shims, RBSs, and operators are basic biological parts and have
corresponding OWL classes, with specified nucleotide sequence
restrictions. These sequence features were modeled with the
DnaComponent class of SBOL. In SyBiOnt, some sequence-
based features such as operator sites were modeled, via SBOL
annotations, as part of other features. For example, a promoter
with two operator sites can be modeled as a DnaComponent
with two annotations that have operators as subcomponents.
Sequence annotations in SBOL include the start and end

positions of sequence features. Although such information does
not exist directly in the ontology, it can be inferred from the
chromosomal start and end positions. SBOL’s DnaSequence
class is used to represent nucleotide sequences. Although SBOL
provides terms to describe the relationships between sequence
features and their sequence annotations, information about
these sequence features is represented with RDF resources that
represent individual sequence features.40 Therefore, individuals
representing sequence features were created and mapped to the
SBOL data model in SyBiOnt.
Rule-based mapping is one way of presenting the data from

SyBiOnt in SBOL format. Example rules include “If a SyBiOnt
class inherits from Promoter, then it is associated with a

Figure 8. OWL expression for the KinaseEncodingCDS defined class. A CDS that encodes for a protein that has function go:GO_0000155
is classified as KinaseEncodingCDS.

Figure 9. Representation of the mapping for a simple promoter that contains an operator. Blue boxes with round corners and straight lines represent
ontology classes and their relationships. Red boxes and dashed lines represent SBOL resources and their relationships.
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DnaComponent individual in the SBOL representation” and “If
a Promoter has Operator parts, then the DnaComponent
associated with this Promoter has Operator annotations that
are also DnaComponents” (Figure 9).
Classes were mapped using five rules:

• If a class is a subclass of Promoter, RBS, Operator,
Shim, Terminator, or CDS, then there is an
individual resource that has the type sbol:DnaCom-
ponent. Another type is the class from SyBiOnt, for
which the individual is created.

• The sbol:dnaSequence property identifies the
resource that includes the nucleotide sequence of an
SBOL individual using the sbol:nucleotides
property. The sequence is extracted from the restriction
on the NA property of the class from SyBiOnt.

• A sequence feature individual that is part of a
DnaComponent individual is also a type of sbol:D-
naComponent.

• If a sequence feature class includes another sequence
feature class, then the individual of the former has an
sbol:SequenceAnnotation resource describing
the start and end locations of the annotation. The
annotation resource’s sbol:subComponent prop-
erty identifies the individual of the latter class.

• The start, end, and strand properties of an sbol:Se-
quenceAnnotation resource are inferred from the
genome positions of the parent and child classes.

SyBiOnt contains 7754 DnaComponent parts that can be
exchanged using SBOL. For each OWL class representing a
sequence feature, an individual of type DnaComponent was
created. The SBOL model enforces the rule that each
DnaComponent resource must be a type of sequence feature
from the SO. SO-based superclasses included in SyBiOnt are
used to infer these types. The names, descriptions, and
nucleotide sequences of the resources were extracted from
the OWL classes and stored using the rdfs:label,
rdfs:comment, and sbol:nucleotides properties,
respectively.
Relationships of type hasPart were used to create SBOL

sequence annotations. Differences between the genome
positions of sequence features linked by a specific relationship
were used to calculate the sbol:bioStart and sbol:-
bioEnd properties of the sequence annotations. The
sbol:subComponent property was used to identify the
sequence feature resources used for annotation.

Figure 10 shows an example of a promoter in SBOL format.
The resource is of both types sbol:DnaComponent and
so:SO_0000167 (promoter sequence), classes that are both
mandatory in the SBOL model. In addition, the resource is also
of type bo:2685 from SyBiOnt. The promoter has an
annotation identified by the sbol:annotation property.

2. DISCUSSION

Currently, the synthetic biology design process is often limited
by access to biological knowledge and access to the sequence of
suitable parts. The data to provide this knowledge often exists,
but it is fragmented in a variety of databases across the world, in
different formats and of varying quality. In this work, we aimed
to demonstrate the power of an integrative approach to design
in synthetic biology, where data from remote resources can be
sourced, integrated, and mined to aid in the design process.
In particular, we show the value of ontologies for integrating

disparate data sources and providing a standardized data model
for helping to define these resources and the information
necessary to aid in the design of engineered biological systems.
We have developed an ontology for application to data
integration and mining in synthetic biology. To our knowledge,
this is first report of an ontology designed specifically for
synthetic biology. Using this ontology, we have demonstrated
this integrated approach to produce an exemplar data
warehouse populated with data about the model Gram-positive
bacterium B. subtilis derived from many different data sources.
We now aim to extend our approach to other model organisms
with rich data resources such as Escherichia coli and
Saccharomyces cerevisiae.
One of the advantages of ontologies over other data models

is that they can be reasoned over. Reasoning over an ontology
is a much more powerful and expressive method of data mining
than querying over a standard relational data model.22

Ontological reasoning can include implicitly derived facts and
can answer conceptual as well as extensional queries. We show
how SyBiOntKB captures domain knowledge about B. subtilis
using description logics and can be queried using existing
ontological reasoners. We also demonstrate how OWL queries,
in the form of OWL classes, can be used to mine SyBiOnt.
Finding suitable parts for producing designs of engineered

biological systems is a time-consuming process. Integrating data
sources also brings together information about the sequence of
genetic parts with data about their functional characteristics.
The incorporation of this type of information allowed us to
mine SyBiOntKB for genetic parts of a given type. We showed,

Figure 10. Shows an example of a promoter in SBOL format. The resource is of both types sbol:DnaComponent and so:SO_0000167
(promoter sequence), classes that are both mandatory in the SBOL model.
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as an example, how operators that have binding sites for
repressors or activators were identified. Furthermore, we also
showed how promoter classes can be assigned different types of
class membership based on information about the type of
transcriptional regulation and sigma factors involved in
transcriptional initiation. Examples for the functional classi-
fication and mining of parts, such as the identification of CDSs
that encode activators, repressors, kinases, and response
regulators, were also identified. Furthermore, we also developed
more complex and rich queries to mine examples of devices
potentially encoding logic gates and to address more high-level
questions with respect to the analysis and design of biochemical
pathways and regulatory systems. These examples are only a
very limited subset of the possible types of parts that could be
mined and design questions that can be addressed. We hope
that development and use of this ontology serves as a model for
how automated reasoning can be used to inform design in
synthetic biology.
When developing SyBiOntKB, we have tried to reuse existing

standard formats and ontologies wherever possible. SyBiOnt,
therefore, builds on and incorporates other well-used standards
such as GO and SO. For example, the classification of CDSs in
SyBiOntKB is achieved by defining classes that refer to GO
terms. In addition, the SBOL data model has been used to
provide terms to model biological parts for computational
access; therefore, these terms can be applied to standardize the
querying of sequence features from SyBiOntKB. In addition to
building genetic designs, the information from the ontology can
also be used as a basis to create and annotate computational
models of synthetic systems. In the future, we will seek to
expand SyBiOnt still further, with the help of the community,
to incorporate further ontologies such as the Systems Biology
Ontology.67 The availability of SyBiOnt also promises to
provide a unifying semantics for the expansion of the SBOL
standard, potentially proving a way to match the semantics of
the entities in the core data model to entities in extended,
attached data items such as dynamic models and experimental
data.
The SyBiOntKB ontology captures information in a

computational and programmatically accessible fashion in a
standard format. As a result, information about biological parts
and molecular interactions captured within it is available in a
form suitable for the automated design of complex and large-
scale biological systems. We envisage that data warehouses built
using the SyBiOntKB ontology can provide a useful resource to
enhance the process of biodesign automation. Since data
warehouses that employ SyBiOntKB can be made available in
RDF form as triple stores, the data is also available to integrate
with the vision of the Semantic Web.27 In summary, here, we
demonstrated the use of data integration and automated mining
of biological parts for synthetic biology. We used ontologies to
represent extensive biological data formally for computational
access. This approach has allowed us to write complex queries
that could not be executed previously in an automated fashion
in order to classify biological parts. The resources presented
here will accelerate further data integration and mining of data
and will facilitate scaling up the designs of biological systems
using computational approaches, advancing the field of
synthetic biology.

3. METHODS
3.1. RDF Graph Representation of Biological Data.

Information about the biological entities, their relationships,

and attributes from the previously developed integrated
knowledge base for B. subtilis, BacillOndex,42 was initially
converted into RDF triples, which were then used to build the
SyBiOnt ontology and the knowledge base using OWL axioms.
The data set was read into Ondex68 and exported as an RDF
graph. The graph was saved as a single RDF file containing
triples for entities, relations, and attributes, together with the
Ondex metadata, including annotations regarding entity and
relation types and the relation hierarchy. The BacillOndex RDF
graph was then converted into OWL format in order to
formally model the B. subtilis domain knowledge as an
ontology.

3.2. Building the Ontological Representation in OWL.
The resources that represent entity types and their associated
entities from BacillOndex were modeled as OWL classes in the
ontology. The relations and attributes of entities were modeled
as subclass restrictions on these classes. This approach allowed
the knowledge from BacillOndex to be made explicit for
machine access and to have reasoning capabilities over the data.
Scripts, in the Clojure programming language, were

developed to map the RDF model to OWL using the
Tawny-OWL API.69 Tawny-OWL allows the definition of
ontology classes both programmatically and using a domain
specific language (DSL); hence, it facilitates the rapidly
development of large ontologies. The Clojure programming
language was chosen since Tawny-OWL is also available in
Clojure and existing Java libraries can still be used. The
programmatic approach was used to map the RDF data to
OWL, and the DSL provided by Tawny-OWL was used to
manually define additional SyBiOnt classes. The DSL is
designed to be human readable and similar to the widely
used Manchester Syntax (http://www.w3.org/TR/owl2-
manchester-syntax), with the advantage of easily validating
OWL classes using a standard integrated development
environment such as Eclipse (https://eclipse.org). The
resulting ontology was exported in the form of RDF and was
stored in the Sesame RDF triple store (http://www.openrdf.
org).
Information representing biological entities was modeled as a

class hierarchy. Associations between biological entities were
modeled as OWL restrictions. To model biological constraints
not represented in the RDF, closure and disjoint axioms and
cardinality restrictions were added to the OWL representations.

3.3. Mining SyBiOntKB. OWL classes with necessary and
sufficient conditions25,35 that identified genetic entities relevant
to synthetic biology design were defined. These conditions
were used to provide logical definitions of classes53 for the
computational classification process. These conditions were
implemented in the SyBiOntKB classes using restrictions acting
as superclasses. When implemented via equivalentClass
axioms70 by defining additional classes, such restrictions
become necessary and sufficient conditions.
Criteria described in defined classes were used by reasoners

to categorize classes. After reasoning, new subclass relationships
were inferred between classes with necessary conditions and
these defined classes. As a result, these defined classes acted as
queries for mining part descriptions from the OWL
representation of the data. OWL reasoners, including
FaCT++71 and HermiT,51 were run to execute these queries
programmatically using the Tawny-OWL library or manually
using Proteǵe.́ In these queries, subsets of SyBiOntKB, which
were created programmatically, were used to improve the query
performance.
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The classification of entities such as promoters in terms of
their compositional features requires that the set of features is
explicitly specified and that these compositional features can be
distinguished from each other.35 Therefore, in order to classify
a promoter with only one TF binding site, in addition to the
necessary condition to have an operator, the sufficient
condition that this operator is the only binding site must be
included. Such a sufficient condition can be provided by closure
axioms, which are used to indicate that no other information
except what is provided would be available.49 These closure
axioms were added to the ontology using OWL’s universal
allValuesFrom (only) restrictions.36,72

The number of operators for a promoter was made explicit in
the ontology using cardinality restrictions to facilitate reasoning
about the number of a promoter’s inputs. In OWL, these
restrictions are used to describe the minimum, maximum, or
exact number of relationships for a class. Figure 11 shows a
promoter, PromoterX, and its cardinality restrictions. The
promoter has precisely one OperatorA and one Oper-
atorB, which are explicitly defined as two disjoint operators.
In addition, the universal hasPart only (OperatorA or
OperatorB) closure axiom is added to specify that the
promoter can have only OperatorA or OperatorB.
Reasoners can therefore infer that PromoterX has exactly
two distinct operators.
In order for reasoners to distinguish a promoter and its

operators, we wanted to normalize the ontology and make all
the sibling classes disjoint. However, adding these disjoint
axioms for all classes reduced the speed of reasoners. Instead,
disjointness was defined between the promoter and operator
superclasses, making all of the operators subclasses disjoint
from all of the promoter subclasses. Disjointness axioms were
then added to operators that are part of the same promoters.
3.4. Constructing SBOL Parts. SBOL mapping of classes

representing DNA-based parts was carried out using the Jena
API (http://jena.apache.org) and SPARQL73 queries. Rules
that provide the mapping between the ontology presented here
and SBOL objects were implemented as CONSTRUCT
queries, allowing the returning of query results in the form of
RDF graphs that can directly be used to update the underlying
graph data. RDF rule-based mapping was used to map all
classes representing sequence features into the corresponding
SBOL, version 1.0, RDF representation. These SBOL RDF data
were imported back into the RDF triple store.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssynbio.5b00295.
The SyBiOnt ontology the SyBiOntKB knowledge base and
Clojure scripts that utilize the Tawny-OWL API to create these
resources are available from a repository at http://w3id.org/

synbio/ont. The repository also contains information for
accessing an RDF end point for the knowledge base. The
Tawny-OWL API is available at https://github.com/phillord/
tawny-owl.

Various class definitions referenced in this article (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: anil.wipat@ncl.ac.uk.
Present Address
∥(J.H.) Biological Sciences, Macquarie University, Sydney,
NSW 2109, Australia.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
G.M. and A.W. were supported by Engineering and Physical
Sciences Research Council (EPSRC) grant EP/J02175X/1.
K.F. was funded by EPSRC grant EP/K031953/1. J.M.
gratefully acknowledges funding from FUJIFILM Diosynth
Biotechnologies. H.S. was funded through the generous support
of the National science Foundation, Biological Infrastructure
award no. 1355909 and Molecular and Cellular Bioscience
award no. 1158573.

■ REFERENCES
(1) de Lorenzo, V., and Danchin, A. (2008) Synthetic biology:
discovering new worlds and new words. EMBO Rep. 9, 822−827.
(2) Agapakis, C. M., and Silver, P. A. (2009) Synthetic biology:
exploring and exploiting genetic modularity through the design of
novel biological networks. Mol. BioSyst. 5, 704−713.
(3) Hallinan, J. S., Park, S., and Wipat, A. (2012) Bridging the gap
between design and reality − a dual evolutionary strategy for the
design of synthetic genetic circuits, Proceedings of the International
Conference on Bioinformatics Models, Methods and Algorithms, pp 263−
268.
(4) Endy, D. (2005) Foundations for engineering biology. Nature
438, 449−453.
(5) Koide, T., Lee Pang, W., and Baliga, N. S. (2009) The role of
predictive modelling in rationally re-engineering biological systems.
Nat. Rev. Microbiol. 7, 297−305.
(6) Guido, N. J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J.,
Cantor, C. R., Elston, T. C., and Collins, J. J. (2006) A bottom-up
approach to gene regulation. Nature 439, 856−860.
(7) Smolke, C., and Silver, P. (2011) Informing Biological Design by
Integration of Systems and Synthetic Biology. Cell 144, 855−859.
(8) Szallasi, Z., Stelling, J. A., and Periwal, V. (2006) System Modeling
in Cell Biology: From Concepts to Nuts and Bolts, MIT Press.
(9) Stelling, J. (2004) Mathematical models in microbial systems
biology. Curr. Opin. Microbiol. 7, 513−518.
(10) Endler, L., Rodriguez, N., Juty, N., Chelliah, V., Laibe, C., Li, C.,
and Le Novere, N. (2009) Designing and encoding models for
synthetic biology. J. R. Soc., Interface 6, S405−S417.

Figure 11. Closure axioms and disjointness statements are added to enable reasoners to infer that PromoterX has two operators.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.5b00295
ACS Synth. Biol. 2016, 5, 1086−1097

1095

http://jena.apache.org
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.5b00295
http://w3id.org/synbio/ont
http://w3id.org/synbio/ont
https://github.com/phillord/tawny-owl
https://github.com/phillord/tawny-owl
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00295/suppl_file/sb5b00295_si_001.pdf
mailto:anil.wipat@ncl.ac.uk
http://dx.doi.org/10.1021/acssynbio.5b00295


(11) Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K.
L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J.,
Chang, M. C. Y., Withers, S. T., Shiba, Y., Sarpong, R., and Keasling, J.
D. (2006) Production of the antimalarial drug precursor artemisinic
acid in engineered yeast. Nature 440, 940−943.
(12) Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M.,
Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., and
Yamanishi, Y. (2007) KEGG for linking genomes to life and the
environment. Nucleic Acids Res. 36, D480−D484.
(13) Vallenet, D., Labarre, L., Rouy, Z., Barbe, V., Bocs, S., Cruveiller,
S., Lajus, A., Pascal, G., Scarpelli, C., and Medigue, C. (2006) MaGe: a
microbial genome annotation system supported by synteny results.
Nucleic Acids Res. 34, 53−65.
(14) von Mering, C., Jensen, L. J., Kuhn, M., Chaffron, S., Doerks, T.,
Kruger, B., Snel, B., and Bork, P. (2007) STRING 7-recent
developments in the integration and prediction of protein interactions.
Nucleic Acids Res. 35, D358−362.
(15) Lanza, A. M., Crook, N. C., and Alper, H. S. (2012) Innovation
at the intersection of synthetic and systems biology. Curr. Opin.
Biotechnol. 23, 712−717.
(16) Medema, M. H., van Raaphorst, R., Takano, E., and Breitling, R.
(2012) Computational tools for the synthetic design of biochemical
pathways. Nat. Rev. Microbiol. 10, 191−202.
(17) De Las Heras, A., Carreño, C. A., Martínez-García, E., and De
Lorenzo, V. (2010) Engineering input/output nodes in prokaryotic
regulatory circuits. FEMS Microbiol. Rev. 34, 842−865.
(18) Goble, C., and Stevens, R. (2008) State of the nation in data
integration for bioinformatics. J. Biomed. Inf. 41, 687−693.
(19) Balakrishnan, R., Park, J., Karra, K., Hitz, B. C., Binkley, G.,
Hong, E. L., Sullivan, J., Micklem, G., and Michael Cherry, J. (2012)
YeastMine-an integrated data warehouse for Saccharomyces cerevisiae
data as a multipurpose tool-kit. Database 2012, bar062.
(20) Contrino, S., et al. (2012) modMine: flexible access to
modENCODE data. Nucleic Acids Res. 40, D1082−D1088.
(21) Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., and
Morissette, J. (2008) Bio2RDF: Towards a mashup to build
bioinformatics knowledge systems. J. Biomed. Inf. 41, 706−716.
(22) Cheung, K.-H., Smith, A. K., Yip, K. Y. L., Baker, C. J. O., and
Gerstein, M. B. (2007) Semantic Web approach to database
integration in the life sciences, in Semantic Web (Baker, C. J. O., and
Cheung, K.-H., Eds.) pp 11−30, Springer.
(23) Lenzerini, M. (2002) Data integration. Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 233−246.
(24) Stein, L. D. (2003) Integrating biological databases. Nat. Rev.
Genet. 4, 337−345.
(25) Antezana, E., Egana, M., Blonde, W., Illarramendi, A., Bilbao, I.,
De Baets, B., Stevens, R., Mironov, V., and Kuiper, M. (2009) The Cell
Cycle Ontology: an application ontology for the representation and
integrated analysis of the cell cycle process. Genome Biol. 10, R58.
(26) UniProt Consortium (2011) UniProt Knowledgebase: a hub of
integrated protein data. Database 2011, bar009.
(27) Shadbolt, N., Hall, W., and Berners-Lee, T. (2006) The
Semantic Web Revisited. IEEE Intell Syst 21, 96−101.
(28) Cheung, K.-H., Samwald, M., Auerbach, R. K., and Gerstein, M.
B. (2010) Structured digital tables on the Semantic Web: toward a
structured digital literature. Mol. Syst. Biol. 6, 403.
(29) Gruber, T. R. (1995) Toward principles for the design of
ontologies used for knowledge sharing? Int. J. Hum Comput. Stud 43,
907−928.
(30) Bard, J. B. L., and Rhee, S. Y. (2004) Ontologies in biology:
design, applications and future challenges. Nat. Rev. Genet. 5, 213−222.
(31) Consortium, T. G. O. (2001) Creating the Gene Ontology
Resource: Design and Implementation. Genome Res. 11, 1425−1433.
(32) Eilbeck, K., Lewis, S., Mungall, C., Yandell, M., Stein, L., Durbin,
R., and Ashburner, M. (2005) The Sequence Ontology: a tool for the
unification of genome annotations. Genome Biol. 6, R44.
(33) Natale, D. A., Arighi, C. N., Barker, W. C., Blake, J. A., Bult, C. J.,
Caudy, M., Drabkin, H. J., D’Eustachio, P., Evsikov, A. V., Huang, H.,

Nchoutmboube, J., Roberts, N. V., Smith, B., Zhang, J., and Wu, C. H.
(2011) The Protein Ontology: a structured representation of protein
forms and complexes. Nucleic Acids Res. 39, D539.
(34) Blonde,́ W., Mironov, V., Venkatesan, A., Antezana, E., De
Baets, B., and Kuiper, M. (2011) Reasoning with bio-ontologies: using
relational closure rules to enable practical querying. Bioinformatics 27,
1562.
(35) Stevens, R., Egaña Aranguren, M., Wolstencroft, K., Sattler, U.,
Drummond, N., Horridge, M., and Rector, A. (2007) Using OWL to
model biological knowledge. Int. J. Hum Comput. Stud 65, 583−594.
(36) Lin, Y., Xiang, Z., and He, Y. (2011) Towards a Semantic Web
Application: Ontology-Driven Ortholog Clustering Analysis, Interna-
tional Conference on Biomedical Ontology, Buffalo, NY, July 26−30.
(37) Galdzicki, M., et al. (2012) Synthetic Biology Open Language
(SBOL), version 1.1.0, BioBricks Foundation Request for Comments.
(38) Bartley, B., Beal, J., Clancy, K., Misirli, G., Roehner, N.,
Oberortner, E., Pocock, M., Bissell, M., Madsen, C., Nguyen, T.,
Zhang, Z., Gennari, J. H., Myers, C., Wipat, A., and Sauro, H. (2015)
Synthetic Biology Open Language (SBOL) Version 2.0.0. J. Integr.
Bioinform. 12, 272.
(39) Peccoud, J., Blauvelt, M. F., Cai, Y., Cooper, K. L., Crasta, O.,
DeLalla, E. C., Evans, C., Folkerts, O., Lyons, B. M., Mane, S. P.,
Shelton, R., Sweede, M. A., and Waldon, S. A. (2008) Targeted
Development of Registries of Biological Parts. PLoS One 3, e2671.
(40) Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M., and
Gennari, J. H. (2011) Standard Biological Parts Knowledgebase. PLoS
One 6, e17005.
(41) Galdzicki, M., et al. (2014) The Synthetic Biology Open
Language (SBOL) provides a community standard for communicating
designs in synthetic biology. Nat. Biotechnol. 32, 545−550.
(42) Misirli, G., Wipat, A., Mullen, J., James, K., Pocock, M., Smith,
W., Allenby, N., and Hallinan, J. (2013) BacillOndex: An Integrated
Data Resource for Systems and Synthetic Biology. J. Integr. Bioinform.
10, 224.
(43) Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A.,
Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova,
N. D., and Koonin, E. V. (2001) The COG database: new
developments in phylogenetic classification of proteins from complete
genomes. Nucleic Acids Res. 29, 22−28.
(44) Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G.,
Sekowska, A., Vallenet, D., Wang, T., Moszer, I., Medigue, C., and
Danchin, A. (2009) From a consortium sequence to a unified
sequence: the Bacillus subtilis 168 reference genome a decade later.
Microbiology 155, 1758−1775.
(45) Sierro, N., Makita, Y., de Hoon, M., and Nakai, K. (2007)
DBTBS: a database of transcriptional regulation in Bacillus subtilis
containing upstream intergenic conservation information. Nucleic Acids
Res. 36, D93−D96.
(46) Goto, S., Kawashima, S., Okuji, Y., Kamiya, T., Miyazaki, S.,
Numata, Y., and Kanehisa, M. (2000) KEGG/EXPRESSION: A
Database for Browsing and Analysing Microarray Expression Data.
Genome Informatics 11, 222−223.
(47) Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann,
W., Kersey, P., Mulder, N., Oinn, T., Maslen, J., Cox, A., and Apweiler,
R. (2003) The Gene Ontology Annotation (GOA) Project:
Implementation of GO in SWISS-PROT, TrEMBL, and InterPro.
Genome Res. 13, 662−672.
(48) Natale, D., Arighi, C., Barker, W., Blake, J., Chang, T.-C., Hu, Z.,
Liu, H., Smith, B., and Wu, C. (2007) Framework for a Protein
Ontology. BMC Bioinf. 8, S1.
(49) Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch,
H., Stevens, R., Wang, H., Wroe, C., Motta, E., Shadbolt, N., Stutt, A.,
and Gibbins, N. (2004) Engineering Knowledge in the Age of the
Semantic Web, Lecture Notes in Computer Science, Vol. 3257, pp 63−
81, Springer, Berlin.
(50) Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y.
(2007) Pellet: A practical OWL-DL reasoner. Web Semant 5, 51−53.
(51) Motik, B., Shearer, R., and Horrocks, I. (2009) Hypertableau
reasoning for description logics. J. Artif Intell Res. 36, 165−228.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.5b00295
ACS Synth. Biol. 2016, 5, 1086−1097

1096

http://dx.doi.org/10.1021/acssynbio.5b00295


(52) Noy, N., and McGuinness, D. L. (2001) Ontology Development
101: A Guide to Creating Your First Ontology, Stanford University,
Stanford, CA.
(53) Stevens, R., and Hull, D. (2010) Defining Definitions,
Ontogenesis, http://ontogenesis.knowledgeblog.org/824.
(54) Buchler, N. E., Gerland, U., and Hwa, T. (2003) On schemes of
combinatorial transcription logic. Proc. Natl. Acad. Sci. U. S. A. 100,
5136−5141.
(55) Bolouri, H., and Davidson, E. H. (2002) Modeling transcrip-
tional regulatory networks. BioEssays 24, 1118−1129.
(56) van Hijum, S. A. F. T., Medema, M. H., and Kuipers, O. P.
(2009) Mechanisms and Evolution of Control Logic in Prokaryotic
Transcriptional Regulation. Microbiol. Rev. 73, 481−509.
(57) Silva-Rocha, R., and de Lorenzo, V. A. (2008) Mining logic
gates in prokaryotic transcriptional regulation networks. FEBS Lett.
582, 1237−1244.
(58) Barnard, A., Wolfe, A., and Busby, S. (2004) Regulation at
complex bacterial promoters: how bacteria use different promoter
organizations to produce different regulatory outcomes. Curr. Opin.
Microbiol. 7, 102−108.
(59) Cox, R. S., Surette, M. G., and Elowitz, M. B. (2007)
Programming gene expression with combinatorial promoters. Mol.
Syst. Biol. 3, 145.
(60) Harvie, D. R., Andreini, C., Cavallaro, G., Meng, W., Connolly,
B. A., Yoshida, K.-i., Fujita, Y., Harwood, C. R., Radford, D. S., Tottey,
S., Cavet, J. S., and Robinson, N. J. (2006) Predicting metals sensed by
ArsR-SmtB repressors: allosteric interference by a non-effector metal.
Mol. Microbiol. 59, 1341−1356.
(61) Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory
network of transcriptional regulators. Nature 403, 335−338.
(62) Ninfa, A. J. (2010) Use of two-component signal transduction
systems in the construction of synthetic genetic networks. Curr. Opin.
Microbiol. 13, 240−245.
(63) Szurmant, H., and Hoch, J. A. (2010) Interaction fidelity in two-
component signaling. Curr. Opin. Microbiol. 13, 190−197.
(64) Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B.,
Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D.,
Marcotte, E. M., and Voigt, C. A. (2005) Synthetic biology:
Engineering Escherichia coli to see light. Nature 438, 441−442.
(65) Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A.,
Ashenberg, O., Goulian, M., and Laub, M. T. (2008) Rewiring the
Specificity of Two-Component Signal Transduction Systems. Cell 133,
1043−1054.
(66) Clarke, E. J., and Voigt, C. A. (2011) Characterization of
combinatorial patterns generated by multiple two-component sensors
in E. coli that respond to many stimuli. Biotechnol. Bioeng. 108, 666−
675.
(67) Courtot, M. (2011) Controlled vocabularies and semantics in
systems biology. Mol. Syst. Biol. 7, 543.
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