Keele
University

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational
purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to
guote extensively from the work, permission must be obtained from the
copyright holder/s.



ASPECTS OF WAVE PROPAGATION IN

ANISOTROPIC ELASTIC HALF-SPACES AND

PLATES

WENFEI WANG

Submitted in Partial Fulfillment of the Requirements
of the Degree of Doctor of Philosophy in Applied Mathematics
Keele University,

February 2013



Acknowledgements

I would like to thank my lead supervisor Prof. Graham Rogeffso providing me with scientific
and moral support, encouraging me to make progress andwaiyngatient. Also I would like to
thank my second supervisor Prof. Yibin Fu for introducinginte the field of solid mechanics,
sharing many ideas and giving out advices. The PhD studenintly provided by China
Scholarship Council and Keele University is very gratgfappreciated. | would like to thank
Joe for our interesting talks and my oral English has beemorga a lot. Finally | would like

to thank my parents for rasing me up and supporting me thrbagthtimes in my life.



Abstract

The propagation of waves along elastic half-spaces andplats long been an active research
area with lots of applications in seismology and modern gtdes. Much attention has been paid
to the study of wave propagation in a linear isotropic solithwraction-free or fixed boundary
conditions. However, much more investigation is deserwegdahisotropic solids under other
type of boundary conditions, or even a solid with a hump osutsface.

The purpose of the thesis is to investigate the influenceeoétaistic property and profile of
propagation media and boundary conditions on wave speedfradict the wave speed in var-
ious situations. Chapter 1 is devoted to introducing theegang equations and several specific
materials used as examples in subsequent analysis. CRapteoncerned with the propagation
of free surface waves on an elastic half-space that has bzledgeometric inhomogeneity per-
pendicular to the direction of wave propagation (such waresknown as topography-guided
surface waves). We use the Stroh formalism to examine how Bump modifies the surface

wave speed slightly on an anisotropic elastic half-spaceChapter 3, an asymptotic model



il

is constructed to predict the speed of waves propagatinggadathin elastic plate with elasti-
cally restrained boundary conditions (ERBC). The Stromfaiism is again applied to deal with
general anisotropy, which can be specified later to analygecase of linear isotropy and the
transverse isotropy. Chapter 4 deals again with the casettohalate with ERBC as in the
previous chapter, but the effects of pre-stress and theitbtmmaf incompressibility are also
considered.

Keywords: Trapped modes; guided waves; anisotropic; Stroh formalsuface waves;

elastic half-space; thin plate; elastically restrainedrimary conditions; pre-stress.
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Introduction

Surface waves

A surface wave is a wave propagating along a free surfaceylicch the associated displace-
ment and traction decay away from the surface. Surface waees first investigated within
the context of seismology, but have more recently foundiegipbn in signal processing, non-
destructive testing (NDT) and many high-tech devices.

Within seismology, a seismic wave travels through the Eaftien as the result of an earth-
quake or explosion. When seismic waves are generated aaptheesurface of the Earth, both
body (P and S) and surface (e.g. Rayleigh, Love) waves arergied. Body waves propagate
through the whole solid body of the Earth, whereas surfacegvanly propagate along (or near)
the surface of the Earth. Love waves have transverse mationgment perpendicular to the
direction of travel), whereas Rayleigh waves have bothitadgal (movement parallel to the

direction of travel) and transverse motions. The velocitthe Rayleigh wave is strictly smaller
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than the speed of either body wave. For isotropic materiedsh - wave always has a larger
speed than the S - wave and this is the first arrival detectedaidhquakes. The existence of
real body wave speeds is guaranteed by the strong convexigitoon and strong ellipticity
condition, as demonstrated in Chapter 1. Seismic surfagesvgpan a wide frequency range,
and the period of waves that are most damaging is usuallycdhss or longer. Seismic surface
waves can travel around the globe many times during thedaegethquakes.

In signal processing, a surface acoustic wave (SAW) can bergted by SAW devices,
which are composed of two transducers with interdigitatsducers (IDT) of thin metal elec-
trodes placed on a piezoelectric substrate, such as qudittiwm tantalite. One of these acts as
the device input and converts signal voltage variations méchanical surface acoustic waves.
The other IDT acts as an output receiver to convert mechb®A vibrations back into output
voltages.

SAW devices have been used previously as sensors for tetupgraressure (in intelligent
tyres), force, electric voltage, humidity and gases. Mdshese devices are based on detecting
the change in the phase velocity of the SAW caused by the #8tions of the above factors. They
have also been used in gyroscopes to stabilize vehiclesaandarders. SAW convolvers find
their application in indoor/outdoor spread-spectrum iese for packet-data and packet-voice
communications. They are also well suited to combat mathpnterference due to spurious
reflections in indoor environments.

In many non-destructive evaluation (NDE) problems, peqde Rayleigh surface waves
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in the ultrasonic frequency range to help detect cracks éimer anaterial imperfections. The
advantages of using Rayleigh waves for non-destructiiertggsover other types of wave, are

considered to be their high sensitivity to surface flaws &ed fonger propagation distance.

Literature review on the surface wave problem

Lord Rayleigh (1885) was the first to show that the plane ivaefree surface of an elastic
isotropic half-space could support a surface wave, for Wwhklisplacement and traction decay
exponentially, for harmonic time dependence, with deptbwéhe surface. Synge (1956) stud-
ied the case for elastic waves in anisotropic media, butloded incorrectly that surface waves
could only propagate in some exceptional directions. Thimmablem in the linear theory of
surface waves lies in existence and unigueness, namehharteehalf-space can support a sur-
face wave and, if it does, whether the surface-wave soligianique. With the help of the Stroh
formalism (Stroh 1958,1962), Barnettal. (1973) firstly proved uniqueness; Barnett and Lothe
(1974) provided a first existence proof, and Lothe and Bafh676) provided an alternative ex-
istence proof. These results were later polished and pregsenterms of the surface impedance
matrix in their later paper (Barnett and Lothe, 1985). Theaw article by Chadwick and Smith
(1977) and the book by Ting (1996) give detailed descrigtiohthe subject. A discussion on
a new identity satisfied by the surface impedance matrixviergby Fu and Mielke (2002), and

with the use of this identity, Mielke and Fu (2003) gave a nuiirect proof of uniqueness that
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is independent of the Stroh Formalism.

Other related localization phenomena have also recendy Ievestigated. Zernost al.
(2006) studied the problem of elastic waves trapped at thesdf a semi-infinite strip to pro-
vide a semi-analytical proof for the existence of edge rasoa. Gridiret al. (2005 a,b) and
Kaplunovet al. (2005) studied trapped elastic waves in elastic plated|ssaed rods. They
showed that modes can be trapped in regions of either higth éacvature or thickness varia-
tion. Burridge and Sabina (1972 a,b), using the finite elamesthod, considered three kinds
of ridge-like defects on the surface: a tall square platalladgctangular plate, and a dovetalil
plate. Numerical simulations indicate that a wave seem®ttydpped within the plate on the
surface, propagate along it and is unattenuated in thetaineaf propagation. Bonnet-Ben Dhia
et al. (1999) and Duterte and Joly (1999) proved the existenceeofdphographically trapped
Rayleigh waves in an isotropic homogeneous elastic haltasp

Guided waves are traveling waves whose transverse enezgypégentrated essentially in the
disturbed zone of the half-space. Much research has beeadcaut concerning the guiding of
surface waves by topography, curved surface or materiahndgeneities in isotropic materials.
However there is very little work on such problems assodiatith generally anisotropic elastic
materials. The problem that we consider in Chapter 2 is thguaed waves in a generally
anisotropic elastic half-space whose free surface is npthlg has a localized hump in the
direction transverse to that of wave propagation. Theitradree surface condition is applied

on the entire humped surface. Our objective is to developsgmptotic method to capture this
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trapping effect, not for plates of high aspect ratio attacteea semi-infinite half-space, but for
smooth perturbations to the semi-infinite half-space, &eth to present a convenient way to
calculate the perturbed wave speed. The work outlined ipp@h& formed the basis of a recent
publication, see Fat al. (2012).

A surface wave solution is very closely related to a trappedien in the sense that prop-
agation energy is confined to within a few wavelengths of tike surface. At the same time
as the extension of Rayleigh’s classical surface wave isolutas made to anisotropic elastic
and/or viscoelastic materials, much interest was also showrapped modes around thin rect-
angular plates, wedges, or similar structures attachechtdfaspace. There are two important
limits corresponding to this geometrical set-up. When #edangular plates are thin and long,
the trapped modes are expected to be localized near thedgeeaed the associated modes are
also known as edge waves. Edge wave propagation forms amtempbranch of applied math-
ematics and was seemingly first studied by Konenkov (1960)eMthe extrusions are flat and
small, we expect the trapped modes to be the classical surface mode slightly modified by

the geometrical inhomogeneity. It is the latter scenarad tie are studying in this thesis.

Topography guided surface waves

In Chapter 2 we investigate topography guided surface wavas work is partly motivated by

the recent series of studies by Kapluretval. (2005), Gridinet al. (2005a, b), Adamst al.



INTRODUCTION 6

(2007), Postnova and Craster (2007, 2008), in which a melspale approach was fruitfully
used to study trapped modes in a variety of problems, but ati#gntion invariably focussed
on isotropic materials. We however demonstrate that theesasthodology, coupled with the
Stroh formalism, can be used to extend these studies toahisiotropic counterparts.

In Chapter 2, after formulating our problem of surface waxgppgation, we present and
solve the leading-order and second-order problems in theesuent two sections, respectively.
In Section 2.4, we write down the third-order problem andaobthe amplitude equation by
imposing a solvability condition. After demonstrating iecion 2.5 that our formulation can
recover the isotropic results of Adarasal. (2007), we solve our amplitude equation in Section
2.6 numerically. lllustrative examples are given which destrate a rich variety of behaviour
associated with anisotropy: we may have zero, a single aipretopography-guided solutions,
and the associated speed may be higher or lower than the spgedponding to that of a flat
surface.

In carrying out our research we have extended Adanas. 's (2007) research to anisotropic
materials using Stroh formalism. Inspired by Song and FOT2@&nd Adamst al. (2007),
we introduce an infinitesimal quantitywithin the equations of motion and boundary condi-
tions and establish problems at the first three orders. Thditaigee equation is derived, and
we confirm that our equation is equivalent to that of Adaehal. (2007) when specialised to
the isotropic case. We establish that for anisotropic nedtethe amplitude equation is in the

form of a Schrodinger equation, thus with the help of prasicesearch the value of the asso-
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ciated eigenvalue is analytically given. Additionallyetaxistence, the number and sign of the
eigenvalues can be deduced, again extending the work of sda. (2007). We are able

to draw the same conclusion as Adaatsal. (2007), namely that the eigenvalue is dependent
on the wave number, which means that on a given wave numigeeigenvalue can be solved

numerically.

Layered media

Layered media occur frequently in both Nature and high teldgy industry. The Grand
Canyon in America, a magnificent geological museum, showslite of the Earth vividly
through layers of sedimentary rocks of different ages orcliffewalls, see Figure 1. The rock
layers are usually referred to as stratum, which, intergbtienough, share the same structure
(transverse isotropy) with annual rings of tree trunks.rémsverse isotropy, each layer has the
same properties in-plane but different properties in dioeanormal to plane. The plane of each
layer is the plane of isotropy and the vertical axis is thes afisymmetry. The Grand Canyon
gives people a chance to see a slice of real Earth structulenaesearch, the stratum can be
modelled as layers of infinite elastic plates possessirigrdiit physical properties. Petroleum
and natural gas may exist in the ancient forest layers. Ioj@etm exploration, some scientists
use surface waves (Rayleigh waves) to investigate surtae ktructures. Researchers first

study wave propagation in single layered materials befoeg extend their research to multi-
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layered composites. Rayleigh (1889) and Lamb (1917) wexr it to study wave propagation

in a linear isotropic elastic plate with traction-free suoés.

Figure 1: Grand Canyon, sourcehtt p://en.w ki pedi a. org/wi ki /Fi |l e: USA_
10052 _Grand_Canyon_Luca_Gal uzzi _2007.j pg

Layered media finds applications in high technology industéome layered composite
membranes receive wide attention as biomaterials. Intaathre, some multi-layer composite
makes a very stiff and stable material that provides exaee#ieosion resistance and insulation of
sound or heat. There are also other applications in therswdation. With the help of Layered
Composite Insulation (LCI) technology, not only the tramsation of fluids such as liquefied
natural gas, refrigerants, chilled water, crude oil, or4o@ssure steam, but also that of food,

medicine, and other perishable commodities, has been mvadesasier through advanced re-
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frigerated containers. One can also find layered compasit@tih military and civil aircrafts,

such as wing and tail sections, propellers and rotor blades.

Literature review on Elastically Restrained Boundary Cond-

tions and dispersion

In real world problems, most layers interact with their sundings. For example, the wall of
a human artery is supported by tissue. It is difficult to matiel interaction between a layer
and its surroundings, but in theory it is helpful to consitleo extremes first: elastic bodies
in vacuum (or air) and soft body in a stiff enclosure. The ferns essentially the stress-free
(Neumann) boundary condition: by setting the surfaceitvado be zero, the problem is greatly
simplified, see Rayleigh (1889) and Lamb (1917). The secoedasio is the fixed (Dirichlet)
boundary condition which implies vanishing of the displaeats at the boundary. For instance,
a coal seam can be modelled as fixed faces because it is sieby much stiffer rocks, see
Liang et al. (1993). In reality, a lot of scenarios fall in Wween these two and may therefore be
regarded as somewhere between these two extremes.

Much work have been carried out in respect of these two Iingitases mentioned above,
with relatively little attention paid to the transitionase. Intuitively a good approximation of

the transition can be obtained by assuming that the layerdsoies are subject to a Hooke-type
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law, meaning that the boundaries are elastically restdain#/ith this idea in mind, Mindlin
(1960) extended Rayleigh and Lamb’s research to an isatedpstic plate with elastically re-
strained boundary conditions (ERBC) in the normal direttiBlowever his study is limited to
the analysis of a grid of bounds for dispersion curves. Abaeh (1969) applied an iterative
procedure to study free and forced vibrations of elastiedaraff (1991) called it the mixed
boundary condition, which enabled him to separate the v@ctdlem into two scalar problems
and obtain the Rayleigh-Lamb spectrum.

When boundary conditions are applied, an implicit reladldp between phase speed (or
frequency) and wave number, usually termed as the dispersiation, is derived. Dispersion
relations are typically transcendental equations and esemlly be transformed to be either
real or pure imaginary. Thus, it is convenient to use nunaéanalysis to obtain an infinite
number of solutions arising from such dispersion relatiansach wave number. The branches
with a finite wave speed in the long wave (low wave number)aregire termed fundamental
modes, with all other higher branches termed harmonicsg kave motion in elastic layers are
thus separated into two types: low frequency and high freque

The long wave low frequency asymptotics describe the fureataah mode, which is the fea-
ture of a single layer with free faces and corresponds taidalkapproximate theories of rods,
plates and shells, see e.g. Kaplunov et al. (2000b); Shuy2(90); Poncelet et al. (2006). The
long wave high frequency asymptotics describe thicknesati@ns and are of great importance

for layers with fixed faces, where the classical long wave f@guency modes do not exist,
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indicating that energy will propagate only with higher medeee Kaplunov (1995). This is

how the waveguides of Dirichlet boundary conditions, kn@grhigh-pass filters, work. Lamb

(1917) first considered wave propagation in an isotropitepleith higher (non-fundamental)

modes. In static problems, only long wave motion of the funeatal mode exists; in the dy-

namic case, there are long wave low frequency, long wavefrggjuency and short wave high
frequency aspects. To simplify the subsequent analyssjigpersion relation may be decom-
posed into symmetric and anti-symmetric components, gealihat the material symmetry and
the symmetry of boundary conditions are ensured. ConnorCguaen (1995, 1996) studied
wave propagation in an incompressible elastic layer stibpea simple shear deformation, for
which it is impossible to decouple the dispersion relatioto isymmetric and anti-symmetric
parts. Fu (2007) studied the case of one fixed and one fredotagedary condition, a problem

which again did not allow the decomposition into symmetrid @anti-symmetric parts is not

possible.

The effect of anisotropy and pre-stress on long wave higiiuigacy motion has previously
been analyzed by a number of researchers; for example, Kapkt al. (2000a) studied a three
dimensional transversely isotropic elastic plate. In la@ye high frequency motion, it is worth
noting that the cut-off frequencies of two different modesyntoincide with each other, see
Werby and Uberall (2002). As a result, special quasi-lime@ansions need to be developed, see
Nolde et al. (2004); Shuvalov and Poncelet (2008). But tlasgenptotics are not uniform with

respect to parameters that affect long wave frequencydinMoukhomodiarowet al. (2010)
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presented uniform asymtotics to overcome this problem.

Outline and contribution to the ERBC problem for anisotropi c

plates

Chapter 3 deals with wave propagation in an anisotropieplah ERBC. In Section 3.1, ERBC
in the two dimensional case is formulated and with the helfnefStroh formalism, the disper-
sion relation is derived. After adjusting the parametera&ie sure that the boundary conditions
are the same on both the top and bottom faces, and we are adpdmte the dispersion rela-
tion into anti-symmetric and symmetric modes. In the subsaganalysis, in order to reduce
the parameter space, we consider particular types of ERBEhwdepend on a single parameter.
In Section 3.2, by taking the long wave limit of the dispenrsielation, we obtain two families
of solution branches associated with different cut-offjfrencies: thickness shear resonance
frequencies and thickness stretch resonance frequengies. correlating the magnitudes of
the single boundary parameter with the scaled wave nuntiegdymptotic expansions of the
frequencies or the speeds are obtained. Section 3.3 irs/tlieebehavior of anti-symmetric and
symmetric fundamental modes and the derivation of the asyio@xpansion of wave speed in
the short wave limit. In Sections 3.4 and 3.5 we consider aarigal analysis for linear isotropic

materials and transversely isotropic materials, respagti
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The asymptotic expansions derived in Chapter 3 are showiveoan excellent approxi-
mation to the numerical solutions. The results for a linsatropic material are successfully
recovered and shown to agree with those of Moukhomodiatai. (2010). In Section 3.5,
the cut-off frequencies of two different families, whichircide, are investigated. A uniform
asymptotic expansion is developed, providing much befipraimation to numerical results
than that of classical asymptotic expansion. Within Chaptee have extended Moukhomodi-
arovet al. (2010) to anisotropic materials using Stroh formalism. dispersion relation and

subsequent asymptotic expansions are derived for a mosrgease.

Literature review on rubber-like materials and pre-stress

Rubber and rubber-like materials find some of their popuidustrial applications in modern
construction, due to their ability to withstand large steaand then recover elastically. For
example, in transport suspensions, bridge bearings amigsmountings, rubber and rubber-
like materials are widely used, see Hirst (1969), Torr (968 Crawford (1985). Also, rubber
and rubber-like materials play a key role in base isolatwinich is a cost effective technique
for protecting buildings and bridges from earthquakesaisiighly elastic bearings, see Tyler
(1991), Sheridan et al. (1992) and Prendergast (1995). ,Tihis of inrerest to study the

mechanical properties and behaviour of rubber and rubberaterials.

The elastic response of rubber is usually treated as honeogsrand isotropic. Rubber-like
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materials are often regarded as slightly compressible Ity iicompressible, because volume
changes are very small for most deformations, see Ogder(19888). The constraint of in-
compressibility largely simplifies the analysis. Ogden Rakburgh (1993) and Roxburgh and
Ogden (1994) considered plane incremental waves and wMhbsgain incompressible and com-
pressible elastic plates with free faces, respectivelydrson (1997), Sandiford and Rogerson
(2000) and Nolde et al. (2004) investigated two dimensiamation for a plane wave travelling
along principle axes of deformation for incompressibl@riyeincompressible and compressible
plates, respectively. Pichugin and Rogerson (2002) egtttitese results to three dimensional
motions parallel to the faces of the layer. Nolde and Roge(20602) and Kaplunov and Nolde
(2002) studied incompressible and nearly incompressibatepwith fixed faces, respectively.
The term pre-stress is used to describe an initial defoonathd suggests the presence of
stress prior to wave propagation. The term pre-stress lysodicates that the media is subject
to high external loads. In non-linear theory, Green and AslKiLl960) and Green and Zerna
(1954) proposed a complete theory for finite deformations,their approach made dynamic
analysis very algebraically complicated. To simplify aisé8 of structure under large initial
stress, the incremental deformation theory was introdbgegliot (1965) to describe infinitesi-
mal incremental motion of finitely and statically deformemties. To linearize the equations of
motion, it is necessary to separate the large static honsagesdeformation from the infinites-
imal time-dependent motions. This is done by expanding tifess as a Taylor series about the

initial deformed state. Biot (1965) derived incrementalgming equations for both initially
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isotropic and orthotropic media. Green et al. (1952) alseeldped the static framework of
incremental deformations superimposed on finite strains.

There are several papers dealing with the asymptotic nraglefithe effects of pre-stress on
the plane strain dynamic response of an incompressibiallgiisotropic layer with free faces,
see Kaplunov et al. (2000b) (2001a) (2001b) and with fixed$aalso see Nodle and Rogerson
(2002). In this thesis, we will focus on the effects of preess on an incompressible layer with
elastically restrained boundary conditions. Ogden andoRigh (1993) studied wave propaga-
tion in a pre-stressed incompressible plate finite in a#éations, derived the dispersion relation
and discussed the influence of pre-stress on the dynamititgtabthe plate. However they did
not discuss the asymptotic behaviour of the dispersiotioalan the long wave and short wave
regimes. Rogerson and Fu (1995) derived long and short wawaotic expansions for the
dispersion relation up to third order, and the expansiongwhown to be in good agreement

with numerical solutions.

Outline and contribution to the ERBC problem for a pre-stressed

incompressible elastic plate

In Chapter 4, we study wave propagation in a pre-stressemripressible plate with ERBC,

using a similar procedure to that employed in Chapter 3. Tifference is that the elastic
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moduli are modified by the effect of pre-stress, and the use wéo-Hookean strain energy
largely simplifies the subsequent analysis. We presentehigation of dispersion relation in

Section 4.1 and long wave analysis in Section 4.2. In Sedti®ywe additionally present results
of harmonics in short wave analysis. We use the Stroh fosmaldeviation from Rogerson and
Fu (1995), to study a pre-stressed incompressible plate.investigation in respect of ERBC

in our analysis extends the previous work carried out by Eateon and Fu (2009).



Chapter 1

Basic equations and preliminaries

In this chapter, we derive equations of motion for both Im&asticity and pre-stressed incom-
pressible elasticity and introduce some specific matewdlich are used as examples in our
subsequent numerical analysis: the linear isotropic naténe transversely isotropic material,
the cubic material, neo-Hookean material and Mooney-Riwvlaterial. In the first part of this
chapter, stemming from different strain energy functiavs arrive at different constitutive rela-
tions. In linear elasticity, with the use of the correspagdconstitutive relation and linear mo-
mentum principle, the equations of motion are derived. &agiressed incompressible elasticity,
the configuration of a pre-stressed body is first presentetiffeen an incremental stress tensor
is introduced. As we expand the corresponding constituiiveponent of the stress tensor into
a Taylor series, the first order instantaneous elastic nnotiyl, are obtained, which, together

with the linearized incompressibility constraint, fatzite the process of deriving a linearized

17
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form of equations of motion. We consider the neo-Hookeaairsgnergy function as a model
for rubber-like materials. In the two dimensional platelgem, the first order instantaneous
elastic moduli, and thus the equations of motion, are sicamtly simplified for neo-Hookean

materials. In the derivation of the linearized boundaryditban, Nanson’s formula is intro-

duced to convert the incremental surface traction into thenfrequired. In the second part of
this chapter, we present the classical Rayleigh wave pmobde an isotropic elastic half-space
with flat surface. We also present three models which will fedufor numerical calculations

and comparisons of numerical and asymptotic results throutthe thesis.

1.1 Governing equations

1.1.1 Linear elasticity

We begin by reviewing the governing dynamic equations @dimrelasticity. For a more detailed
discussion of the derivation, the reader is referred to L(@@d4). For a linear elastic material,
the strain energy functio’ may be presented as a quadratic function of the strain coemien
taking the general form

1
W = 5 CigklCi €kl (1.1)
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where the;;;; are the Cartesian components of fourth order elasticitydeande;; components

of the infinitesimal strain tensor, defined by

ez] 2 (81'] + axl ) 2 (u%] + u]ﬂ) ( )

Here, and hereafter, we use the summation convention oatexpsuffices, a comma indicates
differentiation with respect to the associated spatial monents and:; are the components of
infinitesimal displacement, relative to a fixed rectang@artesian systerfy;, s, 3).

We assume that the elastic moduli obey the symmetry rekation
Cjikl = Cklij = Cijkl = Cijlk, (1-3)
and also satisfy the strong convexity condition
CpgrsOpgSrs > 0,V NoON-zero real symmetric tensaf's (1.4)
We note that the strong convexity condition implies the vegaitrong ellipticity condition

Cpgrspbgarbs > 0,V non-zero real vectors, b. (1.5)
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Using these symmetries, together with the relation

oW
n 6eij ’

Uz’j

(1.6)
whereo;; are components of the stress tensor, enables us to estdlglisbnstitutive relation
Oi5 = Cijki€kl = CijklUk,]- (1.7)
To obtain the equation of motion, we use the linear momentnciple

/ﬂmw+/mwz/mmc (1.8)
S 14 14

whereT™) is the surface traction vector, defining the force per uréaaacross a plane with
outward unit normal in the direction, b is the body force per unit massjs the mass density, a
superimposed dot indicates differentiation with respec¢imhe anddS anddV denote elements
of area and volume, respectively.

The surface traction may be expressed as

Tgn) = O4n;. (19)
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Substitution of (1.9) into (1.8), together with use of theedgence theorem, reveals that

\% 1% \%

This equation is satisfied in respect of any arbitrary voldimand therefore the local equation
of motion is

In the absence of body forces, by using equation (1.7), thatemns of motion (1.11) reduce to

CijhiUk, 1 = PU;. (1.12)

1.1.2 Pre-stressed incompressible elasticity
Configuration of a pre-stressed body

The following part of this chapter deals with non-linearstia deformations, and the reader is
referred to Ogden (1984) for a more detailed account of tliedying theory. Consider a ho-
mogeneous elastic bo@®; composed of a non-heat-conducting hyper-elastic matériaurely
homogeneous static deformation is then imposed upon aal imitstressed stai®,, to produce

a finitely stressed equilibrium configuration denotedy Finally, a small time-dependent

motion is superimposed upab,., resulting in the final current configuratidsy. The position
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vectors of a representative particle are denoted by thete€lan component& 4, z;(X 4) and
z;(Xa,t) in By, B. and By, respectively. The position vectof(X 4, t) may therefore be repre-
sented in the form

zi(Xa,t) = Zi(Xa) + wi(®, 1), (1.13)

within which w(z, t) is a small time-dependent displacement associated withef@mation
B, — B;,.
The deformation gradients arising from the deformati®ys— B; and B, — B, are de-

noted byF and F and defined by
=0 o Ot (1.14)

respectively. Equationd (13) and (1.14) may now be employed to deduce that these two defor-

mation gradients are related through

dr, 0% Ou; O 0z; 0z, (8 + i) Foa (1.15)
== ij 1,7 745 )

T OX.  0X,  01,0X.  CVox,  “iax,

Fig

where the comma indicates differentiation with respeché&iiplied spatial coordinate iB..
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Motion of a pre-stressed incompressible elastic body

The incompressibility constraint, which is usually reésftrto as an internal constraint, is im-
posed and thus every possible material deformation mussdahoric. This in turn may be
shown to imply that

J—1=0, J=det, (1.16)

throughout every possible material motion. A pseudo steai@rgy function is usually intro-
duced for problems involving internal constraints. In thee of incompressibility this function
is of the form

W(F) = Wy(F) — p(J — 1). (1.17)

In equation (1.17)IV, generates the constitutive part of the stress, whilst therderm, con-
strained to be zero throughout all material deformatioesiegates a workless reaction stress.
Furthermore, in (1.17), is a Lagrangian multiplier and is independentfaf For incompress-
ibility, p may be interpreted as a hydro-static pressure. If wesuiealenote the pressure i,

andp* to denote its time dependent incremental pressure, then

p=p+p". (1.18)
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In the absence of body forces, the equations of motion aendy

TiA, A = Polls, (1.19)

wherer is the first Piola-Kirchhoff stress which, in component foisngiven by

o
~ OFA’

(1.20)

v\

po IS the material mass density relative B9 and a superimposed dot indicates differentiation
with respect to time.
Upon invoking equationl(16), we obtain

odetF
OF;a

F F
= detF’ - tr (8817,4 F_l) = (8817,4) ngl = 5ij5ABF§j1 = F,Zil- (1.21)
i i jB

The first Piola-Kirchhoff stress tensermay now be decomposed into its constitutive and reac-

tion components, as

A = —pF .
TA aEA DIy,

(1.22)

Because the Cauchy stress and the first Piola-Kirchhostensors are related through

045 = J_17TZ'AF‘]‘A, (123)
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it is convenient to introduce an incremental Cauchy stressdr with componentg;; through

oWy -

Xij = Tiad ' Fja — Tia ' Fja = Fja—pFy Fija — ®iaFja,

~ OF

whereT, 4 is the value ofr; 4 calculated from1{.22) with F replaced byF andp by p.

We now prove that

Xijg = TiA A,

so that equations of motion.(19) can be written as

Xijj = Poll;.
Proof
Firstly, we have
oJ i oF _ _J8qu 17 82.@] -
0X, 0X, 0x, M 0X,0X, ™
From this we deduce that
0 - 4= 0 -1~ 0X, _ 823‘:j 5 0J - _
— F ) = F = — Fa ) F-
agzj(‘] ia) = gx U Fia) o, (‘] oxaox, 7 axtia)

(1.24)

(1.25)

(1.26)

(1.27)
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2 2~
O p g1 08 poy (1.28)

e R
OX,0X, ™ 0X,0X, "

Due to the equilibrium equations, 4 = 0 in B,, we finally arrive at

Xijg = (mia(J 7 Fja)) 5 — (Tia(J ' Fja))

= Ming(J T Fja) + mia(J  Fja) j — Tiag (S Fja) — Tia(J ' Fja) 4

. aﬂ'iA 892’]- 8’7_'('1‘14 &Ej

_ - —0=Tiaa 1.29
07; 0X 4 07; 0X4 i, (1.29)

We assume that the deformatiéh — B, is small. It is then appropriate to obtain a lin-
earized equation of motion by expanding everything as aofasgries about the pre-stressed
equilibrium stateB.. We remark that in the two dimensional plate problem to beutised later,

we havek, [,i, A, k, B € {1,2}, so that?? has four variables.

OF;
We also note that
Fip — Fyp = (0n1 + Uk,l)FlB — Fyp = 0k — Fup + Uk,lFlB = Uk,lFlBa (1.30)
from which we obtain
Wy - W, . Wy

~—Fja= o0 lr=r Fija+ 57— lr=r (Fop — Fip) F) 2
OF; 4 jA OF A lp=r JA_'_aFiAaFkB lp—F (FiB wB)Fja+ O(€)
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oWy

T OF. |p=r Fia + Ajixurg + O(€%), (1.31)

wheree is a small parameter measuring the magnitude; gfand the tenso# is the first order

instantaneous elastic moduli tensoBp defined by its components as follows

W,
e = Fiallp———"—|r_7 . 1.32
A]zlk jALIB aEAaFkB ‘F_F ( 3 )

We note that the moduli;;;;, have a pairwise symmetry property such as
Ajie = Ak, (1.33)
and satisfy the strong ellipticity condition
Ajircidicid,, > 0 (1.34)

for all non-zero vectorg andd satisfyinge - d = 0.
Next, denoting the displacement gradient tenggy;) by d and making use of the matrix

form of equation {.15) F' = (I + d)F’, we obtain

FiFja=FF=(I+d) =T —-d+d—d+--); =65 —uj; + O(c*). (1.35)
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On substituting1.18), (1.31) and (1.35) into (1.24), we obtain

- _ I
X”_an‘A

oWy —

lrer Fia+ Ajiwting — (D4 %) (65 — uj) — (EFJ’A — pF 3 Fja) 4+ O(€)

= Ajurur + puj; — p (85 — uji) + 0(62)- (1.36)

In view of the incompressibility constraint dét= 1 = detF', we have
dett' = 1 = def(I + d)F] = det(] + d)detF’ = det( + d). (1.37)
For arbitrary scala, we note that
detd — AI) = —A® + [,A* — II,A + 111, (1.38)

wherel,, I1,, 111, are the first, second and third principal invariants of therixal, respec-

tively, given by

1
I, =Trd, II;= 5(Ig —Tr(d?),  III;=ded. (1.39)
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If we now letA = —1, we establish that
Iy+ 11+ 111, =0, (1.40)

which implies

1 1
Ui = éumnunm - §(u“)2 — det(un,n)- (1.41)

The linearized form of the incompressibility constrainthiss given by
u;; = 0. (1.42)

With the use of (.42), the equations of motioR;; ; = poii; can be written in their linearized
form as

Ajiur; — P = poils. (1.43)

We consider a hyperelastic material or Green elastic netefhe most common example

is rubber, whose stress-strain relationship is usuallyeteatias non-linearly elastic, isotropic,

incompressible and generally independent of strain ralast&mers and biological tissues are

often modeled as hyperelastic materials, which are speasds of Cauchy elastic materials.

There are some well-known hyperelastic models, such asabdHookean materials, Mooney-

Rivlin materials and Varga materials.
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On substituting(.74) into (1.32), we obtain

Ajire = M(Sikle, (1.44)

where B is the value ofB in B.. Thus, as far as incremental deformations are concerned,
neo-Hookean material behaves as a linear material. We nowider proof of (1.44).

It is known that

Il = Bm = (FFT>’L’L = z'AFz'A- (145)
It follows from (1.45) that
0*W,
———— | p_p= 100 AB- 1.46
aEAaFkB |F7F M Zk? AB ( )
Because
FiaFipdap = (FF"); = By, (1.47)

we conclude that for neo-Hookean materials, the fourthrogtiesticity tensor4 is simply

Ajz’lk = M5ikle- (1.48)

We assume that the axes of the, 2, x3) coordinate system are aligned with the principal

directions,

r1 = MXy, o = MXo, 13 = \3X;, (1.49)
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where); is the stretch in the;-direction. When

A=A\, Ao = A1 A3 =1, (1.50)

we have

r = S\Xl, To = 5\71X2, T3 = X3. (151)

We then readily establish that

A0 0 A0 0
F=|o xt o, B=FF'=|¢ x2 of- (1.52)
0 0 1 0 0 1

It follows that the normal stresses are the principal seessid the stress tensor is represented

by a diagonal matrix, with principal stress on diagonal comgnts. From now on, we non-
dimensionalize the governing equations and boundary tondiusingu as the stress scale.

For incompressible materials, the principle Cauchy sé®ssalongz;-axis are given by
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For the plane strain problem, the Cauchy stress tensogiven by

o 0 0 A —p 0 0
oW, _
azsz’B—pI:uB—pI: 000 0|=] 0 A2-p o |- (154)
0 0 o3 0 0 1—p

It follows that in B, the pressure is related to the 22-component @by

ﬁ = ,MBQQ — 09 = /_\_2 — O09. (155)

Measure of incremental surface traction

We now proceed to derive the linearized boundary conditibasan infinitesimal area element
in B, be given asnda, wheredais the area, ana is the unit outward normal to the surface.
Similarly, let the same differential area elementip be given byndA, wheredA is the area
andn is the unit outward normal to the surface.

Now, we can form a differential volume elemedit in B, by using a differential length
vectordz and takingdv = dx - (nda). Let this length vector be mapped i in By, which
means

dz = FdX. (1.56)
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Since we know that volume between the two configurationdased by

dv = JdV, (1.57)
we can then form the relation
dzx(nda) = dv = JdV = JdXndA. (1.58)
Using (1.56) and rearranging, we find
dX (F'nda) = dX (JndA). (1.59)

After eliminatingd X from both sides, and applying the incompressibility caaistr/ = 1, we
obtain

FTnda= ndA, (1.60)

which is known asNanson’s formulan incompressible media.

During the incremental deformatiadd. — B;, the plates we consider in later chapters are
subjected to the so-called Elastically Restrained BounGandition (ERBC). The incremental
surface traction represented by — 7;4)1 4 iS equivalent toy,;n; with the help ofNanson’s

formula
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1.2 Specific materials to be studied in numerical analysis

1.2.1 Linear isotropic elastic material

We note that for a linear isotropic material, for which
Cijkt = N0ijOp + (03051 + 0qdjn), (1.61)
where)\ andy are Lame constants;; is the Kronecker delta, (1.4) and (1.5) yield

2
>\+§u>0,u>0, and A+ 2y >0, p> 0. (1.62)

Now we show that the classical Rayleigh wave spegé- /X, /p), which is based on isotropic

elastic half-space with flat traction-free surface, is dateed by solving the cubic

A\
X, — 1622 g (1.63)

X5 —8uXg + T2

8p2(3)\ + 4p)
A+ 2u

According to (1.12) and (1.61), the two dimensional probismoverned by
(A =+ o) (w111 + ug21) + p(ur,11 + g 22) = pily, (1.64)

(A =+ o) (w112 + ug22) + p(ug 11 + Uz 22) = pils. (1.65)
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The traction-free boundary condition is
b1 = CromUgy = U2 +ug1 =0, on xg =0,

ty = Coaptigy = Aur1 + (A +2p)uz e =0, on x5 =0, (1.66)

wheret; is the traction along; axis. The surface wave propagates alongithaxis, so we

assume that

u = — eikpxg eik(grlfvt)7 (167)
U9 %4

wherek is the wave number andis the eigenvalue, and by substituting (1.67) into (1.64) an

(1.65), we obtain

X, Uy —P1
pr=iy)1— =2, - , (1.68)
1% i 1
XO U2 1
=i/l - —— = . 1.69
D2 1 )\_'_2,u7 ( )
Va D2

As a result, the displacementtakes the form

U1 U2

u = jl P12 ezk(xlfvt) + j2 engxgezk(:mfvt)'

Vi Va
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By substituting into (1.66) we obtainj; = 2p,, j, = p? — 1.
Now substituting the new form af into the traction-free boundary condition (1.66)ve

obtain

A1 = p7) + (A +2u)p3(1 — pi) — 4upip2 = 0, (1.70)

which after simplification, squaring and factorizationelgis the given equation (1.63). We
remark that;, p, and their associated vectors can also be obtained by sdlwngtroh matrix

for its eigenvalues and eigenvectors as we do in Sectioro2 thé leading order problem.

1.2.2 Transversely isotropic material

The moduli for a linear transversely isotropic elastic mateare given by

Cijil = N0ij0kt + pr (8i051 + 6:01) + a(dimumy + myméy)

+(pr, — pr) (mymedy + mimydji + mimydy + mymydy) + Bmymiymemy, (1.71)

within which «, 5, A\, u;, and u are material constants; the unit vectar with components
m;, IS along the fibre direction regarded as uniform, see egené&er (1984). These constants

are related to the longitudinal and transverse Young’s madduF;, respectively, and Poisson’s
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ratio v, through

» (a4 A2 Apir (B(A + pr) — (a+ )\)2> a+ A

E=8—--~+—"— E=— s V= s
N BT e @ T 0

where3 = X + 2o + 4u;, — 2ur + B. In later numerical calculations, we shall take=

1852kg/m?, v, = 0.324 and

(Ey, By, pr, pr) = (42.7, 11.6, 4.69, 6.07) x 10 N/m?. (1.72)

These numerical values were given by Rikaetlal. (1999) for a typical Glass-Epoxy compos-

ite.

1.2.3 Cubic material

Crystals are categorized in accordance with their strastuike lattice systems, which consist
of a set of three axes in a particular geometrical arrangéeniérere are seven lattice systems.
The cubic (or isometric) system is the simplest and most sgimasystem. The other six lattice
systems are called hexagonal, tetragonal, rhombohedifabrbombic, monoclinic and triclinic.

The final material model we use for numerical investigatisrtte cubic material silicon with
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material constants taken from Farnell (1970):

(Cllllu C1122, 62323) = (1657, 639, 79913) X 109 N/mQ, P = 2340 kg/m3 (173)

1.2.4 Neo-Hookean material

The strain-energy function of a neo-Hookean material isigivy

1 1
Wo = 5#([1 —3) = 5#()\% + A3+ A5 - 3), (1.74)

whereu(> 0) is the shear modulud; (i = 1,2,3) is theith principal invariant of the left
Cauchy-Green deformation tensB(= FF”) and\; (i = 1,2, 3) are the principal stretches.

Under the incompressible constraint (1.16),

I3 = detB = (detF)2 = (/\1)\2)\3)2 = 1,Wh|Ch meansxl)\g)\g =1. (175)

1.2.5 Mooney-Rivlin material

The strain-energy function of a Mooney-Rivlin material igem by

Wo = Ci(li = 3) + Oy = 3) = CL(AT + X3+ A5 = 3) + Co(A* + A7 + 057 = 3)
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= O1(A2 + 054+ 22— 3) + Co(A3A3 4+ AIA2 + A2)3 — 3), (1.76)
where(C, Cy are constants.
For plane strain deformations such that= 1,

A2+ A2+ A2 = A2X2 4 A2X2 4 202 (1.77)

which means that in this case the Mooney-Rivlin strain-gndéunction coincides with that of

the neo-Hookean form.

1.3 Stroh formalism

Stroh formalism is an elegant matrix method dealing withagigus of motion in terms of dis-
placement and surface traction vectors. The eigenvaluggigenvectors of Stroh Matrix are
solved and they constitute the solutions of Stroh formalify substituting the solutions into
boundary conditions, the dispersion relations are derived

The displacement(xy, z5) is assumed to have the general form

u(wy, ) = z(wy)e! M7, (1.78)
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with the traction on its surface given by

t=on| = Ciokl Uk, = (1RTZ(h) + Tzl<h>>ei(x1*vt)’

wheren,; = (0, 1), and the matrice$, R, Q are defined by

Tk = Cioka, Rir = citra, Qik = Ci1k1-

We shall now define

t = —il (xQ)ei(xlfvt)’

so that

—ll(.’L’z) = iRTz(lQ) + TZ/(JL'Q),

which implies that

—il'(25) = iR 2/ (19) + T2" (2).

Recalling the definitions (1.80), on substituting (1.78pi(l.12), we obtain

T2"(x2) +i(R+ R")2'(22) — (Q — pv*I)2(2) = 0.

40

(1.79)

(1.80)

(1.81)

(1.82)

(1.83)

(1.84)
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It is now possible to substitute (1.83) into (1.84) to egtdbthat

iR2(15) —il'(x3) — (Q — pv*I)z(z2) = 0.

Equation (1.82) is now employed to establish that

2/ (1y) = =T 'R z(25) — iT'1(xy),

which on substituting into (1.85), enables us to concluadg th

U(zy) = —i(RT'RY — Q + pv®I)z(xq) — iRT ' (x2).

These two equations, (1.86) and (1.87), may now be incorpaiato the form

Z(ZL‘Q) Z/(ZL'Q) N1 N2

l(l’z) l/(l’z) N3 — pU2] Nir

where

N, = -T7'RT, Ny =-T7'= NI, N3 = —RT 'R + Q.

Equation (1.88), together with (1.89), is known as the Stovimalism.
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(1.85)

(1.86)

(1.87)

(1.88)

(1.89)



Chapter 2

Rayleigh waves guided by topography in

an anisotropic elastic half-space

In this chapter, we study the influence of a localized inhoemagty on the speed of a surface
wave propagating along the surface of an anisotropic elastf-space. Firstly, after a variable
transformation, the humped surface becomes flat in ternfseafié¢w coordinates. By substitut-
ing a perturbation expansion of wave speed and displacemerthe equations of motion and

traction free boundary conditions, we obtain the first thvesers of this system of equations.
The leading order solution is the solution for a flat surfeaeg at the third order, we finally

arrive at the amplitude equation, recognized as a Schgédiequation, which has been much
studied in quantum mechanics and soliton theory. For arogimtelastic half-space, we recover

previously known results of Adangt al. (2007) and find that topography-guided surface waves

42
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always exist and travel slower than the classical RayleighewFor an anisotropic elastic half-
space, we demonstrate that it is possible to have zero, Eegingnultiple topography-guided
solutions, and that their speed may be higher or lower tharspieed corresponding to a flat

surface.

2.1 Problem formulation

We consider surface wave propagation along a half-spaceevurface is defined by

xe = —h(exs), h(xoo) — 0, (2.1)

with z; Cartesian coordinates,a smooth localized function arida small positive parameter.

The surface is of slowly varying thickness, localized in thedirection, see Fig. 2.1. The

T3

T2

Figure 2.1: A half-space whose surface is not flat but is alilwegand slowly varying pertur-
bation. Surface waves propagate alongaithelirection.

traction-free boundary and decay conditions are

oijn; =0, on zy = —h(exs), u; — 0 as x9 — 00, (2.2)
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wheren, is the unit normal to the free surface.
For a surface wave propagating in thedirection with speea, the dependence on andt

is throughx; — vt, and so equations (1.12) and (2.8)ay be written as

CijklUk,lj = p02ui711, —h(&’L‘g) < Ty < 0OQ, (23)

Cijritgn; =0 on xy = —h(exs). (2.4)

The free surface is defined by + h(sz3) = 0, and so its unit normal is in the direction
(0,1,eh/(ex3)), where the prime indicates differentiation with respecttie argumentzs.

Thus, the traction-free boundary condition (2.4) may betemias

Ciokl U, + €Cz‘3kluk7lh/(€l‘3) =0 on To = —h({fl‘g). (25)

We now introduce the variable transformation

/ / /
¥y =z, xh=uxo+ h(exs), Y =cuxs,

so that in terms of the new coordinates the free surface endiyz, = 0. We have

o o o o o 0 0
Or,  0xf’ Oxy Oz, Oxy O
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and in terms of the new coordinates, (2.3) and (2.5) become

CiakBUkaB + €(Ciaks + Ciska) (Uk,30 + h/uk,2a)

+e2cizes(up sz + W'up o + 20 up 03 + W% up 20) = pv®uiy, 0 < < 00, (2.6)

/ /
Ciokalk,o + ECi3kalk ol (€23) + eCions(ur,3 + M uy2)

+€2Ci3k3(hluk73 + h/2uk72) = O on ZL‘IQ = O, (27)

where here and hereafter Greek subscripts range from 1 twlz aomma now signifies partial
differentiation with respect to the primed coordinates sifaplify notation, we shall from now
on drop the primes on the coordinates.

We now look for a perturbation solution of the form

W =Xo+X 4, u=u? +euV 4 2u® 4. (2.8)

where X, X; are constants and® (k=1, 2, ...) are vector functions to be determined. Obvi-
ously, the solutiori.X,, u(?)) describes a surface wave when the surface is flat. Our ainfirgito
the leading-order correctios? X; when the surface is specified by (2.1). We observe that the
speed correction is assumed to be of oedeiThis is due to the fact that it will be determined at

the third order of our successive approximations.
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On substituting (2.8) into (2.6) and (2.7) and then equatimgfficients of like powers of,
we obtain, from the first three orders respectively, that

leading order:

Czakﬁu](g Lﬁ XOUE 1)1 - O (29)
szauk@ ) on Ty =Uj; ( . )
second order:
Czakﬁu]i o XOUZ 1)1 (CzakB + Csz;oc)(ugc i)Sa + hluk 2a) (211)
Cz‘2imugl = —h,(Ci:skaUg,)L + Ci2k3ul(€07%) - CiQkBU](S;)ga on ry = 0; (2-12)

third order:

Ciakﬁ“/(j()w - XOUZ(‘,Qfl = Xl“z(,oﬂ — (Ciaks + Ci3ka><uk 3a T h’“k 204)

_Cz3k3<“/(co33 + h//uk 9 1+ Qh/uk 93 T hlz“k 22) (2.13)

(2 _ ! (1) (1) (1)
Ciokaly o = —N (Cizkally, , + CizkalUy.5) — Ciokaly 3

—ngkg(hluk 3+ R tu 2uy, 2) on zy =0. (2.14)
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2.2 The leading-order problem
The leading-order problem (2.9)-(2.10) is the classicalase-wave problem. The solution of
the leading order surface wave problem may be written indha f

ul® = f(kxs)z(koy)e* @ e, (2.15)

where c.c. denotes the complex conjugate of the preceding feis the wave number and

f(kz3) is a function to be determined. The depth variatidhz,) may be represented by

z(kxo) = e *2F 2(0), (2.16)

whereFE' is a3 x 3 matrix whose eigenvalues determine the decaying rate; semé Mielke
(2002). We shall initially set = 1, and then show at a later stage (see the discussion leading 1
(2.70)) how to obtain the corresponding results whesinot unity.

On substituting (2.15) wittk = 1 into (2.9) and (2.10), we find that the equations of motion
reduce to

Tz"(xy) +i(R+ RT)2 (15) — QWz(z5) =0, 0 < x5 < 00, (2.17)

and the boundary conditions t0) = 0, where the reduced traction vectois given by

—t(1y) = T2 (zy) +iR" z(2), (2.18)
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and the matrice¥, R, Q) are defined by their components
T = cra2, Ri = crue, Q/(;l)) = cpin — X0kl (2-19)
On substituting a trial solution of the form= ae'?* into (2.17), we obtain
(P*T+p(R+R")+Q")a =0, (2.20)

so that the values qf are determined by setting the determinant of coefficiert tuf zero. For
v in the subsonic interval (Chadwick and Smith 1977), nonéhefualues ofp can be purely
real. When the six values gfare distinct (as three pairs of complex conjugates), thiasar

wave solution can be written as

1

3
z(ry) = Z eraPePre2 = A(ePr2)e = A(eP*2) A712(0) = AP 22 2((), (2.21)
k=1

wherep, p», p3 are the eigenvalues of (2.20) with positive imaginary paft, (k = 1,2, 3) the

associated eigenvectors= (¢, ¢o, ¢3)7 is a constant vector, and
<eip902> = diag {eimm’ eimm’ eip3902} ’ <p> = diag {p17p27p3} ., A= [a(l)7 a(2)’ a(3)]'

The last expression in (2.21) then shows that in this casentteix £ in (2.16) is equal to
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—iA(p) A~

When the six values gf are not distinct, the matri¥ can be determined as follows. First,
with the use of (2.17) and (2.18), the first order derivativ/és,) andt’(x,) can easily be written

as a linear combination af(z,) andt(z,), thus leading to

2! (1) z(x2) Ny N,
—iN . N= , (2.22)

it/(l'z) lt(l'z) N3 Nir

the so-called Stroh formalism, witN,, N, and V5 given by

Ny =-T'RT, Ny=T""' Ny=RT'R" —Q+ X,l. (2.23)

Next, we define theurface-impedance matriX through

—(0) = Mz(0). (2.24)

Since the half-space is homogeneous, the above relatidresripat

—t(xe) = Mz(z3) Y 29>0. (2.25)

On substituting (2.25) and (2.16) into (2.22), we find that thatrixE in (2.16) and the surface
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impedance matrix are related by

E=T"*"M +iR"), (2.26)

and that\/ satisfies the Riccati matrix equation

(M —iR)TY (M +iR") — Q™ = 0. (2.27)

It follows from the definition (2.24) of the impedance matthat the traction-free boundary

conditiont(0) = 0 can be satisfied only if

det M =0, (2.28)

which is the secular equation determiniig. When a root of this equation is found, a solution
of z(0) can be obtained by solvint/ z(0) = 0, and the corresponding surface wave solution is
then given by (2.15) and (2.16).

Finally, we note that although (2.27) has multiple solusioih has a unique solution fav/
that is positive definite for less than the unique surface wave speed, and this uniquigosolu
is what should be selected in calculating the surface waeeds@according to (2.28) and
according to (2.26) (Fu and Mielke 2002).

For an orthotropic elastic half-space whose axes of synyneeincide with the coordinate
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axes, the three matricds R, Q) take the simple forms

Tl 0 0 0 Rl 0 Ql 0 0
T=| o1 o | B=| R o0 ol @Y= 0 0, o
0 0 T 0 0 0 0 0 O

It can also be shown that the impedance matfixhen assumes the form

M,  My+iM; 0
M=\ My—iM, M 0 MelR

0 0 M;

The Riccati matrix equation (2.27) can be solved exactlyite g

T, [ Ry + Ry\? T.
M1:\/T1Q1_Tl( 11_—::72)7 My = —2M17

:”YRl—RQ
1+~

_ T1Q2
TN 1o

M3 = 07 M4

) M5 =V TBQBa

where

51

(2.29)

(2.30)

(2.31)

(2.32)
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The secular equation (2.28) then takes the form

VIT00; - ZRQ 0. (2.33)
For an isotropic elastic half-space, we have
Ty=Ts=p To=X+2u, Q= \+2u— Xo,
Q=Q3=p—Xo, Ri =X\ Rp=p

and then the secular equation, once squared, reduces mtilaf classical form (1.63).

2.3 The second-order problem

We now assume that theg = 0 plane is a plane of material symmetry, which is the case for
monoclinic materials. In this case we may séot) = 0. It can then readily be shown that

WY = ul = 0, and the third component" must take the form

= (f'wy + fhwy)e@ = e, (2.34)
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wherew; andw,, both functions ofc, only, (should not be confused withy andws in (3.31))

satisfy the following equations derived from (2.11) and.2:

Cagzaw! + 2icgizow — (3131 — Xo)wy = —igV -z — g@ - 2/, (2.35)
iC3231W1 + C330W) = —g%W .z, on x,=0, (2.36)
and
Caa3oWh + 2icaizowh — (3131 — Xo)wy = —igM - 2/ — g@ - 2", (2.37)
ic031Wa + Copwh = —(1g® - 2+ g? - 2'), on x5 =0. (2.38)

The four vectorg™, g® g g™ in the above equations are defined by their components

gél) = (3103 + C33a1, 9&2) = C32a3 T 3302, gég) = C33a1; g((f) = (C32a3- (2.39)
To solve these two problems explicitly, we rewrite (2.21)he form

Zo = bape??? (2.40)

where the constantgs can in principle be obtained by comparing (2.40) with (2416 (2.21).

For instance, when the half-space is isotropic, these antssare given, to within an multiplica-
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tive constant, by

bll = —2p1p2’ le = p% - 17 le = 2p27 622 = p2<p% - )7

and

pr=p3s=1iV1—Xo/u, p=iy1—Xo/(A+2p).

To solve the problem fow,, we first note that a particular integral of (2.35) is given by

wy = 517172 4 59e'P272 = 55e PP (2.41)

wheres; ands, are constants to be determined.
On substituting this into (2.35), making use of (2.40), dmehtcomparing the coefficients of

e'Ps72 e obtain

. 1o "bap + 19a DapPp no summation ong. (2.42)

C3239D% + 2C313905 + Ca131 — Xo

When the material is isotropic, the denominator of (2.42)doees zero whey = 1. This is

due to the fact that; = ps. In this case, (2.41) is modified to

Wy = S122€P172 4 gyeP202 (2.43)
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with the corresponding expressions f@lands, given later in Section 2.5. Numerically, the case
of isotropy can be dealt with by first considering a nearlytrigoic material with e.g. moduli
given by

Cijit = A0k + (801 + 0i0jk) + 7016:20k2, (2.44)

and then taking the limi — 0.

A general solution of (2.35) is then given by

wy = 537372 4 55e'PA72 (2.45)

whereps is the root of

C3232P” + 2C3132p + C3131 — Xo = 0

with positive imaginary part, ansi is a disposable constant. We observe that sughexists
only if ¢33, — c3932(c3131 — Xo) < 0, thatis if X, < pv?, wherev, is the anti-plane shear
body wave speed. In other words, the type of topographyegugiirface wave solution under
consideration only exists if the original surface wave adhsociated flat half-space is subsonic.
For the composites defined by (1.71) and (1.72) with= (cos 6, sin6,0)”, Figure 2.2 shows
the variation ofvr(= 1/Xo/p) andv, with respect to the anglé It is seen that the subsonic
condition is satisfied only fab° < 6 < 24.37°, 0or54.67° < 6 < 90°.

In Figure 2.3, we have shown the variationgf(= /X,/p) andv, with respect to the
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1.80
1.75
1.70
1.65
1.60
1.55

Figure 2.2: Variation of the leading-order surface waveespg; and anti-plane shear wave
speedv; against?, showing that the 2D surface wave is subsonic onlyofoK 6 < 24.37°, or
54.67° < 6 < 90°. The unit of speed is km/s.

angled between the [100] direction and that of wave propagatiosymsng that the surface
waves propagates on the (001) plane of the silicon mateggdribed by (1.73). In this case the
leading-order surface wave is subsonic for all the valuésaainsidered (Farnell 1970).

On substituting (2.45) into the boundary condition (2.3%g,0btain

19&4)(5041 + ba?) - 03231(81 + 52) — (32320853 (2 46)

C3231 1 C3232P3

S3 =
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6.0

,,,,,,,,,,,,,,,,,,, U,t,,,,,,,,,,,,,,,,,,,
5.5
5.0

UR
4.5+
| | L | | 0
0 20 40 60 80

Figure 2.3: Variation of the leading-order surface waveespg; and anti-plane shear wave
speedv, against) for a silicon material, showing that the 2D surface wave isssmic for all

values off.

Similarly, the problem forw, can be solved to yield

where

lg

and

l3

Wy = t3eip3m2 + tﬁeipgm7 (247)
Dy, (2 2
o Oq -+ «@ ba I

_ o %apPp T Jo DapPlp no summation ons. (2.48)

C3232D% + 231300 + 3131 — Xo

_ _g((xg)(bal + ba2) + gg?)baﬁpﬁ + 3931 (t1 + t2) + c3232p5t 3 (2.49)

C3231 T C3232P3
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Thus, under the assumption that = 0 is a plane of material symmetry, the second order

problem can be solved without having to impose any solglmbnditions.

2.4 The third-order problem

If we write u® as

u?® = y(zy, 25)e! @ 4 cc., (2.50)

then the unknown vector functiayz, x3) satisfies the following equations derived from (2.13)
and (2.14)

Ty" +i(R+R")y — QWy =hY, (2.51)
Ty +iRTy = h®, onz, =0, (2.52)

where a prime denotes partial differentiation with respeat,,

Y = —f X1z —ig" {f"wi + [0 (wy + w}) + f(h"wy + hwh) }

—g® {7+ S () - (0w )}
—f"Sz —2f'W Sz — f(h'S2' + h"*S2"), (2.53)

h(2) = i (g(l) . g(3)><f/h/w1 + fh’ng) . (g(2) o g(4))[f//w1 + (f/h/ + fh”)wg]
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—g P (f'Ww| + frPwh) — f'h'Sz — fh*Sz2, (2.54)

andS is the matrix with components,sss.

It can easily be shown, by integrating by parts, that
/OOO z-(Ty" +i(R+ R")y — QWy)dxy = z- (Ty' +iR"y)|, .
Thus, the solvability condition for the inhomogeneous peab(2.51) and (2.52) is given by
/O Tz hWdzy = —z - h?|,,_0. (2.55)

We note that a similar solvability condition can be writteswah for the second order problem,
but it can be shown to be automatically satisfied.

On substituting (2.53) and (2.54) into (2.55), we obtain
caf(x3) + csh' f/(x3) + (coh™ + c1h” + o X1) f(23) = 0, (2.56)

where

Cy = / |Z|2de'2, (257)
0

¢ = / {iwpz - gV — w2’ - g + 2 - S2'} dwy — w2(0)2(0) - g, (2.58)
0



GUIDED RAYLEIGH WAVES IN AN ANISOTROPIC ELASTIC HALF-SPACE 60
Cyp = /000 {wg(—iz' gW +2".gP) 7. Sz’} dz,
+wy(0)g"? - 2'(0) — iw,(0)g® - 2(0), (2.59)
c3 = /OO {i(ws +w))z - gV + (w) +wh)z - g? + 2z - S2'} duy
0
+iwy(0)2(0) - (g — ™) + w2(0)2(0) - (9 — g'*)
+w}(0)2(0) - g@ + 2(0) - Sz(0), (2.60)
cy = /OO {wi(iz- gV — 2" g?) + 25z} dvy — w1 (0)2(0) - g¥. (2.61)
0

The coefficient is obviously real and positive. We now show thaiandc, are real, buts is

pure imaginary and is related tpthroughc; = 2i Im(c;). We first define a differential operator

L through

E[wl] = 03232111/1/ + 210313210/1 - (03131 - XO)wla (2-62)

see (2.35). Then for any functianiz,), we have, by integrating by parts,

/ @E[wl]dl'g = / {03232[(21]317) — wlf/)' + U}ﬂj”]
0 0

+2icg132[(w10)" — w10 — (ez131 — Xo)wi0} ds,

o
= / wlﬁ[’lj]dl’z — (nglggwl —+ C3232w£)6|x2:0
0
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+ (ic3132v + C32320" )y ; (2.63)

x9=0

where an overbar signifies complex conjugation. Witheplaced byw,, the above identity

shows that the expression

xo=0

/ wlmdl’z + (icg1300 + 32320 ) w1
0
is real. With the further use of (2.34) and (2.35), we dedue¢ the expression
/ (iwrz - gV — iz - g@)dzy — g - 2(0)w:(0)
0

is real. The reality ot, then follows from this result and the fact théitis a real symmetric
matrix so that the extra term- Sz is also real.

In a similar manner, on replacingandw; in (2.63) byw; and making use of (2.36) and
(2.37), we find that; is also real. If, on the other hand, thén (2.63) is replaced by, and use

is made of (2.34)—(2.37), we obtain
/ ws(iz - g —z’-g<2>)dx2+/ 6117 - g + 2" gDy
0 0

= wy(0)g® - 2(0) — w,(0)[ig® - 2(0) + g@ - 2/(0)]. (2.64)

The relationcs — ¢; = —¢; then follows from this result after straightforward marigdions.
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Thus, on writingf in the polar form
f(ws) = r(ws)e™), (2.65)

wherer(z3) andd(z3) are to be determined, the complex amplitude equation (DEB)ides

the two real equations:
ca(r” = 102) = 280000 + (eah™ + VR + o Xy)r =0, (2.66)

and

. /
(e + 721 —o, 267)

wherecg’") and ng-) are the real and imaginary parts @f respectively. The second equation
(2.67) can be integrated immediately, with the correspagdintegration constant zero since
both f andh decays to zero ag; — +oo. On substituting the resulting expression #6into

(2.66), we obtain

T” + (dghl2 + dlh” + doXl)T’ = O, (268)
where
(r) (@)
dO:C_O7 dlzcl_’ d2:2+(i)2_
Cyq Cq Cq Cq

Thus, the problem of finding the speed correctionis reduced to solving the eigenvalue prob-



GUIDED RAYLEIGH WAVES IN AN ANISOTROPIC ELASTIC HALF-SPACE 63

lem (2.68) subject to the decay conditior{a;) — 0 asz3 — +o0o. We recall, however, that
the above eigenvalue problem as been derived under the p8sarthat the wave numbérin
(2.15) is unity. For the case whenis not unity, we may observe that under the substitutions
kxy — x1, kxy — x5 andkzs — x3, equations (2.9)-(2.14) remain the same, except/ttiat)
andh”(z3) should be replaced by (k~'x3) andk~1h”(k~'xz3), respectively. Equations (2.68)

is then replaced by

) + %h”(%) + doXl)T(ZL'g) = 0, (269)

T3

" (x3) + (doh’( .

or equivalently, with another substitutiog/k — x5 followed byr(kx3) — r(x3),

1" (x5) + (dok®h(w3) + dikh" (23) + dok? X1 )r(23) = 0, (2.70)

which shows that the speed correction is dependent on the mawber. This conclusion can
also be verified analytically by (2.76) later.

The amplitude equation (2.68) is recognized as a specialafdbe so-called time-independent
Schrodinger equation

r'(z3) + (V(z3) + E)r(zs) = 0, (2.71)

associated with the potential wéll(xz3) and energy leveFE (a constant, which should not be
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confused with theZ in (2.16)). Under the assumption that

/_Oou 1)V () das < 00

[e.9]

Simon (1976) and Klaus (1977) have established the follgwgeneral results concerning its

negative eigenvalues.

(i) If there exists an eigenvalue when the potential Wélk3) is of sufficiently small ampli-

tude, then the eigenvalue is unique and is given by

VB = %] B i /Z V(ws) {|xs] % V (x3)} dws + O(%), (2.72)

where the star denotes convolutidris defined by

I = / V(ZL‘g)dl’g,

[e.e]

and¢ is a small positive parameter characterizing the ampliafdé(z).

(i) A necessary and sufficient condition for the existenéehe above-mentioned single
eigenvalue is that the right hand side of (2.72) is positiVaus, under the assumption
that thesecond term on the right hand side of (2.72) is one order ofmtade smaller

than the first termthis condition isl > 0 (note that if/ = 0 the second term on the right
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hand side of (2.72) is automatically positive; see Simornc1p284).

(i) Since increasing the amplitude of a potential can antyrease the number of eigenvalues
(Simon 1976, p284), the conditidn> 0 is also sufficient for the existence of at least one

eigenvalue even when the amplitudelofs not small.

For the special form oV in (2.68), we have

I = dgkﬁz/ thdlL‘g,

o0

and sol > 0 if and only if d, > 0. However, whert is of small amplitudeh’ andh” are of the

same order as, while 22 is of higher order which should be ignored. As a result,

I Vis) {|xs| « V(ws) } das = [0 V(xs) {ffooo |23 — y|V(y)d?J} dxs

iy / W () { / s — y|h”(y)dy} ds + O(5%). (2.73)

— 00 —00

In view of

Joo les = ylh"(y)dy = [ (x5 — )W (y)dy + [ (y — x3)h" (y)dy

T3 T3 o0 00
~ 2 / W' (y)dy — / yh" () dy + / Y1 (y)dy — s / W (y)dy

—00 —00 T3 T3

= 2a3h’(x3) — [yh'(y) — h(y)] |7 +yh'(y) — h(y)] 15
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= 2h(x3), (2.74)

we have

I Vi (ws) {|s| % V(xs)} das = 2d3 [ h(xs)R" (x5)das + O(6%)

—00

~o [ () (w3)) — W) des + O(F)

[e.9]

The two terms in the asymptotic expansion (2.72) are of theesarder of magnitude and they

combine to give

1 o0
Vo Xy = S (da + d%)k/ h2das + O(8%). (2.76)

— 00

Thus, the existence condition is in fact given by
dy + di > 0. (2.77)

This special case of’ serves to demonstrate the fact that eigenvalues may sisi exen if
I < 0 (whetherV has small amplitude or not). We highlight this fact since s@uthors have
previously claimed that > 0 is also necessary for the existence of an eigenvalue. Tdii® c$
only valid if the condition in italics in (ii) above is satisfi and if the potential is of sufficiently

small amplitude.
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Figure 2.4: Variation ofl, with respect td for the case considered in Fig.2.2

For the case corresponding to Fig.2.2, Figs.2.4-2.6 shewaniations of the three coef-
ficients for values of the anglé for which the 2D surface wave is subsonic. The blow up
behaviour corresponds to the fact tlaatvanishes at = 14.8° or 55.7° approximately. It is
seen thati, is positive in both subsonic ranges (except at the two iedlatlues of) where
it blows up). It therefore follows immediately from the algogeneral results that (2.68) has at
least one eigenvalue. This fact is confirmed in our numegakdulations later. In contrast, for
the silicon material defined by (1.73), Fig.2.7 shows that d? is negative for all values df,

and so the existence of eigenvalues cannot be establishngpthe general results above.
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Figure 2.5: Variation ofl; with respect td for the case considered in Fig.2.2

2.5 Isotropic materials

Before solving (2.68) subject to the decay conditiofisoo) — 0 numerically, we first consider
the special case when the material is isotropic. This cas@iexiously been studied by Adams
et al. (2007), using a procedure that is particularly developedsiatropic materials. We now
show that our formulae recover their results in this spesaak.

First, to facilitate comparison, we writ&, for X,/ throughout this section and introduce
k throughx = /(A + 2u)/p. 1t follows from (1.62) thatx > \/m Equation (1.63) can be
rewritten as

8(3r% — 2 21
8B =2 xy 165
K K

X3 —-8X2+ = 0. (2.78)
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dy
2.0,

1.5

1.0

0.5

Figure 2.6: Variation ofl, with respect t@ for the case considered in Fig.2.2

The second order problem now reduces to

wlll . (1 _ XO)wl — _lg(l) B A 9(2) . z,7 (279)
W =—g® .z on =0, (2.80)
w;/ _ (1 _ XO)’LUQ — _1g(1) . Z/ _ g(2) . Z”, (281)

W= —ig® .z — g® .2 on 2y =0, (2.82)



GUIDED RAYLEIGH WAVES IN AN ANISOTROPIC ELASTIC HALF-SPACE 70

0.05

—0.05/

~0.10]

~0.15-

Figure 2.7: Variation ofly, d2 + d, andd, with respect td for the case considered in Fig.2.3

where

9 = (K = Doray 97 = (5 = 1)doa, ¢ = My 95 = 1620

It is then easy to establish that the solutions are given by

Wy = 51T2€P172 4 55e'P272 | gaeP372

and

Wy = t1x2€1p112 + t2€1p23£2 + tg@lprQ,
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with

[ X
s1=0, s=i(2—Xo), s3=—2iy/1— Xo\/1— =3,
K

. [ X, , X,
t1:O, tQZI(XO—Q) 1—§, t3:21 1—§

As aresult, the expressions (2.57)—(2.61) can be evaleaf@ttitly to givecs = 0, ¢c; = 0, and

A A _ 2 A
Co = 200 c1 = C—l Cy = 32(1 i )04 (283)

2 (Xo - 22(/T= Ko + /1= 2y

where

=/1—-Xo+4(1 3/2+(1—X)3/2 )+ 7V/1 = Xof 1+—

&1 = Xo(14K% — 4r*) + 4Xo(8 — 14K + 3k*) — 8(4 — 5r* + &),
¢y = 52 — 64k + 125" + Xo(—44 + 81x% — 176%) + X3 (=8 — 13k* + 4x™).

By cross multiplication, followed by repeated use of (2.@8kliminate powers o, higher
than3, we have verified usiniylathematicahat ourc,/c; andc, /¢y are equal to Adamet al’s
(2007)8A/B and A/C, respectively. The is the wave number and this reinforce our previous
conclusion that the value of; is dependent on the wave number. Additionally, as a check or

our derivations, we have used the elastic moduli given 44(2to compute the coefficients for
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increasingly smaly and have obtained the same values as the above explicitssiqms.

We observe that withll, = 0 the sufficient condition (2.77) is satisfied automaticallyd so
we may conclude that topography-guided surface waves alwgigt in an isotropic material.
This settles the existence question left open in Adaira. (2007). We may further conclude
that when the geometric inhomogeneity is of sufficiently Braaplitude, there can only exist
a single guided surface wave. Finally, it can easily be \egtifiumerically that,/c, (=dy) is
positive for allx > \/m. We thus conclude that all topography-guided surface wawesn
isotropic elastic half-space travel at a slower speed tharchssical Rayleigh wave (see (2.85)

below, and also Theorem 1 in Bonnet-Ben Dhia and Joly 1999).

2.6 Numerical results

We still focus on the cask = 1. The amplitude equation (2.68) is now solved subject to the
decay conditions(+o00) — 0. We now use shooting method to numerically solve Xgrand
by comparing it with the analytical expressionf (2.76), both results are consistent with each

other. We first note that in the limit; — +o00, equation (2.68) can be approximated by

7’”(.%'3) + doXl'f’(l'g) =0. (284)
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It is clear that-(x3) will have the required decay behaviouras— +oo only if

dp X1 <0, (285)
and when this is satisfied we have
r(zg) ~ eFVTRXIT a9 gy F00, (2.86)

It then follows that ifd, < 0 the topography-guided surface waves travel at a lower sieaed
their 2D counterpart; whereasdf, > 0 then the topography-guided surface waves are faste
than their 2D counterpart. Whérix3) is an even function afs, r(—x3) is a solution of (2.68)
whenever-(z3) is a solution. Thus, the eigen solutions of (2.68) are ei¢lven or odd. For the

even (symmetric) modes, we impose the condition

r(0)=1, 7'(0) =0, (2.87)

and the decay behaviour through

e(Xy) =7(L)++/—doXir(L) =0, (2.88)
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whereL is a sufficiently large positive constant and the first equmatiefines the error function
e(X1). In Mathematical is a finite number at which the amplitude is infinitesimal t@wagxi-
mate its decay behaviour at infinity. At the inter{@l L], for each fixed shooting parametg,
with "NDSolve” e¢(X;) can be evaluated after integrating (2.68) subjected torthialicondi-
tions (2.87). We first plot( X ) againstX; to show the approximate locations of any zeros and
then use Newton’s method to find the exact values of the zeros.

For the odd (anti-symmetric) modes, the initial conditi¢287) are replaced by

r(0)=0, 7'(0)=1, (2.89)

and we integrate (2.56) subject to the initial condition892 and iterate oX; in order to satisfy
the decay condition (2.88).
When h(z3) is not an even function ofs, the eigen modes do not have any symmetry

properties. We may, for instance, integrate (2.68) sulbge(2.88) and

r'(=L) — /—doX1r(—L) =0, (2.90)

respectively, and iterate aki; so that the two solutions have the same gradient at a matchin

point, sayzs = 0.
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The above numerical scheme is first tested on the eigenvedidem

7" (23) + (=X + n(n + Dsech®x3)r(x3) =0, r(£oo) =0, n integer, (2.91)

which hasn eigenvalues given by = 2, (i = 1,2,...,n), with oddi corresponding to odd
modes and eveinto even modes; see, e.g., Lamb (1980, p.37). Our schemeeiscat@dproduce
these exact results correctly. The numerical scheme isapplied to solve (2.68) for a variety
of h(z3) and different values of; andd,. Our numerical results confirm the validity of the
asymptotic formula (2.76) and the existence condition{R.Tn particular, we invariably find
that for 4 sufficiently small, the single eigenvalue tends to zero wiiem d2 approaches zero
from above, and there is no eigenvalue whigr- 2 < 0.

We now present illustrative calculations for the compositgerial defined by (1.72) and for
the case when the topography is described by the 'Gaussiap’tifz;) = e~% (recall that all
length variables have been scaled by the wavelength of tfecseuvave). Whef = 2.194°, we
haved, = 0.365 and the corresponding; must necessarily be negative. It is found that there
is only a single solution which is symmetric wifi; = —0.146 (the unit of X; is 10°N/m?)
and so the topography has the effect of reducing the 2D suvfave speed. The corresponding
profile of r(x3) is shown in figure 2.8.

Whené = 16.821°, we haved, = —0.750 and the corresponding’; must necessarily be

positive. It is found that there exists one odd solution and even solution, corresponding
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Figure 2.8: Lateral variation of the only topography-guidirface wave possible whén=
2.194°, whose speed is lower than its 2D counterpait & —0.146).

to X; = 0.186 and X; = 0.469, respectively. The topography has the effect of producing
two variations of the original 2D surface wave. Both wavegeha higher speed than their 2D
counterpart and their lateral variations are shown in figuée

We have also carried out calculations for the silicon matetefined by (1.73) for which
dy+d? < 0 for all values ofd. We have tried a large number bprofiles, such ag(z3) = e 3,
h(z3) = Sechxs andh(zs) = Sech(z3 — 2) 4+ Sech(x3 + 2), but have found no eigenvalues for
(2.68).

As the end of this chapter, | would like to highlight some kdalfindings besides the last

paragraph in Section 2.5 about isotropic materials, andtgoipossible future developments.
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Figure 2.9: Lateral variations of the two topography-gdiderface waves possible whén=
16.821°, whose speeds are higher than their 2D counterpart. Thewmiinetric and symmetric
profiles correspond to the eigenvalués = 0.186 and X; = 0.469, respectively.

when doing numerical experiment on an anisotropic matamidflathematica, we found that
the coefficientsy,...c, in the amplitude equation are no longer real but complex. vesapme
this difficulty, we tried writing the amplitude function iheé polar form, the complex amplitude
equation is then transformed into a real one, which is bkdliecause of its Schrodinger equa-
tion form. Inspired by previous research results on Sdhget equation, we have (2.76), which
has been verified numerically using shooting method anadytanear isotropic materials, trans-
versely isotropic materials and cubic materials. The erist condition oi; given analytically
by (2.77) is also obtained.

There are still new questions left open in current anisatrgpoblem. Firstly, when the
x3 = 0 plane is not a plane of material symmetry, the present methggl does not apply.
Secondly, there is possibility that the coefficient of theas®l-order derivative term; in the

reduced eigenvalue problem vanishes, in which case a tapbgrguided surface wave, if it



GUIDED RAYLEIGH WAVES IN AN ANISOTROPIC ELASTIC HALF-SPACE 78

exists, may be expected to behave very differently.



Chapter 3

Waves propagating in an anisotropic plate
with elastically restrained boundary

conditions (ERBC)

In this chapter, we focus on wave propagation in an anis@napte with elastically restrained
boundary conditions. We use the Stroh formalism and we certha problem to the two di-
mensional case. Unlike in the previous chapter where thewawmber was scaled to be unity,
here the wave number becomes a variable in the expressioaqfency or wave speed, and
the decay condition and traction free boundary conditiomdbhave to be satisfied anymore.

The symmetry of material and boundary conditions enabldes decompose the implicit dis-

79
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persion relation into anti-symmetric and symmetric congran. For each mode, by taking the
long wave limit of the dispersion relation, the solutionrches are classified into two fami-
lies according to different cut-off frequencies: thickestiear and thickness stretch resonance
frequencies. In the short wave region, the behavior of wakatisns is also studied. Based
on numerical experiments, several asymptotic balanceseoflispersion relation are possible.
Using a similar perturbation method to that employed fofesg waves, our asymptotic expan-
sions of wave speed (or frequency) are established and camadely predict the behavior of
wave solutions for linear isotropic and transversely @pic materials in both long wave and

short wave regions.

3.1 Derivation of dispersion relation

Consider a plane strain problem concerning waves progagaltbng an arbitrary direction par-
allel to the face of an infinite plate. A Cartesian coordimatstemOx;x,x3 IS chosen, with
origin O in the mid-plane and)z, normal to the faces of the plate. The plate has uniform
thicknes2h and is composed of linear homogeneous anisotropic elastierral with density

p and elastic moduli; ;. The transition between traction-free (Neumann) boundangitions
and fixed (Dirichlet) boundary conditions will be investigd by considering so-called elasti-
cally restrained boundary conditions (ERBC). This is esaby equivalent to having springs

supported on both faces, see Figure 3.1.
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Figure 3.1: The coordinate system of the plate

For the case of elastically restrained boundary condifimesnay assume that the boundary

conditions are given by

4]
a1w2t1 -+ Elul = O, (31)
02
oty + ——us = 0,at zo = h, (32)
wgh
03
043’11]2151 -+ Eul = O, (33)
04
auty + —uy = 0,at xy = —h, (3.4)
wgh

wheret; andu; are components of the traction on the upper or lower face apdadement on
x; direction, respectivelyy,, different from thew, in previous chapter, is an element in Stroh

matrix and will be defined later in (3.31); andJ,; are constants.
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The boundary conditions may be presented in matrix form

Dt+ Fu=0,at o =h, (3.5)
Gt+ Hu = 0,at x5 = —h, (3.6)
where
—aqwe 0 5—hl 0 —agwy 0
D = s F = 5 G - ) (37)
0 0 -2 0
%3 0 tl (51
H = 1= , U= . (3.8)
O —% tg U2

To simplify our analysis, and allow decoupling of dispersielations, symmetry of bound-
ary conditions is required. As a result, we will assume that G, F = H in later analysis.
This |mp||eS thabq = (3, (g = Oy, 51 = 53, (52 = (54.

The displacement(z4, z5) is assumed to have the general form

w(zy, T2) = z(kl’z)eik(mf“t% (3.9)
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with the traction on the upper face given by

t = ony = conury = (IkRTz(kh) 4+ kT2 (kh))e*@1 =D, (3.10)

and the traction on the lower face being obtainable as

—t = ony = —copup; = —(ikRT 2(—kh) + ET2'(—kh))e*@ =00 (3.11)

wheren; = (0,1), ny = (0, —1), and the matrice$, R, Q are defined by

Tt = Cioke, Rir = citka, Qik = Citka- (3-12)
We shall now define
t = —ikl(kxy)elk@ =0, (3.13)
so that
—il(kxy) = iRT 2(kxy) + T2 (kxsy), (3.14)
which implies that
—ll/(k?l'g) = iRTZ,(k?fEQ) -+ TZ”(]{?.I'Q). (315)

The minus sign on the right-hand side of equation (3.13)¥adl the notation of Lothe and
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Barnett's (1976), which determines the signs of every etarimeN, and N3 — pv?I, and hence
the signs ofH (x) and F'(x). We remark that the sign of the right-hand side of equatioh3)3
has no influence on the sign @fand hence the signs ¢f, ¢», Q(z), which results in the same
dispersion relation and the same asymptotic results foiréogiency or.

The two boundary conditions (3.5) and (3.6) may now be exgesas
iDI(kh) — %Fz(kh) =0,  iDI(—kh)— %Fz(—kh) =0. (3.16)
Recalling the definitions (3.12), on substituting (3.9pifit.12), we obtain
T2"(kzy) +i(R+ RT) 2 (kxy) — (Q — pv*I)z(kas) = 0. (3.17)
It is now possible to substitute (3.15) into (3.17) to estkbihat
iRZ (ko) — il (kxy) — (Q — pv*I)z(kxy) = 0. (3.18)

Equation (3.14) is now employed to establish that

2 (kxy) = —iT 'R z(kao) — iT (kxy), (3.19)
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which on substituting into (3.18), enables us to concludg th

U'(kxy) = —i(RT'RT — Q + pv*I)z(kxy) — iRT ' (kxy). (3.20)

These two equations, (3.19) and (3.20), may now be incorpaiato the form

Z(k’l‘g) Z/(k’l'g) N1 NQ
iN = N = , (3.21)
l(k’l’z) l/(k'.l’z) N3 — pU2[ NlT
where
N, = -T7'RT, Ny, = -T7'=NT, Ny = —RT'RT + Q. (3.22)
Equation (3.21), together with (3.22), is known as the Stovimalism.
We assume a solution of the general form
z(kxs) .
= etz (3.23)
l(kl'g)

We note that the corresponding form @fn Mukhomodyarowet al. (2010) differs, with their

use ofq instead of outiq on the right-hand side of (3.23). On substituting (3.23) i{&.21), we
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obtain

NC, = quC,0=1,2,3,4,C, = . (3.24)

The above eigenvalue problem may now be solved to find theesadfiy and the associated

eigenvectors andb. The general solution is therefore given by

z(kxy) 4 a'® . .
— Z dy elMe®2 J are constants (3.25)

L(kxy) a=1 b

It follows that (usingj, = iq.)

z(£kh) Z dpa'® (cosh(ndy) £ sinh(nd.)), (3.26)
Z dob" (cosh(ngy) + sinh(ndy)). (3.27)
Z (cosh(nda) — sinh(1da)), (3.28)

wheren = kh.
We will now study orthotropic materials. We use the Voigtatain to present elastic moduli

with axes of symmetry along;, =, x3; 11 is replaced by 1, 22 by 2, 33 by 3, 23 by 4, 31 by 5
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and 12 by 6. For orthotropic materiatgg = co6 = 0, and thus

C11 0 0 C12 Ce6 0
Q — ’R — 7T = s (329)
0 Ce6 Ce6 0 0 C22
0 -1 wy 0 wy 0
Nl— 7N2— 7N3— ) (330)
w1 0 0 w3 0 0
where
1 1 7
wlz—%, Wy = ———, W3 = ——, w42011—@- (3.31)
€22 Ce6 C22 C22

Letv? = —wypv?, k= /=22 Using Mathematica, we find thatsatisfies the equation

a(a) P

, (3.33)

where




WAVES PROPAGATING IN AN ANISOTROPIC PLATE

w +£—ﬁw

Qa) == e
ST, P22 o e
v, W1 — % +w2 + viwy

o) < 20 4 w2Q)

2 2
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(3.34)

On substituting the three equations (3.26)-(3.28), tograthth (3.33), into (3.16), we obtain

di(—i01wsQ(q1) — S H (q1) EY + do(—ienwsQ(go) — - H (g)) B

s ion wn Q) — %H@))E; T di(ionwnQ(gs) %H@))E; —0,

dy (iovy + %F(Q1))Ef + dy (i + %F(QQ))E;

= 02 s P _
d - —F E d - —F E, =
+d3 (i T (1)) By + da(iay T (q2))Ey =0,

di (i woQ(q1) — 2 H (1)) By + do(ionwsQ(gz) — -H (q2)) By

+ds(—iowaQ(qr) — %H(%))Ef + dy(—ioweQ(g2) — %H(%))E; =0,

di(~ias + 2 F (1) By + da(~ian + 22 F(¢2)) Ey

~ . 52 k1 . 52
ds(—lag — —F Ef +dy(—iog — —F Ef=0
+d3(—iae o (1)) E] + dy(—ia wanl (02)) E; )

(3.35)

(3.36)

(3.37)

(3.38)
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whereE;" = cosh(ng;) + sinh(ng;), E; = cosh(ng;) — sinh(ng;).

If equations (3.35) and (3.37) are added and subtractede whuations (3.36) and (3.38)
are added and subtracted, we obtain two systems: one sybtem equations ir(a~l1 + CZg) and

(dy + d,), the other system of two equations(iih — ds) and(d, — d,), namely

(% H (q1) cosh(ndy) + iarwsQ(q1) sinh(ng1)) (dy + d)

+(%H(92) cosh(ngs) + iaqweQ(ge) Sinh(n(jg))(dg + J4) =0, (3.39)

(i cosh(ngr) + 22 F(q1) sinh(ng1)) (di + ds)

. . 0 . NN
+(iag cosh(ngs) + w—QnF(qQ) sinh(nga))(ds + dy) = 0. (3.40)
2

and

(%H(Ch) sinh(ng:) +iciw.Q(q1) COSh(U@l))(dl - JS&)

+(%H(QQ) sinh(nda) + i waQ(ge) COSh(nqu))(czz — J4) =0, (3.41)

(icvg sinh(nqy) + w‘s—;?F(ql) Cosh(ncjl))(cil — Jg)

0. -
+ (i sinh(ngy) + w—2nF(q2) cosh(ngs))(de — dy) = 0. (3.42)
2
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A non-trivial solution of (3.39) and (3.40) will exist praled

122 (0 (qa) ~ H () cothln) cothlnds) + 2 (Flan)Q(ae) ~ Fla)Qlar)

(o awrQ(q1) + 1(15112(75722F<Q1)H(Q2)) coth(ndz)

~(ar03waQ(a) + 2% Fla) H(a) cothlnis) = 0. 343

When (3.43) is satisfied; — d; = d, — d, = 0, and the solution fog(kx,) is given by

~ H(qy) cosh(kgyxz) ~ H(q2) cosh(kgaxs)
z(kxy) = d; + dy : (3.44)

F(qr) sinh (kg z2) Flga) sinh(kts2)
Thus, we are able to conclude, from (3.44), thais an odd function about the mid-plane. It
follows that (3.43) is the so-called symmetric dispersielation. Classical extension shares
similar dispersion relation.

Similarly, a non-trivial solution of (3.41) and (3.42) wekist provided

2% ((ge) ~ H{qn) tanh o) tanh(ne) + 1722 (Fla) Q(ae) ~ Fla)Q(ar)

+(araowQ(q1) + 212(75722 F(q1)H (q2)) tanh(ngs)

~(a1020Q(an) + 1 Flge) H(g1)) tanh(o) = O, (3.45)
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in which we havel, + d; = d, + d, = 0, and the general solution far(kz,) is given by

| H(g)sinh(kiies) | . [ Hg) sinh(kdnas)
Z(lﬂl‘g) = d1 —+ d2 . (346)

F(q1) cosh(kgix2) F(go) cosh(kgo»)
Thus u, is even function about the mid-plane. It follows that (3.4&)the so-called anti-

symmetric dispersion relation, an analogue of so-calladsital flexure or bending.

3.2 Long-wave analysis

For the analogue of classical non-fundamental solutiondires, namely harmonics, a numeri-
cal experiment (Figure 3.2) shows that — oo askh — 0. In Mathematicawe use "Contour-
Plot” to draw implicitly the dispersion relations of bothtasymmetric and symmetric motions.
Figure 3.2 describes the phase speed against the scalechwaer for a linear isotropic ma-
terial with x = /3.5, where anti-symmetric and symmetric solutions are preseby dashed
lines and solid lines, respectively. The two lowest brasahige description on the behaviour
of fundamental modes and it can be inferred that the long Wavé of phase speed in anti-
symmetric mode is zero while that in symmetric mode is a fivatiee. Equation (3.32) may be

used to establish that in the low wave number (long wavepregi

—2
_ v _ _
G=0"+q+0@?), q§:?+qQ+O(U %),
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05}

e
kh

Figure 3.2: A numerical experiment on isotropic materighwi = /3.5

Q1 __3 v KQ __3
o+ o _ U B o), 3.47
N=0+-+007),  @=_—+o+0@) (3.47)
where
we(w? — 2wy) +w 2w — Wiwy — w
q1 = Wawyg + G ) 37 72 = — o -, (3.48)
Wo — W3 W — W3

Let us fix the frequency? = un and compute the long-wave limit of the dispersion relations
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for two different types of motion. We keep higher order tefikes

H(q) ~ O(1), F(g2)Q(q1) ~ O(1), Fg2)H(q) ~ O(n), Qlar) ~O(n™"),  (3.49)

while omitting low order terms like
H(go) ~ O(1%), F(a1)Q(g2) ~ O(n*), F(a1)H(g2) ~ O(1°), Q(g2) ~ O(n).  (3.50)
Keeping the highest order terms, the anti-symmetric dgpemrelation (3.45) is simplified into
. Ay Q
(01 8in(2) 4+ 12 cos(2)) (k2 sin (E) — d5 oS (E)) =0, (3.51)

while the symmetric dispersion relation is simplified into

QMQQMQ)—&C%GDX%QH(%)%ﬂhﬁﬂa$(g))20. (3.52)

K

Let us study a special case when= a, =1, 4; =0, d, = 6.
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3.2.1 Anti-symmetric waves

Under the condition that; = a, = 1, §; = 0, d, = 6, the dispersion relation (3.45) becomes

%(F(Ch)@(éh) — F(q2)Q(q1)) + w2Q(q1) tan(ngz) — waQ(qz) tan(ng,) = 0. (3.53)

Solving the equation (3.51), we get

1 AS
A% = (n - 5) , n=12,.. kAZ, tan ( ;t) = . (3.54)

The first family (3.54) corresponds to the thickness shear resonance frequekfgiesat are
independent ob. The second family, which is implicitly defined by equatid@54), is asso-

ciated with thickness stretch resonance frequentfes As 6 — 0, we havetan <%> — 0

andA¢, ~ xnm; the limiting case is of free faces (see Kaplurehal. (1997)). Asé — oo, we

a
Ast
K

havetan ( ) — oo andA?%, ~ k(n — 1/2)7; the limiting case is of fixed faces (see Kaplunov
(1995)). We focus on low mode number harmonics, which mdaats:tis not too large.
To enable an asymptotic analysis to be carried out, we ficstiyelate the magnitudes gf

ands:

5 = b, 8y = O(1), (3.55)

considering the three cases = 1, m = —1 andm = 0. These corresponds to the nearly

traction-free faces case, the nearly fixed faces case arrhtistional faces case.
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Casel nearly traction-free faces(m = 1):6 ~ n?

The dispersion relation (3.53) may be rewritten as

0on(F(q1)Q(q2) — F(q2)Q(q1)) + w2Q(q1) tan(ngz) — w2Q(ge) tan(ngy) = 0. (3.56)

According to (3.49) and (3.50), there are three asymptotig lWave balances of the dispersion

relation. The first one is defined by

tan(ng) ~ n, tan(ng) ~n, v ~ 1, (3.57)

and associated with a low-frequency fundamental mode. @hgents can be expanded into

Maclaurin series for small argument:

tan(ngq) = nq: + %(n%)g + O((nqr)°), tan(ngz) = nge + %(77612)3 +O((ng2)).  (3.58)

By substituting

v? = g +03n* + O(nh), (3.59)

and (3.58) into the dispersion relation (3.56) and equativefficients at every order of we
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may obtain the unknowny,,v,. The asymptotic approximation for the phase speed is giyen b

1 52
v* =6y + 3 (—K—‘; — wywy — So(1+ G + G — ’LU2UJ4)) n*+O0(n'), (3.60)

with the spurious root? = (g — q1)/(1 — -5 ) ignored.
The second asymptotic regime, dominated by thickness sesanance frequencids,, is

reached when

1
tan(an) ~ @27 tan('ﬂch) ~ 17 v~ ; (361)
As v is large, we deduce that

Qo) ~ 1= () ~ (2) ( Lo ) (3.62)

@ —1—q +wowy’ @ K —1—(}2+w2w4+@2(1—é) ’ '

(105 1-— w1

F ~—)- :

(@)Q(a) ~ (“2) (_1 _— w2w4) , (3.63)

we omitF'(q;)Q(q2) because the order of it is lower tha&i{g,)Q(q,). We may expangq; into

power series for smat), yielding

1
Q11 = A(11 + ¢2772 + 0(774)7 A(11 = (n - _) ™, N = 17 27 (364)
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whereg, is unknown variable. The corresponding expansiondalng; ) is given by

tan(¢2772)
t 7 t 2 1 an(A¢ —1
tan<77q1> an<A1) an(¢277 ) tan(Af)

— — — _'_
1 — tan(A¢) tan(gpyn?) m — tan(gon?)  Pan?

o(1).

According to (3.47),

A2 2 A¢ 2
=g - @ = (71 + ¢277) - = (7712) + 20 (s — 1 + O(1?),

then

_ A% Qi 3
=1 — O
0] ; + ¢om oA + O(n’),

N — A =G+ @R 200
92:\/(9%—91)/52+q2:ﬁ—717+ e o),
1

a

tan(ngy) = tan (%) + O(n?).

Substituting expansions (3.64)-(3.69) into the dispersadation (3.56), we obtain

by = 14+ ¢ — wowy
© k(1= L) tan(AD)(A9)2

K2 K

The approximation for frequency then takes the form

0 = (AD)? + (2AS90 — @)n* + O().

97

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)
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The third asymptotic regime is associated with thicknesstat resonance frequencié$ and

may be characterized by

(3.72)

I | =

tan(ng) ~ 1, tan(ngs) ~ v 2, ¥ ~

The derivation procedure is similar to the previous thideghear regime, except that the cut-
off frequencies are given by = xnm. The corresponding approximation for the frequency has
the form

2tan(A$)(1+ ¢ — wowy)
(1= )73

0 = (a3 + (290 - —RR) o, @7

Case2 nearly fixed faces(m = —1):0 ~ n~2

The dispersion relation (3.53) may be rewritten as

%(F(%)Q(CD) — F(g2)Q(q1)) + w2Q(q1) tan(ngz) — waQ(qz) tan(ng) = 0, (3.74)

which supports two possible asymptotic long wave balantés. first one results in thickness

shear resonance modes characterized by

tan(an) ~ @47 tan('ﬂch) ~ 17 v~ (375)

I
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The associated approximation for frequency takes the form

8
02 = (A‘f)2 — cj1772 — 5—0774 + (9(776). (3.76)

The second asymptotic regime is characterized by

1
tan(ng) ~ 1, tan(ng) ~ v°, v ~ o (3.77)
The associated asymptotic approximation for frequencyisgby
2 2 Aa 2
02 = (4 + (et = 2220 ) s o), 3.78)
0

whereA§ = (n — 1) k.
Case3 transitional case (m = 0):d = 9y ~ 1

The dispersion relation (3.53) may be rewritten as

%(F(%)Q(%) — F(q2)Q(q1)) + w2Q(q1) tan(ngz) — w2Q(g2) tan(ng:) = 0. (3.79)

At certain values off = . a member ofA?, may coincide with a member ot¢,, thus it

st

IS necessary to develop a uniform asymptotic expansionudoh $ong-wave high frequency
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motions.
Thickness shear expansion

The classical asymptotic expansion allows the structure of

tan(ng) ~ 0%, tan(ng) ~ 1, ¥ ~ (3.80)

I I~

We expand every term of (3.79) into power series for smalind equating the coefficient of
the lowest order terms of to zero, an expression f@r, may be obtained. The derivation is
quite similar to the thickness shear@asel, with one more term containingin the process of

obtaininggs. Thus, when this is done we obtain

—1 —q + wawy

o Ag - 1
¢2— (1—é)A§((5—(5*)7 5*—/§A3tan (?) s A3— (n—§) . (381)

If 0 is in the close vicinity o, ¢, becomes very large, and it is no longer suitabledeto

appear with the)(n?) term of the expression ift%. If we then try

@1 = A§ + ¢on + O(n?), and thenan(ng,) ~ 7, (3.82)

so that the highest order we have only two terms: one coniginand the other containing,

which offset each other. These two experiments inspire westign a variable replacingg,,
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ande may vary betweei®(n) andO(1). As aresult, it is established that

Q=Aj+en— Qq/iavf + O(en),
3

Ag € /@262 — ql
=B 2 M Ay Oen? 3.83
Qo /‘i77+/€+ oA n+ O(en), ( )

Aa
tan(ngy) = tan (—3) + LAQ + O(n?).
K K cos?(=2)

K

Substituting these expansions into the dispersion relg8d/9), we obtain the equation fer

A2 A¢ 2 A2 1 =
(—li/\g tan(—2) — (A3) - ) e+ A% ((5 — KkA§ tan(—g)) i bl i 0. (3.84)
K U

K Cos2(%)
If we denote the smaller root of above equatiorcaand the larger root as, the following
simple condition enables selection of the correct root:

€2, 0 < 0y;
€= (3.85)

€1, 0> 5*

Thickness stretch expansion

Unlike Casel andCase2, the cut-off frequencied{ arej-dependent; they are, according
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to (3.54), defined through

rkA§ tan <£) = 0. (3.86)
K

This is because for the transitional cagas neither zero novo in (3.54),, which makes the

associated family of cut-off frequencids, /-dependent. The classical asymptotic structure

1
tan(n(h) ~ 17 tan(’?@z) ~ 77727 v~ ) (387)
n
again fails to solve this problem. Similarly, to the thickseshear case, we introduce
A + en, and thentan(ngs) 0 + (14 ( 0 )? (3.88)
= — € = € .
nqz K 7, nqz /‘QAZ /‘QAZ 7,
from which it follows that
A K2 K2
U= — — Q=A4 - 2
v 77—|— € QAZU’ 4 T KEN ZAZW’
i 0 — K@ 2
Gt = bl thret =0 tan(ng; ) = tan(A$) + ken(1 + tan”(Ag)). (3.89)
4

If these expansions are inserted into the dispersionoel&i.79), we obtain a quadratic equation

for ¢, given by

A
e+ 254 Btan(Ag) — i(B + G@r?) =0, (3.90)

B-A— k2
—Atan(A¢ EE——
( an(Ad) + ) K A¢

Af
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where

1
A = (52 + KZQ(S + /@2(AZ)27 B = (1 + ql — ’UJQU}4)/(1 — ?)

If we denote the smaller root of the above equation,and the larger root as, the following

simple condition enables selection of the correct root:

€1, 0 < 0y;
€= (3.91)

€9, 0> 5*

3.2.2 Symmetric waves

The dispersion relation for the symmetric case is given by

%<F<q1>c2<q2> ~F(@)Q(a) + waQ(a) cot(nas) — waQ(ae) cot(na) = 0. (3.92)

Solving equation (3.52), we deduce that the relevant dur@duencies are given by

AS
A%, = nm, n=20,1,2,.. — kAZ, cot < St) =4. (3.93)
K

S

The symmetric fundamental mode is obtained from (3.98)enn = 0. The first family (3.93)
corresponds to the thickness shear resonance frequeYigitsat are independent 6f The sec-

ond family, which is implicitly defined by equation (3.93)s associated with thickness stretch
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resonance frequencies,. The symmetric fundamental mode does not change its asyimpto
structure due to the effect of the normal restraint on therdgces. Thus, the following long-

wave low-frequency expansion for the phase speed of fundiin@ode is appropriate

@2 . —Al — \/A% — 4((5 — Iig)AQ

20— r2) +O(n?), (3.94)

where

Ay = K2 — RPwawy + GRS + §10, Ny = K2wswy + §1 k0,

is valid for all values ob.

To proceed with an asymptotic analysis we again have to denseparately various possible
asymptotic balances ofwith respect to the scaled wave numbeas described by (3.55).
Casel nearly traction-free faces(m = 1):5 ~ n?

In this case, the expansion of frequency related to thickebear has the form

2 (As\2 2(1 + q1 — wowy) 1\ 4
07 = (A7) <K(1_$)Cot(%(/\i>+q1>'n +00"). (3.95)

whereA$ = nz. This expression is quite similar to the corresponding artée anti-symmetric

case, except replacingf with A7 andtan with —cot. The modes associated with thickness
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stretch have the following expansion

2cot(AS)(—1 — q1 + wowy) o
1

0 = (A3)* + (250 - TEESTE — K qQ) n* + O(nh), (3.96)

whereA; =k (n — 1) 7.
Case2 nearly fixed faces(m = —1):0 ~ n~2

The thickness shear and thickness stretch mode expansengiy similar to the anti-
symmetric case, except th&f must be replaced by; = nx, andA§ by Aj = knr.
Case3 transitional case(m = 0):d = dp ~ 1

The expansions for frequency within the vicinity of thickseshear and thickness stretch
modes are identical in form to those of the anti-symmetrgecavhich should be used with

slightly modified equations far. For the thickness shear modeis found from

A3 (As)2 A3 € 1+ le — WoWy
A cot(=2) — 3 ZHA (04 kAot (=) ) -+ ———=2 =0, (3.97
(/{300(/{) siHQ(%)>€+ 3(+ﬁ3co(ﬁ))n+ - , (3.97)
whereas for thickness stretch, (3.97) is replaced by
B-A—kK? A
(A cot(A]) + 7’{5) e+ = Bcot(A]) — i(B + oK) =0, (3.98)
Aj K1) Aj

in which A3 = nm, Aj satisfies the relation (3.93)
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3.3 Short-wave analysis

Through numerical experiment, we find thatas> oo, for harmonics the velocity of both anti-
symmetric and symmetric motions, for all modes, approatiegsof the associated shear wave
speed. While the velocity in fundamental modes approadtaof the associated surface wave
speedy,. Initially we focus on the behavior of fundamental modes.ifyition, it is helpful to
setv? = 02 + % to approximate the real behavior of short waves.

With the help of Mathematica, we are able to verify numehctiat

1 1
2wy —wgwy — 1= — >0, wf — — — waws >0, (3.99)
K K

for isotropic and transversely isotropic materials, sucBlass-Epoxy composite with any angle

6. It then follows that in the subsonic region< 1, according to (3.32),

¢ + ¢ = —(2w; — wywy — 0 _?) <0,
2 2 2 2 @2
616z = (1 =) (Wi — — —wqws) > 0, (3.100)

and we can infer that botly andg, are pure imaginary. This also means that

lim tanh(ng;) = lim coth(ng;) = lim tanh(ngs) = lim coth(ng,) = —1. (3.101)
n—00 n—00 n—00

n—00
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Therefore, for sufficiently short waves both the anti-syrimneand symmetric dispersion rela-
tions tend to the same limit, given by
510

ionazwa(Q(a) — Qa)) + 1775 (Fla) Hige) = Flax)H(a)

2

0[52

; (F(q1)Q(q2) — Fg2)Q(qr)) = 0. (3.102)

04251

+ 7 (H(q2) — H(q1)) +

Equation (3.102) is the secular equation for surface war@sggating in an elastic anisotropic
half-space with elastically restrained boundary condgidNumerically we find that as— oo,
there is no subsonic solution, so surface waves can not gatpalong a fixed boundary. So we
remark that for short-waves with finite asn — oo, the influence of the elastically restrained
boundaries within dispersion relations (3.43) and (3.45klatively minor. In fact, what we
study here is the nearly traction-free case (for exampl&erfollowing numerical experiment
0 = 100, which is relatively small compared tp= 1000), so that we keep only the first term
in (3.102) as leading order term, which can be recognizedha<lassical Rayleigh secular
equation (free faces) when it is simplified within the ispitocase. From the expressionyof
we deduce that in the short wave region the influence of tretieddly restrained boundariés
only determines how fast the wave speed is approaching #dissichl surface wave speed (free

faces). Similar to Rayleigh wave speeglfor isotropic case, the short-wave limit of velocity
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is the solution at the leading order of

i(Q(q1) — Qg2)) = 0. (3.103)

Substitutings® = v2 + % into (3.102), we obtaip which is rather complicated and we will not
show it here. We have verified numerically that fonalt (—1, 3), namelyx? > 2, ¢ is positive,
which means the velocity of surface wave grows as the wavebrughecreases. At some point

1+, the velocity reaches 1 and the surface wave degeneratea sttear wave. Wheh = 1,

G2 = i\/—l + 2wy, — g—z — wowy, ¢1 Vanishes, which makes (3.102) invalid. Thus, we have to
return back to original dispersion relations to determjneThe expansion for anti-symmetric

dispersion relation reads

0102 1 0.
(1 - —2) tan(n.qe) = 22, (3.104)

)
Qg Ty

1
(=14 ¢ + wy — wawy) — (=1 + wy — wowy)(1 + &—qu)nf
2

0109

[65Ke%)

+q(—1 4wy — w2w4)n*(7yf - ) cot(n.q2) = 0. (3.105)
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We still focus on the case when = a; = 1, §; = 0, §, = J. As ) grows larger,

T ~ 5\/—1 2w — 2w, (3.106)

Wa

3.4 Linear isotropic materials

The general results presented in Sections 3.2 and 3.3 wilb@ospecialized to a linear isotropic
elastic material. This case has previously been studiedidgghiimodyaro\et al. (2010) using a
procedure that is particularly developed for isotropicenials. We now show that our formulae
recover their results in this special case. For linearggtrmaterialg s = co6 = 0, by referring

back to (1.61), (3.31) and (3.48), we have

A 1 1 1
- _ S = — =4u(1—- 3.107
1 )\—|—2/,L7 W ,LL’ w3 )\+2M7 Wy lu( )\+2M)7 ( )
and
14+q — A+ 2
@ =-1 @=-1 w =4, k* = + ay (3.108)

In the long-wave analysis, regarding the dispersion m@tafior anti-symmetric modes given by

(3.53) in general, the specific isotropic form is given by

)
_5%@2 + (0 — 2)*tan(ngz) + 4q1¢2 tan(ng;) = 0. (3.109)
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Casel nearly traction-free faces(m = 1):5 ~ n?
By substituting (3.107) and (3.108) into the correspondjegeral results (3.60), (3.71) and

(3.73) for nearly traction-free faces, we obtain
4 (60 — 2)?

fundamental waves® = &, + (— — 0y —

3 5 ) n”? + O(nh). (3.110)

thickness shea? = (A%)? + # +1 |7+ 0nh. (3.111)
ktan(=2)Af
thickness stretck? = (A%)? + <250 — M%C(LAQ) + /3) n® + O(n*). (3.112)
2

Case2 nearly fixed faces(m = —1):0 ~ n2
By substituting (3.107) and (3.108) into the correspondjaegeral results (3.76) and (3.78)

for nearly fixed faces, we obtain

thickness shea? = (A%)% + n* — ;774 + O(n°). (3.113)
0
: 2 2 o 2R%(ADPN 4
thickness stretct)® = (A9)”* + ( * — ———— | n* + O(n"). (3.114)
0

Figure 3.3 demonstrates anti-symmetric modes for a lirsedrapic material with nearly traction-
free faces and nearly fixed faces. Both numerical and asytroptutions, either fundamental
mode, or thickness shear or thickness stretch, show vely ggieement over a large wave num-

ber region.
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Figure 3.3: Comparison of the asymptotic solutions withribmerical solutions (dashed lines)
for k = V3 and (a)d = 1074, (b) § = 10*.
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Case3 transitional case (m = 0):0 = jp ~ 1

Figure 3.4 displays anti-symmetric modes for a linear tgutr material in the transitional
case. We refer the reader to Figure 3.4 for the accurateghi@difrom the uniform asymptotic

expansion derived in equations (3.83) and (3.89).

D L L B B

0.5+ -

0.0 —
P L L L L
0.1 0.2 0.3 0.4 0.5

Ui

Figure 3.4: Comparison of uniform asymptotic solution amdherical solution (dashed lines)
whend = 3 andx = /3.

In the long-wave analysis, the dispersion relation for syrtrio modes given by (3.92) in

general is specialized into isotropic form

5
_5%@2 + (0% = 2)* cot(ngs) + 4g1¢2 cot(ng:) = 0. (3.115)

By substituting (3.107) and (3.108) into the correspondjegeral result (3.94) for fundamental
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mode, we obtain

(3.116)

K26 —4)+4  (k? —2)%(0k? — 4K% + 4)772

f I 2=
undamental mode 52 3(k2 — 0)3

Casel nearly traction-free faces(m = 1):5 ~ n?
By substituting (3.107) and (3.108) into the correspondjaegeral results (3.95) and (3.96)

for nearly traction-free faces, we obtain

8

— |+ 00Y. 3.117
mmx(%))n (n%) ( )

thickness shea? = (A$)? — (1 —

8 cot(AS)

I /12) n* +O(nh), (3.118)
2

thickness stretck® = (A5)? + (2(50 -

Case2 nearly fixed faces(m = —1):0 ~ n~2

The symmetric thickness shear and thickness stretch madesthe similar expansions as
in the anti-symmetric case, except thgtmust be replaced by; = nr, andA$ by Aj = kn.

In the short-wave analysis, we are able to readily dedude tha

k2 0% (0%, — 2)?
2(4 — 4r? — 6K20}, + K20% + 40%(3K2 — 2))

5 - 5y 72\ 1 _
1 -2+ 22 _ R | 2 A1
<a1,/ UR+a2 /-;2> 77+O(77 ), (3.119)

=2 _ =2
V" =vg +
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and this result is equivalent to (6.4) in Moukhomodiaetal. (2010); with (3.106) now given

by
VR =1

K

Ny ~ 0 (3.120)

The short wave behavior for an isotropic material wite: /3, in respect of anti-symmetric and
symmetric fundamental modes is presented in Figure 3.5dditian, the asymptotic expansion

(3.119) form a dashed line in the figure.

e e s A s e e
1.021 \ -

1.00

L N 4
0.98- N -

- N 4
0.96 AN R -

0.94- —==- -

0.92- -

0.90p, | . L L P L 1]

I I I .
200 400 600 800 100C

n

o

Figure 3.5: Anti-symmetric and symmetric fundamental ngodlBown together with surface
and shear wave speeds, as well as asymptotic expafssid®) (dashed line) fos = 100 and

K = /3.
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3.5 Transversely isotropic materials

In the previous chapter;; = 0 is symmetry plane and the fibre is in they, z,) plane, while
for the plate,z; = 0 is symmetry plane, with the fibre direction in tfie;, z3) plane. This
geometrical set-up ensures material symmetry and the géoglof dispersion relations. The
angle between the fibre and axis is¢, som = (cos 0, 0,sin#). When the anglé is 90°, the
problem is essentially reduced to that of an isotropic nteie use previous materials as
examples for numerical illustration of the variationfobn phase speed or frequency, and com-
pare asymptotic expansions of frequency with the numesiclaition. For a linear transversely

isotropic material¢;g = co6 = 0. By referring back to (1.71), (3.31) and (3.48), we have

—\ — acos®f 1 1
W) = ——————, Wy = — , W3 = — :
! A+ 2ur 2 pr + (pr — pr) cos? 0 ’ A+ 2ur

A 20)?
wy = A+ 27 + 2accos? 0 + 4(pp, — pr) cos? O 4 B cost 6 — (A + acos™6) , (3.121)
A+ 2urp
and
pr + (pr — pir) cos® 0
1+ § — wowy (44X + pr) + acos(20))?
T = 5 (3.122)
1—+ (2 = pr 4 3pr — (pr — pr) cos(20))

We study Glass-Epoxy composite. From (3.322¢ know thatx changes witl.
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3.5.1 Long wave analysis for anti-symmetric modes

To avoid redundant and similar derivation to that presemt@devious sections, we only presents
two cases for anti-symmetric modes in the long wave analygige the analysis for symmetric
modes are omitted.

Casel nearly traction-free faces(m = 1):6 ~ n?

Figure 3.6 illustratesan (A—;) in (3.70) against for a transversely isotropic material with
nearly traction-free faces. In the long wave region, fon-aptnmetric wavestan (%) in
(3.70) vanishes to zero at certain valiggsee Figure 3.6)4 ~ %), which means that the cut-off
frequency of the thickness shear brangsh)(coincides with that of thickness stretch braneh)(
Within a certain interval neafy, the classical asymptotic expansion fails to provide aateur
approximation to the numerical solution becaugsen (3.70) is too large or does not exist. We
focus on the low frequency region< 2 < 10, where only the first three harmonics exist. In this
region, itis only whem\{ = 37 thattan (%) vanishes. Figure 3.7 describes the anti-symmetric
wave solutions for a transversely isotropic material wiglanty traction-free faces artd= 15°.
Through our numerical calculation, it is found that foe [0, 20°] or 6 € [70°,90°], the classical

asymptotic expansion gives a very good approximation totimerical solution, see Figure 3.7.

In the interval) € [20°, 70°], a new asymptotic expansion based on the method used tdigstab
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Figure 3.62tan(%) vanishes afl, = 42.019° andA{ = 3.

qob! L

Figure 3.7: Comparison of the asymptotic solutions withribmerical solutions (dashed lines)
for 6 = 10~* andf = 15°.
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(3.82) is needed. For thickness shear, we note that

3
nqg = 571’ + €, and thentan(nql) = — COt(€)7

_ _ 3 ¢Q1
Q=wn=\/af —qm=grte— oo,

R T
and then
tan(nge) = tan( 3%24/; 26).
Similarly, for the thickness stretch expansion, we dedbeé t
ng = T+ €, tan(ngy) = tan(e), Q=m+¢€— Q(gQi J n?,
G = ATt | 0K n, tan(ng;) = tan(k(m + ¢€)). (3.124)

n 2k(T + €)

The quadratic equations, analogous to (3.84), are too &rdéor brevity we will not show them
here. Figure 3.8 demonstrates the anti-symmetric waveigptufor a transversely isotropic
material with nearly traction-free faces afé- 45°, and it can be seen that the new asymptotic
expansions (3.123) and (3.124) give much better approiem&bd numerical solution (dashed

lines) than classical ones.
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10l [ [ [ [ [ ]

Figure 3.8: Comparison of both classical and new asympsaofiations with the numerical so-
lutions (dashed lines) far = 10~* andéd = 45°.

300 T — T T

10p L L L L L L L L L L L L L L L L L L |

Figure 3.9: Comparison of the asymptotic solutions withribeerical solutions (dashed lines)
for 0 =4 andf = 15°.
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Case2 transitional case(m = 0):0 ~ 1
Whend = 15°, 4, = 3.81, we set§ = 4. A transversely isotropic material in transitional
case and) = 15° is studied in Figure 3.9 and it can be inferred that the unifasymptotic

expansion for anti-symmetric modes again works well to @el such material.

3.5.2 Short wave

In the short wave region, the reader is referred to Figur® ®d the variation of), against,

and it can be inferred that. decreases asincreases. The reader is also referred to Figure 3.11
for the variation ofv, againstd, and it can be deduced thgt decreases slowly akincreases.
For a Glass-Epoxy composite with= 45° in transitional case, the short wave behavior of both
anti-symmetric and symmetric fundamental modes is dematestin Figure 3.12. The dashed
line represents the asymptotic expansion, which showsllert@pproximation to numerical

solution in the short wave region.
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Figure 3.10m, agains®) whenj = 100.
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Figure 3.11%, agains® for a transversely isotropic elastic solids.
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Figure 3.12: Anti-symmetric and symmetric fundamental eeodhown together with surface
and shear wave speeds, as well as asymptotic expansiore(ast) foro = 100 andd = 45°.



Chapter 4

Waves propagating in a pre-stressed

Incompressible plate with ERBC

In this chapter, we focus on wave propagation in a pre-sttesgompressible plate with elasti-
cally restrained boundary conditions. The Stroh formalisavery effective tool to deal with a

pre-stressed material, with the effect of pre-stress pm@ted in the Stroh matrix. By substitut-
ing the equations of motion with pre-stressed elementsti@eelastically restrained boundary
conditions discussed in Chapter 3, the dispersion relst@mea derived. Similarly to Chapter 3,
asymptotic expansions of wave frequency or speed are esttabdifor a neo-Hookean material
to predict its behavior in both the long wave and short wageores. Numerical analysis shows
that our asymptotic schemes are very successful in prayigocurate approximations of wave

speed or frequency over a wider range of wave number thantinéggéxpected.

123
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4.1 Derivation of dispersion relation

We again use the Stroh formalism to solve the problem of wawgegpation in incompress-
ible pre-stressed plates with ERBC. The basic equationsdwe propagation in a pre-stressed
incompressible elastic plate can be found in Rogerson ar{@d945) or Rogerson (1997). How-
ever, within our analysis, use is made of a different methioelStroh formalism. Stroh formal-
ism has been used for pre-stressed media before, see CRgd®88). Similar to the previous

chapter, let the incremental traction on the upper surfacgien by

t = —ikl(kxy)elk@ =0, (4.1)

and according tol(36), its components can be simplified into the linearized form

ti = AgipUi, + Dug; — p e, ON Ty = Eh. (4.2)

The incremental displacemeatx, z,) is assumed to have the general form

w(zy, 20) = z(kay)e*@ =10, (4.3)
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The incremental pressugé(z;, x2) is assumed to have the form

p*(x1,x0) = kP(kxg)eik(“’“t). (4.4)

Letm = (1,0), n = (0,1), and

T = Asiok + P(n @ n), Ry, = Ay, +p(n @m), Qi = Ajiip +p(m @ m). (4.5)

Because of the pairwise symmetry property4f;, in (1.33), we note thatly = 151, Q12 =

(221. Making use of £.5), we can derive from4(2) and ¢.1) that

—il(kzo) = Agiorz' (kxo) + 1Agirz(kxo) + p(i(z(kz) - n)m + (2 (kzs) - n)n) — P(kxy)n

= T2 (kas) + iR z(kxy) — P(kxy)n, (4.6)

which implies that

—ll/(k?l'g) = TZ”(]{?I'Q) + iRTZ/(k’ZL'Q) — P,(k?l'g)'n, (47)

We can now establish fronmi @2) that

iz1(kxg) + 2z5(kxe) = 0, i2](kxo) + 25 (kxg) = 0. (4.8)
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With the help of {.8), the linearized equations of motion can be written as

T2"(kxy) +i(R+ RT) 2 (kxy) — (Q — pov*l)z(kxy) — iP(kao)m — P'(kxy)n = 0. (4.9)

It is now possible to substitutd.() into (4.9), to deduce that

U(kxo) = R2'(kxy) +i(Q — pov?l)z(kxy) — P(kas)m. (4.10)

Equation {.6) may now be employed to establish that

2/ (kxy) = —iT 'R z(kay) — iT ' (kas) + P(kxy)T 'n, (4.11)

which on substituting into4(10), enables us to conclude that

U(kxy) = —i(RT'RT — Q + pov?I) z(kxy) —iRT'l(kay) + P(kxy)(RT 'n —m). (4.12)

Equation (4.8) can be rewritten as

im - z(kxy) + n - 2'(kxg) = 0. (4.13)

Multiplying both sides of equationt(11) with the vectorn on the left hand side, and making



WAVES PROPAGATING IN A PRE-STRESSED INCOMPRESSIBLE PLATE 127

use of ¢.13), we obtain

P(kxy) = it((—m +nT'RY) - z(kxy) + nT " - 1(kas)), (4.14)

wherer = ﬁ On substituting4.14) into (4.11) and ¢.12), and using the definition of the

tensor product, we obtain

2 (kxy) =i(~T'RT + 7(T"'n) @ (—m + nT'R"))z(kxy)

H(=T" +7(T7'n) @ (nT~ ) (kxy), (4.15)

and
U(kzy) =i(—=RT'RT + Q — pov*I + 7(RT 'n —m) ® (—m +nT 'RT))z(kx,)
H(=RT '+ 7(RT 'n —m) @ (nT )l (kxs). (4.16)
The two equations (4.15) and (4.16) may now be incorporatiedthe form

z(kxs) Z'(kxy) M Ny
iN _ N = , (4.17)

l(k’l’z) l/(k'.l’z) N3 — p0U2[ Nir
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where

Ny = -T'R" + 7(T"'n) ® (—m +nT'R"),
Ny=-T'4+7(T'n)® (nT ') = N],
Ny =—RT'R" + Q4+ 7(RT'n—m)® (—m +nT 'R").

Making use of Mathematica, we obtain

Tio—Ru  _Ra -1
Ti1 T11 T
Nl - 7N2 = ;
—1 0 0 0

R _
_(Tqun) — Qu +2Rp — Ty iz 7151{11)5121 + Q2 — Ry

N3:

(Thi2—R11)Ro1 o _ R3
e+ Qi — Ry T

With (1.55), the matrice%’, R, () given by {@.5), are represented in the form

A2 0 0 0 N+ 2-G6, 0

0 2022%2—4, A 2—65 0 0 A2

128

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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A2 4+ % — 20, 0
N3 -
0 N — A2\ 72— 5y)?
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(4.23)

If we now leto? = pyv?, Mathematica may again be used to obtain the eigenvalaad the

corresponding eigenvectaf? andb” of Stroh matrixV, thus

Q=i @=A02=X ¢3=—q, Q1= —@o,

32 1 01Uz
R RO
Ul bl )
q1 1
< _U
a? = )‘_2 L b — 22Uz
U b b
2 1 1
a2
32 1 — 0l
a® = _Z)}_ ’ b3 Uy :
1
—q1 1
< U
a® = )‘_2 L b4 — 22Uz
U b b
2 1 1
q2

where

(4.24)

(4.25)

(4.26)
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It should be noted that (4.24)lescribes the value @f wheno > \. Wheno < ),

¢ = iIAV A2 — 72, Go = igp = = AV A2 — 2, (4.27)

In a similar manner to that employed in the previous chapffégr substituting three equations
(3.26)-(3.28), together with (4.25), into the elasticaltgtrained boundary condition (3.16), we

finally arrive at the dispersion relation. The dispersidatren for anti-symmetric motion is

U1 (5152;\4 R 51525\4 U2 R
— tanh —_— — —) tanh
( 041042q2U2 + nQUleqQ) an (7791)+Q1(772U1U2 041CY2U1) anh(ng»)
,042515\2 1 1 N N ,&152(]15\2 1 1
—i — 4+ — ) tanh tanh —i—(—=+ =) =0, 4.28
» (U1 Uz) (ng1) tanh(gs) ”~ (U1 UQ) (4.28)

with d; + d3 = d» + dy = 0 (an analogue of our result at the end of Section 3.1) and

o2 sinh (kg ) ~ )2 sinh(kgax2)

z(kwz) = di - +dy T : (4.29)
Uy (ki U | Lk
q1 cosh (kg1 w2) L cosh(kgy)

while the dispersion relation in symmetric mode is

U1 51(525\4 “ 51525\4 U2 n
- th 2% aias—2) coth
(—a1ay ol + 772U1U2q2) coth(ng:) + Q1(772U1U2 (e31e?; UI)CO (ng2)
aN 11 SN2, 1 1
_aady coth(ndr) coth(ngs) — 1282 (=~ 4 ) =, (4.30)

SR — _
n U1 UQ) ngs Ul U2
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with d; — d3 = dy — ds = 0 (an analogue of our result at the end of Section 3.1) and

_ )2 cosh (kg xs) Y cosh(kgaxs)
Z(kl'g) = le + d2ﬁ
! ¢1 sinh (kg x2) 2 —q% sinh(kgax2)

(4.31)

We still focus on the special case when= a, = 1, §; = 0, d, = 4. For anti-symmetric

waves, whem < ), the dispersion relation becomes
2 : 2 ~ 5 32
~U} tanh(n) + igUf tanh(ndz) — - N(Us + Us) = 0 (4.32)
whenv > ), the dispersion relation becomes
2 2 5 32
Ui tanh(n) + ¢2U; tan(ngs) + 5)\ (Uy + Usy) = 0. (4.33)
For symmetric waves, whan< ), the dispersion relation becomes
2 : 2 ~ 5_2
—U5 coth(n) + igaUy coth(ngs) — ;)\ (U + Uy) = 0; (4.34)
whenv > ), the dispersion relation becomes

0 -
U? coth(n) + q2Us3 cot(ngs) + ;)\Q(Ul + Uy) = 0. (4.35)
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To derive an asymptotic expansion, we firstly correlate thgmitudes of; and:

§ = 6on®™, 6o = O(1). (4.36)

4.2 Long-wave analysis

Let us fix the frequency? = v7n. The cut-off frequency for anti-symmetric motion is given
by % with the cut-off frequency for symmetric motid%i. Let A = 0.8 andg, = 1 in the
subsequent numerical analysis. Numerically we find that > andd ~ 1 have almost the
same effect on the asymptotic long wave behavior, so we adyd on the former case. Also,
according to our numerical results, the fundamental modesreore sensitive to variation in
a2 than are harmonics. Firstly, the fundamental modes for Bothsymmetric and symmetric
waves only exist whew, € [—o0,2.6]; secondly, whers, € [—o0,0.6], the fundamental
mode for anti-symmetric wave starts to exist from a certaisitive valuer, instead of0, and

no becomes larger a8, decreases; thirdly, the intersection point of the fundamalenode for

symmetric waves and theaxis moves upward as decreases.

4.2.1 Anti-symmetric waves

Casel nearly traction-free faces(m = 1):5 ~ n?

There are two asymptotic regimes to balance the dispersiatian in this case. The first
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one is defined by

tanh(n) ~ 7, tanh(ng) ~ —n, v~ 1, (4.37)

and associated with low-frequency fundamental mode. Usirig the value of, and dispersion
relation whernv < )\, the asymptotic approximation for the phase speed is giyen b

(NG5 — 1) (A%G9 — 1)((\%G2 — 1)( N5y — 2)% 4+ 6A2(A\%5y — 3))

=2 _ 2
U—)\—(SO_ 5\2 + 35\2 U

while a spurious root? = A% — % has been ignored. This asymptotic expansion shows exteller
agreement with the numerical solution only fore [0.6, 2.6].
The second asymptotic regime is related to the harmonicsrithd condition that > ), and

following traditional method, is defined by

1
tanh(n) ~ 7, tan(ng) ~ v, U~ —. (4.38)
n
The asymptotic approximation for the phase speed is given by
a 33 2= 92
oM X o (Noa—2) 2. (4.39)

N Toae T T (e

If we try a similar method used for the corresponding partamsversely isotropic material
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Figure 4.1: Comparison of asymptotic solutions with the etinal solutions (dashed lines) for
fundamental modes of anti-symmetric (lower lines) and swtnim (upper lines) waves when

5=10"* A= 0.8 andag, = 1.
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Figure 4.2: Comparison of both traditional and new (thicie)i asymptotic solutions with the
numerical solutions (dashed line) for first harmonic whea 104, A = 0.8 anda, = 1.
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analysis, we will define

NS+ € NS + € 3?2
= t = — cot O="1"4 .
q2 77 9 an(”Q2) COo (6)7 A 2<A(11 6)

(4.40)

After solving a quadratic equation and choosing the comeate get a better approach to nu-
merical solution than traditional asymptotic result, sepiFe 4.2.
Case2 nearly fixed faces(m = —1):0 ~ 2

The asymptotic regime is related to harmonics under theitiondhats > ), and is defined

by
VI |
tanh(n) ~n, tan(ng) ~ v°, v ~ —. (4.41)
n
The asymptotic approximation for the phase speed in this isagiven by
a 23
=R, A (4.42)

N o

4.2.2 Symmetric waves

Casel nearly traction-free faces(m = 1):5 ~ n?
In this case there are two asymptotic regimes to balanceisperdion relation. The first is

associated with low-frequency fundamental mode witht \. The appropriate leading order
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28

Figure 4.3. Comparison of asymptotic solution with the ntioa solutions (dashed line) for

first harmonic whes = 10*, A = 0.8 andag, = 1.
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Figure 4.4: Anti-symmetric (dashed lines) and symmetmdi¢dines) solutions fov = 1074,

A= 0.8andg, = 1.



WAVES PROPAGATING IN A PRE-STRESSED INCOMPRESSIBLE PLATE 137

asymptotic approximation for the phase speed is given by

(Vo —2)° ,

- 3
172:)\2+T_262_5_ m,

A2 32
while the spurious root? = \? — % has again been ignored. With Mathematica, it can be
verified that the asymptotic approximation for the phasedpe fundamental mode is the same
whenv > \. This asymptotic expansion shows excellent predictiorafovalues ofz, that we
have tried in the numerical experiment. The second asymp&gime is related to harmonics
under the condition that > \. The asymptotic approximation for the phase speed is giyen b

AN

="l .
x Toa

(4.43)

4.3 Short-wave analysis

From Figure 4.4, as is increasing, all harmonics of both anti-symmetric and syatric waves
approach\, while the fundamental modes meetjatfrom both sides and stabilize themselves

atv = v,, which is quite different from the short wave behavior in glnevious chapter.
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4.3.1 Fundamental modes

It is simple to show that

lim tanh(n) = lim coth(n) =1, lim tanh(ngs) = lim coth(ngs) = —1, (4.44)
n—00 n—00

n—00 nN—00

so both anti-symmetric and symmetric dispersion relatiend to the same limit at = v,., thus

from (4.32)-(4.35) we deduce that in the limit— co
U +igUs = 0, (4.45)

which by solving we obtai,..
When\ = 0.8, tanh(—ng,) < tanh(n), asn increasestanh(n) firstly approaches the limit
1; asn is even larger at),, tanh(—ng,) also approaches the limit then (4.45) is satisfied.
. , oy 3 .
Numerically we find that has little influence om, andn, WS Whena, is around

1.56, v, = X (see Figure 4.5) angh = 0, fundamental modes approach= \ as harmonics

do, which means they meet@at = oo, as shown in Figure 4.6. It is remarked that the plateau
in Figure 4.5 is not flat and, ~ 1.56 is its peak point, which is the reason why the blow up

behaviour only occurs at, ~ 1.56 in Figure 4.6.
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Figure 4.5:5, againstz, when\ = 0.8.
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. ‘ ‘ - 5,

Figure 4.6, againsiz, when) = 0.8.
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4.3.2 Harmonics

From the numerical results, it would seem thatas oo for all modes of both anti-symmetric
and symmetric motiom — ). Thus,q is infinitesimal and could be regarded@s~ O(n~1).
We find that provided is not too large, the influence of elastically restrainedimtaries is small

for short waves, which means~ 12 andj ~ 1 share the same asymptotic expansion of phase

speed with free faces (Rogerson and Fu 1995).

Anti-symmetric waves

To balance the dispersion relation, we set(nq,) ~ 1, and it is assumed that

ngy = A} + ¢e, tan(ngs) = —é. (4.46)
After substituting these into the dispersion relation, W&am
6= Aggf‘:; g (4.47)
and the asymptotic expansion of phase speed
g2y A 2(A‘1‘)29262 ) (4.48)
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Symmetric waves

Following the same procedure, we obtain the asymptoticresipa of phase speed

$)2 $\2(Y2= 92
7% =22+ (/}\12 ez ) 9 22 s (4.49)

Both the anti-symmetric and symmetric approximationsgtahd (4.49) are shown to provide

excellent short wave agreement with the numerical solutidnigure 4.7.



WAVES PROPAGATING IN A PRE-STRESSED INCOMPRESSIBLE PLATE 142

30—

25F

2.0

1.0

0.5

oob—v

(b)

Figure 4.7: Comparison of the asymptotic solutions withrthemerical solutions (dashed lines)
for first harmonic of anti-symmetric (a) and symmetric (oeswhery = 1074, A = 0.8 and
gy = 1.
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