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ABSTRACT 

Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of spinal cord 

motor neurons, muscle atrophy and infantile death or severe disability. It is caused by severe reduction of the 

ubiquitously expressed survival motor neuron (SMN) protein, due to loss of the SMN1 gene. This would be 

completely incompatible with survival without the presence of a quasi-identical duplicated gene, SMN2, specific 

to humans. SMN2 harbours a silent point mutation which favours the production of transcripts lacking exon 7 

and a rapidly degraded non-functional SMNΔ7 protein, but from which functional full length (FL) SMN protein is 

produced at very low levels (~10%). Since the seminal discovery of the SMA-causing gene in 1995, research 

has focused on the development of various SMN replacement strategies culminating, in December 2016, in the 

approval of the first precise molecularly targeted therapy for SMA (nusinersen), and a pivotal proof of principle 

that therapeutic antisense oligonucleotide (ASO) treatment can effectively target the central nervous system 

(CNS) to treat neurological and neuromuscular disease. Nusinersen is a steric block ASO that binds the SMN2 

mRNA and promotes exon 7 inclusion and thus increases FL SMN expression.  Here, we consider the 

implications of this therapeutic landmark for SMA therapeutics and consider how future developments will need 

to address the challenges of delivering ASO therapies to the CNS, with appropriate efficiency and activity, and 

how SMN-based therapy should be used in combination with complementary strategies to provide an integrated 

approach to treat CNS and peripheral pathologies in SMA.  
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INTRODUCTION 

Spinal muscular atrophy (SMA) is one of the commonest genetic causes of death in infancy, with an incidence of 

1:6000-10,000 births (1, 2). Autosomal recessive inheritance of inactivating mutations, in most cases deletion, of 

the survival motor neuron 1 (SMN1) gene (3), which produces the ubiquitously expressed SMN protein, leads to 

death of alpha motor neurons in the ventral horn of the spinal cord, denervation and muscle atrophy (2, 4). 

However, there is now significant evidence supporting additional functionally significant pathology in heart (5–7), 

liver (8), spleen (9, 10), gastrointestinal tract (11), pancreas (12), brain (13), vasculature (14), Schwann cells 

(15), lung (16) and bone (17). Complete loss of the SMN protein is embryonic lethal (18) but in humans, an 

evolutionarily recent duplication has given rise to a second gene, SMN2, identical to SMN1 apart from 5 

nucleotides (3, 19–22). Four of these single-nucleotide changes are inconsequential to the function of SMN2, in 

contrast to a critical C to T substitution at position 6 of exon 7, which causes aberrant splicing of the SMN 

transcript (20, 23). Whether inducing loss of an exon splicing enhancer (ESE) or the gain of an exon splicing 

silencer (ESS) (24, 25), this nucleotide change leads to skipping of exon 7 in ~90% of the produced mRNA 

transcripts, and to a non-functional and rapidly degraded SMNΔ7 protein (3). The ~10% of full-length (FL) SMN 

protein produced by SMN2 is fully functional and sufficient to allow survival in the absence of FL SMN protein 

from the SMN1 gene (Fig. 1A). Given that the number of copies of SMN2 varies between individuals, SMN2 is a 

critical determinant of disease severity whereby the number of copies defines the amount of FL SMN generated 

and establishes a dose-dependent relationship with the severity of SMA pathology (3, 26). This complexity at the 

genomic level thus results in a clinically heterogeneous disease classified by age of onset and disease severity. 

Type 0 is detected in utero and is the most severe form of SMA (27, 28) while Type IV has an adult onset and is 

the mildest form of the disease (29). Types I, II and III account for the majority of cases and have a childhood 

onset, with Type I patients typically dying before the age of 2, Type II patients being unable to walk and living 

until adulthood and Type III patients reaching a normal life expectancy albeit with variable ambulatory 

deficiencies (30, 31). 

 

Since the discovery of the SMA-causing gene in 1995, intensive effort has been invested in the development of 

gene augmentation approaches such as delivering FL SMN via an adeno-associated virus (AAV) or promoting 

production of FL SMN from SMN2 via histone deacetylase inhibitors (HDACi) or small molecules, all of which 

have been actively evaluated in clinical trials (Table 1). These strategies show promise and have been expertly 
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reviewed by others (32, 33). In December 2016, however, the therapeutic landscape for SMA drastically 

changed following the US Food and Drug Administration (FDA) approval of nusinersen (Spinraza™), also known 

as ISIS-SMNRx or ISIS 396443. Nusinersen is an antisense oligonucleotide (ASO) designed to promote SMN2 

exon 7 inclusion (Fig. 1B), which was developed by Ionis Pharmaceuticals and taken into clinical trial in 

partnership with Biogen (34, 35). On April 21st 2017, the European Medicines Agency (EMA) announced that 

the Committee for Medicinal Products for Human Use (CHMP) recommended approval of nusinersen for SMA 

patients in the European Union (EU). Nusinersen has thus quickly become the new standard of care benchmark 

against which new treatments for SMA will be compared and the data from published and forthcoming clinical 

trials will rapidly establish the successes and limitations of this approach, guiding future therapeutic endeavours. 

Here, we discuss what can be learnt from the nusinersen clinical trial data (34, 35) as we move forward in the 

development of next generation treatment strategies, with a particular emphasis on integrating a range of 

different therapeutic approaches that will benefit patients with all Types of SMA. 

 

NUSINERSEN: FROM MOLECULAR TARGET TO CLINICAL TRIALS 

The road to the first FDA-approved ASO therapy for SMA was paved by numerous research groups and years of 

detailed pre-clinical work, which has been previously expertly described (36–38). This concerted effort led to the 

identification of an intron splicing silencer N1 (ISS-N1) sequence in intron 7 of the SMN2 gene, which favours 

skipping of exon 7 and thus production of SMNΔ7 (39, 40). Experiments further demonstrated that antagonizing 

the inhibitory ISS-N1 sequence using ASOs, small nucleotide sequences designed to bind a specific pre-mRNA 

sequence and modify its pre-mRNA splicing (38), promotes exon 7 inclusion and the production of FL SMN (Fig. 

1B) as well as significantly extending survival in a severe SMA mouse model (39, 41). The transition from pre-

clinical to clinical studies was then rapidly led by Ionis Pharmaceuticals and Biogen and to date, results from 

phase 1 and 2 studies have been published (34, 35).  

 

The purpose of the phase 1 trial was primarily to determine the safety, tolerability and pharmacokinetics of a 

single intrathecal dose of nusinersen (34). A total of 28 Type II and III SMA patients were divided in 4 groups 

that received a single dose of the drug (1, 3, 6 or 9 mg).  Nusinersen was administered directly to the 

cerebrospinal fluid (CSF) intrathecally, as its chemistry (2'-O-(2-methoxyethyl) (2'-MOE)) does not allow it to 

cross the blood brain barrier (BBB) and penetrate the central nervous system (CNS) when administered 
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systemically (e.g. intravenous, subcutaneous) (42). Nusinersen was deemed safe and well tolerated as no 

serious adverse events (AEs) were reported and all participants remained in the study. The presence of 

nusinersen could be detected by a modified ELISA method, in both plasma (> 24 hrs) and CSF (7 days), 

following the single dose in all groups and in the 9 mg group and the drug could even be measured in the CSF 

29 days post-dose. To evaluate activity of the drug, SMN protein levels were assessed in CSF 9-14 months after 

the single-dose and showed that SMN levels more than doubled in the 6 and 9 mg groups. Given that small 

incremental increases in SMN expression would be predicted to lead to drastic improvements in neuromuscular 

function and lifespan (26, 43), the impact of nusinersen on SMN levels was considered to be a strong predictor 

of a potential positive effect on functional outcomes for SMA patients if the drug could be given earlier. Clinical 

assessment of participants revealed improvement in participants from the 9 mg group when compared to their 

baseline evaluations. Combined, the phase 2 study defined nusinersen as being safe and well-tolerated by Type 

II and III SMA patients as well as showing long-lasting functional activity in a dose-dependent manner (Table 2). 

Although unblinded and not placebo-controlled this study was important in laying the foundations for ongoing 

phase II and III nusinersen clinical trials in SMA patients. 

 

A further open-label phase 2 study aimed at evaluating the safety and tolerability, pharmacokinetics and 

functional activity of multiple doses of intrathecal nusinersen in Type I SMA patients (35). In this case, it was 

performed with a historical control group, using data compiled from a published natural history case series 

(PNCR) (44). Twenty participants were divided into 2 groups, the first receiving an escalating dose of 6 to 12 mg 

while the second followed the same dosing schedule with a 12 mg dose from the outset. Here, all participants 

reported mild and moderate AEs while 80% reported serious AEs (77 in total), which were deemed to be a 

consequence of the natural history of the disease and not of the drug itself. Importantly, the drug could be 

detected in the CSF up to 168 days after dosing. For most participants, motor function assessment scores 

increased during the dosing regimen while the PNCR data shows a slow decline during disease progression. 

Survival was also significantly improved such that, at time of publication, most subjects were surviving without 

need of ventilation, in contrast with data from the PNCR study where median survival is approximately 10 

months. Of note, one participant in the 6-12 mg group and two participants in the 12 mg group died during the 

trial. This provided an unprecedented opportunity to validate nusinersen target engagement with analysis of 

SMN protein and mRNA demonstrating the presence of the drug in neuronal cells as well as an increase in FL 
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SMN2 throughout the CNS compared to similar tissues obtained from non-SMA and untreated SMA infants. 

Thus, despite the limitations of the open-label trial design and the use of historical rather than in trial control 

subjects, this phase II nusinersen clinical trial demonstrates incontestable activity and functional benefits of the 

drug (Table 3). However, the death of 3 out of 20 participants (15%), and evidence of incomplete restoration of 

motor function, both features of subjects with established disease, highlights the need for further trials to 

specifically address the timing of nusinersen treatment for maximal benefit. Indeed, this is currently being 

investigated in a phase 2 study aimed at treating pre-symptomatic patients (NTC02386553) alongside a phase 3 

phase 3 randomized, double-blind and sham-controlled study in later-onset SMA patients (> 6 months) 

NCT02292537).   

 

BEYOND NUSINERSEN: CONSIDERATIONS AS WE MOVE FORWARD WITH ASO THERAPIES 

The recent success of nusinersen is a strong proof-of-principle that ASOs can be used to target the CNS for 

SMA therapy and opens the door for applications in other neurodegenerative and neuromuscular diseases. 

However, while the results obtained in the nusinersen clinical trials are impressive and much needed within the 

community, they do point to several issues that need to be carefully considered as we proceed in the evaluation 

of second generation ASO strategies for SMA. Indeed, regardless of the approach utilized, improving efficiency 

and delivery of the ISS-N1 ASO is essential to reduce required dose as well as drug- and procedure-related AEs 

reported by the nusinersen clinical trials. 

 

As mentioned previously, the ASO designed by Ionis Pharmaceuticals is in a 2'-MOE chemistry that requires that 

it be delivered directly to the CNS due to its inability to cross the BBB. This is carried out via a sensitive, invasive 

and technically difficult lumbar puncture (LP) that leads to severe post-LP headaches in some patients for up to 

one week. It is therefore critical that future development of ASOs incorporates novel methodologies to improve 

their capability to reach the motor neurons in spinal cord and brain, either via different chemistries or the use of 

vehicles to aid in their trans-BBB and intracellular delivery. WAVE Life Sciences™ is for example evaluating the 

efficiency of stereochemically optimised ASOs, whereby they eliminate the stereoisomer heterogeneity and 

variable activity that occurs in typical ASO preparation, thus rendering a purer and potentially more powerful 

drug. While they are currently in the pre-clinical discovery phase for SMN2 ASOs, results from these 

experiments will be awaited with interest. Another approach to improve activity and delivery of ASOs is to link 
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them to a cell-penetrating peptide (CPP) (45), which not only promotes easier access to cellular compartments 

such as the nucleus, but also allows for a less invasive intravenous systemic administration due to the increased 

stability they confer to ASOs (46). We have recently combined the SMN2 ISS-N1 ASO in a neutral 

phosphorodiamidate morpholino (PMO) chemistry to a CPP termed peptide nucleic acids/PMO internalization 

peptide 6a (Pip6a) and demonstrated that treatment of neonatal SMA pups via a facial vein injection results in a 

dramatic rescue in survival accompanied by improvement in neuromuscular phenotype (47). Importantly, we 

show that Pip6a-PMO is able to reach and upregulate FL SMN expression to therapeutic levels in spinal cord, 

brain and skeletal muscle. Sarepta Therapeutics™ is also investing in the development of CPPs to deliver ASOs 

and have recently reported significant benefits in heart and skeletal muscle of a canine model of Duchenne 

muscular dystrophy following the intravenous injection of a B peptide-PMO (48). Other strategies to modulate 

ASO formulation and delivery such as microparticles, nanoparticles, or injectable implants could hold extreme 

promise (49), although, to the best of our knowledge, are not yet initiated for SMA therapy.  

 

In addition, ASOs targeted to alternate regulatory regions of SMN2 are also currently being investigated. Indeed, 

a long non-coding RNA (lncRNA), termed SMN-AS1, has recently been identified that originates from the SMN2 

antisense strand and promotes inhibition of SMN2 transcription, particularly in neuronal cells (50). Inactivating 

the SMN-AS1 sequence with a targeted ASO resulted in increased SMN expression and crucially, combination 

of the SMN-AS1 ASO with the ISS-N1 ASO had an additive effect on SMN levels, significantly increasing the 

lifespan of severe SMA mice (50). RaNA Therapeutics™ have also published promising data showing that RN-

005, a mixmer ASO composed of locked nucleic acid (LNA)-modified nucleotides interspersed with 2’-O-methyl 

nucleotides that binds to SMN-AS1 lncRNA, increases FL SMN expression in patient fibroblasts and induced 

pluripotent cell (iPSC)-derived motor neurons (51). They also demonstrate the additive activity of SMN-AS1 

inactivation and the ISS-N1 ASO on FL SMN levels in neuronal cells (51). Up-to-date information reveals that 

their product is currently still in the pre-clinical discovery phase. 

 

The strategies discussed in this section were focused on those not yet implemented in clinical trials. As 

discussed above, several SMN1- and SMN2-targeting compounds are currently being evaluated in patients 

(Table 1). As these promising drugs eventually obtain regulatory approval for patient use, how their delivery 

route, activity and efficiency compare to those of nusinersen, will significantly impact and change, yet again, the 
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SMA therapeutic landscape. In light of the pre-clinical observations that combinatorial approaches can have 

additive effects, the evaluation of the therapeutic potential of a "cocktail" of treatments composed of SMN2 

transcription promoting molecules (e.g. RO7034067), SMN1 augmentation technologies (e.g. AAV9-SMN1), 

nusinersen and second generation ASO strategies will be of utmost importance to exploit the optimal benefits 

from each strategy (Fig. 2). Finally, the push from several advocacy groups for pre-natal screening of SMA, 

highlighted by the recent announcement that the U.S. Department of Health and Human Services will be 

reviewing an application for the inclusion of SMA on their Recommended Uniform Screening Panel (RUSP), also 

points to imminent changes to the therapeutic landscape. Early diagnosis may require adapted doses and 

delivery methods of SMN-dependent therapies and result in a greater population of mildly affected SMA patients 

that will require long-term care management and may develop non-CNS symptoms over time. 

 

AN INTEGRATED THERAPEUTIC APPROACH FOR SMA  

When discussing combinatorial therapies, it is important that we also consider the use of SMN-specific therapies 

in combination with SMN-independent strategies. This has recently been reviewed in the context of promising 

therapeutic targets that are still in pre-clinical stages (Bowerman et al., Disease Models and Mechanisms). 

However, the leading non-SMN compound is from Cytokinetics™, a fast skeletal troponin activator (CK-

2127107) designed with the intent of improving muscle function and performance.  In a rat model of heart failure 

that displays skeletal muscle atrophy, oral administration of CK-2127107 improved exercise tolerance and 

performance (52). CK-2127107 has already been evaluated in a phase 1 clinical trial (and is being assessed in 

an ongoing phase 2 study (NCT02644668)). While this muscle-targeting molecule may lead to significant 

improvements in SMA patients, further research is still needed to better understand how SMN-independent and 

non-CNS approaches in particular can be incorporated in the evolving SMA therapeutic landscape. 

 

Data from animal models and patients indicates the involvement of peripheral organs including muscle, liver, 

heart and pancreas in the most severely affected SMA patients (53). The consequences of individuals treated 

with SMN-inducing treatments surviving past the natural history of the disease and reaching puberty and 

adulthood are currently unknown (54). One interesting commonality between the peripheral organs 

pathologically affected in SMA is that they all contribute to the maintenance of whole-body metabolic 

homeostasis and health (Fig. 3). For example, skeletal muscle, liver, pancreas and heart play central roles in the 
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modulation and utilization of glucose metabolism and dysfunction of one or more of these tissues can lead to 

whole-body perturbations as demonstrated in diabetes and cardiovascular diseases (55–57). Furthermore, the 

accurate regulation of glucose metabolism is critical for the function and activity of peripheral and CNS tissues 

(58, 59). Importantly, we and others have demonstrated that both SMA animal models and patients display 

pathologies and clinical symptoms indicative of disturbances in glucose metabolism (12, 60–63). Interestingly, 

many therapeutic strategies that demonstrate a positive effect on SMA pathogenesis such as systemic 

administration of the HDACi trichostatin A (TSA) (64), inactivation of phosphatase and tensin homolog (PTEN) 

(65), muscle treatment with insulin growth factor 1 (IGF-1) (66), exercise (67) and systemic dosing of the natural 

compound loganin (68), all influence glucose metabolism (69–73), even though they were not originally 

evaluated for that purpose. Irregularities in fatty acid (74–76), lipid (77, 78) and amino acid (Walter et al., in 

preparation) metabolism also occur in SMA patients and pre-clinical models and could similarly be modulated by 

interventions that have beneficial repercussions on metabolic homeostasis and consequently, disease 

progression and pathology. The observed influence of diet composition on lifespan and neuromuscular 

phenotype in SMA mice (62, 79, 80) emphasizes the importance of considering a systemic approach as we 

enter this new era for SMA therapeutic development. Understanding pathological pathways in peripheral tissues, 

and identifying relevant treatment strategies to restore them can have an unintended but beneficial ripple effect 

on whole-body metabolic homeostasis. The recent regulatory approval of nusinersen, a SMN- and CNS-directed 

therapy, has rapidly changed the SMA therapeutic landscape, whereby peripheral and metabolic components of 

the disease that are not fully targeted by this and other gene therapies that are in the pipeline, will gain more 

attention from researchers, clinicians and patients as critical therapeutic targets.     

 

CONCLUSION 

In the present review, we have focused on the clinical data from the nusinersen trials that led to the recent and 

first ever approval of an ASO gene therapy for SMA. Importantly, we have discussed how nusinersen is not the 

end of the road for therapeutic development and the caveats of nusinersen point to a need for second 

generation ASO-related approaches alongside alternative SMN upregulation strategies. Furthermore, there is a 

requirement for a better understanding of how therapeutically targeting peripheral metabolic defects that are 

most likely a consequence of intrinsic perturbations in multiple key tissues such as skeletal muscle, pancreas, 

liver and heart, can lead to whole-body benefits. Awaited results from the nusinersen phase 3 study in later-
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onset SMA patients (NCT02292537) and the phase 2 trial aimed at pre-symptomatic patients (NTC02386553) 

will most likely provide additional insight into the optimal therapeutic window for SMN-dependent treatments and 

support for the requirement of a integrated approach to SMA therapy. However, the new SMA therapeutic 

landscape will have to be broader than nusinersen alone and integrate various SMN-dependent and -

independent strategies as well as CNS- and systemically-directed approaches whether they be in the form of 

pharmacological compounds, dietary interventions or exercise paradigms. Importantly, the integrated treatment 

of SMA will be part of a life-long strategy for management of disease symptoms and be tailored to each 

individual patient (Fig. 4). 
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LEGENDS TO FIGURES 

Figure 1. A) The SMN1 gene is correctly spliced while the SMN2 gene contains a C to T substitution in exon 7 

which leads to aberrant exclusion of exon 7. B) An ASO targeting the inhibitory intron splicing silencer N1  (ISS-

N1) promotes SMN2 exon 7 inclusion.  

 

Figure 2. The optimal SMN-dependent treatment strategy for SMA would be a combination of SMN2 enhancing 

small molecules, SMN2 targeting antisense oligonucleotides (ASO)s, and SMN1 enhancing adeno-associated 

viruses (AAVs), resulting in an additive increase in functional SMN expression.  

 

Figure 3. The heart, liver, skeletal muscle and pancreas are pathologically affected peripheral and metabolic 

tissues in SMA that maintain inter- and intra-organ metabolic homeostasis via the regulation, of glucose, amino 

acid, lipid and fatty acid metabolism.  

 

Figure 4. In the new and evolving SMA therapeutic landscape, an integrated treatment paradigm should 

consider both CNS and peripheral targets, pharmacological, physiological and dietary interventions as well as 

the specific symptoms and needs that arise at different developmental time-points. 
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TABLES 

Table 1. Current non-ASO SMN1 and SMN2 targeting therapies evaluated in clinical trials for Spinal Muscular 

Atrophy* 

General Strategy Name of 
Pharmacological 

Compound 

ClinicalTrials.gov 
Identifier 

AAV9-SMN1 AVXS-101 NCT02122952 

HDAC Inhibitors Valproic Acid 
 
 
 
 
 
Valproate 
 
Sodium Phenylbutyrate 

NCT00227266, 
NCT00481013 
NCT00661453 
NCT00374075 
NCT01033331 
 
NCT01671384 
 
NCT00528268 
NCT00439218 
NCT00439569 

Small Molecules LMI070 
 
RO7034067 
 
 
 
 
Hydroxyurea 
 
 
 
Celecoxib 

NCT02268552 
 
NCT03032172 
NCT02913482 
NCT02908685 
NCT02633709 
 
NCT00485511 
NCT00568698 
NCT00568802 
 
NCT02876094 

 
* as of May 2017 
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Table 2. Summary of results from phase 1 nusinersen clinical trial 

Evaluated Parameters Outcome Measures Key Conclusions 

Safety Physical/neurological 
examinations; 
Vital signs; 
Clinical laboratory tests; 
Electrocardiograms; 
CSF laboratory tests 

No significant changes 

Tolerability Adverse events Only mild and moderate 
AEs were reported 

Pharmacokinetics Nusinersen in plasma; 
Nusinersen and SMN in 
CSF 

Dose-dependent increase 
in drug half-life and SMN 
levels 

Efficacy HFMSE; 
PedsQL 

Dose-dependent 
improvement over 
baseline scores 

 

Table 3. Summary of results from phase 2 nusinersen clinical trial 

Evaluated Parameters Outcome Measures Key Conclusions 

Safety Physical/neurological 
examinations;  
Vital signs; 
Clinical laboratory tests; 
CSF Laboratory Tests; 
ECGs 

No significant changes 

Tolerability Adverse events 3 deaths and 77 serious 
adverse events 

Pharmacokinetics Nusinersen in plasma; 
Nusinersen in CSF; 
SMN in CNS; 

Drug and increased SMN 
levels in spinal cord and 
brain tissues 

Efficacy HINE-2; 
CHOP-INTEND; 
CMAPs; 
Survival; 
Permanent Ventilation 

Overall improvement 
compared to baseline 
values or to natural 
history case series 
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FIGURES 

Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

ABBREVIATIONS 

2'-MOE: 2'-O-(2-methoxyethyl)  

AE: Adverse Event 

ASO: Antisense Oligonucleotide 

BBB: Blood Brain Barrier 

CHMP: Committee for Medicinal Products for Human Use 

CNS: Central Nervous System 

CPP: Cell-penetrating peptide 

CSF: Cerebrospinal fluid 

EMA: European Medicines Agency  

FDA: Food and Drug Administration  

FL: Full Length 

HDACi: Histone Deacytelase Inhibitor 

IGF-1: Insulin Growth Factor 1 (IGF-1) 

iPSC: induced pluripotent stem cell 

ISS-N1: Intron Splicing Silencer N1  

LNA: locked nucleic acid 

lncRNA: long non-coding RNA  

LP: Lumbar Puncture 

mRNA: messenger RNA 

NMJ: Neuromuscular Junction 

Pip6a: peptide nucleic acids/PMO internalization peptide 6a  

PMO: phosphorodiamidate morpholino   

PNCR: Published Natural History Case Series 

PTEN: Phosphatase and Tensin Homolog  

RUSP: Recommended Uniform Screening Panel  

SMA: Spinal Muscular Atrophy 

SMN: Survival Motor Neuron 

TSA: Trichostatin A 




