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Abstract

The specific consequences of hyperglycaemia on placental metabolism and function are incompletely
understood but likely contribute to poor pregnancy outcomes associated with diabetes mellitus (DM).
This study aimed to identify the functional biochemical pathways perturbed by placental exposure to

high glucose levels through integrative analysis of the trophoblast transcriptome and metabolome.

The human trophoblast cell line, BeWo, was cultured in 5 or 25 mM glucose, as a model of the
placenta in DM. Transcriptomic analysis using microarrays, demonstrated 5632 differentially
expressed gene transcripts (2+1.3 fold change (FC)) following exposure to high glucose. These genes
were used to generate interactome models of transcript response using BioGRID (non-inferred

network: 2500 nodes (genes) and 10541 protein-protein interactions).

Ultra performance-liquid chromatography-mass spectrometry (MS) and gas chromatography-MS
analysis of intracellular extracts and culture medium were used to assess the response of metabolite
profiles to high glucose concentration. The interactions of altered genes and metabolites were
assessed using the MetScape interactome database, resulting in an integrated model of systemic
transcriptome (2969 genes) and metabolome (41 metabolites) response within placental cells
exposed to high glucose. The functional pathways which demonstrated significant change in response
to high glucose included fatty acid 3-oxidation, phospholipid metabolism and phosphatidylinositol

phosphate signalling.
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Introduction

Pregnancies complicated by diabetes mellitus (DM) are associated with poor maternal and perinatal
outcomes. These include birth trauma [1], stillbirth [2] and pre-eclampsia [3], however fetal overgrowth
is the most common adverse outcome [4, 5]. Infants with fetal macrosomia, diagnosed as those with a
customised birth weight centile of 90 or greater, are more likely to develop metabolic syndrome in
adulthood [6, 7]. Whilst the association between maternal hyperglycaemia and excessive fetal growth
is long established, the contribution of altered placental function to this relationship is incompletely
understood [4]. Several studies have suggested that placental-fetal nutrient supply is altered in these
pregnancies [8—13]. The molecular mechanisms that contribute to such dysfunction are poorly
defined, although placental nutrient sensing pathways, such as the mammalian target of the
rapamycin (nTOR) pathway [14, 15], and alterations in placental lipid metabolism [13, 16] have been
implicated. The objective of the study presented here was to build on these observations regarding
individual molecules and pathways by using a systems biology approach to obtain a holistic

biochemical view of the placental response to high glucose.

Interactome networks that represent the transcript, metabolite and integrated transcript and
metabolite response of a trophoblast cell line (BeWo) to culture in high glucose were generated. This
method allows the visualisation and interpretation of complex interactions between large numbers of
molecules [17] and can therefore be used as a method of integrating multiple ‘omic datasets to
provide an understanding of organisational complexity within the system [18]. Interactome networks
are made up of nodes - the individual objects being studied, e.g., genes or metabolites - and edges -
the connections between the objects, e.g., known protein-protein or protein-metabolite interactions
[19]. Nodes that share large numbers of connections tend to share similar biological functions [19].
Therefore studying groups of proteins or proteins and metabolites that are highly interconnected,
known as modules, can be used to identify key functions within an interactome network [19].
Conducting interactome network analysis alongside pathway ontology analysis, using tools such as
Ingenuity Pathway Analysis (IPA) [20], allows greater confidence in the selection of candidate
pathways or molecules for further study as these are based on two independent methods of mapping

the data, known protein-protein interactions and text mining, respectively.
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Here we perform network and pathway analyses on transcript and metabolite data generated from an
in vitro model of the placental trophoblast exposed to high glucose levels. These data reveal known,
and importantly, novel functional pathways likely to be disrupted as a consequence of placental

exposure to maternal hyperglycaemia.

Materials and Methods

All reagents were purchased from Sigma-Aldrich unless stated.

Cell Culture and Sample Preparation: BeWo cells (passage 10; n=6; originally from the European
Collection of Animal Cell Cultures, Porton Down; mycoplasma negative) were cultured on T75 and
T225 flasks (Corning) (both seeded at 1.6x10° cells/cm?), for transcriptomics and metabolomics,
respectively. The number of replicates was based on similar numbers having been successfully used
in other metabolomics studies where human samples were used, therefore less variability would exist
in this cohort [21]. Cells were cultured for 24 hours in 1:1 DMEM:F12 containing 5 mM glucose and
10% fetal bovine serum (FBS), which was then exchanged for 1:1 DMEM:F12 containing either 5 mM
(representing normoglycaemia) or 25 mM (representing hyperglycaemia; [22, 23]) glucose and 10%
FBS for a further 48h. Preliminary studies were completed in which MTT assays were used to confirm
that high glucose conditions (30 mM) did not affect cell viability compared to standard culture in 17
mM glucose (94+34% (medianzlQR); n=6; p >0.05; Wilcoxon signed rank). Cells used for the analysis
of RNA were lysed directly in Trizol® reagent (Invitrogen, UK), whereas those used for internal
metabolome analysis were washed and quenched within 2.5 minutes of removing the conditioned
medium (CM), scraped into suspension then subjected to 4 cycles of freezing with liquid nitrogen
(60s) and thawing on ice. CM was centrifuged (10,000 g; 10 min) and the supernatant was snap-

frozen for analysis of the external metabolome. Cells and CM were stored at -80 °C until analysis.

Microarray Analysis: Total RNA was isolated from the cell lysate using a Trizol® Plus RNA
Purification Kit (Ambion, Paisley), according to the manufacturers’ instructions. RNA integrity and
concentration was determined using a Nanodrop spectrophotometer and Agilent bioanalyzer.
(Thermo Scientific, USA). Equal concentrations of RNA from each experimental replicate (n=6) were
pooled to an overall concentration of 95ng/ul and one microarray per experimental group was

assessed.
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The pooled samples were analysed using Affymetrix exon arrays (Affymetrix, High Wycombe, UK).
Background correction, quantile normalization, gene expression analysis and robust multiarray
analysis (RMA) of the data were completed in Bioconductor (Bolstad et al., 2003). Technical quality
control and outlier analyses were performed using Affymetrix dChip software (Version 2005). Genes
that had a fold change (FC) = £1.3 between cells cultured in 25 mM compared to 5 mM glucose were
identified for further analyses. Similar fold change cut-offs are commonly used for such network and
pathway analysis approaches [24, 25]. Partial least square discriminant analysis (PLS-DA) was
applied using the MixOmics R-package [26, 27] and used to compare the fold changes of the selected
genes to the unselected genes. Further assessment of specificity was performed by generating an
affinity matrix from the gene expression data using the SNFtools R-package [28] then t distributed
stochastic neighbourhood embedding (tSNE) [Rtsne R-package [29]] was applied to show the

clustering of genes with similar expression.

Metabolomic Analysis: Two independent chromatography-mass spectrometry (MS) assays for
metabolome analysis of the BeWo cells and conditioned CM were used to ensure that a wide range of
polar and lipophilic metabolites were investigated. Full details of these methods are described in
supplementary methods section A.

BeWo cells and CM were prepared as described previously [21, 30] (Supplementary Methods A1 &
A2). Briefly, samples were lyophilised, then reconstituted in 50:50 Methanol:water for UPLC-MS
analysis. Dried GC-MS samples were chemically derivatised via a process of methoxyimation then
trimethylsilylation and then a retention marker solution was added. A quality control (QC) sample was
prepared from a pool of all individual samples and for GC-MS analysis, succinic acid d4 was added as
an internal standard to each sample.

Supplementary sections A4 & A5 detail complete methods for Ultra Performance Liquid-
Chromatography MS. Samples were analysed in negative electrospray and positive ion modes on an
Accela Ultra High Performance Liquid Chromatograph, coupled on-line to an electrospray LTQ-
Orbitrap hybrid mass spectrometer (ThermoFisher Scientific, Hemel Hempstead, UK). The run order
of samples was randomised. Data were processed using XCalibur (ThermoFisher Scientific, Bremen,
Germany); applied in XCMS [31] to assess relative quantification; chromatographic peaks were used

to define the individual metabolic features and these features were matched according to accurate
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mass of metabolites by applying the software PUTMEDID_LCMS [32]. Putative (MSI level 2) and

definitive identifications (MSI level 1) are reported.

Full details of the Gas Chromatography-Mass Spectrometry (GC-MS) analysis process are given in
supplementary sections A6 & A7. Sample analysis was performed, within 24 h of derivatisation, using
an Agilent 6890 gas chromatograph and 7673 autosampler (Agilent Technologies, Stockport, UK)
attached to a LECO Pegasus Ill mass spectrometer (LECO Corporation, Stockport, UK). Pre-
processing of GC-MS data was carried out, in which analyst-defined chromatographic peaks were
associated with a retention index (RI) and electron impact (El) mass spectrum for all samples and
inputted into a study-specific peak list. Chromatographic peak deconvolution was performed for each
sample and metabolite peaks were matched to peaks present in the study-specific list if defined
criteria were met (Rl 10, mass spectral (El) match >700). Peak areas were normalised to the
succinic acid standard to generate a response ratio. Detected metabolite peaks were chemically
identified by applying a search of the El mass spectrum and Rl in mass spectral libraries; the Golm
metabolite library [33], the National Institute for Standards in Technology database (NIST/EPA/NIH08
(NIST, 2010)), as well as over 500 entries in the MMD mass spectral/RI library [34]. Putative (MSI
level 2) and definitive identifications (MSI level 1) are reported.

Multivariate analysis followed by Kruskal-Wallis testing of metabolite data were used to determine
statistically significant differences (p<0.01) in metabolite abundance between CM or cells cultured in
25 mM compared to 5 mM glucose. Only metabolites that could be assigned a PubChem ID, and that
showed a differential abundance of 2£1.3 FC were used to analyse metabolite changes via pathway

or network analysis.

Pathway and network analysis of the transcriptome and metabolome: An overview of the
approach taken is shown in Figure 1. The key processes used to identify functional pathways altered

in response to exposure of trophoblast to high glucose levels are detailed below.

Network analysis of the transcriptome: The interactions between the differentially expressed genes
were assessed using the BioGRID interactome database (v3.2.99) in Cytoscape (v2.8.3) to generate
network models based on protein-protein interaction (either, only the genes identified from the array

data (non-inferred nodes), or from the genes identified through the array analysis along with their
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inferred interactions (inferred nodes) [35]). Two independent mathematical algorithms, ClusterOne
(v0.93) [36] and Moduland (v2.8.3) [37], were applied to the interactome networks in Cytoscape
(v2.8.3) to identify highly connected clusters of proteins (modules) that are functionally central to the
interactome network (ClusterOne) and that demarcate the hierarchical structure of the interactome
network (Moduland). Modules identified using the ClusterOne algorithm were ranked based on their
connectivity. Non-significant modules (p=0.05) were removed from further analysis. The biological
function of each module was assessed by analysing the proteins identified within each cluster using
the pathway analysis tool in Reactome software [38]. The significance of the pathway functions
identified in Reactome was determined by Fisher’s exact test and p<0.05 was considered statistically

significant.

Pathway analysis: Genes that were differentially expressed and metabolites that were differentially
abundant between cells exposed to 25 mM glucose compared to 5 mM glucose were analysed using
pathway enrichment analysis (Ingenuity, Qiagen, US) to identify and visualize the affected canonical

pathways. Pathways with p<0.05 were considered as statistically significant (Fisher’s exact test).

Network analysis of a previously published transcriptome dataset of the murine placenta in a
model of diabetes mellitus: We ensured that the functional pathways identified in this study were
altered as a specific response of trophoblast, rather than just a choriocarcinoma cell line, to high
glucose, by conducting a thorough NCBI PubMed search to identify published datasets of the
placental transcriptome response to hyperglycaemia or diabetes mellitus (see full details in the
supplementary methods section C). The data from a study that employed streptozotocin to induce DM
in mice as a model of type 1 diabetes mellitus (T1 DM) [39] were used to generate an inferred
network from placental genes that were differentially expressed in the murine placental model of T1
DM compared to untreated mice (+1.6 FC). Genes that overlapped between the BeWo analysis of 25
mM compared to 5 mM glucose and the mouse model of T1 DM, were then imported into a new
inferred network. ClusterOne and Moduland algorithms applied to identify central gene clusters, as

described above.

Integrated network analysis of the transcriptome and metabolome: Differentially abundant

metabolites (+1.3 FC) and genes (1.3 FC) were analysed using the MetScape plugin (v2.0) [40] in
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Cytoscape (v2.8.3) and networks generated based on known protein-protein and protein-metabolite
interactions. The metabolic pathways which were associated with protein-metabolite interactions were
mapped onto each of the networks to highlight the pathways with large numbers of gene and

metabolite changes that were central within the network.

Investigation of gene expression changes in an ex vivo placental explant model of high

glucose and in placentas from women with T1DM

Collection and processing of placental samples and culture of term placental villous explants:
Placentas were obtained with maternal informed, written consent in accordance with Local Research
Ethics Committee approval (08/H1010/55, Manchester, UK). Placentas were collected within 30
minutes of delivery of a singleton infant at term (36 to 41 weeks gestation). Samples were taken from
the centre, middle and edge of the placenta. Placental tissue was collected from women with T1 DM
(n=6) and BMI matched controls (BMI <30; n=6). Patient demographics are shown in Supplementary
Demographic Table 1. Gestation, birth weight and individualised birth centile (IBC) were also different
across the groups, as women with T1DM, were delivered at approximately 36 weeks of gestation and

gave birth to larger infants.

Placental explants were made as previously described [41] from term placentas of uncomplicated
pregnancies (Supplementary Demographic Table 2). Three placental explants were cultured per
netwell in 1.8 ml of warmed CM (1:1 DMEM:F12), containing 5 mM DMEM:F12 and 10% FCS,
overnight. CM was then replaced with 1.8 ml of either 5 mM or 25 mM D-glucose CM, containing 10%

FBS for a further 48 hours.

All placental tissues, from explants or pregnancies complicated by DM were stored in RNAlater for

later RNA extraction. Total RNA was extracted from placental explants and tissue using a Purelink
RNA Mini kit (Ambion, Life Technologies) and quantified using a nanodrop (Nanodrop 2000c,
ThermoScientific), according to manufacturer’s instructions. 250 ng RNA was used for reverse
transcription (RT) and cDNA was generated as described previously [42]. RNA from the placental
explant experiments, was pooled from 6 explants per experimental condition (each from separate

netwells) for each of six placentas.
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Quantitative real time- polymerase chain reaction (qRT-PCR) analysis of genes within the
phosphatidylinositol phosphate pathway: qRT-PCR was used to corroborate the microarray data
by assessing the effect of glucose on the expression of a subset of genes, choosing genes coding for
proteins within the phosphatidylinositol phosphate pathway (AMP-Activated Kinase Alpha (AMPKa),
Mammalian Target of Rapamycin (mTOR), P70 S6-Kinase (P70S6K) and 3-Phosphoinositide
Dependent Protein Kinase 1 (PDK1)) as this pathway was identified by network and pathway analysis
of the transcriptome as well as the integrated transcriptome and metabolome to be functionally
important in the BeWo cell response to high glucose. Further these genes were also assessed in
samples derived from placental explants from uncomplicated pregnancies cultured in 5 mM or 25 mM
glucose (Supplementary Methods B2 & B3) for 48 hours and placental tissue from women with and
without T1DM (Supplementary Methods B4). Genes of interest were quantified using Brilliant Ill Ultra-
Fast QPCR Master Mix (Agilent Technologies) on a MX3000 machine. gPCR reaction mixtures using
standard (1x) primer concentration (0.25 yM) were made including the following primers: AMPKa
F:ACCAGGTGATCAGCACTCCA, R:-TCTCTTCAACCCGTCCATGC; mTOR
F:-TGTTCCGACGAATCTCAAAGC, R:TCATATGTTCCTGGCACAGCC; P70S6K
F:GAGCTGGAGGAGGGGG, R:CCATGCAAGTTCATATGGTCC; PDK1
F:GGCCCAGAGTTGCTCAGAAT R: GCACTGGACTAACTGCCCAT. All samples were run in
duplicate. 40 cycles of 95°C for 3 minutes, 60°C for 20 seconds and 72°C for 30 seconds were
performed. A standard curve was created from human reference RNA (1 pg/pl stock) ranging from
0.781 ng to 100 ng. Primer specificity was confirmed by analysis of dissociation curves generated
within each run and by the inclusion of no RT and no cDNA controls’. Each of the genes was
normalised to the mean of two reference genes, 18S ribosomal RNA and Topoisomerase 1; both of

which showed no difference in expression in response to 25 mM compared to 5 mM glucose.

Results

Gene changes in BeWo cells following culture in 25 mM compared to 5 mM glucose: The
expression of 5632 gene transcripts, from the 133673 identified, differed (=+1.3 FC) between BeWo
cells cultured in 25 mM compared to 5 mM glucose (Supplementary Table 1). PLS-DA analysis
confirmed a significant difference (p<0.001) between the genes with 2+1.3 fold change in expression

and those that were altered to a lesser degree. Further analysis of the genes with >+1.3 fold change
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in expression revealed 5 clusters, which map to pathways including lipid, (p value: 2.0x10° = 1.1x10°
2), amino acid (p value: 1.0x10% - 1.6x10'2) and carbohydrate metabolism (p value: 1.5x10° = 7.6x10°

% Supplemental figure 1).

The 5632 genes defined as differentially expressed were used to generate two interactome networks
using the BioGRID human interactome database. The first network contained only genes that were
identified as altered by the microarray analysis (non-inferred network) and consisted of 2500 nodes
(genes) and 10541 edges (protein-protein interactions). The second network was generated based on
identified genes along with their inferred interacting partner genes (inferred network) and consisted of

10840 nodes and 59594 edges.

Assessment of the networks hierarchy, using the Moduland algorithm, highlighted several modules
(Supplementary Table 2); of the top ten (ranked by network centrality), three were common to the
inferred and non-inferred networks (Figure 2). The functions of the most hierarchically central
modules (and the central protein associated with these modules/module name) within the non-inferred
network were: phosphoinositide 3-kinase (PI3K) cascade (MDM2; p=0.003), glucose metabolism
(SUMO2; p=0.004), peroxisomal lipid metabolism (HSP90AA1; p=0.009), phospholipid metabolism
(ELAVLT; p=9x10'4) and signalling by Bone morphogenetic protein (BMP) (SMAD2; p=3.9x‘|0'7).
Similarly, functions of the hierarchically central modules in the inferred network of transcript response
to high glucose included: regulation of TP53 activity through acetylation (SUMO2; p=1.49x‘|0'2),
cellular response to stress (VHL; p=2.3x10""%), polyubiquitination of a substrate (HSP90AAT;
p=0.016), circadian clock (CUL1; p=0.0003) and regulation of lipid metabolism by peroxisome

proliferator-activated receptor alpha (HDAC1; p=0.007).

The ClusterOne algorithm generated 15 and 19 significant modules from the non-inferred and inferred
interactome networks, respectively. The functions most significantly associated with the genes making
up the most significant modules overlapped with those associated with the ModulLand-derived
modules. Within the non-inferred network, these functions included: translation initiation (p= 2.32x10
% Fisher's exact test), glucose metabolism (p=0.006), elF2 activation (p=0.002) and IGF1R signalling
(p=0.01). Modules identified within the inferred network (ClusterOne) were associated with lipoprotein

metabolism (p=0.004), insulin processing (p=0.0005), circadian clock (p=9x10'4) and peroxisomal lipid

10
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metabolism (p=8.87x10'13). A summary of the modules identified using these algorithms and the

functions associated with these modules are included in supplementary Tables 2 and 3.

Pathway analysis, using the pathway enrichment tools in Ingenuity, suggested that the gene changes
identified as a consequence of 25 mM compared to 5 mM glucose are likely to impact on numerous
canonical pathways, many of which were confirmatory of the functional pathways associated with the
interactome-derived modules. Altered functional pathways included, regulation of p70S6K signaling
(p=5.62 x10'7), IGF-1 signaling (p=4.51x10), insulin receptor signaling (p=2.01x10'9) and mTOR

signaling (p=8.43x10’4).

Network analysis of a previously published transcriptome dataset of the murine placenta in a
model of diabetes mellitus: 80 genes overlapped between the murine model of T1 DM and the
model of BeWo cells cultured in 25 mM glucose (Supplementary Table 6). An interactome network
was generated which consisted of 1560 nodes and 1968 edges. Application of ClusterOne and
ModuLand algorithms to the network identified 18 and 46 significant clusters, respectively. Functions
of these clusters included regulation of lipid metabolism by peroxisome proliferator-activated receptor
alpha (PPARa) and PI3K phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) to
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (Supplementary Table 7). Full details of these results

are included in the supplementary results section C.

Investigation of transcript changes of the phosphatidylinositol phosphate pathway using
quantitative real time- polymerase chain reaction (QRT-PCR): Table 1 demonstrates that altered
expression of key genes within the phosphatidylinositol phosphate pathway, which were highlighted in
the microarray analysis (AMPKa, mTOR, P70S6K and PDK1), could be confirmed using qRT-PCR.
Assessment of expression of these genes in an independent sample set (n=6) again demonstrated
median FC differences with comparable levels of FC in the same direction of change as those from
the microarray. Furthermore, the expression of these genes was assessed in an ex vivo explant
model of high glucose, with three of the genes showing differential expression in the same direction
as in the BeWo model. In the placentas (n=6) from women with DM, AMPKa and P70S6K

demonstrated differential expression in the same direction as the BeWo cells.

11
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Metabolite changes in BeWo cells and their conditioned culture media following culture in 25
mM compared to 5 mM glucose: All experimental replicates were included in the metabolomic
analyses. The effect of glucose on the metabolic footprint (conditioned CM) of BeWo cells was
assessed using UPLC-MS and GC-MS. UPLC-MS analysis revealed that 51 metabolites were
significantly different in the CM from BeWo cells exposed to 25 mM glucose (p<0.01) (Supplementary
Table 4). The metabolites were categorised based on their class and the majority that were
classifiable were found to be fatty acids and related metabolites (9 metabolites). GC-MS analysis
identified only citrulline that was significantly increased (2.8 fold) in CM from BeWo cells cultured in 25

mM compared to 5 mM glucose (p=0.004). BeWo cells (metabolic fingerprint) demonstrated 27
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metabolites with significant differences between culture in 25 mM and 5 mM glucose (p<0.01), when

assessed by UPLC-MS (Supplementary Table 5). GC-MS analysis identified 3 metabolites that were

all increased in BeWo cells cultured in 25 mM compared to 5 mM glucose (Stearic acid, FC=1.29,

p=0.02; Heptadecanoic acid, FC=1.30, p=0.03; Hexadecanoic acid, FC=1.25, p=0.05).

Pathway analysis of the metabolites within the BeWo cells and secreted culture medium suggested
that the superpathways of Serine and Glycine Biosynthesis | (p=3.71 x10'3) and glycine biosynthesis |
(p=4.4. x10'3) are altered as a result of exposure of BeWo cells to high glucose levels. The molecular
and cellular functions likely to be altered included amino acid metabolism (p=2.25 x10'”) and small

molecule biochemistry (p=2.25 x10™"").

Interactome network analysis of the transcriptome and metabolome of BeWo cells following
culture in 25 mM compared to 5 mM glucose: An interactome network model (Figure 3A)
representing the integrated transcriptome and metabolome (intracellular and extracellular metabolites)
response of BeWo cells to culture in 25 mM versus 5 mM glucose was generated which included
2969 of the differentially expressed genes and 41 of the differentially abundant metabolites that were
connected via protein-protein or protein-metabolite interactions (Figure 3). Analysis of this interactome
network suggested that several biological functions are likely to be altered by changes to glucose
concentrations. These modules included genes and/or metabolite interactions which were associated
with purine metabolism, phosphatidylinositol phosphate metabolism and glycerophospholipid
metabolism. The specific genes and metabolites within these modules are demonstrated in Figure 3B
and the differentially expressed/abundant genes and metabolites associated with these functional

modules are highlighted in Figure 3C.
Discussion

The aim of this study was to identify transcripts and metabolites that were altered in trophoblast in
response to high glucose and to then integrate these changes, using a systems-biology approach.
Thus, ultimately aiming to characterise the molecular phenotype of the placental trophoblast in an
interactome model, from which the functional pathways likely to be perturbed in placentas exposed to
maternal hyperglycaemia could be identified. Although several candidate pathways were identified

from individually analysing the transcriptome and metabolome data, interrogation of an integrated

13



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

interactome model provides greater confidence that the pathways identified, which include some that
have previously been associated with placental dysfunction in pregnancies complicated by DM as well
as novel pathways, represent attractive candidates for future research relating to therapeutic

interventions to prevent fetal overgrowth.

The phosphatidylinositol phosphate pathway (identified in transcriptome and integrated transcriptome
and metabolome analyses), a key determinant of cellular proliferation and apoptosis [43], is known to
be regulated by hyperglycaemia in other organs [44, 45]. Altered placental growth, particularly
increased placental size/weight, has been widely demonstrated in pregnancies complicated by fetal
macrosomia [46, 47]; therefore this altered size could be associated with dysregulated placental
proliferation due to perturbed PI3K pathway signalling. Moreover myo-inositol, the metabolite which
forms the basis for this secondary messenger system [48], has been implicated in several neonatal
conditions in which fetal growth is atypical as researchers have reported increased levels in urine of
neonates with fetal growth restriction (FGR) [49] and decreased levels in FGR infants who go on to
display catch-up growth [50]. Our investigations, to assess the expression of key genes within this
pathway both corroborate the microarray data and suggest that expression of at least some of the
genes within this pathway were similarly altered in an ex vivo placental explant model of high glucose
and primary placental tissue from pregnancies complicated by DM as well as the BeWo trophoblast

cell line. Together these observations suggest that this pathway warrants further investigation.

The three analyses of transcript, metabolite and integrated transcript/metabolite data have all
indicated that trophoblast lipid metabolism is altered as a consequence of exposure to high glucose
conditions. The placenta transports and metabolizes lipids essential for fetal development [51] and it
has been hypothesised that aberration in these functions may contribute to fetal macrosomia as
excess lipid is supplied to the fetus, where it is stored within the fetal adipose tissue [52]. Some
observations have supported this hypothesis in DM including: increased (39%) activity of placental
lipoprotein lipase in insulin T1DM [13] and decreased levels of B—fatty acid oxidation (FAO) in
placentas of women with GDM [16]. Our study lends weight to this argument by suggesting that
perturbed lipid metabolism, specifically B—FAO, may be a significant contributor to altered placental

function in pregnancies complicated by DM directly as a consequence of hyperglycaemia.
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Integration of our metabolome and transcriptome datasets proposed functional pathways not
commonly associated with placental dysfunction in pregnancies complicated by DM, emphasising the
potential of integrative network approaches for the identification of pathways for further study. One of
these functional pathways, purine metabolism has not been studied in detail in the placenta, however,
altered metabolism of the purine adenosine has been associated with increased nitric oxide synthesis
in the placental macro- and micro-vascular endothelium [53]. In other pregnancy complications
nitrative stress (caused by excess nitric oxide production [54]) is attributable to poor placental function
[55, 56], therefore similar biochemical processes could be effected in placentas of pregnancies

complicated by DM.

Our study is not only important in highlighting functional pathways within trophoblast that may be
altered in response to high glucose, but it also demonstrates how these pathways interact to lead to
systemic dysfunction. The integrated network provides a global representation of the subtle gene and
metabolite changes which exist within the trophoblast cells following short-term exposure to high
glucose. In a complex disease such as DM, it is likely that the phenotype is not due to changes in one
pathway or an individual gene/metabolite, but attributable to a number of smaller changes which may

interact with one another to lead to overall dysfunction of the biological network.

A major limitation of our study was that it relied on an in vitro trophoblast cell model of the placenta.
The decision to use this model was driven by our ambitious aim to conduct a systems biology
approach to generate and integrate large ‘omic datasets. Many of the studies which have been
successful in utilising these approaches have done so using simple, highly controllable, single cell-
type models [57]. Other studies have described the limitations of using the choriocarcinoma cell line,
BeWo, as a model of trophoblast to investigate gene expression profiles as there are some disparities
in basal gene expression when compared to primary trophoblast [58, 59]. Encouragingly, we have
determined that the expression of key genes within the phosphatidylinositol phosphate pathway are
also altered in an ex vivo model of placental explant exposed to high glucose nonetheless, further
studies are required to determine whether all of the candidate functional pathways identified in this
study are similarly affected. In addition, the placenta contains a number of different cell types and
therefore inclusion of whole placental tissue would have over complicated the analysis and

significantly limited the interpretation of the data. Further analysis of a previously published
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transcriptomic dataset of the placenta in a murine model of T1 DM was included to ensure that the
functional pathways identified in this study were altered as a specific response of trophoblast, rather
than just a choriocarcinoma cell line, to high glucose. The functional pathways identified in the current
study were highly conserved in the murine placental interactome network model, again adding greater
confidence to the assertion that the BeWo interactome model described here is representative of the

trophoblast response to high glucose.

It should also be recognised that this study has analysed transcriptome data generated from pooled
RNA samples run on microarrays without technical replicates. Although not ideal for analysis of
individual gene changes, significant changes were confirmed using PLS-LA and our analyses
provided additional robustness by investigating how these genes contribute to a network of systemic
by linking changes across the entire transcriptome. Moreover, these data have been integrated with
metabolomic changes (including metabolites of known relevance to placental exposure to high
glucose), thus adding a greater level of certainty that the interactome network generated in this study
is likely to depict a model of the molecular phenotype of placenta in pregnancies complicated by
hyperglycaemia. Furthermore, the expression of a panel of genes was determined by qRT-PCR
analysis of the pooled samples used in the microarray, which supported the initial data and similar
results were obtained when the same genes were assessed in a separate experiment, where samples
from 6 independent replicates of BeWo cells exposed to high and low glucose for 48h were analysed

individually as well as in a pooled sample.

The work presented in this study is the first, to our knowledge, to investigate how trophoblast cells are
altered by high glucose conditions using a systems biology approach. The interactome models
generated in this study offer a unique insight into the complex interactions between placental genes
and metabolites in response to high glucose and provides a platform for further in vivo or ex vivo
studies to understand how the placenta responds to exposure to high glucose in pregnancies

complicated by DM.
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602

603

604

605

25 mM D-glucose compared to 5 mM D-glucose (Fold Change)

Trophoblast Cell model (BeWo):
First experiment (pooled n=6)

Trophoblast Cell model (BeWo):
Second experiment (n=6)

Explant Model

(n=6)

T1 DM compared to
Controls with a BMI
<30

(n=6)

From Microarray

From qRT-PCR

From qRT-PCR

From qRT-PCR

From qRT-PCR

AMP-activated Protein Kinase

-1.43 -1.79 -1.71 (1.48) -1.21 (1.86) -2.6
Alpha (AMPK,)

Mammalian Target of

) +1.58 +1.57 +3.0 (3.00) -1.06 (1.49) +1.15
Rapamycin (mTOR)
P70 S6-Kinase (P70S6K) -1.15 -1.87 -3.0 (3.88) -1.36 (1.95) -1.61
3-Phosphoinositide Dependent

+1.43 +1.67 +1.14 (2.97) +2.66 (2.79) -1.08

Protein Kinase 1 (PDK1)

Table 1: Investigation of microarray data using qRT-PCR. RNA from six independent cultures of BeWo that had been pooled for analysis by microarray

was analysed by qRT-PCR to determine the expression of a select panel of genes in order to investigate the microarray data. The median (IQR) fold change

in gene expression observed in BeWo cells (n=6) and placental explants (n=6) cultured in 25 mM D-glucose compared to 5 mM D-glucose with the addition of

10% FCS is demonstrated; red= up-regulation and green= down-regulation. The fold change in gene expression that was observed in placental tissue from

pregnancies complicated by type 1 diabetes mellitus (T1DM) compared to BMI-matched controls was calculated from the median expression values in each

experimental group.
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Figure Legends

Figure 1: Overview of the workflow used to identify functional pathways which are altered within

placental trophoblast cells in response to high glucose.

Figure 2: The ModuLand algorithm was applied to inferred and non-inferred interactome networks of
gene changes (1.3 FC) seen in BeWo cells cultured in 25 mM glucose compared to 5 mM glucose.
Modules were identified from the network and are ranked based on their hierarchical network
connectivity. Three modules were identified in both the inferred and non-inferred interactome

networks.

Figure 3: Network analysis of integrated gene and metabolite changes in BeWo cells cultured in 25
mM glucose compared to 5 mM glucose. (A) 5632 genes and 41 metabolites that were differentially
expressed (+1.3 FC) in BeWo cells following 48 h culture in 25 mM compared to 5 mM glucose were
used to derive an interaction network inferred using MetScape (3.1.1) as visually represented here;
dark blue circles represent gene changes seen in the BeWo dataset, light blue circles represent
inferred gene interactions, dark red circles represent metabolite changes seen in the BeWo dataset,
light red circles represent inferred metabolite interactions, grey lines represent protein-protein or
protein-metabolite interactions. (B) Table of the metabolic pathways with the greatest number of gene
and metabolite changes that were identified from the integrated gene and metabolite interactome
network. Genes or metabolites shown in red were up-regulated, whereas those in green were down-

regulated.
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Figure One

BeWo cells cultured in 5 mM or 25 mM D-glucose for 48 hours

Microarray

Pooled RNA samples of BeWo cells cultured
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636 Figure Three
A) Visual representation of the interactome model
of BeWo response to 25 mM compared to 5 mM 4 * g
glucose
‘
.
e
. i‘}
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B) Metabolic pathways identified from the interactome network with details of gene (microarray) and
metabolite (mass-spectrometry) changes
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