
Markerless Video Analysis for Movement Quantification in Pediatric
Epilepsy Monitoring

Haiping Lu, How-Lung Eng, Bappaditya Mandal, Derrick W. S. Chan and Yen-Ling Ng

Abstract— This paper proposes a markerless video analytic
system for quantifying body part movements in pediatric
epilepsy monitoring. The system utilizes colored pajamas worn
by a patient in bed to extract body part movement tra-
jectories, from which various features can be obtained for
seizure detection and analysis. Hence, it is non-intrusive and
it requires no sensor/marker to be attached to the patient’s
body. It takes raw video sequences as input and a simple
user-initialization indicates the body parts to be examined.
In background/foreground modeling, Gaussian mixture models
are employed in conjunction with HSV-based modeling. Body
part detection follows a coarse-to-fine paradigm with graph-
cut-based segmentation. Finally, body part parameters are es-
timated with domain knowledge guidance. Experimental studies
are reported on sequences captured in an Epilepsy Monitoring
Unit at a local hospital. The results demonstrate the feasibility
of the proposed system in pediatric epilepsy monitoring and
seizure detection.

I. INTRODUCTION

Epilepsy is a common neurological condition in pediatrics
and there have been many efforts devoted to automate epilep-
tic seizure detection [1]. Detection can be used to trigger an
alarm during severe seizures for medical assistance, and to
help in evaluation of treatment effects [2]. Many existing
seizure detection systems rely on electroencephalographic
patterns. For example, the work in [3] identifies features
important for seizure recognition from multi-channel elec-
troencephalogram (EEG) signals [4], [5] rearranged into a
third-order tensor [6]. This approach requires patients to
remain attached to EEG equipment. Another approach is to
detect seizures based on the visual analysis of signals from
accelerometers worn on the patient’s body [2]. Such attached
sensors may lead to discomfort and are subject to dislocation.

Since epileptic seizures often induce uncoordinated move-
ment in a patient’s body such as jerks or stiffening, such
movement is a relevant clinical factor in seizure identification
and it can be extracted from video recordings [7]. The third
approach utilizes markers attached to a patient’s body for
the quantification of movement patterns in patients during
epileptic seizures [7], [8]. These markers often need manual
identification with mouse clicking and pose difficulties in
defining correspondence so only short sequences can be
analyzed. We can see that for a pediatric population, these
solutions are problematic. Thus, this paper focuses on non-
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intrusive markerless video-based seizure detection in pedi-
atric epilepsy monitoring.

To the best of the authors’ knowledge, the only existing
non-intrusive markerless video-based seizure detection sys-
tem is the one developed by the University of Houston for
neonates [9], [10]. Anatomic sites on the moving body part
are selected by thresholding the magnitudes of the motion
vectors and then the selected sites are tracked. The motion
of body parts is quantified by temporal motion-strength
signals extracted from video segments. This approach relies
purely on motion information so the level of details in
quantifications is limited and coarse. As a motion-based
method, tracking tends to become unreliable over time so
the processed video segments are only up to 20 seconds long
in [9], [10]. In clinical studies, this system is only applied
to manually selected sequences to differentiate neonatal
seizures from random movements [9], [10].

In this paper, we investigate the development of a non-
intrusive markerless video analytic system for pediatric
epilepsy monitoring. The objective is to quantify body part
movements in greater details than the motion-based sys-
tem in [9], [10], and comparable to the marker-based or
accelerometer-based systems. We propose such a system that
only requires a patient to wear a pajama with specific colors,
without attaching any sensor or marker to his/her body. This
design enables us to model the patient’s body parts. Video of
patient activities in a clinical epilepsy monitoring unit (EMU)
are captured using a camera mounted on the ceiling. Epochs
of activities are excerpted and subjected to automated video
analysis following simple manual initialization. The position
and angle of patient’s limbs are automatically extracted
and displacement, velocity and frequency of limb move-
ments are estimated for identifying distinct characteristics
between seizure and non-seizure activities. We have analyzed
recorded video data and observed sustained displacement
from baseline and presence of strong oscillation during
focal motor seizures, which are not present during interictal
activity.

II. MARKERLESS VIDEO ANALYSIS FOR MOVEMENT
QUANTIFICATION

This section describes the proposed video analytic system.
In our design, we assume: 1) only the patient is in the view;
2) the background is fixed in the duration of the monitoring
sequence to be analyzed; 3) the patient is not covered by
blanket or any other cover so that the pajama worn by the
patient is visible from video cameras mounted on the ceiling;
4) the patient is wearing a pajama of customized colors.



Fig. 1. Process flow of the proposed system for pediatric epilepsy
monitoring. The patient’s face is masked in this paper for anonymity and it
is not part of the user initialization.

Figure 1 illustrates the proposed system. In this example,
only the arm movements are quantified. The monitored
patient wears specially designed color pajama, with no
sensor/marker attached. Video cameras are mounted on the
ceiling observing the patient in the EMU. Video sequences
captured by the video cameras are fed into a computer
system. The user provides initialization by indicating a region
of interest, the two foreground colors, and one background
color using mouse, which correspond to the green rectangle,
the blue line and the green line, and the red line shown in the
top middle of Fig. 1, respectively. In the figure, the patient’s
face is masked for anonymity and this is not part of the user
initialization. This simple user-initialization is needed only
for the first frame of a monitoring sequence to be analyzed.

After user initialization, several fully-automatic modules
follow, including construction and update of background
and foreground models, detection of patient body parts, and
estimation of body part parameters.

A. Foreground and Background Modeling

The hue, saturation, value (HSV) color space is employed
for modeling the foreground and background in color video
frames. The hue components play the most significant role in
the modeling. The reason is that due to our specially designed
colored pajamas, the color information will be very distinct
for the limbs and this enables us to detect body part reliably.

Two foreground models F1, F2 and one background
model B1 are initialized based on the median values
{Hf1, Sf1, Vf1}, {Hf2, Sf2, Vf2}, {Hfb, Sfb, Vfb} of the
HSV components of the user-selected foreground pixels
and background pixels, respectively. Pixels with HSV val-
ues within a range {HT , ST , VT } from {Hf1, Sf1, Vf1},
{Hf2, Sf2, Vf2}, and {Hfb, Sfb, Vfb} set the masks F1, F2,
and B1, respectively. The thresholds are set to {HT =
0.03, ST = 0.15, VT = 0.15} for HSV range [0, 1] in our
experiments, where the hue components play a major role.
In addition, a gray mask B2 is generated from pixels with
saturation value S less than a threshold GT (GT = 0.2 for
range of 0 to 1 in our simulations).

Following the simple HSV-based modeling, Gaussian mix-
ture models (GMMs) are built as in [11]. For a color video

frame j, the array zj = (z1, ..., zn, ..., zN ) of N pixels
where zn = (Hn,Sn,Vn), n ∈ [1, N ] in HSV space. Let an
array α = (α1, ..., αN ), αn ∈ {0, 1} denote the labeling of
each pixel as background (αn = 0) or foreground (αn = 1).
Two GMMs with K(= 5) components each are defined for
background and foreground pixels, parameterized as [11]

θ = {π(a, k), µ(a, k),Σ(a, k), α = 0, 1, k = 1, ...,K}, (1)

where π is the weight, µ is the mean, and Σ is the covariance
matrix. The vector k = {k1, ..., kn, ..., kN} with kn ∈
{1, ...,K} indicates the component of the background or
foreground GMM each pixel belongs to, assigning according
as αn = 0 or 1.

B. Coarse-to-Fine Detection of Body Parts

The detection of patient’s body parts follows a coarse-
to-fine approach adapted from [12], where the body parts
are roughly located using simple methods and then more
computationally expensive methods are utilized to refine the
detection results.

The coarse detection simply produces the masks B1 ∪B2

and F1 ∪ F2. Figure 2 illustrates the coarse detection using
the HSV-based model. Figures 2(a) and 2(b) depict two
foreground segments detected (F1 & F2), with one clean
and one noisy, respectively. Figures 2(c) and 2(d) show
the background segment detected B1 and the gray mask
generated B2, respectively. The coarse detection phase also
makes use of the detection in previous frame to make sure
that the shifting of the bounding box of the detected body
part is bounded by a maximum amount.

After the coarse detection, the fine detection employs the
popular GrabCut algorithm in [11] to produce foreground
with large connected region, as shown in Fig. 3(a). In
GrabCut, a trimap T is consisted of three regions: TB , TF
and TU , corresponding to the initial background, foreground,
and uncertain pixels, respectively. Pixels belonging to TU are
to be classified as either background or foreground. We detect
two color segments separately. Based on the HSV-based
modeling, we initialize the trimap as TB = {B1 ∪B2 ∪F2},

(a) (b) (c) (d)

Fig. 2. Illustration of the HSV-based model for body part detection: (a) a
clean foreground segment, (b) a noisy foreground segment, (c) a background
segment, and (d) a gray mask.

(a) (b)

Fig. 3. Illustration of body part detection refinement: (a) the foreground
segment in Fig. 2(b) after Graph-Cut-based segmentation, and (b) the final
foreground segment after refinement of Fig. 3(a).



TF = F1, and TU = {zn /∈ TB ∪ TF } for color 1 and
TB = {B1∪B2∪F1}, TF = F2, and TU = {zn /∈ TB∪TF }
for color 2. For the detection or classification of pixels in
TU , α is initialized as αn = 0 for n ∈ TB and αn = 1
for n ∈ TU ∪ TF . The background and foreground GMMs
are then initialized from α with k-means clustering. Each
pixel is then assigned a GMM component kn and GMM
parameters are learned. The segmentation is then estimated
through Graph Cut [13] by maximizing the following Gibbs
energy [11]

E(α,k,θ, zj) = U(α,k,θ, zj) + V (α, zj). (2)

The data term U is defined as [11]

U(α,k,θ, zj) =
∑
n

− log p(zn|αn, kn,θ)− log π(αn, kn),

(3)
where p(·) is a Gaussian probability distribution. The
smoothness term V is computed as [11]

V (α, z) = γ
∑

(m,n)∈C

[αn 6= αm]e−β‖zm−zn‖
2

, (4)

where C is the set of neighboring pixel pairs, γ is usually
set to 50 and

β =
1

2 <‖ zm − zn ‖2>
, (5)

where < · >is the expectation over a frame [14].
Next, a refinement procedure is introduced by keeping

only one connected region with the largest normalized area
for each foreground color, followed by median filtering. The
foreground segment in Fig. 3(a) after refinement is shown in
Fig. 3(b).

C. Domain-Knowledge-Based Body Part Parameter Estima-
tion

For quantitative clinical analysis, we estimate the pa-
rameters for a patient’s body part movements. From the
detected body parts as described in the previous subsection,
we estimate their parameters by adapting the approach in
[15], [16].

As in [15], [16], dynamic parameters are most significant
for the analysis of body part movements. There are two basic
categories of dynamic parameters. One is the position or
location of body parts and the other is the orientation (or
angle) of body parts. The estimation of body part position
parameters is through: 1) determine which boundary point is
the body part of interest based on domain knowledge; and 2)
calculate an average position for the body part position for
robust estimation. The estimation of body part orientation
parameters is through: 1) detection of edge in the detected
body part segment; 2) determine the most reliable edge to use
for estimation of the body part orientation; and 3) estimate
the orientation of the most reliable edge as the body part
orientation based on the median values of the orientations for
the pixels on that edge. In addition, several constraints are
enforced to encode domain knowledge, e.g., the change of
parameters in consecutive frames are capped to a maximum
value.

III. EXPERIMENTAL STUDIES

This section presents experimental studies of the proposed
system. The experimental video data are collected from
epileptic patients in the EMU at the KK Women’s and
Children’s Hospital, Singapore. The video sequences are
captured at 12 frames per second and the resolution is
384 × 288. The parameter settings in each module are set
as described in Section II. To mimic EEG tracings for
the clinician’s easy adaptation in reading, we follow [7] to
display the quantified movement information as movement
trajectories. In this paper, we present the results for the arm
movements of a patient for demonstration.

Figures 4 and 5 show the simulation results for a typical
sequence of 767 frames with seizure events, and a typical
sequence of 765 frames with normal events, respectively.
Both sequences have a duration of 64 seconds. Four sample
frames from each sequence are shown in Figs. 4(a)-4(d), and
Figs. 5(a)-5(d). The patient’s face is masked for anonymity.
Four body part parameters are plotted in Figs. 4(e) and 5(e),
where the horizontal axis is the time axis. The top two
curves are the horizontal and vertical positions of the right
shoulder of the patient, while the bottom two curves are the
orientations for the right and left upper-arms.

(a) Frame 1. (b) Frame 250. (c) Frame 500. (d) Frame 767.

(e) Plot of four parameters estimated from the sequence.

Fig. 4. Illustration of movement quantification for a sequence with seizure
events.

(a) Frame 1. (b) Frame 250. (c) Frame 500. (d) Frame 765.

(e) Plot of four parameters estimated from the sequence.

Fig. 5. Illustration of movement quantification for a sequence with normal
(non-seizure) events.



(a) The displacement feature.

(b) The oscillation feature.

Fig. 6. Illustration of the distinct features between a seizure event and a
non-seizure event (normal activity).

From the trajectories of the four arm parameters, we
can observe some distinct motion patterns for a seizure
event and a normal (non-seizure) event. The most distinctive
characteristics of the seizure event from the normal event
include the sustained displacement of the right arm angle
from the baseline, and the presence of strong oscillation in
the positions of the right shoulder.

Based on the observations above, we have designed two
simple seizure detectors based on the displacement and
oscillation features. The duration of each epoch W is fixed
at 60 frames or 5 seconds. The displacement feature is
calculated as the accumulated absolute difference from the
baseline (the first epoch), while the oscillation feature is the
frequency of the strongest oscillation.

Figure 6(a) depicts seizure detection based on sustained
displacement of right arm angle from baseline, the third
trajectory in Figs. 4(e) and 5(e). Based on the detector
response, seizure can be detected at 20 seconds using a
threshold of 250. Figure 6(b) illustrates seizure detection
based on the horizontal oscillation of the right shoulder,
the first trajectory in Figs. 4(e) and 5(e). From the detector
response, seizure can be detected around 30 seconds using a
threshold of 5.

IV. CONCLUSIONS
This paper presents a non-intrusive markerless video an-

alytic system for quantification of body part movement for
pediatric epilepsy patients. The proposed system makes use
of colored pajamas and needs a simple user-initialization. It
involves HSV-based and GMM-based modeling, Graph-Cut-
based segmentation, coarse-to-fine detection, and domain-
knowledge-based body part parameter estimation. The exper-
imental studies show the feasibility of quantitative movement
analysis and seizure detection, with distinct characteristics

observed between ictal and interictal body movements. Fur-
thermore, the proposed system is promising in a wider
application field of fine semiology investigation.
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