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Abstract

The thesis is aimed at asymptotic analysis of the near-surface boundary layers

in non-locally elastic solids. The dynamic response of a homogeneous half-space with

a traction-free surface is analysed for a nonlocal exponential kernel. A typical wave-

length is assumed to be much greater than the lengthscale associated with internal

properties of the elastic medium. The dominant effect of the boundary layer is re-

vealed. The leading order long-wave approximations are shown to coincide with the

‘local’ problem for a half-space having a vertical inhomogeneity localised near the sur-

face. An explicit correction to the classical boundary conditions on the surface of a

‘locally’ elastic half-space is obtained by asymptotic analysis of the near-surface be-

haviour. The order of the derived correction exceeds that of the well-known correction

to the governing differential equations of Eringen’s model, e.g., see [44]. The obtained

refined boundary conditions enable evaluating the interior stress-strain solution outside

a narrow boundary layer localised near the surface. As examples, the effect of nonlocal

elastic phenomena on the Rayleigh wave speed and also a plane strain problem of a

moving load on the surface of a half-space are studied. In addition, a thin layer with

a traction-free upper face, subjected to prescribed displacements along its lower face,

is investigated. Further, the 3D dynamic equations in nonlocal elasticity for a thin

plate are considered, assuming the plate thickness to be much greater than a typical

microscale size. The long-wave low-frequency approximations are obtained for both

plate bending and extension. Boundary layers characteristic of nonlocal behaviour are

revealed near the plate faces. It is established that taking into account the effect of

the boundary layers results in first-order corrections to the bending and extensional

stiffness in the classical 2D plate theory.
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1 Introduction

For investigation of physical phenomena such as dispersion of waves, or for solving

problems such as Rayleigh surface waves or Rayleigh-Lamb waves in plates, vibration,

bending, buckling or other types of loads in solid structures, the classical elasticity

theory is a ready-to-use macroscale model. However, when it is necessary to consider

micro- or nanoscopic materials, it is important to account for small particle interaction

(e.g., molecular or atomic), such as Van der Waals forces, which are significant at the

micro- and nanoscale, although can be neglected in respect of the macroscale. One of

the most popular theories, which can account for such internal structural forces, was

developed by Eringen [44]. It evolved from, and is based on, the earlier fundamental

work by the same author [40]. It is called the nonlocal elasticity theory, which can be

described by introducing nonlocal elements into the governing equations of the classic

elasticity theory.

The essence of Eringen’s nonlocality principle is that the stress at any reference

point x is a functional of the strain field at every point x′ in the body. In the case

of homogeneous, isotropic materials, Eringen’s nonlocal linear theory leads to a set

of integropartial differential equations for the displacement field. These are difficult

to solve, but there are a selection of kernels that reduce these equations to singular

PDEs. Moreover, these kernels proved to give excellent experimental results with good

approximations obtained for many physical problems with a wide range of characteristic

lengths, from the micro- to the macroscale [44]. Also, nonlocal theory tends to classical

(‘local’) elasticity theory in the long-wave limit (for example, see [119]) and atomic

lattice dynamics theory in the short-wave limit ([43] cited in [44]).

The nonlocal theory has proved to be in a good agreement with lattice dynamics

theories. It can be used, for instance, to solve problems for solids having impurities

and dislocations (so-called imperfect elastic solids for which it is difficult to characterise

their internal, atomic state) and for solids with boundaries at finite regions (i.e., surface

physics) [43].
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It has been established by the modern scientific community that the concept of

nonlocality is of fundamental importance in nanomechanics, which is rapidly becom-

ing a cutting-edge area of mathematical, physical, and engineering science. Several

examples of nanomechanical applications are provided in this thesis. At this stage, we

remark that nanotechnology is actually being used in a wide variety of fields, e.g., med-

ical and biophysical research, naval engineering, and electronics, including computer

technologies. The research described in this thesis is concerned with mostly physical

applied mathematics, as it is necessary first to establish all the necessary models and

verify them, both theoretically and experimentally, then prove the efficiency of the

newly proposed models. Only after this they can be practically implemented within

the mentioned areas.

The present thesis aims to tackle a nonlocal elasticity problem of Eringen’s ‘inte-

gral’ type using asymptotic methods, rather than numerically. Details of the ‘integral’

nonlocal models and numerical methods for solving nonlocal problems are outlined

in Section 1.1. The use of asymptotic methods allows one to understand the main

significant elements and patterns of a physical process, as well as providing a more

fundamental understanding of the underlying physics by elucidating essential features.

The motivation is rather clear, to the best of the author’s knowledge, no convenient

to use closed-form or asymptotic solutions have been previously obtained for nonlocal

elasticity problems in either the 2D or 3D cases. There have been a considerable num-

ber of publications, see Section 1.1, however the fundamental effect of boundaries on

the implementation of nonlocal elasticity models has yet to be properly addressed.

Let us reiterate that the main concept of nonlocal elasticity theories is that the

intervals of integration involved in the nonlocal constitutive relations are dependent on

the distance from a reference point to the boundary, e.g., see [44]. This results in the

appearance of the so-called boundary layers which correspond to localised nonhomo-

geneous stress and strain fields. This concept is an essential part of the thesis, as it

was necessary to fill this gap to understand the influence of localised boundary layers

on overall dynamic behaviour. There are authors who emphasised the important role

of boundary layers, e.g., see Huang [61], Bazant et al. [15], Borino & Polizzotto [21],
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and Abdollahi & Boroomand [2]. However, we are not aware of any cases within which

the problems were investigated using the asymptotic methods.

1.1 Literature review

In this section, a literature review of nonlocal theories is presented, together with

a discussion of methods utilised to solve some associated problems. The first part of

the review contains a discussion on the features of nonlocal continuum models and their

evolution, starting from the pioneering works and spanning to the latest developments.

In the second part, there is a review on various applications of modern nonlocal models.

Finally, in the third part, a brief historical account of the development of asymptotic

methods is provided, as these methods were utilised as the main tool for derivation of

all results in the thesis.

1.1.1 Nonlocal continuum elastic models

One of the first attempts to account for the nonlocal phenomenon in the form

of Van der Waals cohesive forces, affecting properties of an elastic material under

certain inhomogeneous stress conditions, such as defect interaction and diffusion, was

made by Kroner [80]. More historical references on the development of continuum

elasticity, starting from Cosserat brothers’ theory [25] and Bohr’s concept of the atom

[20], alongside the main conceptual changes in understanding of elasticity, can be found

in Krumhansl [82], who derived the continuum theory using lattice theory. This author

states that for heterogeneous materials, as well as for those having some level of milli-

structure, non-classical (such as Eringen’s nonlocal theory) continuum theories are

very useful in application to real materials [82]. In addition, there is a good summary

of what has been developed in elasticity theory presented by Kunin et al., see [83],

[84], and references therein. A detailed discussion on microstructure theories and their

complexity in comparison with classical local elasticity theory are also provided in
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the mentioned works by Kunin et al. They also contain an in-depth analysis of the

theoretical foundations of media with microstructure and some applications of such

theories.

The classic theory of elasticity is based on the assumption that the internal forces

of the body are of contact type, thus, having a zero range. The cohesive forces in

materials have finite or infinite range, but not necessarily zero range. This represents

certain limitations. Nonlocal elasticity theory accounts for the finite range of the

cohesive forces [79]. For instance, in atomic lattice theories, long-range, cohesive forces,

unlike contact forces, are well known. The classical elasticity model, the long-wave limit

of the atomic theory, does not capture these cohesive forces. In order to improve the

efficiency and representativeness of the elasticity theory, a variety of theories were based

on the granular nature of materials [41].

The contact interactions between small particles of the material could be called

‘local’, with distant interactions termed ‘nonlocal’. The nonlocal theories can give

better approximation of the real physics of solid media, providing better description

of materials at micro- and nanoscales. At present, two popular conceptual models of

material media are the material continuum (where matter is spread continuously over a

region) and the molecular model (where matter is made of separate moving molecules).

In the macroworld, the continuum model is considered an excellent approximation

in comparison to the molecular model. The latter model assumes that there are no

zero-range interactions between particles (other than collisions between molecules),

therefore interaction can be treated as nonlocal. If, in a certain material, characteristic

distances are much greater than a typical granular (intermolecular) distance, but still

much smaller than a typical range of intermolecular forces, any local theory is not valid.

The molecular model is therefore not appropriate, a nonlocal continuum theory should

be used instead. This and other aspects of nonlocal theory of elastic continua, related

to boundary value problems (BVP) and initial and boundary value problems (IBVP),

as well as conditions for existence of its fundamental solutions, were investigated, for

instance, by Rogula [119].

Eringen’s nonlocal elasticity theory is different to the other theories mentioned
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previously and is essentially based on thermodynamic considerations. Nonlocality is a

powerful concept for describing and analysing the classical effects from macroscale to

very small scales, such as molecular and atomic [42]. The description of many theories

of polar media, granular aspects, and internal structure of materials can be found in

a conference proceedings edited by Kroner [81]. Generally speaking, polar theories are

nonlocal theories where nonlocality is described via moment tensors for each point of the

body [42]. Briefly, Eringen et al. derived nonlocal elasticity theories by investigating

the presence of nonlocal residuals of field quantities (such as body force, mass, internal

energy, etc.) and found the residuals using thermodynamic theory. Later, by the early

1980s, the nonlocal theory was simplified and it became possible to introduce nonlocal

elastic moduli in the stress-strain constitutive relations of the classic (‘local’) elasticity

theory, where elastic moduli are functions of the Euclidean distance between strain and

stress points. Such a type of Eringen & Edelen [41], Edelen et al. [38], and Eringen

& Laws [37] nonlocal elasticity models are termed ‘strongly nonlocal’ (or ‘integral’),

with the stress at any point expressed as a weighted function of the entire strain field.

There is another type of model of nonlocal elasticity (e.g., see [80] and [119]), which

is called ‘weakly nonlocal’ (or ‘gradient’), with the stress considered a function of the

strain and its gradient at the same point of the body. A more detailed review on

nonlocal elasticity theory evolution, alongside applications and examples of problems,

which became feasible with the introduction of nonlocal theories, can be found in [109].

The current state of art in the area of nonlocal elasticity, and its applications

in small-size devices and materials possessing microstructure, has been presented by a

number of authors during the scientific development of the area, see, for example, [34].

In addition, the paper by dell’Isola et al. [31] reminds us about Piola’s contribution,

which was not widely known for a long time, see also references to Piola’s papers in

[31].

Some critics of Eringen’s nonlocal theory can be found, for instance, in [127].

Eringen’s theory assumes the same attenuation function for all material moduli, but

it is shown not possible to simultaneously fit both the longitudinal and shear acoustic

dispersion curves for certain materials, for example, Si, Au, and Pt. In mitigation,
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a general form of the nonlocal theory was developed in the above mentioned paper,

which works with different attenuation functions for the distinct material moduli and

is able to reflect both hardening and softening behaviours of the material. This work

also reports elastic moduli and nonlocal parameters of various materials.

Let us stress that it is possible to account for the internal structure of materials

via, for instance, an internal characteristic length. This means that, unlike the classic

elasticity theory that does not employ internal characteristic length, nonlocal elasticity

can be utilised when it is essential to take into account the influence of microstructure,

which can be significant in micro- and sub-microscale [45]. Small scale effects play

an important role in micro- and nanoscale materials, but this effect is ignored in the

classical ‘local’ continuum theory, therefore the latter should be refined [129].

Let us reiterate that the length scales in nanotechnology are very small, so clas-

sical continuum models often cannot be employed. Atomic and molecular models are

computationally expensive and difficult to formulate. Therefore, nonlocal elasticity

can be used to extend the continuum models to the nanoscale. The necessary accu-

racy of the analysis of the dynamic behaviour of various nanostructures cannot be

achieved using the classical local elasticity theory. Moreover, conducting experiments

with materials of nanoscale size can be both extremely challenging and expensive. It

is therefore crucial to develop appropriate nonlocal elasticity mathematical models for

nanomaterials, e.g., see [91] and [92].

A review of micromechanical approaches, known in the literature as ‘structured

deformations’, can be found in [98], [30], and [99]. As an example, in [98] structured

deformations are considered as a multi-scale geometrical setting that would allow us to

put the fields in continuum mechanics into two groups: ones due to smooth changes at

smaller length scales and ones due to disarrangements (i.e., slips and separations) at

smaller length scales. As an example, see [35] within which a variational formulation

is used to derive a micromechanical, explicit nonlocal constitutive equation, relating

the stress and strain ensemble averages for a class of linear elastic composite materials.

Similarly, in [29], a fully nonlocal effective response of prestressed composites is found

to be perfectly analogous to the unstressed case dealt with in the previously mentioned
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paper by Drugan & Willis [35].

As an example of nonlocal model applications, the problem of Rayleigh surface

waves in a nonlocal setting, which are dealt with in the current thesis, can be found, for

example, in [97] and [91]. Nowinski et al. studied the propagation of longitudinal waves

in isotropic homogeneous elastic plates using the linear theory of nonlocal continuum

mechanics of Eringen. In this study, it is concluded that the effect of lattice defects

(vacancies and interstitials) creates a significant strain of the material medium as a

result of the difference between lattice atoms radii and the defects. The classical

continuum theory’s underlying assumption is that stresses are of the local type (i.e.,

stress at a point is dependent only on the strain at the same point), not involving any

internal length scales. The absence of the internal size parameter creates discrepancies

in the prediction of mechanical response. One example is non-dispersive wave behaviour

(where wave velocity does not depend on frequency). Within the framework of the

classical elasticity, Rayleigh surface waves, which propagate along the surface of a

isotropic elastic half-space, are not dispersive. However, both the atomic theory of

lattice and experiments contradict this [91].

In the paper by Abdollahi & Boroomand [2], the application of various numeri-

cal techniques for solving nonlocal problems is discussed, including the finite element

method (FEM) (for example, see [109]), boundary element method (BEM) (see [126],

where a numerical solution method for 3D nonlocal elastic problems is proposed).

However, it is difficult to obtain numerical results because of high computational costs

(numerical integration, etc.), therefore a mesh reduction approach can be considered

to decrease the computational time. For instance, Abdollahi & Boroomand [1] pre-

sented a low-residual solutions for 1D and 2D problems using Chebyshev polynomials.

Trefftz’s approach, using the method of fundamental solutions (MFS) or BEM (see

[47]), can give low-residual numerical solutions, but is computationally expensive as it

evaluates Green’s functions. Later, the method of solving 1D (and partly 2D) problems

using Chebyshev polynomials was improved by using exponential basis functions and

a boundary layer approach [2]. A concept of structural symmetry, with its theoretical

issues and computational methods, was considered as a nonlocal version of the FEM
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in [108].

1.1.2 Nonlocal theories for thin elastic structures

Micro- and nanoscale technology has seen rapid development lately. Because of

this, small scale effects (inter-molecular interactions, atomic forces) must be accounted

for in order to achieve good accuracy. Ignoring these interactions may sometimes lead

to incorrect results [5]. In this paper, methods of molecular dynamics dealing with size

effects and atomic-scale length are discussed. Note that in [131] a semicontinuum model

for nanostructured materials with a plate-like geometry is considered (e.g., ultra-thin

films). In contrast to the classical continuum theory, the semicontinuum model can

account for the discrete nature in the transverse direction. In [131], it is found that

the Young’s modulus and Poisson’s ratio are dependent on the number of atom layers

in the transverse direction, tending to the respective bulk values as the number of

atom layers increases. Similarly, in [138] a plate model is developed for nanomaterials,

such as ultrathin films, and the effectiveness of the model is established by analysis

of the dispersion relations of a 3-layered nanomaterial. The main result shows that if

the continuum plate theory is used to obtain the Young’s modulus of a nanomaterial,

its value may be underestimated significantly. Additionally, in [139] and [87], and in

respect of single-walled carbon nanotubes (CNTs), studies using simulation within the

framework of the molecular dynamics establish results in line with the predictions in

[87]. All the mentioned methods of molecular dynamics require the solving of a large

number of equations. It would therefore be difficult to handle systems having large

length and time scales, which is thus left to continuum mechanics theories. One of

the most popular theories is the nonlocal theory of Eringen, a theory exploited in

this thesis, see [41]. Let us reiterate that Eringen’s theory is capable of predicting

the behaviour of large micro- and nanoscale structures without the need to solve large

numbers of equations; this is due to the fact that small-scale interactions are accounted

for via material parameters, see [46].

A review on recent research on the application of nonlocal continuum theory for
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the modelling of carbon nanotubes and graphene sheets can be found in [12] by Arash

& Wang. These authors also introduce nonlocal beam, plate, and shell models. The

paper is a good brief introduction of the evolution of nonlocal continuum theories,

especially their application to modelling of nanomaterials.

Let us now discuss some examples of how and where nonlocal theories can be

applied. It is a very challenging task to find exact solutions of problems stated using

nonlocal elasticity theory. For instance, Pisano & Fuschi [107] present an analyti-

cal solution for a simple 1D nonlocal elasticity problem, namely a nonlocal elastic

bar in tension. The problem of an Euler-Bernoulli cantilever nanobeam with a point

load, with application to microelectromechanical systems (MEMS) and nanoelectrome-

chanical systems (NEMS), is tackled in [22]. In the latter article, it is shown that a

paradox exists, with some beam bending solutions for nonlocal elastic beams found to

be identical to the classical (‘local’) solutions. This means that the small scale effect

is redundant in the nonlocal solution and can be overcome with a gradient (‘weakly’

nonlocal) elastic model or with an integral (‘strongly’ nonlocal) elastic model. A mixed

model, which represents a combination of the gradient model and Eringen’s integral

model, is also proposed. In [16] it is mentioned that the models being discussed in

the current paragraph are defined as ‘local/nonlocal’ stress-strain models, where the

stress is defined as a weighted sum of local and nonlocal stress components. In [121],

bending of a nanobeam is considered within the framework of a newly proposed ‘stress-

driven’ nonlocal model and a stiffer elastic response, attributed to normalisation of the

kernel, is observed. This theory provides an effective methodology to account for

small-scale effects in nanobeams, by well-posed problems. In addition, recent research

in [120] reveals the requirement to include constitutive boundary conditions in the non-

local stress-driven model. The solution procedure for the stress-driven nonlocal law is

adopted and the effectiveness of this stress-driven model when used in structural design

of nanodevices is shown. In order to analyse the static response of a nanobeam for

different types of loadings and boundary conditions, nonlocal integral beam models for

different attenuation functions are considered in [78]. Finite element analysis of Tim-

oshenko nanobeams, using the nonlocal integral model, is carried out in [96]. Within
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this study, some case studies demonstrating the influence of boundary conditions, non-

local microscale parameter, and loading factor are presented. The paradox related to

cantilevers is tackled and said to be resolved using the integral nonlocal model.

MEMS/NENS (micro- and nanoelectromechanical systems) nanostructures found

applications in, among others, communications, machinery, information technology and

biotechnology, e.g., see [63]. In general, nanostructures possess superior mechanical,

electrical, electronic, and thermal properties in comparison with the conventional struc-

tural materials. The list of potential applications include aerospace, nanocomposites,

biomedical and bioelectrical microelectronics, e.g., see [95].

As an example of the above mentioned types of applications, Bernoulli-Euler

beam model is extended by including nonlocal elastic material response. In the case of

cantilever actuators, a model predicting that MEMS-scale devices do not show nonlocal

effects, while NEMS-scale (i.e., nanoscale) devices do, see [101]). In [126] it is mentioned

that classical elasticity cannot be applied, for instance, to the modelling of carbon

nanotubes dynamics, where size effects become significant, again the nonlocal theory

should be employed. In addition, in [130], it is discussed that one can find a model for

the column buckling of multiwalled carbon nanotubes based on a nonlocal continuum

theory, in which it is shown that small scale effects make a significant effect on the

mechanical behaviour of multiwalled carbon nanotubes and cannot be ignored.

It is shown in [32], in the context of mechanically based nonlocal elasticity, that

the direct substitution of an attenuation function into the Eringen’s integral model

can lead to inconsistencies at the boundaries of a finite bar in respect of the boundary

conditions. The authors of this work dealt with this inconsistency and proposed a model

incorporating the action of long-range forces for a nonlocal 1D bar, both for unbounded

and bounded domains. Similar inconsistencies are also discussed in [33] and [140]. In

the latter paper, an analysis in bounded domains showed that the natural frequencies

of a cantilever bar increase as the internal length scale of the material increases. Also,

a numerical analysis showed that a mechanically based model of nonlocal elasticity can

be applied to the problems of elastic or thermal wave propagation in nanosystems.

Nanoplates find applications, for example, in energy storage, chemical and biolog-
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ical sensors, renewable energy (solar cells), field emission nanodevices and transporting

of nanocars, see references and some discussion in [75] and [13]. In addition to being

used in sensors, actuators, and MEMS/NEMS, nanoplates are used to model graphene

sheets embedded in an elastic matrix or stiff thin films resting on an elastomeric sub-

strate, see [129] and [128] and references therein. Research into the mechanisms of

nonlocal effect on the transverse vibration for 2D nanoplates (for instance, a single

layer graphene sheets) can also be found in [136].

Due to their potentially remarkable mechanical properties, nanoplates made from

nanomaterials have been widely used as the building blocks for ultrasensitive and ul-

trafine resolution applications within NEMS area, see [9].

Various applications of micro- and nanoplates have been studied within the frame-

work of classical and first-order plate theories. In respect of the first-order shear de-

formation theory, the transverse shear strain and stress are assumed independent of

the thickness co-ordinate (transverse direction), which is a rough approximation of the

actual variation which could vanish on the faces of a plate. In order to validate the

mentioned discrepancy, the shear correction factor is introduced, see [5]. Third-order

shear deformation theories, where the displacement field has a cubic term in the trans-

verse co-ordinate, have been developed, see [114]. These theories are able to predict

the deflections and stresses more accurately than the first-order theory.

In [115], beam theories (of Euler-Bernoulli, Timoshenko, Reddy, and Levinson)

are reformulated using the nonlocal differential constitutive relations established by

Eringen, where the theoretical developments and numerical results are applied in non-

local theories of beams, plates, and shells. In addition, generalised governing equilib-

rium equations of nonlinear nonlocal Kirchhoff and Mindlin plate theories are derived.

Some discussion on nonlocal shell theory, applied to study the scale effect on carbon

nanotubes wave propagation, can be found in [135]. The main conclusion is that the

nonlocal shell theory is crucial to account for the small-scale effect on phonon disper-

sion relations at larger wavenumbers in the longitudinal direction. It also plays a major

role in revealing the small-scale effects at larger wavenumbers in the circumferential

direction of carbon nanotubes.
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Bending of a nanoplate, subjected to different in-plane loads and taking into

account the small-scale effects, is considered employing a nonlocal continuum theory

by Kananipour [63]. Within this work, governing equations and displacements for

nonlocal Mindlin and Kirchhoff plate models are derived and their application discussed

while employing numerical two-dimensional differential quadrature method (DQM) for

bending analysis. Vibration analysis of a nanoplate within the framework of the 3D

theory of elasticity, using nonlocal continuum mechanics, can be found in [9]. In

this paper, a closed-form solution for the natural frequencies of a rectangular simply

supported nanoplate is obtained and the effect of the nonlocal parameter on frequency

behaviour is examined. Closed form solutions for the axisymmetric bending of micro-

and nanoscale circular plates (based on the nonlocal plate theory) are obtained in [36].

Specifically, in this work the nonlocal solutions confirm that taking into account the

small scale effect leads to larger deflections, bending moments, shear force, and a lower

bending stiffness for the plate. A nonlocal plate model for bending, buckling, and free

vibration of micro- and nanoscale plates, based on the nonlocal differential constitutive

relations of Eringen, is also developed in [132]. The authors establish that the inclusion

of small-scale and shear deformation effects makes the plate more flexible and, thus,

predict an increased deflection and decreased buckling load and natural frequency.

In [62], small scale effects on the transient analysis of nanoscale plates are in-

vestigated. The nanoscale plate theory is reformulated with use of Eringen’s nonlocal

differential constitutive relations. It is shown that Eringen’s nonlocal elasticity is able

to capture various small scale effects. In particular, solutions of the transient dynamic

response of a nanoscale plate are presented to illustrate the effect of nonlocal theory

on dynamic response of the nanoscale plates. A part of this work is based on nonlocal

continuum-based modelling of a nanoplate subjected to a moving nanoparticle, see [75]

and [76]. These papers deal with nanoplates applications from a nonlocal elastody-

namic point of view. The fully simply supported nanoplate is modelled based on the

nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The second part, [76], is

a more detailed parametric study concerning the effects of influential parameters (e.g.,

small-scale parameters) on the dynamic response of the above mentioned nonlocal plate
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models.

In Eringen’s nonlocal elasticity model, the governing equations for a thin plate

can be derived by integrating the equations of motion for the nonlocal linear elas-

ticity through the thickness of the plate. With some assumptions for displacement

components, several plate theories have been obtained. Analogues of the well-known

Kirchhoff and Mindlin plate theories are derived and analysed in [88]. The Kirchhoff

plate theory neglects the effect of transverse shear deformation. The Mindlin plate

theory is a first-order shear-deformable plate theory that incorporates this effect which

becomes significant in thick plates and shear-deformable plates. Bending and vibration

problems for a rectangular plate with simply supported edges are investigated in [88],

based on the two mentioned plate theories. These theories allow us to examine the

effect of small scale on the bending and vibration solutions.

In [137], a derivation of Kirchhoff and Mindlin plate models based on generalised

gradient elasticity (with both stress gradient and strain gradient parameters) is pre-

sented. In this work, a variational formulation of the gradient Kirchhoff plate model is

established to deal with a plate at nanoscale with complex geometries and boundary

conditions. Static bending and free vibration of rectangular Kirchhoff and Mindlin sim-

ply supported plates are also obtained analytically, with the solutions demonstrating

the influence of the generalized gradient parameters on both the static and dynamic

behaviour of plates.

An analytical solution for free vibration of nanoplates, using first-order shear

deformation plate theory (FSDT) as well as the classical plate theory (CLPT) (both

reformulated using the nonlocal differential constitutive relation of Eringen [44]) can

be found in [111]. Again nonlocal theories are used to demonstrate the effect of the

nonlocal parameter (e.g., internal material properties) on the natural frequencies of

nanoplates.

Analysis of functionally graded (FG) materials at micro/nanoscale using a modi-

fied Eringen’s nonlocal theory is provided in [124]. The new, modified nonlocal theory

is also compared with Eringen’s theory by analysing free vibration of FG rectangular

micro/nanoplates with simply supported boundary conditions using a first-order plate
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theory and 3D elasticity and assumed to be functionally graded properties only along

the plate thickness. In addition, some exact solutions for buckling of heated function-

ally graded (FG) annular nanoplates resting on an elastic foundation were derived in

[13]. It may be concluded that the small scale effects significantly affect the thermal

stability characteristics of FG annular nanoplates.

A new method called ‘full modified nonlocal (FMNL) theory’, based on varia-

tional principle, for bending and buckling analysis of simply supported rectangular

nanoplates was proposed in [93]. It is shown that an advantage of the FMNL theory

is that one defect of nonlocal theory, in vanishing of small scale effect, can be resolved

for some problems.

Vibrational characteristics of multi-layered graphene sheets with different bound-

ary conditions are studied in [10]. Within this work it is concluded that the small-scale

effects in the nonlocal continuum model affect small size multi-layered graphene sheets

making them more flexible. Specifically, the classical continuum model usually overes-

timates the resonant frequencies of small size graphene sheets and in order to reduce

the error, nonlocal theories should be employed. The importance of the small length

scales is affected by the boundary conditions of multi-layered graphene sheets. For

instance, the effect of the small length scales on a fully clamped graphene sheet is

much more significant than on its freely supported counterpart. It is also found that

the small size effect becomes more noticeable for smaller values of moduli of the elastic

medium, see [10].

The small scale effect on the thermal buckling behaviour of arbitrary straight-

sided quadrilateral orthotropic nanoplates embedded in elastic medium is presented

in [90]. The derived formulation in this work is based on the classical plate theory,

with the small scale effect accounted for by using the nonlocal elasticity constitutive

relations. The effects of nonlocal parameter, as well as the elastic medium parameters,

geometrical shapes, and boundary conditions, on the critical buckling temperature rise

of orthotropic nanoplates are analysed in detail.

A nonlocal elastic plate model that accounts for the scale effects is developed for

wave propagations in graphene sheets in [11] using the finite element method (FEM).
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The applicability of this is verified by molecular dynamics simulations and the nonlo-

cal finite element plate model is shown to be crucial in predicting graphene phonon

dispersion relations, especially at very small wavelengths (less than 1 nm) when the

small-scale effects become significant. As an example, an application of graphene sheets

as nanosensors for noble gas atoms is considered.

A closed-form solution for 3D static deformation and free vibrational response

of a simply supported and multilayered quasicrystal nanoplate with incorporation of

the nonlocal effect in Eringen’s form can be found in [134]. It is remarkable that the

long wave assumption fails near the boundaries of a non-locally elastic solid, where it

is essential to account for the effect of boundary layers. The importance of boundary

layers in non-locally elastic bodies is emphasised by a number of authors, for example,

see [15] and [2].

Summarising, the existing 2D nonlocal models for thin elastic plates are usually

derived using the differential constitutive relations of Eringen [44], e.g., see previously

mentioned papers by Lu et al. [88], Duan & Wang [36], Aghababaei & Reddy [5],

Pradhan & Phadikar[111], Malekzadeh et al. [90], Xu et al. [137], Thai et al. [132],

Jung & Han [62], and Mousavi et al. [93]. In these models a reduction from 3D to 2D is

performed using ad-hoc assumptions and neglecting the variation of nonlocal properties

across the thickness of a plate. This results in the occurrence of nonlocal corrections

only at second-order in the microscale parameter related to the external longitudinal

wavelength, which is assumed much greater than the plate thickness. In [123], the

authors take into account the variation of several nonlocal integral kernels along the

thickness and it seems, to the best of our knowledge, to be the only exception. In

addition, in [123] nonlocal bending moments and shear forces are calculated using the

conventional engineering hypotheses underlying the classical theory for plate bending

and extension, e.g., see [52].

1.1.3 Asymptotic methods for thin plates and coatings

Asymptotic methods started developing in the field of statics and low-frequency
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dynamics, for instance, see Friedrichs & Dressler [48], Reiss & Locke [116], Green [56],

Aksentian & Vorovich [8], Reissner [117], Goldenveizer [49], [51], Goldenveizer et al.

[52], and references therein. We also mention here papers of Kaplunov et al. [67] and

Pichugin & Rogerson [105] dealing with pre-stressed structures. Asymptotic methods

were also applied in more general dynamic problems where not only low-frequency

approximations, which as a rule generalise statics (e.g., see [52]), but high-frequency

theories were also considered, including both long- and short-wave cases. We reiterate

that in contrast to low-frequency approximations, high-frequency is characterised by

sinusoidal variation across the thickness. Here and below, further details on the full

classification of the shell vibrations are apprently for the first time presented in [66], see

also [18], [86], and [17]. For the short-wave approximations, a typical wave length is of

order of the thickness, while for long-waves it is much greater than the thickness. High-

frequency long-wave modes, arising near thickness resonant frequencies, were found in

various set-ups, including pre-stressed and anisotropic structures (see [71], [68], [103],

[104], and [7]), structures interacting with media ([64]), structures with clamped faces

([65] and [69]), layered bodies ([89], [122], and [27]), localisation of high-frequency long-

wave modes (e.g., see [68], [72], and [59]). High-frequency short-wave approximations

are also important for analysis of transient wave fronts ([77], [70], and [118]).

Asymptotic analysis of boundary and initial conditions is of particular impor-

tance. In fact, most researchers only derive the differential equations of motion, ignor-

ing the effect of boundary and initial conditions. For analysis of boundary conditions,

see the Saint-Venant’s principle expressing the decaying of edge data as a starting

point, see [53], [57], [58], [14], and numerous references therein. Asymptotic analysis

of initial conditions requires considering of high-frequency long-wave modes alongside

the classical, low-frequency long-wave ones, see [73].

Asymptotic analysis of refined theories such as of Timoshenko-Reissner, can be

found e.g., in [52], [110], [39], and [133].
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1.1.4 Outline of thesis

The structure of the thesis is as follows. Chapter 1 is the introductory part

of the thesis outlining essential concepts of nonlocal elasticity. Section 1.1 provides

a literature review on the topic. In Subsection 1.1.1, basic facts, importance, and

evolution of nonlocal elasticity theories are discussed, starting from the very first sig-

nificant works in this area of mechanics and leading to the latest modern developments.

Examples of applications are also provided and numerical methods in nonlocal mod-

els mentioned. Plate-like structures, plate models in nonlocal context alongside their

applications to modelling of micro- and nanomaterials such as nanobeams, carbon

nanotubes, graphene sheets and especially nanoplates, among others, are reviewed in

Subsection 1.1.2, treated both analytically and numerically. Areas of scientific and in-

dustrial applications and the growing popularity of nanostructures are also discussed.

Next, Subsection 1.1.3 contains a brief history of the development of asymptotic meth-

ods, which will be the main mathematical tool utilised to derive all the results in the

present thesis.

In Chapter 2, essential relations in classical elasticity are provided in Section 2.1,

including the derivations of Rayleigh transcendental equation in Subsection 2.1.1 and

Rayleigh-Lamb dispersion relation in Subsection 2.1.2. Important relations in nonlocal

linear elasticity theory are shown and explained in Subsection 2.2.

Chapter 3 is structured as follows. In Section 3.1, an elastic half-space governed

by the nonlocal equations given in [44] is considered. For the sake of definiteness, it

is assumed that the nonlocal behaviour is modelled by an exponential kernel involving

a small internal lengthscale. Next, a long-wave asymptotic scheme, originated from

Goldenveizer [52] and later developed by, for instance, Dai et al. [28] and Aghalovyan

[6] is adapted, where the characteristic wavelength is assumed to considerably exceed a

typical microscale parameter. The original nonlocal problem is reduced to a formulation

identical to the classical problem for an elastic half-space with a vertical inhomogeneity

localised near the surface. The effect of the inhomogeneity is then reduced to effective

boundary conditions imposed at a near-surface interface. To this end, it is only possible
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to asymptotically evaluate the interval which yields the location of the interface. A

more attractive option is exploited in Section 3.2, where the stresses along the ‘virtual’

interface are transformed into effective boundary conditions that need to be imposed

on the surface of a homogeneous half-space, enabling one to evaluate the interior stress

and strain outside the narrow boundary layer. In Section 3.3, a more general setup is

analysed, when specific assumptions in nonlocal elasticity are not employed; instead,

the inhomogeneity of the near-surface layer is considered in the general form of variable

longitudinal and transverse wave speeds, see [23]. As examples of the application of

the effective boundary conditions, the nonlocal correction to the Rayleigh surface wave

is obtained in Section 3.4 and the effect of nonlocal elastic behaviour in a problem of

a moving load on the surface of a half-space is analysed in Section 3.5.

In Chapter 4, plate bending theory is considered within the nonlocal elasticity

framework. The variation of nonlocal properties across the plate thickness using the

integral constitutive relations in [44] is analysed in Section 4.1. Direct asymptotic

integration through the thickness is employed and adapted (see [52], [66], [67], and

[73]) in Section 4.2 to derive appropriate long-wave low-frequency approximations of the

nonlocal 3D dynamic elasticity equations for plate bending. For the sake of simplicity,

a single small parameter is specified: it is equal to the ratio of the thickness to a

characteristic longitudinal lengthscale and, at the same time, equal to the ratio of the

thickness to a microscale internal size. A commonly used exponential nonlocal kernel

(see [44]) is utilised. It is revealed that nonlocal stresses contain specific components

corresponding to the effect of boundary layers adjacent to the plate faces (alongside the

counterparts of classical, ‘local’ stresses demonstrating a polynomial variation across

the thickness), which is numerically presented in Section 4.3.

In Chapter 5, the theory of plate extension is analysed in the nonlocal context.

The variation of nonlocal properties across the thickness of a plate is investigated in

Section 5.1. Asymptotic integration through the thickness is then exploited in Sec-

tion 5.2, with long-wave low-frequency approximations of the governing equations for

nonlocal elasticity in respect of plate extension obtained. The effect of boundary lay-

ers adjacent to the plate faces is analysed numerically and corresponding graphs are
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plotted in Section 5.3.

The nonlocal equations of motion obtained in Chapters 4 and 5 are expressed in

the form of associated ‘local’ equations with modified bending and extensional stiff-

ness, respectively. Hence, these equations involve nonlocal first-order corrections to

their ‘local’ versions, see [24]. Chapter 6 presents a discussion on the essential results

obtained in the thesis and on potential developments, extensions, and applications of

the derived asymptotic models.
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2 Preliminaries

In the current chapter, some essential relations such as governing equations

in classical and nonlocal linear elasticity are shown and explained. Derivations for

Rayleigh and Rayleigh-Lamb equations are provided and discussed briefly.

2.1 Classical linear elasticity

The main relations we will need in this thesis, alongside their detailed derivations

can be found in [4] and [55]. Within this chapter, we provide only essential details.

First, the stress equations of motion for a homogeneous isotropic linearly elastic solid

are given by

σmn,m = ρ
∂2un
∂t2

, (2.1)

where σmn, m,n = 1, 2, 3, are the components of the stress tensor σ, un the components

of the displacement vector u, ρ the volume density, and t time. We also note that

Einstein’s summation convention is employed here. Hooke’s law, relating stress and

strain, can be conveniently written in the well-known form

σmn = λellδmn + 2µemn , (2.2)

where δmn is the Kronecker’s delta and λ and µ the Lamé constants; the components

of the linear elastic strain tensor e can be expressed through displacements as

emn =
1

2

(
∂um
∂xn

+
∂un
∂xm

)
. (2.3)

It is clear that emn = enm and σmn = σnm. The system of equations governing the

motion of a homogeneous, isotropic, linearly elastic body consists of the equations

(2.1)-(2.3).
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2.1.1 Rayleigh transcendental equation

A wave traveling along the free surface of an elastic, linear, isotropic half-space, in

such a way that the disturbance can be detected mostly in the vicinity of the boundary,

was for the first time considered by Lord Rayleigh [112]. The derivation of the classical

Rayleigh surface wave equation can be found, for example, in [4], and is briefly discussed

in this subsection.

Let us consider a half-space (x3 ≥ 0) in the state of plane strain, where um =

um(x1, x3), m = 1, 3, and u2 = 0, see Figure 2.1.

x1

x3

O

c=cR

Figure 2.1: Rayleigh wave on the surface of a half-space.

We further assume a traction-free surface, i.e., the boundary conditions at the

surface, in the case of plane strain, become

σ31 = 0 , σ33 = 0 at x3 = 0 . (2.4)

The classical equation of motion, in plane strain, in terms if displacements can be
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written in the vector form as

E

2(1 + ν)
∆u+

E

2(1 + ν)(1− 2ν)
grad divu− ρ∂

2u

∂t2
= 0 , (2.5)

where u = (u1, 0, u3) and its components are independent of x2 and ∆ is the Laplacian.

Using Helmholtz’s theorem, the displacement vector u may be decomposed as follows,

e.g., see [4] and [55],

u = gradϕ+ curlψ , (2.6)

where ϕ and ψ are wave potentials. In the case of plane strain, ψ = (0, ψ2, 0).

Hence, the equations of motion, expressed in terms of wave potentials ϕ and ψ2,

can be written as

∆1ϕ−
1

c2
1

∂2ϕ

∂t2
= 0 , (2.7)

∆1ψ2 −
1

c2
2

∂2ψ2

∂t2
= 0 , (2.8)

where ∆1 = ∂2

∂x21
+ ∂2

∂x23
and ψm = 0,m = 1, 3, e.g., see [66].

One of the main attributes of Rayleigh surface waves is that the displacement

decays exponentially with distance from the free surface. Therefore, let us look for

travelling wave solutions of the following form

ϕ = Ae−rx3+ik(x1−ct) ,

ψ2 = Be−qx3+ik(x1−ct) ,
(2.9)

where c is the phase velocity and the attenuation coefficients r and q, by use of (2.1) -

(2.3), may be shown to be given by

r = k

√
1− c2

c2
1

and

q = k

√
1− c2

c2
2

.
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We can now express the displacements in terms of potentials, thus obtaining

u1 = ϕ,1 + ψ2,3 = (ikAe−rx3 − qBe−qx3) eik(x1−ct) ,

u3 = ϕ,3 − ψ2,1 = (−rAe−rx3 − ikBe−qx3) eik(x1−ct) .
(2.10)

Next, on substituting (2.10) into the surface boundary conditions (2.4), we obtain,

after taking into account the plane strain forms of (2.2) and (2.3), the following system

of equations [
2− c2

c2
2

]
A+

[
2i

√
1− c2

c2
2

]
B = 0 ,

[
−2i

√
1− c2

c2
1

]
A+

[
2− c2

c2
2

]
B = 0 .

(2.11)

The condition for existence of a non-trivial solution of the system of equations (2.11)

yields the classical Rayleigh equation

R(γ) = (2− γ2)2 − 4
√

(1− γ2)(1− κ2γ2) = 0 ,

where γ = c
c2

is the normalised dimensionless phase velocity and

κ =
c2

c1

=

√
1− 2ν

2− 2ν
=

√
µ

λ+ 2µ
, (2.12)

with ν Poisson’s ratio.

2.1.2 Rayleigh-Lamb dispersion relation

Lord Rayleigh [113] and Lamb [85] obtained a frequency equation for waves in

elastic plates with traction-free surfaces. A brief derivation of the Rayleigh-Lamb

dispersion relation is provided below. For further details the reader is referred to, for

example, Graff [55].
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Figure 2.2: Geometry for the Rayleigh-Lamb problem.

The classical equation of motion in terms of displacements, in plane strain, for

an infinite layer of thickness 2h, see Figure 2.2, was given by (2.5) earlier. The stresses

can be expressed in terms of displacements in the following form

σ11 =
E

2(1 + ν)κ2

(
∂u1

∂x1

+
ν

1− ν
∂u3

∂x3

)
,

σ22 =
E

2(1− ν2)κ2

(
∂u1

∂x1

+
∂u3

∂x3

)
,

σ33 =
E

2(1 + ν)κ2

(
ν

1− ν
∂u1

∂x1

+
∂u3

∂x3

)
,

σ31 =
E

2(1 + ν)

(
∂u3

∂x1

+
∂u1

∂x3

)
,

(σ21 = σ23 ≡ 0) .

(2.13)

Classical boundary conditions in the case of plane strain are

σ31 = 0 , σ33 = 0 at x3 = ±h . (2.14)
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We specify the displacements in terms of wave potentials ϕ and ψ2 as in (2.10)

u1 =
∂ϕ

∂x1

+
∂ψ2

∂x3

,

u3 =
∂ϕ

∂x3

− ∂ψ2

∂x1

.

(2.15)

On substituting of (2.15) into (2.5), we obtain equations (2.7) and (2.8).

Let use introduce the following dimensionless quantities

ξ1 =
x1

h
, ζ =

x3

h
, τ =

tc2

h
,

and

K = kh , Ω =
ωh

c2

,

and seek the solutions of equations (2.7) and (2.8) in the form

ϕ = f(ζ) exp [i(Kξ1 − Ωτ)] ,

ψ2 = g(ζ) exp [i(Kξ1 − Ωτ)] .
(2.16)

Substituting (2.16) into (2.7) and (2.8) , we obtain

∂2f

∂ζ2
− α2f = 0 ,

∂2g

∂ζ2
− β2f = 0 ,

(2.17)

where α2 = K2 − κ2Ω2, β2 = K2 − Ω2, with κ defined by (2.12).

The vibration modes described by the equations (2.17) can be divided into two

groups: symmetric with respect to the midplane of the layer (ζ = 0) and antisymmetric.

Let us first obtain the solution for the antisymmetric, so-called bending modes, for

which the displacement u1 and stresses σ11, σ22, and σ33 are odd with respect to ζ,

whereas u3 and σ31 are even. The solutions of the equations (2.17) can be written as

f = A sinh (αζ) , g = B cosh (βζ) , (2.18)
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where A and B are arbitrary constants.

Next, on substituting (2.16) into (2.15), having found f and g in the form (2.18),

the displacements may be written as

u1 =
1

h
(A sinh (αζ)iK +B sinh (βζ)β) exp [i(Kξ1 − Ωτ)] ,

u3 =
1

h
(A cosh (αζ)α−B cosh (βζ)iK) exp [i(Kξ1 − Ωτ)] .

(2.19)

On substituting (2.19) into (2.13)3,4 and satisfying the boundary conditions (2.14), we

have a system of two linear equations in A and B, namely

A [αiK coshα] +B [γ2 cosh β] = 0 ,

A[γ2 sinhα]−B [βiK sinh β] = 0 ,

and equating the determinant of this system of equations to zero yields the classical

Rayleigh-Lamb dispersion equation

γ4 sinhα

α
cosh β − β2K2 coshα

sinh β

β
= 0 , (2.20)

where γ = K2 − Ω2

2
, e.g., [4] and [55].

Let us now consider the low-frequency long-wave case, with K � 1, Ω� 1. From

the classical Rayleigh-Lamb dispersion relation (2.20) it is known that asymptotically,

after we expand the trigonometric functions sinh and cosh in Taylor series up to the

first order, we have, see [66],

K4 =
3

4(1− κ2)
Ω2(1 +O(Ω)) , (2.21)

therefore K ∼
√

Ω. Alternatively, the same relation can be derived directly from the

classical Kirchhoff equation for plate bending by substituting a travelling wave solution

into it.

For symmetric modes, which express extension and compression of a layer, the

displacement u1 and stresses σ11, σ22, and σ33 are even with respect to the thickness

variable ζ, with u3 and σ31 odd. This means that the solutions to the equations (2.17)

in this case are given by

f = A cosh (αζ) , g = B sinh (βζ) , (2.22)
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where A and B are arbitrary constants. The Rayleigh-Lamb dispersion equation for

the symmetric case can therefore be derived from the equation for the antisymmetric

case (2.20) by substituting ‘sinh’ instead of ‘cosh’ and vice versa, yielding

γ4 coshα
sinh β

β
− α2K2 sinhα

α
cosh β = 0 , (2.23)

where, as before, γ = K2 − Ω2

2
, see [66].

We again consider the low-frequency long-wave case (K � 1, Ω� 1). From the

classical Rayleigh-Lamb dispersion relation for the symmetric case (2.23) it is known

that asymptotically, after we expand the trigonometric functions ‘sinh’ and ‘cosh’ in

Taylor series up to the leading order, we obtain

K2 =
1

4(1− κ2)
Ω2(1 +O(Ω2)) , (2.24)

therefore K ∼ Ω. Similarly, this relation can be derived from the classical equation for

plate extension by substituting a travelling wave solution into it, e.g., see [66].

2.2 Nonlocal linear elasticity

We shall now consider nonlocal elasticity and start with the nonlocal elasticity

equations, see [44]. For a homogeneous isotropic elastic solid, we have (2.25)-(2.26)

below

smn,m = ρ
∂2un
∂t2

, (2.25)

with un, n = 1, 2, 3, the components of the displacement vector, ρ volume density, t

time and

smn(x) =

∫
V

K (|x′ − x|, a)σmn(x′) dv(x′) , (2.26)

where smn and σmn are the nonlocal and classical stress tensors, respectively, considered

at time t, x = (x1, x2, x3) is a reference point, V the domain occupied by the body,

K(x, a) the so-called nonlocal modulus, and a is an internal characteristic length,

for example, lattice parameter or granular distance. Throughout the paper we assume
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that the internal size a is asymptotically small in comparison with a typical wavelength.

This long-wave assumption provides validity for the adapted nonlocal integral model.

We remark that this follows, in particular, from lattice dynamics [43].

The nonlocal kernel K in (2.26) is normalised over 3D space, so that∫
V∞

K (|x′|, a) dv(x′) = 1 . (2.27)

The two equations (2.25) and (2.26) are accompanied by classical equations (2.2) and

(2.3).

We select the 3D exponential nonlocal modulus as follows, see [44],

K(|x|, a) =
1

π3/2a3
exp

[
−x · x

a2

]
, (2.28)

and in the case of a half-space (−∞ < x1 < ∞, −∞ < x2 < ∞, and 0 ≤ x3 < ∞),

(2.26) becomes

smn(x) =
1

π3/2a3

∞∫
0

dx′3

∞∫
−∞

dx′1

∞∫
−∞

dx′2 exp

[
−(x′ − x)2

a2

]
σmn(x′) , (2.29)

while in the case of a plate of thickness 2h (−∞ < x1 < ∞, −∞ < x2 < ∞, and

−h ≤ x3 ≤ h), (2.26) takes the form

smn(x) =
1

π3/2a3

h∫
−h

dx′3

∞∫
−∞

dx′1

∞∫
−∞

dx′2 exp

[
−(x′ − x)2

a2

]
σmn(x′) . (2.30)

Let us expand the stresses σmn in Taylor series about the specific reference point

x′ = (x1, x2, x
′
3), assuming, as in [23], that the typical wavelength characterising the

classical stress field is much greater than the internal size a. Thus, we establish from

(2.30) that

smn(x) =
1

a
√
π

h∫
−h

exp

[
−(x′3 − x3)2

a2

]
σmn(x1, x2, x

′
3)dx′3 . (2.31)
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Note that the limits of integration are from −h to h. It holds true for a layer or plate

of thickness 2h, while for a half-space, i.e., −∞ < x1 < ∞, −∞ < x2 < ∞, and

0 ≤ x3 <∞, the expression (2.29) becomes

smn(x) =
1

a
√
π

∞∫
0

exp

[
−(x′3 − x3)2

a2

]
σmn(x1, x2, x

′
3)dx′3 . (2.32)
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3 Effective boundary conditions on the free
surface of a half-space accounting for
nonlocal effects

In this chapter, a homogeneous layer with free upper face and prescribed dis-

placements at the lower face is considered within the framework of nonlocal elasticity.

We start from the equations (2.25) and (2.26) with the nonlocal modulus satisfying

the equations (2.27) and (2.28). The leading order long-wave approximation of the

aforementioned problem is found. It is implemented for the formulation of the effective

boundary conditions which allow one to evaluate the interior solution outside a narrow

boundary layer localised near the surface of an elastic half-space treated within the

classical local elasticity. In addition, an illustration of the effect of nonlocal elastic

phenomena on the Rayleigh wave speed is provided.

3.1 Near-surface non-locally elastic layer

First, let us take in a separate consideration a thin, elastic near-surface layer of

thickness h starting from the relations in Section 2.2. Assume that the upper face of

the layer, x3 = 0, is traction-free while at the lower face, x3 = h, the displacements

are prescribed, where x3 is the transverse co-ordinate. The equations of motion in 3D

nonlocal elasticity, using Einstein’s summation convention, are given by

smn,m = ρ
∂2un
∂t2

, (3.1)

which can be rewritten for convenience as

∂s3i

∂x3

= −∂sii
∂xi
− ∂sij
∂xj

+ ρ
∂2ui
∂t2

,

∂s33

∂x3

= −∂s3i

∂xi
− ∂s3j

∂xj
+ ρ

∂2u3

∂t2
,

(3.2)
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where i 6= j = 1, 2 and Einstein’s summation convention is not employed.

Using the integral expression (2.32), and Hooke’s law in the form (2.2), we can

express the nonlocal stresses as follows

smn(x) =
1

a
√
π

∞∫
0

exp

[
−(x′3 − x3)2

a2

]
(λell(x1, x2, x

′
3)δmn

+2µemn(x1, x2, x
′
3)) dx′3 ,

(3.3)

where a is an internal characteristic length, δmn the Kronecker delta, λ and µ the Lamé

constants, and the linear elastic strains are given by (2.3).

The boundary conditions on the upper and lower faces are respectively given by

s3n = 0 at x3 = 0 , (3.4)

and

un = Un at x3 = h , (3.5)

where Un = Un(x1, x2, t) denotes the prescribed displacements, with n = 1, 2, 3. The

formulated problem for a layer, see Figure 3.1, is also of considerable interest, see [74]

by Kaplunov & Chebakov.
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Figure 3.1: A non-locally elastic layer of thickness h; a� h� `.
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Let us introduce two small geometrical parameters. Assume that the thickness of

the near-surface layer h is much smaller than a typical wavelength `, therefore denote

η = h
`
� 1, but h is in turn also much greater then the internal microscale a, thus

denote θ = a
h
� 1, see Figure 3.2.
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Figure 3.2: A homogeneous substrate coated by a vertically inhomogeneous layer of
thickness h; a� h� `.

Also assume, for the sake of simplicity, that ratio θ coincides with
√
η, hence we

have the following relation

θ =
a

h
=

√
h

`
. (3.6)

In fact, this choice can be generalised as θ = ηk, where k > 0, resulting, however,

in cumbersome formulae which would lead virtually to the same final conclusions not

bringing much novelty.

The classical stresses σmn were earlier expressed in terms of strains emn, see (2.2).

Let us also express, for convenience, the nonlocal stresses smn as a sum of their classical

counterparts pmn(ζp) and nonlocal counterparts qmn(ζq), where the latter is associated

with the influence of a nonlocal boundary layer localised near a free surface. This

convenient notation allows us to separately analyse classical and nonlocal behaviour.

We now adapt the well-known asymptotic integration method, e.g., see [50], [52],

and [6], in order to find the nonlocal stresses s3n at x3 = h. First, we scale the original



33

variables as

xi = `ξi , x3 = hζp = aζq , and t =
`

c2

τ , (3.7)

Note that the novelty of this approach is in its multi-scale nature, including both a

transverse dimensionless variable ζp normalised by the macroscale h and its analogue

ζq normalised by the microscale a. This is a natural consequence of the existence of an

internal microscale inside a thin layer.

We now define the dimensionless quantities, denoting, as agreed earlier, the di-

mensionless nonlocal stresses smn as sums of their classical and nonlocal constituents,

pmn and qmn, respectively. Thus, we have the following scaling for displacements

un = `vn , Un = `wn , (3.8)

strains

eii = εii , eij = εij , e33 = ε33 , (3.9)

and nonlocal stresses
sii = µ(pii + qii) ,

sij = µ(pij + qij) ,

s3i = θ2µ(p3i + θq3i) ,

s33 = θ2µ(p33 + θ2q33) ,

(3.10)

and it is also necessary to introduce the following quantity

γi3 =
∂ui
∂x3

, (3.11)

where v, w, ε, p and q, and γi3 are assumed to be of the same asymptotic order. Formula

(3.11) is typical for the asymptotic integration method, e.g., see [52], and serves for

analysing quantities with uniform variation along the thickness, see also formula (3.16).

Let us again recall that in (3.10) above, pmn(ζp) components of the nonlocal

stresses smn effectively represent those in classical linear elasticity, while qmn(ζq) com-

ponents represent the effect of boundary (near-surface) layers characteristic of nonlocal

elasticity only.
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Now using (3.3) let us write down the equations for nonlocal stresses smn ex-

pressed in terms of strains emn

sij =
2µ

a
√
π

∫ ∞
0

exp

[
−(x′3 − x3)2

a2

]
eijdx

′
3 ,

sii =
µ

a
√
π

∫ ∞
0

exp

[
−(x′3 − x3)2

a2

] (
κ−2eii + (κ−2 − 2)(ejj + e33)

)
dx′3 ,

s3i =
2µ

a
√
π

∫ ∞
0

exp

[
−(x′3 − x3)2

a2

]
e3idx

′
3 ,

s33 =
µ

a
√
π

∫ ∞
0

exp

[
−(x′3 − x3)2

a2

] (
κ−2e33 + (κ−2 − 2)(eii + ejj)

)
dx′3 ,

(3.12)

where κ is defined by (2.12).

The reader can notice that we cannot find e33 which we need to be able to

calculate sii in (3.12)2. Therefore let us first express e33 through eii, ejj, and s33 from

(3.12)4 and then substitute it into (3.12)2, yielding

sii =
µ

a
√
π

∫ ∞
0

exp

[
−(x′3 − x3)2

a2

] (
4(1− κ2)eii + 2(1− 2κ2)ejj

)
dx′3

+(1− 2κ2)s33 .

(3.13)

This is another key trick in asymptotic theory for thin solids originated from A. L.

Goldenveizer, e.g., see [52] and references therein. Now we are in a position to write

down non-dimensional equations for the nonlocal stresses smn; these were expressed

earlier in the form of dimensionless components p and q, see (3.10). We express these



35

stresses in terms of dimensionless strains εmn from (3.12) and (3.13), obtaining

pij + qij =
2√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]εijdζ
′
q ,

pii + qii =
1√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]
(
4(1− κ2)εii + 2(1− 2κ2)εjj

)
dζ ′q

+θ2(1− 2κ2)(p33 + θ2q33) ,

θ2(p33 + θ2q33) =
1√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]
(
κ−2ε33

+(κ−2 − 2)(εii + εjj)) dζ
′
q .

(3.14)

It is now possible to express the strains emn in terms of displacements un, n = 1, 2, 3,

as in (2.3), resulting in the dimensionless forms

εij =
1

2

(
∂vi
∂ξj

+
∂vj
∂ξi

)
,

εii =
∂vi
∂ξi

,

θ2ε33 =
∂v3

∂ζp
,

(3.15)

and, accordingly, equation (3.11) becomes

θ2γi3 =
∂vi
∂ζp

. (3.16)

The nonlocal equations of motion (3.2), in dimensionless form in terms of p and

q stress components, become

∂p3i

∂ζp
+
∂q3i

∂ζq
= −∂(pii + qii)

∂ξi
− ∂(pij + qij)

∂ξj
+
∂2vi
∂τ 2

,

∂p33

∂ζp
+ θ

∂q33

∂ζq
= −θ2

[
∂(p3i + θq3i)

∂ξi
+
∂(p3j + θq3j)

∂ξj

]
+
∂2v3

∂τ 2
.

(3.17)

The corresponding dimensionless form of the boundary conditions (3.4) becomes

p3i + θq3i = 0 , p33 + θ2q33 = 0 at ζp = 0 (ζq = 0) , (3.18)
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with boundary conditions (3.5) taking the form

vn = wn at ζp = 1 (ζq = θ−1) . (3.19)

Now we expand all the dimensionless quantities, namely the displacements vn,

strains εmn, and nonlocal stress constituents pmn and qmn, in asymptotic series in terms

of the small parameter θ, given by (3.6), as follows



vn

pmn

qmn

εmn


=



v
(0)
n

p
(0)
mn

q
(0)
mn

ε
(0)
mn


+ θ



v
(1)
n

p
(1)
mn

q
(1)
mn

ε
(1)
mn


+ . . . (3.20)

Substitution of the above expansions into equations (3.14)1,2, (3.15), (3.16), and (3.17)
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results, at leading order, in the following set of equations

∂v
(0)
i

∂ζp
= 0 ,

∂v
(0)
3

∂ζp
= 0 ,

ε
(0)
ij =

1

2

(
∂v

(0)
i

∂ξj
+
∂v

(0)
j

∂ξi

)
,

ε
(0)
ii =

∂v
(0)
i

∂ξi
,

p
(0)
ij + q

(0)
ij =

2√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]ε
(0)
ij dζ

′
q ,

p
(0)
ii + q

(0)
ii =

1√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]
(

4(1− κ2)ε
(0)
ii + 2(1− 2κ2)ε

(0)
jj

)
dζ ′q ,

∂p
(0)
3i

∂ζp
+
∂q

(0)
3i

∂ζq
= −∂(p

(0)
ii + q

(0)
ii )

∂ξi
−
∂(p

(0)
ij + q

(0)
ij )

∂ξj
+
∂2v

(0)
i

∂τ 2
,

∂p
(0)
33

∂ζp
=
∂2v

(0)
3

∂τ 2
,

(3.21)

along with the boundary conditions

p
(0)
3i = 0 , p

(0)
33 = 0 at ζp = 0 (ζq = 0) , (3.22)

and

v(0)
n = wn at ζp = 1 (ζq = θ−1) . (3.23)

On integrating equations (3.21)1,2 with respect to ζp, satisfying the boundary con-

ditions (3.23), and then using the obtained results in (3.21)3,4, we are able to establish
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that

v
(0)
n = wn ,

ε
(0)
ij =

1

2

(
∂wi
∂ξj

+
∂wj
∂ξi

)
,

ε
(0)
ii =

∂wi
∂ξi

,

(3.24)

where we recall that the prescribed displacements wn = wn(ξi, ξj, τ).

We are now in a position to show that equation (3.21)5 may be represented

through

p
(0)
ij + q

(0)
ij =

1√
π

(
∂wi
∂ξj

+
∂wj
∂ξi

)∫ ∞
0

exp [−(ζ ′q − ζq)2]dζ ′q . (3.25)

Next, on making the substitution t = ζ ′q − ζq in equation (3.25), at leading order we

have

p
(0)
ij + q

(0)
ij =

1√
π

(
∂wi
∂ξj

+
∂wj
∂ξi

)∫ ∞
−ζq

exp [−t2]dt . (3.26)

We can rewrite the integral in equation (3.26) in the following form∫ ∞
−ζq

exp [−t2]dt =

∫ ∞
−∞

exp [−t2]dt−
∫ −ζq
−∞

exp [−t2]dt (3.27)

and note that
∫∞
−∞ e

−t2dt =
√
π (e.g., see [54]). We are now in a position to separate the

classical stress components p
(0)
ij in (3.26), which contains no nonlocal constituents, from

the nonlocal stress components q
(0)
ij , which involves the integral reflecting the effect of

the boundary layer, thus

p
(0)
ij =

∂wi
∂ξj

+
∂wj
∂ξi

,

q
(0)
ij = −1

2

(
∂wi
∂ξj

+
∂wj
∂ξi

)
erfc (ζq) ,

(3.28)

where complementary error function, e.g., see [3], is defined by

erfc (ζq) =
2√
π

∫ ∞
ζq

e−t
2

dt . (3.29)
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We are now in a position to note that equation (3.21)6 becomes

p
(0)
ii + q

(0)
ii =

1√
π

(
4(1− κ2)

∂wi
∂ξi

+ 2(1− 2κ2)
∂wj
∂ξj

)∫ ∞
0

exp [−(ζ ′q − ζq)2]dζ ′q . (3.30)

Similarly, following the same steps used to derive (3.28) above, yielding the same

integral as in (3.25)), and using the same idea to separate p
(0)
ii and q

(0)
ii , we can readily

establish that

p
(0)
ii = 4(1− κ2)

∂wi
∂ξi

+ 2(1− 2κ2)
∂wj
∂ξj

,

q
(0)
ii = −

(
2(1− κ2)

∂wi
∂ξi

+ (1− 2κ2)
∂wj
∂ξj

)
erfc (ζq) .

(3.31)

We now separate p and q stress components of the governing equation (3.21)7.

Integrating the p part of (3.21)7, i.e., the following equation

∂p
(0)
3i

∂ζp
= −∂p

(0)
ii

∂ξi
−
∂p

(0)
ij

∂ξj
+
∂2v

(0)
i

∂τ 2
, (3.32)

with respect to ζp, we obtain

p
(0)
3i = −ζp

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

− ∂2wi
∂τ 2

]
+ C , (3.33)

where C = C(ξ1, ξ2, τ) is an arbitrary function independent of the transverse co-

ordinate, and satisfying the corresponding boundary condition (3.22)1, i.e.,

p
(0)
3i = 0 at ζp = 0 , (3.34)

we can find the arbitrary function C to conclude that

p
(0)
3i = −ζp

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

− ∂2wi
∂τ 2

]
. (3.35)

On integrating (3.21)8, with respect to ζp, we obtain

p
(0)
33 = ζp

∂2w3

∂τ 2
+D , (3.36)
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where D = D(ξ1, ξ2, τ) is an arbitrary function independent of the transverse co-

ordinate. Satisfying the corresponding boundary condition (3.22)2, i.e.,

p
(0)
33 = 0 at ζp = 0 , (3.37)

we can now find the arbitrary function D, arriving at

p
(0)
33 = ζp

∂2w3

∂τ 2
. (3.38)

In what follows, we need to find q
(0)
3i . Therefore, we now need to integrate the q

part of (3.21)7, i.e., the following equation

∂q
(0)
3i

∂ζq
= −∂q

(0)
ii

∂ξi
−
∂q

(0)
ij

∂ξj
, (3.39)

with respect to ζq. On substituting q
(0)
ij from (3.28)2 and q

(0)
ii from (3.31)2 into equation

(3.39) above, we obtain

∂q
(0)
3i

∂ζq
=

1

2

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

]
erfc (ζq) , (3.40)

and on integration, similarly to derivation of (3.28), we establish that

q
(0)
3i =

1

2

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

] ∫ ∞
ζq

erfc (ζ ′q)dζ
′
q . (3.41)

Then, on integrating by parts we have

q
(0)
3i =

1

2

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

]
Q(ζq) , (3.42)

where

Q(ζq) = ζq erfc (ζq)−
1√
π

exp [−ζ2
q ] . (3.43)
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Similarly, at the next order we have the following equation set

∂v
(1)
i

∂ζp
= 0 ,

∂v
(1)
3

∂ζp
= 0 ,

ε
(1)
ij =

1

2

(
∂v

(1)
i

∂ξj
+
∂v

(1)
j

∂ξi

)
,

ε
(1)
ii =

∂v
(1)
i

∂ξi
,

p
(1)
ij + q

(1)
ij =

2√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]ε
(1)
ij dζ

′
q ,

p
(1)
ii + q

(1)
ii =

1√
π

∫ ∞
0

exp [−(ζ ′q − ζq)2]
(

4(1− κ2)ε
(1)
ii + 2(1− 2κ2)ε

(1)
jj

)
dζ ′q ,

∂p
(1)
3i

∂ζp
+
∂q

(1)
3i

∂ζq
= −∂(p

(1)
ii + q

(1)
ii )

∂ξi
−
∂(p

(1)
ij + q

(1)
ij )

∂ξj
+
∂2v

(1)
i

∂τ 2
,

∂p
(1)
33

∂ζp
+
∂q

(0)
33

∂ζp
= 0 ,

(3.44)

along with the boundary conditions

p
(1)
3i + q

(0)
3i = 0 , p

(1)
33 = 0 at ζp = 0 (ζq = 0) , (3.45)

and

v(1)
n = 0 at ζp = 1 (ζq = θ−1) . (3.46)

In similar spirit to the leading order calculations above, on integrating of the

equations (3.44)1,2 with respect to ζp while satisfying the boundary conditions (3.46)
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and then using the obtained results in (3.44)3,4, yields

v
(1)
n = 0 ,

ε
(1)
ij = 0 ,

ε
(1)
ii = 0 .

(3.47)

Equation (3.44)5 then becomes

p
(1)
ij + q

(1)
ij = 0 , (3.48)

indicating that

p
(1)
ij = 0 ,

q
(1)
ij = 0 .

(3.49)

Next, equation (3.44)6 becomes

p
(1)
ii + q

(1)
ii = 0 , (3.50)

which also yields

p
(1)
ii = 0 ,

q
(1)
ii = 0 .

(3.51)

Now we separate the p and q stress components of the governing equation (3.44)7.

After substituting (3.47), (3.49), and (3.51) into it, the p part of (3.44)7 becomes

∂p
(1)
3i

∂ζp
= 0 , (3.52)

and on integrating with respect to ζp we obtain

p
(1)
3i = E , (3.53)

where E = E(ξ1, ξ2, τ) is an arbitrary function independent of the transverse co-

ordinate.

On satisfying of the corresponding boundary condition (3.45)1, i.e.,

p
(1)
3i + q

(0)
3i = 0 at ζp = 0 , (3.54)
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we can find the arbitrary function E and conclude that

p
(1)
3i =

1

2
√
π

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

]
. (3.55)

As previously, we can now consider the p part of the equation (3.44)8, i.e.,

∂p
(1)
33

∂ζp
= 0 , (3.56)

and integrate it with respect to ζp to obtain

p
(1)
33 = F , (3.57)

where F = F (ξ1, ξ2, τ) is an arbitrary function independent of on the transverse co-

ordinate. Satisfying the boundary condition (3.45)2, i.e.,

p
(1)
33 = 0 at ζp = 0 , (3.58)

we can find the arbitrary function F to conclude that

p
(1)
33 = 0 . (3.59)

We may now write down the sought for stresses, s3i and s33, in dimensionless

form (in terms of p and q) up to O(θ) terms. In particular, the stresses s3i take the

following form

p3i + θq3i = p
(0)
3i + θp

(1)
3i + θq

(0)
3i

= ζp
∂2wi
∂τ 2

+

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

]

×
[
−ζp +

θ

2

(
1√
π

+Q

)]
.

(3.60)

The second stress of interest, s33, up to O(θ) terms is written as

p33 = p
(0)
33 = ζp

∂2w3

∂τ 2
. (3.61)
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Hence, in terms of the original variables, the expressions (3.60) and (3.61) may be

rewritten as

s3i = ρx3
∂2Ui
∂t2

+ρc2
2

[
4(1− κ2)

∂2Ui
∂x2

i

+ (3− 4κ2)
∂2Uj
∂xi∂xj

+
∂2Ui
∂x2

j

](
−x3 +

a

2

(
1√
π

+Q

))
,

s33 = ρx3
∂2U3

∂t2
.

(3.62)

where Un = `wn. Note that at a = 0 equations (3.62) coincide with those without

taking into account nonlocal effects, e.g., see [28].

For what follows, we need to find expressions for the stresses s3i and s33 at

x3 = h (ζp = 1 or ζq = θ−1). As at x3 � a (ζq � 1) the boundary layer term Q in

(3.60) is exponentially small, the stresses at the lower face x3 = h can be expressed in

dimensionless form, to within an exponentially small error, as

p3i + θq3i =

[
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

](
−1 +

θ

2
√
π

)

+
∂2wi
∂τ 2

,

p33 =
∂2w3

∂τ 2
,

(3.63)

which in terms of the original variables becomes

s3i = ρh
∂2Ui
∂t2

+ ρc2
2

[
4(1− κ2)

∂2Ui
∂x2

i

+ (3− 4κ2)
∂2Uj
∂xi∂xj

+
∂2Ui
∂x2

j

]

×
[
−h+

a

2
√
π

]
,

s33 = ρh
∂2U3

∂t2
.

(3.64)

In order to illustrate the effect of the boundary layer localised near the free surface

x3 = 0, see Figure 3.1, we now consider the dimensionless classical and ‘nonlocal’
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components of the derived stresses, i.e., pmn and qmn, as functions of the dimensionless

transverse co-ordinate ζp. First, let us rewrite the p and q components corresponding

to the stress sij, see (3.28), in the following form

p
(0)
ij =

(
∂wi
∂ξj

+
∂wj
∂ξi

)
,

q
(0)
ij =

(
∂wi
∂ξj

+
∂wj
∂ξi

)
Qij ,

(3.65)

where

Qij = −1

2
erfc (θ−1ζp) , (3.66)

recalling that ζq = θ−1ζp.

We next complete similar steps for the p and q components, corresponding to the

stress sii, see (3.31), resulting in

p
(0)
ii =

(
4(1− κ2)

∂wi
∂ξi

+ 2(1− 2κ2)
∂wj
∂ξj

)
Pii ,

q
(0)
ii =

(
4(1− κ2)

∂wi
∂ξi

+ 2(1− 2κ2)
∂wj
∂ξj

)
Qii ,

(3.67)

where

Qii = −1

2
erfc (θ−1ζp) . (3.68)

Let us now define Q′ = Qij = Qii. The graph for Q′ against ζp is plotted in

Figure 3.3.
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Figure 3.3: The nonlocal component of the stresses sij and sii, i 6= j = 1, 2.

We note that Q′ = −1
2

on the upper face of the layer x3 = 0 (ζp = 0). In addition,

we now explicitly show the main terms leading to exponential type of attenuation of

Q′. To this end, let us substitute the complementary error function in the expression

for Q′ above by the following asymptotic expansion at x� 1 (e.g., see [3])

erfc (x) =
e−x

2

x
√
π

(
1 +

∞∑
n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)n

)
. (3.69)

Keeping the leading order term only, we obtain a simpler expression

Q′asymp = −exp [−(θ−1ζp)
2]

2
√
π(θ−1ζp)

, (3.70)

where this asymptotic expansion only works for large argument, i.e., when ζp � θ, see

Figure 3.4.
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Figure 3.4: Attenuation of Q′; θ = 0.1.

Next, we proceed with p and q components corresponding to the stress s3i, see

(3.35) and (3.42), for which we deduce that

p
(0)
3i =

(
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

− ∂2wi
∂τ 2

)
P3i ,

q
(0)
3i =

(
4(1− κ2)

∂2wi
∂ξ2

i

+ (3− 4κ2)
∂2wj
∂ξi∂ξj

+
∂2wi
∂ξ2

j

)
Q3i ,

(3.71)

where

P3i = −ζp (3.72)

and

Q3i =
1

2
Q , (3.73)

where Q is defined by (3.43). Recalling that ζq = θ−1ζp, the expression for Q3i becomes

Q3i =
1

2

[
θ−1ζp erfc (θ−1ζp)−

1√
π

exp [−(θ−1ζp)
2]

]
. (3.74)

The graph for Q3i versus ζp is plotted in Figure 3.5.
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Figure 3.5: The nonlocal part of the stresseses s3i, i = 1, 2.

It is worth reiterating that P3i = 0 and Q3i = − 1
2
√
π

on the upper face x3 = 0

(ζp = 0). Let us now consider the asymptotics of attenuation for Q3i. On using the

asymptotic expansion (3.69) for the complementary error function (for large arguments)

in Q3i, up to first order terms, we are able to deduce that

Qasymp
3i = −exp [−(θ−1ζp)

2]

4(θ−1ζp)2
, (3.75)

see Figure 3.6.
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Figure 3.6: Attenuation of Q3i; θ = 0.1.

3.2 Derivation of effective boundary conditions

It is clear that the nonlocal boundary layer stress components qmn are exponen-

tially small at the lower face of the layer x3 = h. At the same time, due to their

interaction with the classical stress components pmn via boundary conditions at the

free surface, an extra O(θ) term arises in the expressions (3.62) at the upper face

x3 = 0. As a result, in order to find the stresses over the interior of a non-locally elas-

tic half-space, we may think of reformulating the problem in terms of classical ‘local’

elasticity. In fact, we may formulate an inverse problem for a homogeneous elastic half-

space with certain effective boundary conditions along its free surface. Such boundary

conditions have to ensure the classical stresses σ3i and σ33 at the depth x3 = h coincide

with nonlocal stresses (3.64) derived earlier. Therefore, we are going to obtain effec-

tive boundary conditions along the surface accounting for the presence of the nonlocal

boundary layer, e.g., see [23].
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Let us consider a near-surface layer of thickness h in a homogeneous half-space

within the framework of classical elasticity. We assume continuity of displacements

and stresses at the ‘virtual’ interface x3 = h, where, as before, x3 is the transverse

co-ordinate. The classical equations of motion are

σmn,m = ρ
∂2un
∂t2

, (3.76)

which can be conveniently rewritten as (3.2) with σmn instead of smn as follows

∂σ3i

∂x3

= −∂σii
∂xi
− ∂σij
∂xj

+ ρ
∂2ui
∂t2

,

∂σ33

∂x3

= −∂σ3i

∂xi
− ∂σ3j

∂xj
+ ρ

∂2u3

∂t2
,

(3.77)

where i 6= j = 1, 2, n,m = 1, 2, 3, and, in contrast to 3.76, Einstein’s summation

convention is not employed.

Let the boundary conditions at the surface of the half-space be given by

σ3n = χ3n at x3 = 0 , (3.78)

where χ3n are the sought for surface stresses, which we need to find in order to obtain

the effective boundary conditions mentioned earlier. As before, we assume continuity

of displacements

un = vn at x3 = h , (3.79)

where vn = vn(x1, x2, t), n = 1, 2, 3, denotes the prescribed displacements in the ‘vir-

tual’ substrate defined by x3 ≥ h. We further assume that the thickness of the near-

surface layer h� `, so θ =
√

h
`

is a small geometric parameter; as above, ` denotes a

typical macroscale.

Here we again make use of the asymptotic integration method, see [50], [52], and

[6], in order to find the classical (‘local’) stresses σ3n at x3 = h expressed in terms of

the unknown surface stresses χ3n. It is then necessary to equate the obtained σ3n to

the nonlocal stresses at x3 = h (3.64) in order to find the sought for effective boundary

conditions, which is in fact equivalent to finding the value of χ3n.
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Let us start by scaling the original variables in the form

xi = `ξi , x3 = hζ , and t =
`

c2

τ . (3.80)

Next, we define dimensionless quantities as follows

un = `u∗n , vn = `v∗n ,

eii = e∗ii , eij = e∗ij ,

σii = µσ∗ii ,

σij = µσ∗ij ,

σ3n = θ2µσ∗3n ,

χ3n = θ3µχ∗3n ,

(3.81)

and also assume
∂ui
∂x3

= γ∗i3 , (3.82)

where µ is a Lamé constant and all the dimensionless quantities with an asterisk are

assumed to be of the same asymptotic order. As usual, classical stresses σmn are

expressed in terms of strains as in (2.2). We use it to write down the classical stresses

σmn as
σij = 2µeij ,

σii = (λ+ 2µ)eii + λ(ejj + e33) ,

σ3i = 2µe3i ,

σ33 = (λ+ 2µ)e33 + λ(eii + ejj) .

(3.83)

In order to be able to express all the necessary stresses in a form easy-to-use for

subsequent asymptotic integration, we need to express e33 in (3.83)4 through eii, ejj,

and σ33 and then substitute it into (3.83)2 to obtain

σii =
4µ(λ+ µ)

λ+ 2µ
eii +

2λµ

λ+ 2µ
ejj +

λ

λ+ 2µ
σ33 . (3.84)
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Now let us write down non-dimensional equations for the stresses. In what fol-

lows, we only need σij in (3.83) and σii in (3.84). After making the substitutions

λ = ρ(c2
1−2c2

2) and µ = 2ρc2
2, we obtain the following set of non-dimensional equations

σ∗ij = 2e∗ij ,

σ∗ii = 4(1− κ2)e∗ii + 2(1− κ2)e∗jj + θ2(1− 2κ2)σ∗33 ,
(3.85)

where κ is defined by (2.12). We may now express the strains emn in terms of the

displacements un using the formula (2.3), which in dimensionless form becomes

e∗ij =
1

2

(
∂u∗i
∂ξj

+
∂u∗j
∂ξi

)
,

e∗ii =
∂u∗i
∂ξi

,

ηe∗33 =
∂u∗3
∂ζ

,

(3.86)

with the analogous form of equation (3.82) given by

∂u∗i
∂ζ

= θ2γ∗i3 . (3.87)

The equations of motion (3.77) take the form

∂σ∗3i
∂ζ

= −∂σ
∗
ii

∂ξi
−
∂σ∗ij
∂ξj

+
∂2u∗i
∂τ 2

,

∂σ∗33

∂ζ
= −θ2

(
∂σ∗3i
∂ξi

+
∂σ∗3j
∂ξj

)
+
∂2u∗3
∂τ 2

.

(3.88)

The boundary conditions (3.78) can be written as

σ∗3n = θχ∗3n at ζ = 0 , (3.89)

and the continuity of displacements at the ‘virtual’ interface is given by

u∗n = v∗n at ζ = 1 . (3.90)
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Now we can expand all the dimensionless quantities, namely the displacements u∗n,

stresses σ∗mn and strains e∗mn, in asymptotic series in terms of the previously introduced

small parameter θ =
√

h
`
, these being given by


u∗n

σ∗mn

e∗mn

 =


u

(0)
n

σ
(0)
mn

e
(0)
mn

+ θ


u

(1)
n

σ
(1)
mn

e
(1)
mn

+ . . . (3.91)

Substitution of these expansions into equations (3.85), (3.86), (3.87), and (3.88) results,

at leading order, in the following set of equations

∂u
(0)
i

∂ζ
= 0 ,

∂u
(0)
3

∂ζ
= 0 ,

e
(0)
ij =

1

2

(
∂u

(0)
i

∂ξj
+
∂u

(0)
j

∂ξi

)
,

e
(0)
ii =

∂u
(0)
i

∂ξi
,

σ
(0)
ij = 2e

(0)
ij ,

σ
(0)
ii = 4(1− κ2)e

(0)
ii + 2(1− κ2)e

(0)
jj ,

∂σ
(0)
3i

∂ζ
= −∂σ

(0)
ii

∂ξi
−
∂σ

(0)
ij

∂ξj
+
∂2u

(0)
i

∂τ 2
,

∂σ
(0)
33

∂ζ
=
∂2u

(0)
3

∂τ 2
,

(3.92)

along with the boundary conditions

σ
(0)
3n = 0 at ζ = 0 (3.93)
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and the ‘interfacial’ conditions

u(0)
n = v∗n at ζ = 1 . (3.94)

On integrating of equations (3.92)1,2 with respect to ζ, and satisfying the ‘inter-

facial’ conditions (3.94), then using the obtained results in (3.92)3−6, we have

u
(0)
n = v∗n ,

e
(0)
ij =

1

2

(
∂v∗i
∂ξj

+
∂v∗j
∂ξi

)
,

e
(0)
ii =

∂v∗i
∂ξi

,

σ
(0)
ij =

∂v∗i
∂ξj

+
∂v∗j
∂ξi

,

σ
(0)
ii = 4(1− κ2)

∂v∗i
∂ξi

+ 2(1− κ2)
∂v∗j
∂ξj

,

(3.95)

where we recall that v∗n are dimensionless prescribed displacements and v∗n = v∗n(ξi, ξj, τ).

We remark that these displacements are not dependent of ζ (i.e., independent of the

transverse co-ordinate x3).

On substituting of (3.95)1,4,5 into the governing equation (3.92)7, we obtain

∂σ
(0)
3i

∂ζ
= −∂

2v∗i
∂ξ2

j

− 4(1− κ2)
∂2v∗i
∂ξ2

i

− (3− 4κ2)
∂2v∗j
∂ξi∂ξj

+
∂2v∗i
∂τ 2

, (3.96)

and on integrating of the equation above with respect to ζ we arrive at

σ
(0)
3i = −ζ

[
∂2v∗i
∂ξ2

j

+ 4(1− κ2)
∂2v∗i
∂ξ2

i

+ (3− 4κ2)
∂2v∗j
∂ξi∂ξj

− ∂2v∗i
∂τ 2

]
+ C , (3.97)

where C = C(ξ1, ξ2, τ) is an arbitrary function. Now, satisfying the corresponding

boundary condition (3.93), we can find the arbitrary function C and establish that

σ
(0)
3i = −ζ

[
∂2v∗i
∂ξ2

j

+ 4(1− κ2)
∂2v∗i
∂ξ2

i

+ (3− 4κ2)
∂2v∗j
∂ξi∂ξj

− ∂2v∗i
∂τ 2

]
. (3.98)
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Next, on substituting (3.95)1 into the governing equation (3.92)8, we obtain

∂σ
(0)
33

∂ζ
=
∂2v∗3
∂τ 2

, (3.99)

which on integrating with respect to ζ yields

σ
(0)
33 = ζp

∂2v∗3
∂τ 2

+D , (3.100)

where D = D(ξ1, ξ2, τ) is an arbitrary function. We may now satisfy the boundary

condition (3.93) to obtain an expression for the arbitrary function D and, thus, arrive

at

σ
(0)
33 = ζp

∂2v∗3
∂τ 2

. (3.101)

Similarly to (3.92), at the next order we readily have

∂u
(1)
i

∂ζ
= 0 ,

∂u
(1)
3

∂ζ
= 0 ,

e
(1)
ij =

1

2

(
∂u

(1)
i

∂ξj
+
∂u

(1)
j

∂ξi

)
,

e
(1)
ii =

∂u
(1)
i

∂ξi
,

σ
(1)
ij = 2e

(1)
ij ,

σ
(1)
ii = 4(1− κ2)e

(1)
ii + 2(1− κ2)e

(1)
jj ,

∂σ
(1)
3i

∂ζ
= −∂σ

(1)
ii

∂ξi
−
∂σ

(1)
ij

∂ξj
+
∂2u

(1)
i

∂τ 2
,

∂σ
(1)
33

∂ζ
=
∂2u

(1)
3

∂τ 2
,

(3.102)

while the boundary conditions take the form

σ
(1)
3n = χ∗3n at ζ = 0 (3.103)
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and the ‘interfacial’ conditions become

u(1)
n = 0 at ζ = 1 . (3.104)

Similarly to the leading order calculations previously carried out, on integrating

equations (3.102)1,2 with respect to ζ and satisfying the ‘interfacial’ conditions (3.104)

and using the obtained results in (3.102)3−6, we readily have

u
(1)
n = 0 ,

e
(1)
ij = 0 , e

(1)
ii = 0 ,

σ
(1)
ij = 0 , σ

(1)
ii = 0 .

(3.105)

On substituting of the equations (3.105) into the governing equation (3.102)7, we obtain

∂σ
(1)
3i

∂ζ
= 0 , (3.106)

and integrating it with respect to ζ yields

σ
(1)
3i = E , (3.107)

where E = E(ξ1, ξ2, τ) is an arbitrary function. Now, satisfying the corresponding

boundary condition (3.103), we can find the arbitrary function E and establish that

σ
(1)
3i = χ∗3i . (3.108)

We now substitute (3.105)1 into the governing equation (3.102)8 to obtain

∂σ
(1)
33

∂ζ
= 0 , (3.109)

and after integration with respect to ζ, we have

σ
(1)
33 = F , (3.110)

where F = F (ξ1, ξ2, τ) is an arbitrary function. On satisfying of the boundary condi-

tions (3.103), the arbitrary function F may be found, enabling us to deduce that

σ
(1)
33 = χ∗33 . (3.111)



57

We are now in a position to write down the dimensionless stresses σ∗3i and σ∗33 up

to O(θ) order. The stresses σ∗3i take the form

σ∗3i = σ
(0)
3i + θσ

(1)
3i

= −ζ
[
∂2v∗i
∂ξ2

j

+ 4(1− κ2)
∂2v∗i
∂ξ2

i

+ (3− 4κ2)
∂2v∗j
∂ξi∂ξj

− ∂2v∗i
∂τ 2

]
+ θχ∗3i ,

(3.112)

with the stress σ∗33 given by

σ∗33 = σ
(0)
33 + θσ

(1)
33

= ζ
∂2v∗3
∂τ 2

+ θχ∗33 .

(3.113)

In terms of the original variables, the expressions (3.112) and (3.113) may be presented

as

σ3i = ρx3

(
∂2vi
∂t2
− c2

2

[
∂2vi
∂x2

j

+ 4(1− κ2)
∂2vi
∂x2

i

+ (3− 4κ2)
∂2vj
∂xi∂xj

])
+ χ3i ,

σ33 = ρx3
∂2v3

∂t2
+ χ33 .

(3.114)

We now need to obtain expression for stresses σ3i and σ33 at the interface. There-

fore these stresses can be written as

σ∗3i = −
[
∂2v∗i
∂ξ2

j

+ 4(1− κ2)
∂2v∗i
∂ξ2

i

+ (3− 4κ2)
∂2v∗j
∂ξi∂ξj

− ∂2v∗i
∂τ 2

]
+ θχ∗3i ,

σ∗33 =
∂2v∗3
∂τ 2

+ θχ∗33

at ζ = 1 ,

(3.115)

which in terms of the original variables become

σ3i = ρh

(
∂2vi
∂t2
− c2

2

[
∂2vi
∂x2

j

+ 4(1− κ2)
∂2vi
∂x2

i

+ (3− 4κ2)
∂2vj
∂xi∂xj

])
+ χ3i ,

σ33 = ρh
∂2v3

∂t2
+ χ33

at x3 = h .

(3.116)
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Having found the values of the classical (‘local’) stresses σ3n at the ‘virtual’

interface x3 = h, the next step is to equate them to the corresponding nonlocal stresses

s3n in (3.64). This effectively means that we could complement the considered inverse

problem by extra interfacial conditions, namely

σ3n = s3n at x3 = h . (3.117)

Satisfying these conditions, we obtain the sought for values of χ3n in the form

χ3i = ρc2
2

a

2
√
π

(
∂2Ui
∂x2

j

+ 4(1− κ2)
∂2Ui
∂x2

i

+ (3− 4κ2)
∂2Uj
∂xi∂xj

)
,

χ33 = 0 ,

(3.118)

where Un = `v∗n.

We can now conclude that the effective boundary conditions that need to be

imposed on the surface of a ‘locally’ elastic, homogeneous half-space in order to account

for nonlocal near-surface effects are given by

σ3i = ρc2
2

a

2
√
π

(
∂2ui
∂x2

j

+ 4(1− κ2)
∂2ui
∂x2

i

+ (3− 4κ2)
∂2uj
∂xi∂xj

)
,

σ33 = 0

at x3 = 0 .

(3.119)

The differential operator in brackets in the right-hand side of (3.119)1 coincides with

that in plane elasticity, e.g., see [66]. This operator also appears in the effective bound-

ary conditions for a coated ‘local’ half-space, see [28]. The difference between the effec-

tive boundary conditions in [28] and the derived effective conditions (3.119) is in that

the former are imposed along the interface while the latter hold at the surface. It is

obvious that this is the only chance within the considered set up since we are dealing

with a ‘virtual’ interface at all times.
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3.3 An alternative approach to analysing a near-

surface vertically inhomogeneous layer

In this part, a more general setup is analysed. The specific assumptions in nonlo-

cal elasticity as presented in (2.26) are not employed here. Instead, the inhomogeneity

of the near-surface layer is taken in the general form of variable longitudinal and trans-

verse wave speeds c′1 and c′2, respectively, for further references see [23].

Let us begin by considering a thin, vertically inhomogeneous layer of thickness

h� `, where ` is a typical wavelength, see Figure 3.7. Then ε = h
`

is a small geometric

parameter.

x1

x3

O

h

inhomogeneous layer

substrate

x2

l

λ        µ'(x ),3 '(x )3

λ, µ

c' (x ), c' (x ) 1 23 3

c , c  = const1 2

= const

Figure 3.7: A substrate coated with a near-surface vertical inhomogeneity.

Equations of motion are given by

∂sii
∂xi

+
∂sij
∂xj

+
∂s3i

∂x3

= ρ
∂2ui
∂t2

,

∂s3i

∂xi
+
∂s3j

∂xj
+
∂s33

∂x3

= ρ
∂2u3

∂t2
,

(3.120)
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and constitutive relations by

sij = ρc
′2
2 (x3)

(
∂ui
∂xj

+
∂uj
∂xi

)
,

sii = ρc
′2
1 (x3)

∂ui
∂xi

+ ρ(c
′2
1 (x3)− 2c

′2
2 (x3))

(
∂uj
∂xj

+
∂u3

∂x3

)
,

s3i = ρc
′2
2 (x3)

(
∂ui
∂x3

+
∂u3

∂xi

)
,

s33 = ρc
′2
1 (x3)

∂u3

∂x3

+ ρ(c
′2
1 (x3)− 2c

′2
2 (x3))

(
∂ui
∂xi

+
∂uj
∂xj

)
,

(3.121)

where i 6= j = 1, 2 and Einstein’s summation convention is not employed. The variable

wave speeds in (3.121) are given by

c′1(x3) =

√
λ′(x3) + 2µ′(x3)

ρ
and c′2(x3) =

√
µ′(x3)

ρ
. (3.122)

Traction-free boundary conditions at the surface are imposed in the form

s3n = 0 at x3 = 0 , (3.123)

with assumed continuity of displacement along the interface expressed through

un = vn at x3 = h , (3.124)

where vn = vn(x1, x2, t), n = 1, 2, 3, are the prescribed displacements in the substrate.

We adapt a similar asymptotic approach as in the previous sections in order to ex-

press the stresses s3n at the interface x3 = h in terms of the prescribed substrate

displacements vn.

First, we scale the original variables as follows

xi = ξi` , x3 = ηh , and t =
`

c2

τ , (3.125)

where c2 = c′2(h), and also introduce the dimensionless quantities

u∗n =
1

`
un , v

∗
n =

1

`
vn ,

s∗ij =
1

µ
sij , s

∗
ii =

1

µ
sii , s

∗
3n =

`

µh
s3n =

ε−1

µ
s3n ,

(3.126)
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where all the quantities with an asterisk are assumed to be of the same asymptotic

order.

The equations of motion (3.120) and constitutive relations (3.121) can now be

rewritten as
∂s∗ii
∂ξi

+
∂s∗ij
∂ξj

+
∂s∗3i
∂η

=
∂2u∗i
∂τ 2

,

∂s∗33

∂η
+ ε

(
∂s∗3i
∂ξi

+
∂s∗3j
∂ξj

)
=
∂2u∗3
∂τ 2

,

(3.127)

and

s∗ij = κ
′2
2

(
∂u∗i
∂ξj

+
∂u∗j
∂ξi

)
,

εs∗ii = (κ
′2
1 − 2κ

′2
2 )
∂u∗3
∂η

+ ε

(
κ
′2
1

∂u∗i
∂ξi

+ (κ
′2
1 − 2κ

′2
2 )
∂u∗j
∂ξj

)
,

ε2s∗3i = κ
′2
2

(
∂u∗i
∂η

+ ε
∂u∗3
∂ξi

)
,

ε2s∗33 = κ
′2
1

∂u∗3
∂η

+ ε(κ
′2
1 − 2κ

′2
2 )

(
∂u∗i
∂ξi

+
∂u∗j
∂ξj

)
,

(3.128)

with κ′m = c′m(x3)
c2

, m = 1, 2.

Similarly to the previous section, it is convenient to express
∂u∗3
∂η

in (3.128)2 from

(3.128)4, yielding

s∗ii = 4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
∂u∗i
∂ξi

+ 2κ
′2
2

(
1− 2κ

′2
2

κ
′2
1

)
∂u∗j
∂ξj

+ ε

(
1− 2κ

′2
2

κ
′2
1

)
s∗33 . (3.129)

In the dimensionless form, the boundary conditions (3.123) are

s∗3n = 0 at η = 0 (3.130)

and the interfacial conditions (3.124) become

u∗n = v∗n at η = 1 . (3.131)

We now expand the displacements un and stresses smn in asymptotic series in terms of



62

the previously specified small geometric parameter ε, and therefore have

u∗n

s∗ii

s∗ij

s∗3i

s∗33


=



u
(0)
n

s
(0)
ii

s
(0)
ij

s
(0)
3i

s
(0)
33


+ ε



u
(1)
n

s
(1)
ii

s
(1)
ij

s
(1)
3i

s
(1)
33


+ . . . (3.132)

Substitution of the expressions above into equations (3.127) - (3.131) results, at leading

order, in the following set of equations of motion

∂s
(0)
ii

∂ξi
+
∂s

(0)
ij

∂ξj
+
∂s

(0)
3i

∂η
=
∂2u

(0)
i

∂τ 2
,

∂s
(0)
33

∂η
=
∂2u

(0)
3

∂τ 2
,

(3.133)

and constitutive relations

s
(0)
ij = κ

′2
2

(
∂u

(0)
i

∂ξj
+
∂u

(0)
j

∂ξi

)
,

s
(0)
ii = 4κ

′2
2

(
1− κ

′2
2

κ
′2
1

)
∂u

(0)
i

∂ξi
+ 2κ

′2
2

(
1− 2κ

′2
2

κ
′2
1

)
∂u

(0)
j

∂ξj
,

∂u
(0)
n

∂η
= 0 ,

(3.134)

together with the boundary conditions

s
(0)
3n = 0 at η = 0 (3.135)

and the interfacial conditions

u(0)
n = v∗n at η = 1 . (3.136)
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On integrating (3.133)2 and (3.134)3 with respect to η, and taking into account

the corresponding interfacial conditions (3.136), we obtain

u(0)
n = v∗n (3.137)

and

s
(0)
33 = η

∂2v∗3
∂τ 2

. (3.138)

Using (3.137), we obtain from (3.134)2 the following expression

s
(0)
ii = 4κ

′2
2

(
1− κ

′2
2

κ
′2
1

)
∂v∗i
∂ξi

+ 2κ
′2
2

(
1− 2κ

′2
2

κ
′2
1

)
∂v∗j
∂ξj

. (3.139)

Next, we integrate equation (3.133)1, using (3.134)2 and (3.137), and then satisfy

the boundary conditions (3.135), to establish that

s
(0)
3i = η

∂2v∗i
∂τ 2

− ∂2v∗i
∂ξ2

j

η∫
0

κ
′2
2 dη

′ − 4
∂2v∗i
∂ξ2

i

η∫
0

κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dη′

−
∂2v∗j
∂ξi∂ξj

η∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dη′ .

(3.140)

In terms of the original variables, let us write down the expressions for the stresses s3i

and s33, which through use of (3.140) and (3.138) become

s3i = ρ

x3
∂2ui
∂t2
− c2

2

∂2ui
∂x2

j

x3∫
0

κ
′2
2 dx

′
3 − c2

2

∂2ui
∂x2

i

x3∫
0

4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dx′3

−c2
2

∂2uj
∂xi∂xj

x3∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dx′3

 ,

s33 = ρx3
∂2u3

∂t2
,

(3.141)

where now un = `u
(0)
n . Note that for subsequent calculations we also need to use the
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following expressions for sii and sij

sii = 2ρc
′2
2

[
2

(
1− c

′2
2

c
′2
1

)
∂ui
∂xi

+

(
1− 2c

′2
2

c
′2
1

)
∂uj
∂xj

]
,

sij = ρc
′2
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(3.142)

The stresses s3i and s33 at the interface x3 = h may now be expressed through the

substrate displacements vn, yielding

s3i = ρ

h∂2vi
∂t2
− c2

2

∂2vi
∂x2

j

h∫
0

κ
′2
2 dx

′
3 − ρc2

2

∂2vi
∂x2

i

h∫
0

4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dx′3

−c2
2

∂2vj
∂xi∂xj

h∫
0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dx′3

 ,

s33 = ρh
∂2v3

∂t2
,

(3.143)

where, as previously, κ′m = c′m
c2

, m = 1, 2.

Let us recall the important expression (2.29) in Section 2.2, namely

sαβ(x) =
1

π3/2a3

∞∫
0

dx′3

∞∫
−∞

dx′1

∞∫
−∞

dx′2 exp

[
−(x′ − x)2

a2

]
σαβ(x′) . (3.144)

Now we expand the stresses σαβ in Taylor series about the reference point x′ = x,

assuming again that the typical wavelength characterising the classical stress field is

much greater than the internal size a. Then (3.144) can be transformed into

sαβ(x) =
1

a
√
π

σαβ(x)

∞∫
0

exp

[
−(x′3 − x3)2

a2

]
dx′3

+
∂σαβ(x)

∂x3

∞∫
0

(x′3 − x3) exp

[
−(x′3 − x3)2

a2

]
dx′3


+ . . . ,

(3.145)
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which on integration becomes

sαβ(x) =
σαβ(x)

2
erfc

(
−x3

a

)
+

a

2
√
π

∂σαβ(x)

∂x3

exp

[
−x

2
3

a2

]
+ . . . , (3.146)

where erfc(x) is given by (3.29).

In the current case of a half-space we only keep the term linear in a, which does

not occur in the case of 3D space, see [23]. Thus, recalling Hooke’s law in the form of

(2.2) and using (2.26), we keep the leading order term in (3.146) to obtain

sαβ = λ′eγγδαβ + 2µ′eαβ , (3.147)

where

λ′ =
1

2
erfc

(
−x3

a

)
λ ,

µ′ =
1

2
erfc

(
−x3

a

)
µ .

(3.148)

Note that the problem in nonlocal elasticity expressed by equations (2.25), (3.147),

and (3.148) is formally equivalent to a ‘locally’ elastic problem for a vertically inhomo-

geneous half-space.

At the interface x3 = h, to within an exponentially small error, erfc
(
−h
a

)
= 2,

which leads to

λ′(h) = λ and µ′(h) = µ (3.149)

with the nonlocal stresses sαβ tending to their local counterparts σαβ.

Since the variable elastic moduli are given by (3.148), the variable wave speeds

become

c
′2
m(x3) =

1

2
c2
m erfc

(
−x3

a

)
,m = 1, 2 , (3.150)

where, recalling (3.149),

c1 =

√
λ+ 2µ

ρ
and c2 =

√
µ

ρ
.

We are now in a position to calculate the integrals in (3.143). Having assumed a� h,

we have, to within O(ae−(h/a)2) error,

h∫
0

κ
′2
2 dx

′
3 = h

(
1− 1

2
√
π

a

h

)
,
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h∫
0

4κ
′2
2

(
1− κ

′2
2

κ
′2
1

)
dx′3 = 4h(1− κ2)

(
1− 1

2
√
π

a

h

)
,

and
h∫

0

κ
′2
2

(
3− 4κ

′2
2

κ
′2
1

)
dx′3 = h(3− 4κ2)

(
1− 1

2
√
π

a

h

)
,

where κ is defined by (2.12). Therefore, the stresses s3n at the interface x3 = h can be

expressed as

s3i = ρh

[
∂2vi
∂t2
− c2

2

{
∂2vi
∂x2

j

+ 4(1− κ2)
∂2vi
∂x2

i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}

+c2
2

a

2h
√
π

{
∂2vi
∂x2

j

+ 4(1− κ2)
∂2vi
∂x2

i

+ (3− 4κ2)
∂2vj
∂xi∂xj

}]
,

s33 = ρh
∂2v3

∂t2
.

(3.151)

From (3.151)1 we can conclude that nonlocal elastic properties can be taken into

account via introduction of an asymptotic correction of the relative asymptotic order

O( a
h
). Note that this correction must exceed the truncation error O(ε) in asymptotic

derivation of (3.143). This implies that for (3.151) to be legitimate, the following

double inequality must hold

a� h�
√
a` , (3.152)

Another important point is that we need to show that the accuracy of the leading order

approximation (3.147) is consistent with the O( a
h
) accuracy of (3.151)1. Therefore, we

recall that the stresses s3n are expressed at leading order in terms of the stresses sii and

displacements un in (3.133). To this end, the ‘local’ stresses σii and σij corresponding to

their nonlocal counterparts sii and sij given by (3.142), making use of the dimensionless

equation (3.133)1, are given by

σii = 2ρc2
2

[
2(1− κ2)

∂ui
∂xi

+ (1− 2κ2)
∂uj
∂xj

]
.

σij = ρc2
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(3.153)
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Note that these stresses are uniform across the thickness. Hence, the O( a
h
) contribution

of the second term in (3.146) disappears after differentiation with respect to x3. In

addition, the inertial terms in (3.133) do not make a O( a
h
) contribution to the nonlocal

stresses, for further details see [23].

Outside a near-surface layer all nonlocal stresses, to within an asymptotic error

not exceeding O( a
h
), coincide with their local counterparts, see equations (3.146) -

(3.149). Therefore at x3 ≥ h we may proceed with a classical problem with the following

boundary conditions

σ3n = s3n at x3 = h , (3.154)

where the values of s3n are given in (3.151).

Finally, considering the fact that the nonlocal stresses s3n in (3.151) coincide

with those derived earlier in (3.64), on formulating and solving exactly the same inverse

problem for a thin homogeneous layer in the classical elasticity framework as in Section

3.2, we obtain the effective boundary conditions identical to (3.119). These should be

imposed on the surface x3 = 0 so that the stresses σ3n at the interface x3 = h satisfy

the interfacial conditions (3.154). Outside the narrow boundary layer, i.e., at x3 � a,

the dynamics of the half-space is governed by equations with constant elastic moduli

λ and µ, subject to the boundary conditions (3.119). Let us emphasise that these

conditions involve a O(a
`
) correction (with ` a typical macroscale size as before), which

is greater than the O(a
2

`2
) correction in the differential equations of nonlocal elasticity,

e.g., see [44], based on the relations

(1− a2∆)smn = σmn , (3.155)

where, as above, σmn and smn denote classical and nonlocal stress components.

Thus, the transition from original integral constitutive relations in nonlocal elas-

ticity (2.26) to the simplified differential formulae (3.155) is not justified over near-

surface domains. Moreover, taking into consideration the nonlocal phenomena within

the equation of motion seems to be a second-order effect in comparison with the non-

local corrections to boundary conditions. Further observations on the subject are

presented in the next section.
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3.4 Rayleigh surface wave on a non-locally elastic

half-space

As an example application of the effective boundary conditions derived in Section

3.2, we consider the influence of nonlocal elastic behaviour on surface wave propagation

in the case of plane strain, where x2 ≡ 0 and ∂
∂x2
≡ 0, um = um(x1, x3), m = 1, 3, and

u2 = 0. The effective boundary conditions (3.119) in the case of plane strain become

σ31 =
2a√
π
ρc2

2(1− κ2)
∂2u1

∂x2
1

,

σ33 = 0

at x3 = 0 .

(3.156)

The equations of motion, expressed in terms of wave potentials ϕ and ψ2 are given in

(2.7) and (2.8). We then look for travelling wave solutions in the form (2.9). Displace-

ments can be described in terms of potentials as in (2.10).

Next, on substituting of (2.10) into the surface boundary conditions (3.156), we

obtain, after taking into account the plane strain forms of (2.2) and (2.3), the following

system of equations

[
2− c2

c2
2

]
A+

[
2i

√
1− c2

c2
2

]
B = 0 ,

[
−i

(
2ak√
π

(κ2 − 1) + 2

√
1− c2

c2
1

)]
A+

+

[(
2− c2

c2
2

)
+

2ak√
π

(κ2 − 1)

√
1− c2

c2
2

]
B = 0 .

(3.157)

The condition for existence of a non-trivial solution of the system of equations (3.157)

yields

R(γ)− 4
√
πθ(κ2 − 1)γ2

√
1− γ2 = 0 , (3.158)
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where θ = a
`

= ak
2π
� 1 is a small parameter, γ = c

c2
is the normalised dimensionless

phase velocity and R(γ) is the classical Rayleigh denominator, i.e.,

R(γ) = (2− γ2)2 − 4
√

(1− γ2)(1− κ2γ2) .

We may now expand γ as an asymptotic series in terms of the small parameter θ, i.e.,

γ = γ0 + θγ1 + . . . . (3.159)

In this case, the Taylor series expansion of R(γ), about γ = γ0, are given by

R(γ) = R(γ0) +R′(γ0)(γ − γ0) + . . . , (3.160)

where γ0 is the normalised classical Rayleigh wave speed, which means that R(γ0) = 0.

Then, on substituting (3.159) and (3.160) into (3.158), we obtain the first order term

in the asymptotic expansion (3.159)

γ1 =
4
√
π(κ2 − 1)γ2

0

√
1− γ2

0

R′(γ0)
, (3.161)

and, hence, we can conclude the following

γ = γ0 + θ
4
√
π(κ2 − 1)γ2

0

√
1− γ2

0

R′(γ0)
+ . . . , (3.162)

where θ = ak
2π

, as before.

We remark that the constructed O(θ) correction to the classical Rayleigh wave

speed, originating from the effective boundary conditions (3.156) imposed on the sur-

face x3 = 0 of the half-space, substantially exceeds O(θ2) correction associated with

the ‘nonlocal terms’ in the differential equations of motion, see explicit formulae (5.10)

and (5.11) in [44] containing O(θ2) corrections to the Rayleigh wave speed. It would

also be of obvious interest that the proposed methodology could be compared with the

results arising from the concept of surface stresses originated from [60].

Numerical results are presented in Figure 3.8.
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Figure 3.8: Effect of nonlocal phenomena on Rayleigh wave speed.

The classical Rayleigh root γ0 and the newly derived, ‘nonlocal’ root γ in (3.162)

are plotted as function of the small parameter a for different values of Poisson ratio.

The coefficient γ1 in (3.161) takes the values γ1 = −0.37 and −0.48, while its ‘local’

counterpart (i.e., normalised classical Rayleigh wave speed) is γ0 = 0.92 and 0.89 for

the Poisson ratios ν = 0.25 and 0.10, respectively. At a fixed value of the microscale

parameter a, the presented numerical data may be used for evaluating of the effect

of wave number or angular frequency on the sought for nonlocal wave speed. The

presence of nonlocal phenomena decreases the Rayleigh wave speed due to low values

of the Lamé parameters which denote the stiffness of the system near the surface,

λ′ =
1

2
erfc

(
−x3

a

)
λ ,

µ′ =
1

2
erfc

(
−x3

a

)
µ ,

as it was found in [23], where λ′ and µ′ are nonlocal Lamé parameters which depend on

the transverse co-ordinate x3 and microstructure paramter a, and λ and µ are classical,
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constant Lamé parameters outside of the near-surface layer. The attenuation of the

effect of the nonlocal boundary layer (i.e., λ′ → λ and µ′ → µ), when moving away

from the surface of a half-space along the vertical direction, can be expressed as

Q′ =
λ′

λ
=
µ′

µ
=

1

2
erfc

(
−x3

a

)
, (3.163)

see Figure 3.9.
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Figure 3.9: Attenuation of the nonlocal boundary layer.

3.5 A moving load on a non-locally elastic half-

space

As another example application of the effective boundary conditions (derived in

Section 3.2), we analyse the effect of nonlocal elastic behaviour in a problem of a moving
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load on the surface. Similarly to the problem in the previous section, we discuss this

in the case of plane strain ( ∂
∂x2
≡ 0 um = um(x1, x3), m = 1, 3 and u2 = 0), with the

effective boundary conditions (3.119) becoming

σ31 =
2a√
π
ρc2

2(1− κ2)
∂2u1

∂x2
1

,

σ33 = P exp [ik(x1 − ct)]

at x3 = 0 .

(3.164)
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Figure 3.10: A moving load on a non-locally elastic half-space.

Generally, the solution of this problem involves carrying out similar steps as in

the previous section and as well as Chapter 2. The equations of motion in terms of

wave potentials ϕ and ψ2 can be written as (2.7) and (2.8). As previously, we look for

travelling wave solutions in the form (2.9). Then we express the displacements in terms

of potentials as in (2.10). Next, on substituting of (2.10) into the boundary conditions

(3.164), we obtain, after taking into account the plane strain forms of (2.2) and (2.3),
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the following set of equations[
−i

(
2

√
1− c2

c2
1

− 2ak√
π

(1− κ2)

)]
A

+

[(
2− c2

c2
2

)
− 2ak√

π
(1− κ2)

]
B = 0 ,

[
ρc2

2k
2

(
2− c2

c2
2

)]
A

+

[
2ρc2

2ik
2

√
1− c2

c2
2

]
B = P ,

(3.165)

Now we need to express A through B in (3.165)1 and substitute it into (3.165)2

to find B as

B =

−2iP

[
2
√
πθ(1− κ2)−

√
1− c2

c2
1

]
ρc2

2k
2
[
R(γ) + 4

√
πθ(1− κ2)γ2

√
1− γ2

] , (3.166)

where θ = a
`

= ak
2π
� 1 is a small parameter, γ = c

c2
is the normalised dimensionless

phase velocity and R(γ) is the classical Rayleigh denominator, i.e.,

R(γ) = (2− γ2)2 − 4
√

(1− γ2)(1− κ2γ2) . (3.167)

In order to find critical wave speed, denoted by γR, we should equate the denom-

inator of (3.166) to zero, i.e.,

R(γ) + 4
√
πθ(1− κ2)γ2

√
1− γ2 = 0 , (3.168)

where in the case of classical elasticity (i.e., when the small parameter θ = 0) we obtain

R(γ) = 0 , (3.169)

resulting in the critical speed c = cR.

As above, we may expand γ in an asymptotic series in terms of the small param-

eter θ, i.e.,

γ = γ0 + θγ1 + . . . . (3.170)
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Then the Taylor series expansion of R(γ) about γ = γ0 is given by

R(γ) = R(γ0) +R′(γ0)(γ − γ0) + . . . , (3.171)

where γ0 is the normalised classical Rayleigh phase velocity (R(γ0) = 0, γ0 = cR
c2

). On

substituting (3.170) and (3.171) into (3.168), we now obtain the expression for the first

order term in the asymptotic expansion (3.170)

γ1 =
4
√
π(κ2 − 1)γ2

0

√
1− γ2

0

R′(γ0)
, (3.172)

and using the result above in (3.170), we can find the critical speed c = c2γ, where

γ = γ0 + θ
4
√
π(κ2 − 1)γ2

0

√
1− γ2

0

R′(γ0)
+ . . . , (3.173)

with θ = ak
2π

, as before.

Now we are also in a position to determine A and B from (3.165)in the form

A =
P
[
(2− γ2)− 4

√
πθ(1− κ2)

√
1− γ2

]
ρc2

2k
2 [R(γ) + θD(γ)]

,

B =
2iP

[√
1− κ2γ2 − 2

√
πθ(1− κ2)

]
ρc2

2k
2 [R(γ) + θD(γ)]

,

(3.174)

where

D(γ) = 4
√
π(1− κ2)γ2

√
1− γ2 . (3.175)

Next, we express the transverse displacement u3 on the surface of the half-space (x3 =

0). To this end, first substitute (3.174) into (2.10)2 to obtain

u3|x3=0 =
P
{

4
√
πθ(1− κ2)

[√
(1− κ2γ2)(1− γ2)− 1

]
+ γ2

√
1− κ2γ2

}
ρc2

2k [R(γ) + θD(γ)]

× exp [x1 − ct] .

(3.176)

We then rewrite this as

u3|x3=0 =
Pa

2πρc2
2

M(γ, θ) exp [x1 − ct] , (3.177)
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where the magnitude is

M(γ, θ) =
N(γ, θ)

θ [R(γ) + θD(γ)]
, (3.178)

with

N(γ, θ) = 4
√
πθ(1− κ2)

[√
(1− κ2γ2)(1− γ2)− 1

]
+ γ2

√
1− κ2γ2 , (3.179)

and, as previously, R(γ) and D(γ) given by (3.171) and (3.175), respectively.

Numerical results are presented in Figures 3.11 and 3.12. The magnitude,

M(γ, θ), of the vertical displacement u3|x3=0 on the surface of the half-space is plotted

as function of the normalised speed γ = c
c2

for different values of Poisson ratio ν and

small scale nonlocal parameter θ.

Figure 3.11: A. Effect of nonlocal phenomena in a moving load problem; θ = 0.01.
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Figure 3.12: B. Effect of nonlocal phenomena in a moving load problem; ν = 0.25

The values of the normalised critical wave speeds (denoted γR) can be found

by equating the denominator of (3.176) to zero. For θ = 0.01 and different values of

Poisson’s ratio ν, see Figures 3.11 and 3.12, we obtain the following values: γR = 0.8882

for ν = 0.10 (κ = 0.67); γR = 0.9156 for ν = 0.25 (κ = 0.58); and γR = 0.9394 for

ν = 0.40 (κ = 0.41). For ν = 0.25 (κ = 0.58) and different values of the small

scale nonlocal parameter θ, they become: γR = 0.9175 for θ = 0.005; γR = 0.9135

for θ = 0.015; and γR = 0.9092 for θ = 0.025. Note that, for instance, the classical

normalised critical wave speed, coinciding with the conventional Rayleigh wave speed,

which is a root of the equation (3.169), is equal to 0.9194 for ν = 0.25 (κ = 0.58). It

is obvious that this value may also be obtained from (3.176) by substituting θ = 0. As

might be expected, the effect of nonlocal phenomena results in slight deviation of the

value of the critical speed from the Rayleigh value.
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4 A nonlocal theory for plate bending

In this chapter, the classical Kirchhoff equation for plate bending is refined by

introducing a correction to account for nonlocal effects arising from the presence of

boundary layers near the plate faces.

4.1 Problem statement and asymptotic scaling

Let us consider an elastic plate of thickness 2h with traction-free faces, as shown

in Figure 4.1.

h
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Figure 4.1: A non-locally elastic plate.

We denote x3 a transverse co-ordinate with the origin coinciding with the mid-

plane of the plate, so that the faces of the plate are located at x3 = ±h. Recalling

(2.25) and (2.26), the equations of motion in 3D nonlocal elasticity are given by

smn,m = ρ
∂2un
∂t2

, (4.1)

where m,n = 1, 2, 3, and the constitutive relations for an isotropic material are given

by (2.2) and (2.3). The boundary conditions imposed on the traction-free faces are

s3n = 0 at x3 = ±h . (4.2)
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Let us assume that the half thickness of the plate, h, is much smaller than a typical

wavelength `, and at the same time is much greater then the internal microscale a, i.e.,

a � h � `, see Figure 4.1. In addition, for the sake of definiteness, let us specify a

single small geometric parameter given by the following relation

η =
a

h
=
h

`
� 1 . (4.3)

As above, see (3.6), this condition can be relaxed. Here we again, as in Chapter 3,

express the nonlocal stresses smn as a sum of its classical counterpart, denoted pmn(ζp),

and nonlocal counterpart, qmn(ζq), where the latter originates from the existence of

nonlocal boundary layers localised near the plate faces. Such a notation allows to

conveniently analyse classical and nonlocal behaviour of the plate separately, see [24].

Next, similarly to Chapter 3, the well-known asymptotic integration method is

utilised, e.g., see [50], [52], and [6], in order to derive a refined plate bending equation

incorporating a nonlocal correction. A schematic illustration of a plate bending motion

is shown in Figure 4.2.

h

Figure 4.2: Plate bending.

First, let us scale the original variables as

xi = `ξi , x3 = hζp = aζq , and t =
η−1`

c2

τ (or
η−2h

c2

τ) , (4.4)

and define the dimensionless quantities, expressing the nonlocal stresses smn in the

dimensionless form as a sum of their classical and nonlocal constituents, pmn and qmn,

respectively. We obtain dimensionless displacements

ui = η`vi , u3 = `v3 , (4.5)
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strains

eii = ηεii , eij = ηεij , e3i = η2ε3i , e33 = ηε33 , (4.6)

and nonlocal stresses

sii = ηµ(pii + qii) ,

sij = ηµ(pij + qij) ,

s3i = η2µ(p3i + ηq3i) ,

s33 = η3µ(p33 + η2q33) ,

(4.7)

where i 6= j = 1, 2, Einstein’s summation convention is not employed here, µ is a

Lamé constant, and the dimensionless quantities v, ε, p and q are assumed to be of

the same asymptotic order. Note again that the novelty of the scaling (4.4) is that ζp

is a transverse dimensionless variable normalised by the macroscale h, while ζq is its

analogue normalised by the microscale a, see [24].

Now using (2.31), i.e.,

smn(x) =
1

a
√
π

h∫
−h

exp

[
−(x′3 − x3)2

a2

]
σmn(x1, x2, x

′
3)dx′3 , (4.8)

and expressing the classical stresses σmn in terms of strains emn using (2.2), let us

write down non-dimensional equations expressing nonlocal stresses (presented as sums

of dimensionless pmn and qmn) in terms of dimensionless strains εmn. We are now able
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to obtain

pij + qij =
2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]εijdζ
′
q ,

pii + qii =
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
κ−2εii + (κ−2 − 2)(εjj + ε33)

)
dζ ′q ,

p3i + ηq3i =
2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]ε3idζ
′
q ,

η2(p33 + η2q33)

=
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
κ−2ε33 + (κ−2 − 2)(εii + εjj)

)
dζ ′q ,

(4.9)

We may now express the strains emn in terms of displacements un as in (2.3), but

using dimensionless form. We have

εij =
1

2

(
∂vi
∂ξj

+
∂vj
∂ξi

)
,

εii =
∂vi
∂ξi

,

η2ε3i =
1

2

(
∂v3

∂ξi
+
∂vi
∂ζp

)
,

η2ε33 =
∂v3

∂ζp
.

(4.10)

The nonlocal equations of motion (4.1) for stresses s3i and s33 can be rewritten as

∂p3i

∂ζp
+
∂q3i

∂ζq
= −∂(pii + qii)

∂ξi
− ∂(pij + qij)

∂ξj
+ η2∂

2vi
∂τ 2

,

∂p33

∂ζp
+ η

∂q33

∂ζq
= −∂(p3i + ηq3i)

∂ξi
− ∂(p3j + ηq3j)

∂ξj
+
∂2v3

∂τ 2
.

(4.11)

The boundary conditions (4.2) then become

p3i + ηq3i = 0 , p33 + η2q33 = 0 at ζp = ±1 (ζq = ±η−1) . (4.12)
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4.2 Asymptotic derivation of a 2D plate bending

theory

Now we expand all the dimensionless quantities, i.e., the displacements vn, non-

local stress constituents pmn and qmn, and strains εmn as asymptotic series in terms of

the small parameter η = h
`

= a
h


vn

pmn
qmn

εmn

 =



v
(0)
n

p
(0)
mn

q
(0)
mn

ε
(0)
mn


+ η



v
(1)
n

p
(1)
mn

q
(1)
mn

ε
(1)
mn


+ . . . (4.13)

Substitution of these expansions into equations (4.9)1,2,4, (4.10), (4.11), and the bound-



82

ary conditions (4.12), results, at leading order, in the following set of equations

∂v
(0)
3

∂ζp
= 0 ,

∂v
(0)
i

∂ζp
= −∂v

(0)
3

∂ξi
,

ε
(0)
ij =

1

2

(
∂v

(0)
i

∂ξj
+
∂v

(0)
j

∂ξi

)
,

ε
(0)
ii =

∂v
(0)
i

∂ξi
,

ε
(0)
33 = −(1− 2κ2)(ε

(0)
ii + ε

(0)
jj ) ,

p
(0)
ij + q

(0)
ij =

2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]ε
(0)
ij dζ

′
q ,

p
(0)
ii + q

(0)
ii

=
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
κ−2ε

(0)
ii + (κ−2 − 2)(ε

(0)
jj + ε

(0)
33 )
)
dζ ′q ,

∂p
(0)
3i

∂ζp
+
∂q

(0)
3i

∂ζq
= −∂(p

(0)
ii + q

(0)
ii )

∂ξi
−
∂(p

(0)
ij + q

(0)
ij )

∂ξj
,

∂p
(0)
33

∂ζp
= −∂p

(0)
3i

∂ξi
−
∂p

(0)
3j

∂ξj
+
∂2v

(0)
3

∂τ 2
,

(4.14)

and the boundary conditions

p
(0)
3i = 0 , p

(0)
33 = 0 at ζp = ±1 (ζq = ±η−1) . (4.15)

Upon integrating of the equations (4.14)1,2 with respect to ζp, then using the
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obtained results in (4.14)3−5, we arrive at

v
(0)
3 = w

(0)
3 , v

(0)
i = −ζp

∂w
(0)
3

∂ξi
,

ε
(0)
ij = −ζp

∂2w
(0)
3

∂ξi∂ξj
, ε

(0)
ii = −ζp

∂2w
(0)
3

∂ξ2
i

, ε
(0)
33 = (1− 2κ2)ζp∆ξw

(0)
3 ,

(4.16)

where w
(0)
3 = w

(0)
3 (ξi, ξj, τ) is an arbitrary function that does not depend on the trans-

verse co-ordinate ζp (or ζq); and ∆ξ = ∂2

∂ξ2i
+ ∂2

∂ξ2j
(i.e., a 2D Laplacian with respect to

dimensionless quantities ξi and ξj).

Equation (4.14)6 then becomes,

p
(0)
ij + q

(0)
ij =

2η√
π

∂2w
(0)
3

∂ξi∂ξj

∫ η−1

−η−1

ζ ′q exp [−(ζ ′q − ζq)2]dζ ′q , (4.17)

with ζp = ηζq. Next, on making the substitution t = ζ ′q − ζq in equation (4.17), and

then integrating by parts, at leading order we have

p
(0)
ij + q

(0)
ij = − 2√

π

∂2w
(0)
3

∂ξi∂ξj
ζp

∫ η−1−ζq

−η−1−ζq
exp [−t2]dt . (4.18)

We can rewrite the integral in this equation as∫ η−1−ζq

−η−1−ζq
exp [−t2]dt

=

∫ ∞
−∞

exp [−t2]dt−
∫ ∞
η−1−ζq

exp [−t2]dt−
∫ −η−1−ζq

−∞
exp [−t2]dt ,

(4.19)

and noting that
∫∞
−∞ e

−t2dt =
√
π (e.g., see [54]), we now obtain

p
(0)
ij + q

(0)
ij = −∂

2w
(0)
3

∂ξi∂ξj
ζp
{

2− erfc (η−1 − ζq)− erfc (η−1 + ζq)
}
, (4.20)

where erfc(x) is given by (3.29).

In what follows, we consider equation (4.20) and, as previously, separate the stress

components pmn, having polynomial variations across the thickness and coinciding

with those in the classical plate theory, from the stress components qmn. The latter
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correspond to boundary layers of width O(a) (where a is the chosen internal microscale

size) localised near each of the faces of the plate. Thus, we obtain

p
(0)
ij = −2ζp

∂2w
(0)
3

∂ξi∂ξj
,

q
(0)
ij (ηζq) = ηζq

∂2w
(0)
3

∂ξi∂ξj

{
erfc (η−1 − ζq) + erfc (η−1 + ζq)

}
,

(4.21)

reiterating that ζp = ηζq ∼ 1.

Next, equation (4.14)7 becomes

p
(0)
ii + q

(0)
ii = − η√

π

(
4(1− κ2)

∂2w
(0)
3

∂ξ2
i

+ 2(1− 2κ2)
∂2w

(0)
3

∂ξ2
j

)

×
∫ η−1

−η−1

ζ ′q exp [−(ζ ′q − ζq)2]dζ ′q .

(4.22)

Following a similar scheme to that used to derive equations (4.21) (yielding exactly the

same integral as in (4.17)) and as before splitting the dimensionless stresses into p
(0)
ii

and q
(0)
ii , we have

p
(0)
ii = −ζp

(
4(1− κ2)

∂2w
(0)
3

∂ξ2
i

+ 2(1− 2κ2)
∂2w

(0)
3

∂ξ2
j

)
,

q
(0)
ii (ηζq) =

ηζq
2

(
4(1− κ2)

∂2w
(0)
3

∂ξ2
i

+ 2(1− 2κ2)
∂2w

(0)
3

∂ξ2
j

)

×{erfc (η−1 − ζq) + erfc (η−1 + ζq)} .

(4.23)

Now we separate the p and q stress components in the governing equation (4.14)8.

On integrating of the p part of (4.14)8 given by the equation

∂p
(0)
3i

∂ζp
= −∂p

(0)
ii

∂ξi
−
∂p

(0)
ij

∂ξj
, (4.24)

with respect to ζp, we obtain

p
(0)
3i = 2ζ2

p (1− κ2)∆ξ
∂w

(0)
3

∂ξi
+ C0 , (4.25)
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where C0 = C0(ξ1, ξ2, τ) is an arbitrary function independent of the transverse co-

ordinate. If we now satisfy the corresponding boundary condition (4.15)1, namely

p
(0)
3i = 0 at ζp = ±1 , (4.26)

we can determine the arbitrary function C0 to conclude that

p
(0)
3i = 2(ζ2

p − 1)(1− κ2)∆ξ
∂w

(0)
3

∂ξi
. (4.27)

Then, using this formula in (4.14)9 and integrating with respect to ζp, we obtain

p
(0)
33 = ζp

(
2(1−

ζ2
p

3
)(1− κ2)∆2

ξw
(0)
3 +

∂2w
(0)
3

∂τ 2

)
. (4.28)

Finally, satisfying the boundary condition (4.15)2, i.e.,

p
(0)
33 = 0 at ζp = ±1 , (4.29)

we arrive at
4

3
(1− κ2)∆2

ξw
(0)
3 +

∂2w
(0)
3

∂τ 2
= 0 , (4.30)

which in terms of the original dimensional variables yields the classical Kirchhoff equa-

tion of plate bending

D∆2u3 + 2ρhu3,tt = 0 , (4.31)

where D = 8µh3(1−κ2)
3

(or D = 2Eh3

3(1−ν2)
expressed in terms of Young modulus E and

Poisson ratio ν) is the conventional bending stiffness.

In what follows, we also need to calculate q
(0)
3i . Therefore, we now integrate the

q part of (4.14)8, i.e., the following equation

∂q
(0)
3i

∂ζq
= −∂q

(0)
ii

∂ξi
−
∂q

(0)
ij

∂ξj
, (4.32)

with respect to ζq. On substituting of q
(0)
ij from (4.21) and q

(0)
ii from (4.23) into the

equation (4.32), we arrive at

∂q
(0)
3i (ηζq)

∂ζq
= −2(1− κ2)∆ξ

∂w
(0)
3

∂ξi
ηζq
{

erfc (η−1 − ζq) + erfc (η−1 + ζq)
}
, (4.33)
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and on integrating it with respect to ζq we have

q
(0)
3i (ηζq) = −2(1− κ2)∆ξ

∂w
(0)
3

∂ξi

∫ ζq

0

ηζ ′q
{

erfc (η−1 − ζ ′q) + erfc (η−1 + ζ ′q)
}
dζ ′q , (4.34)

which yields

q
(0)
3i = −(1− κ2)∆ξ

∂w
(0)
3

∂ξi

{
η
(
ζ2
q − η−2

) [
erfc (η−1 − ζq) + erfc (η−1 + ζq)

]
+

4√
π
η−1

∫ ∞
η−1

e−t
2

dt

+
2√
π

(
exp [−(η−1 − ζq)2] + exp [−(η−1 + ζq)

2]− 2 exp [−η−2]
)
.

(4.35)

Recalling that η−1 = h
a
� 1, we can neglect exponentially small term

∫∞
η−1 e

−t2dt ∼∫∞
∞ e−t

2
dt = 0 in (4.35) to obtain the following expression

q
(0)
3i = −(1− κ2)∆ξ

∂w
(0)
3

∂ξi

{
η
(
ζ2
q − η−2

) [
erfc (η−1 − ζq) + erfc (η−1 + ζq)

]
+

2√
π

(
exp

[
− (η−1 − ζq)2

]
+ exp

[
− (η−1 + ζq)

2
])}

.

(4.36)

Note that the first term in curly braces in the equation (4.36), i.e.,

η
(
ζ2
q − η−2

) [
erfc (η−1 − ζq) + erfc (η−1 + ζq)

]
,

is of order unity. This can be easily verified by rearranging it as

η
(
ζq − η−1

) (
ζq + η−1

) [∫ ∞
η−1−ζq

e−t
2

dt+

∫ ∞
η−1+ζq

e−t
2

dt

]
, (4.37)

where the complementary error function is presented in an integral form. The first

integral above takes its maximum value when η−1 − ζq ∼ 1 ⇒ ζq ∼ η−1 − 1 and

in this case expression (4.37) can be estimated as C
[
C +

∫∞
Cη−1 e

−t2dt
]
, where C ∼ 1

and the integral term is exponentially small as discussed after (4.35). Therefore, the

considered expression is of order unity. Similarly, the second integral in (4.37) takes its
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maximum value when η−1 + ζq ∼ 1 ⇒ ζq ∼ 1− η−1 and the considered expression

is again of order unity. Thus, (4.37) is indeed of order unity.

At the next order, the equation set analogous to (4.14) is given by

∂v
(1)
3

∂ζp
= 0 ,

∂v
(1)
i

∂ζp
= −∂v

(1)
3

∂ξi
,

ε
(1)
ij =

1

2

(
∂v

(1)
i

∂ξj
+
∂v

(1)
j

∂ξi

)
,

ε
(1)
ii =

∂v
(1)
i

∂ξi
,

ε
(1)
33 = −(1− 2κ2)(ε

(1)
ii + ε

(1)
jj ) ,

p
(1)
ij + q

(1)
ij =

2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]ε
(1)
ij dζ

′
q ,

p
(1)
ii + q

(1)
ii

=
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
κ−2ε

(1)
ii + (κ−2 − 2)(ε

(1)
jj + ε

(1)
33 )
)
dζ ′q ,

p
(1)
3i =

2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]ε
(1)
3i dζ

′
q ,

∂p
(1)
3i

∂ζp
+
∂q

(1)
3i

∂ζq
= −∂(p

(1)
ii + q

(1)
ii )

∂ξi
−
∂(p

(1)
ij + q

(1)
ij )

∂ξj
,

∂p
(1)
33

∂ζp
+
∂q

(0)
33

∂ζq
= −∂(p

(1)
3i + q

(0)
3i )

∂ξi
−
∂(p

(1)
3j + q

(0)
3j )

∂ξj
+
∂2v

(1)
3

∂τ 2
,

(4.38)

and the boundary conditions are

p
(1)
3i = −q(0)

3i , p
(1)
33 = 0 at ζp = ±1 (ζq = ±η−1) . (4.39)
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On integrating (4.38)1,2, using the same approach as at the leading order, we obtain

v
(1)
3 = w

(1)
3 , v

(1)
i = −ζp

∂w
(1)
3

∂ξi
,

ε
(1)
ij = −ζp

∂2w
(1)
3

∂ξi∂ξj
, ε

(1)
ii = −ζp

∂2w
(1)
3

∂ξ2
i

, ε
(1)
33 = (1− 2κ2)ζp∆ξw

(1)
3 ,

(4.40)

where w
(1)
3 = w

(1)
3 (ξi, ξj, τ) is an arbitrary function not dependent on ζp or ζq, and

∆ξ = ∂2

∂ξ2i
+ ∂2

∂ξ2j
is a 2D Laplacian in the dimensionless quantities ξi and ξj.

On making use of (4.40), equation (4.38)6 becomes

p
(1)
ij + q

(1)
ij =

2η√
π

∂2w
(1)
3

∂ξi∂ξj

∫ η−1

−η−1

ζ ′q exp [−(ζ ′q − ζq)2]dζ ′q , (4.41)

and a series of transformations similar to those for leading order, after separation of

p
(1)
ij and q

(1)
ij , leads to

p
(1)
ij = −2ζp

∂2w
(1)
3

∂ξi∂ξj
,

q
(1)
ij (ηζq) = ηζq

∂2w
(1)
3

∂ξi∂ξj

{
erfc (η−1 − ζq) + erfc (η−1 + ζq)

}
,

(4.42)

where we recall that ζp = ηζq ∼ 1. Next, equation (4.38)7 takes the form

p
(1)
ii + q

(1)
ii = − η√

π

(
4(1− κ2)

∂2w
(1)
3

∂ξ2
i

+ 2(1− 2κ2)
∂2w

(1)
3

∂ξ2
j

)

×
∫ η−1

−η−1

ζ ′q exp [−(ζ ′q − ζq)2]dζ ′q .

(4.43)

After separation of p
(1)
ii and q

(1)
ii , we have

p
(1)
ii = −2ζp

(
2(1− κ2)

∂2w
(1)
3

∂ξ2
i

+ (1− 2κ2)
∂2w

(1)
3

∂ξ2
j

)
,

q
(1)
ii (ηζq) = ηζq

(
2(1− κ2)

∂2w
(1)
3

∂ξ2
i

+ (1− 2κ2)
∂2w

(0)
3

∂ξ2
j

)

×{erfc (η−1 − ζq) + erfc (η−1 + ζq)} .

(4.44)
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On integrating of the p part of (4.38)9, namely the equation

∂p
(1)
3i

∂ζp
= −∂p

(1)
ii

∂ξi
−
∂p

(1)
ij

∂ξj
(4.45)

with respect to ζp, we obtain

p
(1)
3i = ζ2

p2(1− κ2)∆ξ
∂w

(1)
3

∂ξi
+ C1(ξ1, ξ2, τ) , (4.46)

where C1 = C1(ξ1, ξ2, τ) is an arbitrary function independent of the transverse co-

ordinate. After satisfying the boundary condition (4.39)1

p
(1)
3i = −q(0)

3i at ζp = ±1 (ζq = ±η−1) , (4.47)

we can find C1 and conclude that

p
(1)
3i = 2(1− κ2)∆ξ

[
∂w

(1)
3

∂ξi
(ζ2
p − 1) +

1√
π

∂w
(0)
3

∂ξi

]
. (4.48)

Using the expression above, we integrate (4.38)10 with respect to ζp to obtain

p
(1)
33 = ζp

(
2(1− κ2)∆2

ξ

[
(1−

ζ2
p

3
)w

(1)
3 +

1√
π
w

(0)
3

]
+
∂2w

(1)
3

∂τ 2

)
. (4.49)

Finally, satisfying the boundary condition (4.39)2

p
(1)
33 = 0 at ζp = ±1 (ζq = ±η−1) , (4.50)

we establish the equation

4

3
(1− κ2)∆2

ξ

[
w

(1)
3 −

3

2
√
π
w

(0)
3

]
+
∂2w

(1)
3

∂τ 2
= 0 . (4.51)

Multiplying (4.51) by η and adding the resulting formula to the Kirchhoff equation

(4.30) results in
4

3
(1− κ2)

[
1− 3η

2
√
π

]
∆2
ξW3 +

∂2W3

∂τ 2
= 0 , (4.52)

where W3 = w
(0)
3 + ηw

(1)
3 is the dimensionless transverse displacement.
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In terms of the original variables, we finally have a plate bending equation that

takes nonlocality into account, see [24]. This equation is given by

D′∆2u3 + 2ρhu3,tt = 0 , (4.53)

with u3 = `(w
(0)
3 + ηw

(1)
3 ) and the refined plate bending stiffness D′ is given by

D′ = D

(
1− 3a

2h
√
π

)
, (4.54)

where we recall that D = 8µh3(1−κ2)
3

(or D = 2Eh3

3(1−ν2)
) and note that a is an internal

characteristic length (for example, lattice parameter or granular distance). Note that

the nonlocal bending stiffness D′ in equation (4.54), to within higher order terms in η,

coincides with that in [123], where the traditional Kirchhoff hypotheses for thin plate

theory were adapted. The observed softening effect has the same origin as the decrease

of the surface wave speed addressed in Section 3.4

4.3 Numerical results

Here we illustrate the effect of the boundary layers localised near the plate faces

by plotting the dimensionless classical and nonlocal stress components pmn and qmn

versus the transverse co-ordinate ζp. First let us rewrite the p and q components

corresponding to the stress sij, see (4.21), as

p
(0)
ij = 2

∂2w
(0)
3

∂ξi∂ξj
Pij ,

q
(0)
ij = 2

∂2w
(0)
3

∂ξi∂ξj
Qij ,

(4.55)

where

Pij = −2ζp (4.56)

and

Qij = ηζq
{

erfc (η−1 − ζq) + erfc (η−1 + ζq)
}
. (4.57)
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Recalling that ζq = η−1ζp, the expression for Qij becomes

Qij = ζp
{

erfc (η−1(1− ζp)) + erfc (η−1(1 + ζp))
}
. (4.58)

Similarly, in the case of the stress sii, see (4.23), we obtain

p
(0)
ii =

(
2(1− κ2)

∂2w
(0)
3

∂ξ2
i

+ (1− 2κ2)
∂2w

(0)
3

∂ξ2
j

)
Pii ,

q
(0)
ii =

(
2(1− κ2)

∂2w
(0)
3

∂ξ2
i

+ (1− 2κ2)
∂2w

(0)
3

∂ξ2
j

)
Qii ,

(4.59)

where

Pii = −2ζp (4.60)

and

Qii = ηζq
{

erfc (η−1 − ζq) + erfc (η−1 + ζq)
}
. (4.61)

Expression (4.61) after simplifying, based on the same logics as for derivation of Qij in

(4.58), becomes

Qii = ζp
{

erfc (η−1(1− ζp)) + erfc (η−1(1 + ζp))
}
. (4.62)

Below we define Q′ = Qij = Qii. A graphs for Q′ versus ζp is plotted in Figure 4.3.
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Figure 4.3: The nonlocal component of the stresses sij and sii (i 6= j = 1, 2) for plate
bending.

It is noted that Q′ ≈ ±1 on the plate faces x3 = ±h (ζp = ±1). Let us now

demonstrate the exponential type of attenuation of Q′ with distance from one of the

plate faces, for example, x3 = h (ζp = 1). As in the previous chapter, we substitute the

complementary error function inQ′ above by its asymptotic expansion (3.69) that works

for large arguments, keeping the leading order term only and neglecting asymptotically

small terms. We obtain

Q′asymp = ζp
exp [−(η−1(1− ζp))2]√

π(η−1(1− ζp))
. (4.63)

See Figure 4.4 for comparison of approximate (exponential) and original asymptotic

(complementary error function) solutions. This asymptotic expansion only works for

large argument, which is shown in Figure 4.4 and similar figures in what follows.
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Figure 4.4: Attenuation of Q′ in a plate bending problem; η = 0.1.

Now let us in the same fashion proceed with the p and q components of the stress

s3i, see (4.27) and (4.36), thus

p
(0)
3i = 2(1− κ2)∆ξ

∂w
(0)
3

∂ξi
P3i ,

q
(0)
3i = 2(1− κ2)∆ξ

∂w
(0)
3

∂ξi
Q3i ,

(4.64)

where

P3i = ζ2
p − 1 (4.65)

and

Q3i = − 1√
π

{
η
(
ζ2
q − η−2

) [∫ ∞
η−1−ζq

e−t
2

dt+

∫ −η−1−ζq

−∞
e−t

2

dt

]

+
(

exp
[
− (η−1 − ζq)2

]
+ exp

[
− (η−1 + ζq)

2
])}

.

(4.66)
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After truncation of O(η) terms, we obtain

Q3i = η−1(1− ζp) erfc (η−1(1− ζp)) + η−1(1 + ζp) erfc (η−1(1 + ζp))

− 1√
π

(
exp

[
− (η−1(1− ζp))2

]
+ exp

[
− (η−1(1 + ζp))

2
])

.
(4.67)

The graph for Q3i against ζp is plotted in Figure 4.5.
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Figure 4.5: The nonlocal part of the stresseses s3i (i = 1, 2) for plate bending.

We note that P3i = 0 and Q3i ≈ − 1√
π

on the plate faces x3 = ±h (ζp = ±1). Now

we demonstrate the exponential type of attenuation of Q3i with distance from one of

the plate faces, for example, x3 = h (ζp = 1). Substituting the complementary error

function in Q3i above by its asymptotic expansion (3.69) for large argument, keeping

the terms up to the first order and neglecting asymptotically small terms, we have

Qasymp
3i = −exp [−(η−1(1− ζp))2]

2
√
π(η−1(1− ζp))2

, (4.68)

see Figure 4.6.
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Figure 4.6: Attenuation of Q3i for plate bending; η = 0.1.

We now calculate with p part of the stress s33, see (4.28). First, from the Kirchhoff

equation (4.30) we express the inertial term as

∂2w
(0)
3

∂τ 2
= −4

3
(1− κ2)∆2

ξw
(0)
3 . (4.69)

On substituting of the latter into (4.28) we have

p
(0)
33 = 2(1− κ2)∆2

ξw
(0)
3 P33 , (4.70)

where

P33 = ζp

[(
1−

ζ2
p

3

)
− 2

3

]
, (4.71)

see P33 plotted in Figure 4.7.
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Figure 4.7: The classical part of the stress s33 for plate bending.

Note that P33 = 0 on the plate faces x3 = ±h (ζp = ±1).

Finally, we derive the refined dispersion relation that accounts for nonlocality and

compare it with the classical Rayleigh-Lamb equation and its leading order asymptotic

long-wave low-frequency approximation. The Rayleigh-Lamb dispersion relation as well

as its asymptotic approximation are presented in Section 2.1.2. We obtain a nonlocal

dispersion relation for a plane harmonic wave propagating with frequency ω and wave

number k from the derived nonlocal plate bending equation (4.53). In order to do this,

we adopt a travelling wave solution U3 = exp [i(Kξ1 − Ωτ)] in (4.53), having

4

3
(1− κ2)K4

(
1− 3

2

η√
π

)
− Ω2 = 0 , (4.72)

where κ is defined by (2.12). Obviously, at η = 0 this dispersion relation coincides with

its classical, ‘local’ version (2.21) up to O(Ω) terms.

Numerical results are presented below and include the following curves: funda-

mental Rayleigh-Lamb antisymmetric modes calculated using the classical transcen-
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dental relation (2.20); ‘local’ asymptotic solution, i.e., (2.21) or, equivalently, (4.72)

for η = 0; nonlocal asymptotic solutions (4.72) for η = 0.1 and η = 0.2, all plotted for

ν = 0.3 in Figure 4.8 and for ν = 0.45 in Figure 4.9.
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Figure 4.8: Dispersion of bending wave (antisymmetric mode); ν = 0.3.
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Figure 4.9: Dispersion of bending wave (antisymmetric mode); ν = 0.45.

The curves plotted in these figures confirm that the nonlocal correction to the

classical plate bending theory (see equation (4.53)) is meaningful only at relatively

low frequencies. The point is that at higher frequencies nonlocal corrections become

negligible in comparison to truncations within the classical plate theory. It is also

remarkable that the curve corresponding to the nonlocal plate theory (for η = 0.1,

0.2 in Figures 4.8 and 4.9) intersect with that calculated from the Rayleigh-Lamb

dispersion equation.
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5 A nonlocal theory for plate extension

In this chapter, the classical plate extension equation is refined by introducing a

correction to account for nonlocal effects arising from the presence of boundary layers

near plate faces.

5.1 Problem statement and asymptotic scaling

Let us again consider an elastic plate of thickness 2h with traction-free faces, see

Figure 4.1. As previously, x3 is a transverse co-ordinate with the origin coinciding with

the midplane of the plate, so that the faces of the plate are expressed by x3 = ±h.

Similarly to the plate bending problem considered in the previous chapter, equations

of motion in 3D nonlocal elasticity are given by

smn,m = ρ
∂2un
∂t2

, (5.1)

where m,n = 1, 2, 3. The constitutive relations for an isotropic material are given by

(2.2) and (2.3). Note again that Einstein’s summation convention over repeated indices

is employed in the equations (5.1) and (2.2).

The boundary conditions imposed on the traction-free faces are

s3n = 0 at x3 = ±h . (5.2)

As in Chapter 4, we assume that the half thickness of the plate, h, is much smaller

than a typical wavelength ` and much greater then the internal microscale a, yielding

a� h� `, see Figure 4.1. In addition, we specify a single small geometric parameter

as in Chapter 4

η =
a

h
=
h

`
� 1 . (5.3)

Here, we again express the nonlocal stresses smn as a sum of its classical counterpart

denoted pmn(ζp) and nonlocal additional component qmn(ζq), see [24].
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Next, the same asymptotic integration method as in Chapters 3 and 4 is used

(e.g., see [50], [52], and [6]) for derivation of the refined plate extension equation that

incorporates a correction to account for nonlocal behaviour of the plate. See Figure

5.1 for a schematic illustration of an extensional motion of the plate.

h

Figure 5.1: Plate extension.

Let us scale the original variables as

xi = ξi` , x3 = hζp = aζq , and t =
`

c2

τ = η−1 h

c2

τ , (5.4)

and define the dimensionless displacements and strains as follows

ui = `vi , u3 = η`v3 , (5.5)

eii = εii , eij = εij , e33 = ε33 , (5.6)

with the nonlocal stresses
sii = µ(pii + qii) ,

sij = µ(pij + qij) ,

s3i = ηµ(p3i + ηq3i) ,

s33 = η2µ(p33 + η2q33) ,

(5.7)

and also assuming that
∂ui
∂x3

= ηγi3 , (5.8)

where i 6= j = 1, 2, Einstein’s summation convention is not employed here, µ is a

Lamé constant, dimensionless quantities v, ε, p and q are assumed to be of the same

asymptotic order, and γi3 is of order unity.
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Using (2.31), i.e.,

smn(x) =
1

a
√
π

h∫
−h

exp

[
−(x′3 − x3)2

a2

]
σmn(x1, x2, x

′
3)dx′3 , (5.9)

and expressing the classical stresses σmn in terms of strains emn as in (2.2), let us

write down non-dimensional equations expressing nonlocal stresses (presented as sums

of dimensionless pmn and qmn) in terms of strains εmn. We thus have

pij + qij =
2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]εijdζ
′
q ,

pii + qii =
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
κ−2εii + (κ−2 − 2)(εjj + ε33)

)
dζ ′q ,

η2(p33 + η2q33)

=
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
κ−2ε33 + (κ−2 − 2)(εii + εjj)

)
dζ ′q ,

(5.10)

with κ defined by (2.12), and on substituting ε33, obtained from (5.10)3 into (5.10)2,

we establish that

pij + qij =
2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]εijdζ
′
q ,

pii + qii =
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(
4(1− κ2)εii + 2(1− 2κ2)εjj

)
dζ ′q

+η2(1− 2κ2)(p33 + η2q33) .

(5.11)

Then we may express the strains emn in terms of the displacements un, as in

(2.3), which in dimensionless form yields

εij =
1

2

(
∂vi
∂ξj

+
∂vj
∂ξi

)
,

εii =
∂vi
∂ξi

,

ε33 =
∂v3

∂ζp
,

(5.12)
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with (5.8) becoming

∂vi
∂ζp

= η2γi3 . (5.13)

The nonlocal equations of motion (5.1) for stresses s3i and s33 can be written as

∂p3i

∂ζp
+
∂q3i

∂ζq
= −∂(pii + qii)

∂ξi
− ∂(pij + qij)

∂ξj
+
∂2vi
∂τ 2

,

∂p33

∂ζp
+ η

∂q33

∂ζq
= −∂(p3i + ηq3i)

∂ξi
− ∂(p3j + ηq3j)

∂ξj
+
∂2v3

∂τ 2
.

(5.14)

The boundary conditions (5.2) then become

p3i + ηq3i = 0 , p33 + η2q33 = 0 at ζp = ±1 (ζq = ±η−1) . (5.15)

5.2 Asymptotic derivation of a 2D plate extension

theory

Let us expand all the dimensionless quantities vn, εmn, and pmn and qmn as

asymptotic series in terms of the small parameter η = h
`

= a
h
, obtaining


vn

pmn
qmn

εmn

 =



v
(0)
n

p
(0)
mn

q
(0)
mn

ε
(0)
mn


+ η



v
(1)
n

p
(1)
mn

q
(1)
mn

ε
(1)
mn


+ . . . (5.16)

Substitution of the expansions (5.16) into equations (5.11), (5.12), (5.13), (5.14), and



103

boundary conditions (5.15) yields, at leading order, the following equations

∂v
(0)
i

∂ζp
= 0 ,

ε
(0)
ij =

1

2

(
∂v

(0)
i

∂ξj
+
∂v

(0)
j

∂ξi

)
,

ε
(0)
ii =

∂v
(0)
i

∂ξi
,

p
(0)
ij + q

(0)
ij =

2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]ε
(0)
ij dζ

′
q ,

p
(0)
ii + q

(0)
ii

=
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(

4(1− κ2)ε
(0)
ii + 2(1− 2κ2)ε

(0)
jj

)
dζ ′q ,

∂p
(0)
3i

∂ζp
+
∂q

(0)
3i

∂ζq
= −∂(p

(0)
ii + q

(0)
ii )

∂ξi
−
∂(p

(0)
ij + q

(0)
ij )

∂ξj
+
∂2v

(0)
i

∂τ 2
,

∂p
(0)
33

∂ζp
= −∂p

(0)
3i

∂ξi
−
∂p

(0)
3j

∂ξj
+
∂2v

(0)
3

∂τ 2
,

(5.17)

accompanied by the boundary conditions

p
(0)
3i = 0 , p

(0)
33 = 0 at ζp = ±1 (ζq = ±η−1) . (5.18)

On integrating the equation (5.17)1 with respect to ζp, and then using the obtained

result in (5.17)2,3, we have

v
(0)
i = w

(0)
i ,

ε
(0)
ii =

∂w
(0)
i

∂ξi
, ε

(0)
ij =

1

2

(
∂w

(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

)
,

(5.19)

where w
(0)
i = w

(0)
i (ξi, ξj, τ) is an arbitrary function that does not depend on the trans-

verse co-ordinate (ζp or ζq); and ∆ξ = ∂2

∂ξ2i
+ ∂2

∂ξ2j
.
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Equation (5.17)4 may now be shown to take the form

p
(0)
ij + q

(0)
ij =

1√
π

(
∂w

(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

)∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]dζ ′q . (5.20)

Next, on making a substitution t = ζ ′q − ζq in equation (5.20), at leading order we

obtain

p
(0)
ij + q

(0)
ij =

1√
π

(
∂w

(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

)∫ η−1−ζq

−η−1−ζq
exp [−t2]dt . (5.21)

Now we rewrite the integral in (5.21) as∫ η−1−ζq

−η−1−ζq
exp [−t2]dt

=

∫ ∞
−∞

exp [−t2]dt−
∫ ∞
η−1−ζq

exp [−t2]dt−
∫ −η−1−ζq

−∞
exp [−t2]dt ,

(5.22)

and making use of the result
∫∞
−∞ e

−t2dt =
√
π, e.g., see [54], we readily have

p
(0)
ij + q

(0)
ij =

1

2

(
∂w

(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

){
2− erfc (η−1 − ζq)− erfc (η−1 + ζq)

}
, (5.23)

where, as previously, erfc(x) is given by (3.29).

Considering equation (5.23), we may write down separately the classical stress

components p
(0)
ij and the nonlocal stress components q

(0)
ij (using the same methods as

in the previous chapter), now resulting in

p
(0)
ij =

∂w
(0)
i

∂ξj
+
∂w

(0)
j

∂ξi
,

q
(0)
ij = −1

2

(
∂w

(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

){
erfc (η−1 − ζq) + erfc (η−1 + ζq)

}
.

(5.24)

Next, equation (5.17)5 becomes

p
(0)
ii + q

(0)
ii =

1√
π

(
4(1− κ2)

∂w
(0)
i

∂ξi
+ 2(1− 2κ2)

∂w
(0)
j

∂ξj

)

×
∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]dζ ′q .

(5.25)
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Then, using a similar scheme to that used to derive (5.24) (therefore, obtaining the

same integral as in (5.20)) and splitting p
(0)
ii and q

(0)
ii as before, we arrive at

p
(0)
ii = 4(1− κ2)

∂w
(0)
i

∂ξi
+ 2(1− 2κ2)

∂w
(0)
j

∂ξj
,

q
(0)
ii = −

(
2(1− κ2)

∂w
(0)
i

∂ξi
+ (1− 2κ2)

∂w
(0)
j

∂ξj

)

×{erfc (η−1 − ζq) + erfc (η−1 + ζq)} .

(5.26)

We now separate p and q components in the governing equation (5.17)6. The p

part of (5.17)6 becomes

∂p
(0)
3i

∂ζp
= −∂p

(0)
ii

∂ξi
−
∂p

(0)
ij

∂ξj
+
∂2v

(0)
i

∂τ 2
. (5.27)

Note that the inertial term was assumed to appear in the p part as above. On sub-

stituting of p
(0)
ij from (5.24) and p

(0)
ii from (5.26) into (5.27) and on integrating the

resulting equation with respect to ζp, we obtain

p
(0)
3i = −ζp

(
4(1− κ2)

∂2w
(0)
i

∂ξ2
i

+
∂2w

(0)
i

∂ξ2
j

+ (3− 4κ2)
∂2w

(0)
j

∂ξi∂ξj
− ∂2w

(0)
i

∂τ 2

)
. (5.28)

On satisfying the corresponding boundary condition (5.18)1

p
(0)
3i = 0 at ζp = ±1 (ζq = η−1) , (5.29)

we can write down the following equations

4(1− κ2)
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
i

∂ξ2
j

+ (3− 4κ2)
∂2w

(0)
j

∂ξi∂ξj
− ∂2w

(0)
i

∂τ 2
= 0 , (5.30)

which in the original variables becomes the classical plate extension equation. It can

be written in the vector form as

A

2
((1− ν)∆u+ (1 + ν) grad divu)− 2ρhutt = 0 , (5.31)
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where u = `(w
(0)
1 +ηw

(1)
1 , w

(0)
2 +ηw

(1)
2 ) is a 2D displacement vector, ∆ and grad div are

2D operators, and A = 2Eh
1−ν2 is usually referred to as the so-called extensional stiffness.

In what follows, we also need to calculate q
(0)
3i . This can be done by integrating

the q part of (5.17)6, i.e., the following equation

∂q
(0)
3i

∂ζq
= −∂q

(0)
ii

∂ξi
−
∂q

(0)
ij

∂ξj
, (5.32)

with respect to ζq. Note that the inertial term does not appear in the q part above as

it was already included in the p part (5.27).

On substituting q
(0)
ij from (5.24) and q

(0)
ii from (5.26) into equation (5.32), we

arrive at
∂q

(0)
3i

∂ζq
=

1

2

[
∆ξw

(0)
i + (3− 4κ2)

(
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
j

∂ξiξj

)]

×{erfc (η−1 − ζq) + erfc (η−1 + ζq)} .

(5.33)

On now integrating with respect to ζq we have

q
(0)
3i =

1

2

[
∆ξw

(0)
i + (3− 4κ2)

(
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
j

∂ξi∂ξj

)]

×
∫ ζq

0

{
erfc (η−1 − ζq) + erfc (η−1 + ζq)

}
dζ ′q ,

(5.34)

which then becomes

q
(0)
3i = −1

2

[
∆ξw

(0)
i + (3− 4κ2)

(
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
j

∂ξi∂ξj

)]

×

{(
η−1 − ζq

)
erfc (η−1 − ζq)−

(
ζq + η−1

)
erfc (η−1 + ζq)

+
2η−1

√
π

(∫ −η−1

−∞
e−t

2

dt−
∫ ∞
η−1

e−t
2

dt

)

− 1√
π

(
exp [−(η−1 − ζq)2]− exp [−(η−1 + ζq)

2]
)}

.

(5.35)
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If we now neglect exponentially small terms, the following expression is obtained

q
(0)
3i = −1

2

[
∆ξw

(0)
i + (3− 4κ2)

(
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
j

∂ξi∂ξj

)]

×

{(
η−1 − ζq

)
erfc (η−1 − ζq)−

(
ζq + η−1

)
erfc (η−1 + ζq)

− 1√
π

(
exp [−(η−1 − ζq)2]− exp [−(η−1 + ζq)

2]
)}

.

(5.36)

Similar analysis of asymptotic orders in (5.36) (as in (4.36)) shows that the term

(
η−1 − ζq

)
erfc (η−1 − ζq)−

(
ζq + η−1

)
erfc (η−1 + ζq)

is of order unity. This fact can be verified by transforming the expression above into

(
η−1 − ζq

) ∫ ∞
η−1−ζq

e−t
2

dt−
(
η−1 + ζq

) ∫ ∞
η−1+ζq

e−t
2

dt ,

indicating that both terms take their maximum value when η−1 ± ζq ∼ 1 ⇒ ζq ∼
±(1− η−1), therefore substituting ζq ∼ ±(1− η−1) into the expression under consider-

ation, we conclude that it is indeed of order unity.
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At the next order we have

∂v
(1)
i

∂ζp
= 0 ,

ε
(0)
ij =

1

2

(
∂v

(1)
i

∂ξj
+
∂v

(1)
j

∂ξi

)
,

ε
(0)
ii =

∂v
(1)
i

∂ξi
,

p
(1)
ij + q

(1)
ij =

2√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]ε
(1)
ij dζ

′
q ,

p
(1)
ii + q

(1)
ii

=
1√
π

∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]
(

4(1− κ2)ε
(1)
ii + 2(1− 2κ2)ε

(1)
jj

)
dζ ′q ,

∂p
(1)
3i

∂ζp
+
∂q

(1)
3i

∂ζq
= −∂(p

(1)
ii + q

(1)
ii )

∂ξi
−
∂(p

(1)
ij + q

(1)
ij )

∂ξj
+
∂2v

(1)
i

∂τ 2
,

∂p
(1)
33

∂ζp
+
∂q

(0)
33

∂ζq
= −∂(p

(1)
3i + q

(0)
3i )

∂ξi
−
∂(p

(1)
3j + q

(0)
3j )

∂ξj
+
∂2v

(1)
3

∂τ 2
,

(5.37)

and the boundary conditions are

p
(1)
3i = −q(0)

3i , p
(1)
33 = 0 at ζp = ±1 (ζq = ±η−1) . (5.38)

On integrating the equations (5.37), again using the same approach as previously, we

obtain
v

(1)
i = w

(1)
i ,

ε
(1)
ij =

1

2

(
∂w

(1)
i

∂ξj
+
∂w

(1)
j

∂ξi

)
, ε

(1)
ii =

∂w
(1)
i

∂ξi
,

(5.39)

where w
(1)
i = w

(1)
i (ξi, ξj, τ) is an arbitrary function not dependent on the transverse

co-ordinate ζp or ζq.
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Equation (5.37)4 takes the form

p
(1)
ij + q

(1)
ij =

1√
π

(
∂w

(1)
i

∂ξj
+
∂w

(1)
j

∂ξi

)∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]dζ ′q , (5.40)

and a series of transformations, analogous to those at leading order, after separation

of p
(1)
ij and q

(1)
ij , leads to

p
(1)
ij =

∂w
(1)
i

∂ξj
+
∂w

(1)
j

∂ξi
,

q
(1)
ij = −1

2

(
∂w

(1)
i

∂ξj
+
∂w

(1)
j

∂ξi

){
erfc (η−1 − ζq) + erfc (η−1 + ζq)

}
.

(5.41)

Next, equation (5.37)5 becomes

p
(1)
ii + q

(1)
ii =

1√
π

(
4(1− κ2)

∂w
(1)
i

∂ξi
+ 2(1− 2κ2)

∂w
(1)
j

∂ξj

)

×
∫ η−1

−η−1

exp [−(ζ ′q − ζq)2]dζ ′q .

(5.42)

Similarly, after separation of p
(1)
ii and q

(1)
ii , we have

p
(1)
ii = 4(1− κ2)

∂w
(1)
i

∂ξi
+ 2(1− 2κ2)

∂w
(1)
j

∂ξj
,

q
(1)
ii = −

(
2(1− κ2)

∂w
(1)
i

∂ξi
+ (1− 2κ2)

∂w
(1)
j

∂ξj

)

×{erfc (η−1 − ζq) + erfc (η−1 + ζq)} .

(5.43)

Now, let us consider the p part of the governing equation (5.37)6, namely

∂p
(1)
3i

∂ζp
= −∂p

(1)
ii

∂ξi
−
∂p

(1)
ij

∂ξj
+
∂2v

(1)
i

∂τ 2
, (5.44)

and substitute p
(1)
ij from (5.41) and p

(1)
ii from (5.43) into (5.44), resulting in

∂p
(1)
3i

∂ζp
= −4(1− κ2)

∂2w
(1)
i

∂ξ2
i

− ∂2w
(1)
i

∂ξ2
j

− (3− 4κ2)
∂2w

(1)
j

∂ξiξj
+
∂2w

(1)
i

∂τ 2
. (5.45)
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Integrating this equation with respect to ζp yields

p
(1)
3i = −ζp

(
4(1− κ2)

∂2w
(1)
i

∂ξ2
i

+
∂2w

(1)
i

∂ξ2
j

+ (3− 4κ2)
∂2w

(1)
j

∂ξiξj
− ∂2w

(1)
i

∂τ 2

)
, (5.46)

and on satisfying of the corresponding boundary conditions (5.38)1

p
(1)
3i = −q(0)

3i at ζp = ±1 (ζq = ±η−1) , (5.47)

we arrive at the following equation[
∆ξw

(1)
i + (3− 4κ2)

(
∂2w

(1)
i

∂ξ2
i

+
∂2w

(1)
j

∂ξi∂ξj

)
− ∂2w

(1)
i

∂τ 2

]

− 1

2
√
π

[
∆ξw

(0)
i + (3− 4κ2)

(
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
j

∂ξi∂ξj

)]
= 0 .

(5.48)

Multiplying (5.48) by η and adding the resulting formula to the classical plate extension

(5.30) yields[
∆ξWi + (3− 4κ2)

(
∂2Wi

∂ξ2
i

+
∂2Wj

∂ξi∂ξj

)](
1− η

2
√
π

)
− ∂2Wi

∂τ 2
= 0 , (5.49)

where Wi = w
(0)
i + ηw

(1)
i . Expressing this equation in terms of the original variables,

we finally arrive at the plate extension equation taking into account nonlocality, see

[24]. In the vector form, it is given by

A′

2
((1− ν)∆u+ (1 + ν) grad divu)− 2ρhutt = 0 , (5.50)

with u = `(w
(0)
1 + ηw

(1)
1 , w

(0)
2 + ηw

(1)
2 ) a 2D displacement vector and the refined

extensional stiffness of the plate taking the form

A′ = A

(
1− a

2h
√
π

)
, (5.51)

where A = 2Eh
1−ν2 is the conventional extensional stiffness as before and a is an internal

characteristic length (for example, lattice parameter or granular distance). The non-

local extensional stiffness A′ in the equation (4.54), to within higher order terms in η,

coincides with that in [123].
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5.3 Numerical results

Similarly to the previous chapters, let us plot pmn (classical) and qmn (nonlocal)

stress components versus the transverse coordinate ζp. We start with p and q compo-

nents of stresses sij and sii. Note that the classical components pij and pii are uniform

in the transverse co-ordinate, so we only plot the q components qij and qii. To this

end, we present qij, see (5.24), in the following form

q
(0)
ij =

(
∂w

(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

)
Qij , (5.52)

where

Qij = −1

2

{
erfc (η−1(1− ζp)) + erfc (η−1(1 + ζp))

}
. (5.53)

After carrying out the same rearrangements for the q part corresponding to the

stress sii, see (5.26), we have

q
(0)
ii =

(
4(1− κ2)

∂w
(0)
i

∂ξi
+ 2(1− 2κ2)

∂w
(0)
j

∂ξj

)
Qii , (5.54)

where

Qii = −1

2

{
erfc (η−1(1− ζp)) + erfc (η−1(1 + ζp))

}
. (5.55)

We define Q′ = Qij = Qii, see Figure 5.2.
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Figure 5.2: The nonlocal component of the stresses sij and sii (i 6= j = 1, 2) for plate
extension.

Note that Q′ ≈ −1
2

on the plate faces x3 = ±h (ζp = ±1). Let us now show

the exponential type of attenuation of Q′ with distance from one of the plate faces,

for example, x3 = h (ζp = 1). As previously, we substitute the complementary error

function in Q′ by its asymptotic expansion (3.69) for large arguments, keeping only the

leading order term and neglecting asymptotically small terms, thus obtaining

Q′asymp = −exp [−(η−1(1− ζp))2]

2
√
πη−1(1− ζp)

, (5.56)

see Figure 5.3.
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Figure 5.3: Attenuation of Q′ for plate extension; η = 0.1.

Now let us in the same spirit proceed with the p and q components of the stress

s3i, see (5.28) and (5.36), from which

p
(0)
3i =

(
4(1− κ2)

∂2w
(0)
i

∂ξ2
i

+
∂2w

(0)
i

∂ξ2
j

+ (3− 4κ2)
∂2w

(0)
j

∂ξi∂ξj
− ∂2w

(0)
i

∂τ 2

)
P3i ,

q
(0)
3i = −1

2

[
∆ξw

(0)
i + (3− 4κ2)

(
∂2w

(0)
i

∂ξ2
i

+
∂2w

(0)
j

∂ξiξj

)]
Q3i ,

(5.57)

where

P3i = −ζp (5.58)

and

Q3i = η−1(1− ζp) erfc (η−1(1− ζp))− η−1(1 + ζp) erfc (η−1(1 + ζp))

− 1√
π

(
exp [−(η−1(1− ζp))2]− exp [−(η−1(1 + ζp))

2]
)
.

(5.59)

The graph for and Q3i versus ζp is provided in Figure 5.4.
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Figure 5.4: The nonlocal part of the stresseses s3i (i = 1, 2) for plate extension.

Note that P3i = ∓1 and Q3i ≈ ± 1√
π

on the plate faces x3 = ±h (ζp = ±1). Let

us now demonstrate the exponential type of attenuation of Q3i with distance from one

of the plate faces, for example, x3 = h (ζp = 1). Substituting the complementary error

function in Q3i above by its asymptotic expansion for large arguments using (3.69),

keeping the terms up to the first order and neglecting asymptotically small terms, we

have

Qasymp
3i = −exp [−(η−1(1− ζp))2]

2
√
π(η−1(1− ζp))2

. (5.60)

We remark that Qasymp
3i in (5.60) coincides with that in (4.68) in the previous chap-

ter, see Figure 4.6. Next, we derive the refined dispersion relation that accounts for

nonlocality in the case of plate extension and compare it with the classical Rayleigh-

Lamb equation and its leading order asymptotic long-wave low-frequency approxima-

tion. The Rayleigh-Lamb dispersion relation, as well as its asymptotic approximation,

can be found in Section 2.1.2. We obtain a nonlocal dispersion relation from the de-

rived nonlocal plate bending equation (5.50) by adopting a travelling wave solution
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U3 = exp [i(Kξ1 − Ωτ)] in (5.50), obtaining

4(1− κ2)K2

(
1− η

2
√
π

)
− Ω2 = 0 , (5.61)

where κ =
√

1−2ν
2−2ν

. As in the previous chapter, at η = 0 this dispersion relation

coincides with its classical version (2.24) up to O(Ω) terms.

Numerical results below include the following curves: fundamental Rayleigh-

Lamb symmetric modes calculated using the classical transcendental relation (2.23);

‘local’ asymptotic solution, i.e., (2.24) or, equivalently, (5.61) for η = 0; nonlocal

asymptotic solutions (5.61) for η = 0.1 and η = 0.2. All of the graphs plotted for

ν = 0.3 in Figure 5.5 and its zoomed-in fragments in Figures 5.6-5.8 and, similarly, for

ν = 0.45 in Figure 5.9 and its zoomed-in fragments in Figures 5.10-5.12.
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Figure 5.5: Dispersion of extensional wave (symmetric mode); ν = 0.3.
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Figure 5.6: Zoomed-in, part 1 (origination) of Figure 5.5.
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Figure 5.7: Zoomed-in, part 2 (diversion of asymptotic from exact) of Figure 5.5.
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Figure 5.8: Zoomed-in, part 3 (intersection of nonlocal and exact) of Figure 5.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Ω

0

0.2

0.4

0.6

0.8

1

1.2

K

Exact Rayleigh-Lamb
Classical asymptotic, η = 0
Nonlocal asymptotic, η = 0.1
Nonlocal asymptotic, η = 0.2

Figure 5.9: Dispersion of extensional wave (symmetric mode); ν = 0.45.
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Figure 5.10: Zoomed-in, part 1 (origination) of Figure 5.9.
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Figure 5.11: Zoomed-in, part 2 (diversion of asymptotic from exact) of Figure 5.9.
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Figure 5.12: Zoomed-in, part 3 (intersection of nonlocal and exact) of Figure 5.9.

The graphs plotted in these figures confirm that the nonlocal correction to the

classical plate extensional theory in (5.50) is meaningful only at relatively low frequen-

cies. Again, as for plate bending, this is due to non-accuracy of the adapted leading-

order long-wave low-frequency model. It is also of interest that the curve corresponding

to the nonlocal plate theory (for η = 0.1, 0.2 in Figures 5.5 and 5.9) intersect with that

calculated using the classical Rayleigh-Lamb dispersion equation, see Figures 5.8 and

5.12.
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6 Conclusion

The classical theory of elasticity has been proven to work well for macroscale

problems using continuum mechanics, when internal particle interactions are considered

to be of contact type (zero range). However, when it is necessary to consider micro-

and especially nano-scale, then long-range, cohesive intermolecular forces acting inside

the body become significant. Therefore, in this case they should be accounted for,

necessitating the introduction of nonlocal elasticity theory (e.g., see Eringen [41]).

When an internal characteristic length is introduced and the classic stress tensors in

the governing equations replaced by nonlocal stress tensors, which capture the long-

range intermolecular forces by employing nonlocal elastic moduli by integrating over

the whole volume, it becomes possible to account for long-range forces.

An asymptotic approach to solving nonlocal boundary value problems shows the

importance of analysing near-surface behaviour. It has been demonstrated that the

effect of a boundary layer near the surface of a half-space can be incorporated just

by refining the boundary conditions in classical elasticity. In particular, the effective

boundary conditions (3.119) involve an explicit correction to their classical counter-

parts, arising from taking into account nonlocal phenomena. Similar nonlocal cor-

rections found in the literature (e.g, see [44]) happened to be much smaller than the

correction obtained in this work, see remarks in Section 3.4 and 3.3. The linear elas-

todynamic equations, subject to the derived effective boundary conditions on the free

surface of a homogeneous half-space, allow us to determine the interior stress and strain

fields outside a narrow near-surface layer of the thickness satisfying the asymptotic in-

equality (3.152). As an example, an O(a
`
) nonlocal correction to the Rayleigh surface

wave speed was calculated, see (3.162) and Figure 3.8. In addition, a nonlocal cor-

rection was observed within the similar problem of Rayleigh wave on a surface under

a moving load, see (3.173), and the critical Rayleigh wave speeds plotted in Figures

3.11 and 3.12. This correction exceeds the O(a
2

`2
) correction involved in the nonlocal

equations of motion in Eringen [44], see [23] and [74].
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The boundary layer near the surface of a half-space is expressed in terms of the

complementary error function in relations (3.66) (or (3.68)) and (3.74) and its effect on

the stress field is shown in Figures 3.3 and 3.5. We recall that the approximate nature

of nonlocal models originates from truncation of homogenisation procedures, including

asymptotic homogenisation in periodic structures, e.g., see [125], [100], which underlies

the corresponding macroscale relations. Considering this case, the truncation error in

the classical boundary conditions should be of the same order as the deviation from

the uniform microscale variation of the sought for solution. This microscale variation

is expected to be negligibly small comparing to the O(a
`
) correction suggested in the

thesis. For instance, it is O(a
2

`2
) for a range of periodic lattices, e.g., see [26]. This

problem is certainly worth a deep analysis.

Another important result of the present work is that the effect of the bound-

ary layers arising due to nonlocal interactions can be incorporated just by modifying

the bending and extensional stiffness in the classical equations of plate motion. The

nonlocal stiffness D′ (for plate bending) and A′ (for plate extension) are defined by

formulae (4.54) and (5.51), respectively. The boundary layers, expressed in terms of

complementary error function, are given by (4.58) (or (4.62)) and (4.5) and their effect

on the stresses is demonstrated in Figures 4.3 and 4.5 for plate bending and expressed

in (5.53) (or (5.55)) and (5.4) and shown in Figures 5.2 and 5.4 for plate extension, see

[24].

The range of validity of equations (4.53) and (5.50) is actually not restricted to

the assumed set up of a single small parameter, where h
`
∼ a

h
� 1. Consequently, the

equations are also applicable for h2

`2
� a

h
� 1. Note that at a

h
∼ h2

`2
, the O(h

2

l2
) terms

characteristic of the asymptotics for Timoshenko-Reissner theories must be kept, e.g.,

see [52] and [39].

Let us remark that the proposed approach also creates an opportunity for various

generalisations and extensions. First of all, it is not restricted to use of exponential

kernel (2.28) considered in this work. It might be expected that we would observe a

similar nonlocal effect for a range of kernels involving a small microscale parameter and

decaying at infinity. The approach can also be applied to the analysis of anisotropic
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media. In addition, the obtained results may be extended to non-locally elastic solids

with a boundary of arbitrary shape. More general boundary conditions may also be

considered such as fixed faces or sliding contact.

The general asymptotic scheme utilised in the thesis may potentially have numer-

ous applications outside the field of nonlocal elasticity. For instance, it can be applied

to analysis of solids with localised near-surface inhomogeneities such as functionally

graded structures, e.g., see a review by Birman & Byrd [19]. This scheme could also be

adapted for the long-wave dynamic analysis of vertically inhomogeneous foundations,

e.g., see Muravskii [94] and references therein.

Analysis of the dynamic behaviour of elastic waveguides, such as beams and

thin elastic shells subjected to the boundary conditions of the form (3.119) imposed

on the free faces, would also be of considerable interest. This would seem to be a

generalisation of the studied example for the Rayleigh surface wave. Another area of

interest for further development could be in asymptotic justification of the nonlocal

constitutive relations (2.26) in [44] near plate faces, for example, by homogenising the

discrete lattice structure, e.g., see [106].

The discrete models accounting for nonlocal interactions may also support the

existence of boundary layers near plate faces similar to the considered kernel normalised

over a 3D domain by the expression (2.27). It is worth noting that an alternative

approach in [123], based on normalising the nonlocal kernels over the plate thickness,

does not predict boundary layers. Moreover, originating from nonlocal differential

formulations (see also [102]), they can approximate slowly varying behaviour only.
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