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Abstract 9 

Sepiolite-based catalysts loaded with potassium hydroxide were prepared via the wet impregnation 10 

and ion-exchange methods and evaluated as catalysts in base-assisted reactions, such as 11 

transesterification of renewable oils. The structural features of these catalysts were characterised in 12 

detail by variable-temperature in situ X-ray diffraction, N2 adsorption-desorption, scanning electron 13 

microscopy with energy-dispersive X-ray analysis and in situ FTIR spectroscopy. Although a high 14 

yield of fatty acid methyl esters was achieved in transesterification reactions in the presence of K-15 

containing sepiolite, this system showed significant deactivation due to its structural degradation and 16 

loss of the active component during the reaction and regeneration cycles. This work demonstrates for 17 

the first time how the thermal and structural stability of sepiolite based systems can affect their 18 

performance, which is an essential issue that has not been sufficiently addressed in recent research 19 

related to the catalytic applications of these materials.  20 
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1. Introduction  29 

Nanoporous materials have been used in a host of catalytic applications owing to their versatile pore 30 

networks, enhanced reactivity, stability, chemical functionality and high surface area (Corma et al., 31 

2006; Somorjai and Na, 2015; Mota et al., 2016). Many studies have illustrated the use of alkaline, 32 

alkaline earth and transition metal oxides supported on nanoporous materials with the pore size of 33 

~1-100 nm, such as silicas, clays and zeolites prepared by impregnation, ion exchange and 34 

precipitation as highly active catalysts (Corma and Martin-Aranda, 1991; Gedanken et al., 2016). 35 

One of the processes for the production of an environmentally friendly fuel from vegetable oils and 36 

animal fats is the transesterification reaction between triglycerides (TGs) in oils or fats and an 37 

alcohol, which is carried out in the presence of an acid or base catalyst yielding fatty acid methyl 38 

esters (FAMEs) and glycerol. For this reaction, heterogeneous catalysis can offer a greener route 39 

with potential advantages including the elimination of the quenching step, separation of the products 40 

and associated aqueous waste (Gandía et al., 2018).  41 

Sepiolite (Sep), often in close association and intergrowth with palygorskite, is known from many 42 

localities worldwide but is typically found in only small amount compared to other minerals that 43 

form under similar geological conditions. The low specific gravity, high porosity and capacity to 44 

float on water led to the original name “Meerschaum” (German for “foam of the sea”) by Abraham 45 

Gottlob Werner. Later, based on its similarity with cuttlebone, the internal shell of cuttlefish, the 46 

name “sepiolite” from Greek “sepion” (cuttlebone) and “lithos” (stone) was given to the mineral for 47 

a find in the Piedmont region of Italy. Sep requires alkaline conditions, with high activities of silicon 48 

and magnesium (Singer, 1989), and is also often associated with low latitudes and arid to semi-arid 49 

climates. Environments of formation include marine, lacustrine and lagoonal continental sediments, 50 

soils, palaeosols and calcretes (Deer et al., 1992). Replacement of pre-existing minerals such as 51 

magnesite (Yeniyol, 1986), hydrothermal alteration (e.g. Ehlmann et al., 1962; Irkeç and Ünlü, 52 

1993) and a role of biomineralisation (e.g. Leguey et al., 2010) have also been suggested for the 53 

formation of Sep. Large, economically valuable Sep deposits originate mostly from formation in 54 

shallow seas and lakes as chemical sediments. At Eskişehir (Turkey), the richest Sep mining field in 55 

the world, Sep occurs as layers and nodules in Neogene lacustrine sediments (Kadir et al., 2016). 56 

Other notable Sep occurrences are in the United States, the Czech Republic, Greece, France and 57 

Spain. The latter includes Sep-rich deposits in southern and central Spain associated with lagoonal 58 

and lacustrine environments (e.g. Galán and Ferrero, 1982; Galán and Castillo, 1984; Torres-Ruíz et 59 

al., 1994; Armenteros et al., 1995; Bustillo and Alonso-Zarza, 2007).  60 

https://en.wikipedia.org/wiki/Eski%C5%9Fehir
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Together with palygorskite, Sep is a member of the palygorskite group of clay minerals, which 61 

belong to the sheet silicate (phyllosilicate) group of the silicates (Deer et al., 1992). These minerals 62 

are characterised by the same basic building blocks, namely a tetrahedral sheet and one of two kinds 63 

of octahedral sheets, combined to form composite mineral structures. In contrast to other sheet 64 

silicates, Sep, a fibrous hydrated magnesium silicate with the ideal chemical formula 65 

Mg4Si6O15(OH)2·6H2O (the formula Mg8Si12O30(OH)4·4(H2O)·nH2O is also used in the literature), 66 

lacks continuous octahedral sheets (Figure 1). The tetrahedral sheets are continuous; however, 67 

ribbons rather than sheets of octahedra leave channels (0.36×1.06 nm in size) in the Sep structure 68 

that can accommodate water and organic molecules (Deer et al., 1992). Furthermore, Sep is 69 

characterised by a high specific surface area and good surface affinity towards organic and inorganic 70 

species (Kadir and Akbulut, 2003; Sabah and Çelik, 2005; Suarez et al., 2016). 71 

 72 

 73 
Fig. 1. Sepiolite structure (the blue dotted line indicates the unit cell size). 74 

There has been a great deal of interest in utilising the sorptive, rheological and catalytic properties of 75 

Sep in many industrial applications (Alvarez, 1984). For instance, Sep has been recently used as 76 

catalyst support for green chemistry applications (Figen et al., 2018). Furthermore, a number of 77 

studies have been focused on the applications of natural clay minerals including Sep, red mud and 78 

bentonite as catalysts for the production of renewable fuels. Alves et al. (2014) utilised treated 79 
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smectite clay with potassium fluoride in transesterification of soybean oil utilising the clay as a solid 80 

catalyst. Soetaredjo et al. (2011) examined the performance of potassium hydroxide impregnated 81 

bentonite as a catalyst for palm oil conversion. Agustain et al. (2012) used three metal (Ba, K and 82 

Na) hydroxides supported on bentonite as catalysts for methanolysis of jatropha curcas oil. 83 

Degirmenbasi et al. (2014) used K2CO3 loaded Sep as a solid catalyst in transesterification of canola 84 

oil. Xu et al. (2013) employed red mud containing strongly basic active sites on the surface as a 85 

catalyst for biodiesel production from soybean oil. Most authors reported a high yield of FAMEs, 86 

typically over 90%, after several hours of the reaction time at temperatures above 65°C. 87 

Important problems for heterogeneous systems, which can affect the catalytic performance, are 88 

structural integrity, thermal stability and the loss of active phases from the catalyst. A considerable 89 

challenge in an industrial application is maintaining the high catalyst activity for a number of 90 

reaction and regeneration cycles. However, many published reports do not describe the structural 91 

characterisation of the clay based catalysts before and after the reaction studies, which are often 92 

limited to a very small number, if any, of the successive runs on regenerated catalysts.  93 

In this paper, potassium hydroxide loaded Spanish Sep has been prepared via wet impregnation and 94 

ion-exchange, and then used for the production of biofuel from both non-edible and edible oils using 95 

microwave heating. The aim of the present study is twofold: to carry out a detailed structural 96 

characterisation of the Sep-based catalyst both before and after the reaction and to evaluate the 97 

structure - performance relationship in the transesterification reaction for the production of biofuel 98 

from renewable feedstock for sustainable and clean energy applications.  99 

2. Experimental 100 

The Spanish Sep (ACS reagent) was obtained from Sigma-Aldrich. Potassium hydroxide (86%), 101 

methanol, sodium hydroxide (99%) and n-heptane (analytical grade, >99.99%) were purchased from 102 

Fisher Scientific. The grapeseed oil was supplied by Now Solutions (USA), refined rapeseed oil was 103 

purchased from a local market and castor oil was obtained from Fisher Scientific. Methyl 104 

heptadecanoate (analytical GC standard, >99.99%) was supplied by Sigma-Aldrich.  105 

Two types of catalysts were prepared by impregnation (K-Sep-Imp) and ion-exchange (K-Sep-IE) 106 

procedures. These were characterised before and after the reaction using in situ variable-temperature 107 

X-ray diffraction (VT XRD), scanning electronic microscopy with energy-dispersive X-ray analysis 108 

(SEM-EDX), thermogravimetric analysis (TGA), nitrogen adsorption-desorption and in situ FTIR 109 

spectroscopy. Detailed procedures are provided in the Electronic Supplementary Material (ESM). 110 
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Following the transesterification reaction (Figure S1), the catalysts were separated, rinsed with 111 

methanol, dried at 60oC and reactivated under the same conditions as prior to the initial reaction and 112 

utilised again. The same reaction conditions were used in four consecutive runs for the recycled 113 

catalysts. 114 

3. Results and discussion  115 

One of the most important characteristics of a working catalyst is its structural stability. This can be 116 

affected at different stages of the catalyst activation and regeneration or in the course of the reaction 117 

itself. The structural properties of the Sep-based catalysts were monitored by both in situ and ex situ 118 

XRD, FTIR and N2 adsorption. Figures 2 and S2 (ESM) present the VT-XRD patterns of the Sep 119 

and K-Sep-Imp recorded at different calcination temperatures. There are clear changes in the 120 

patterns of both materials recorded above 200oC. For Sep in particular, the intensity of the 110 121 

reflection at 7.48o (1.18 nm d-value; a summary of the indexed XRD reflections is given in Table 122 

S2), which corresponds to the interlayer distance in the clay structure, decreased significantly, 123 

becoming negligible above 300oC. Similar intensity changes were observed for the same reflection 124 

(1.19 nm d-value) in the patterns of the K-Sep-Imp sample. It is suggested that the layered structure 125 

of the catalyst collapsed during the high temperature calcination. The observed structural changes 126 

are not reversible as the VT-XRD patterns, recorded for both materials upon cooling, did not change. 127 

Our data are in accord with the findings of Preisinger (1959), Dany and Nadiye-Tabbiruka (1975) 128 

and Grillet et al. (1988) indicating that the Sep structure showed significant changes upon heating 129 

above 150oC, which was accompanied by the loss of water and microporosity. In addition, an in situ 130 

variable-temperature synchrotron investigation (Post et al., 2007) and a number of ex situ studies 131 

(Kok, 2013; Pişkin, 2013; Yeniyol et al., 2014) on Sep samples calcined up to 900oC demonstrated 132 

the folding of the Sep structure resulting from its dehydration above 320oC with the loss of the 133 

micropore channels, which was followed by the formation of two "anhydrous" Sep phases at ~460 134 

and 650oC. These results and most literature data, however, disagree with those presented by 135 

Degirmenbasi et al. (2014), who suggested that heating Sep to 500oC did not cause any change in the 136 

catalyst structure. Our nitrogen adsorption and TGA-DSC data support the VT-XRD finding. Indeed, 137 

the BET surface area (SBET) of Sep decreased with increasing activation temperature from 325 to 130 138 

m2/g (Figures 3, 4 and S3, ESM); the BET surface area of K-Sep-Imp was below 100 m2/g. 139 

Therefore nitrogen adsorption and XRD data clearly demonstrate that potassium introduction and 140 

activation at elevated temperatures lead to considerable structural degradation and a significant 141 

decrease in the SBET. In addition, the micropores present in the original Sep (~0.8 nm in diameter) in 142 

the spaces between the silicate layers were no longer detected for the samples activated at 143 

temperatures above 200oC. These results are also supported by previous research (Gómez-Avilés et 144 
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al., 2013; Pişkin et al., 2013; Pozo et al., 2014; Suarez et al., 2016). While these publications did 145 

confirm the high surface area of Sep and indicate the presence of micropores, to the best of our 146 

knowledge, our work is the first to present a detailed characterisation of a series of thermally treated 147 

Sep samples in the region of low P/Po values corresponding to the micropore filling by nitrogen.  148 

(a) 

 

(b) 

 
 Fig. 2. In situ VT XRD patterns collected every 50oC (heating up) of (a) parent Sep 

catalyst and (b) K-Sep-Imp. Patterns are offset for clarity. 

 149 
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(a) 

 

(b) 

 

 Fig. 3. Nitrogen adsorption isotherms for (a) Sep and (b) K-Sep-Imp activated at 
100-350oC in 50oC steps. Isotherm traces are offset for clarity. 

 150 
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(a) 

 

(b) 

 

 Fig. 4. Specific surface area and micropore volume data as a function of the activation 
temperature for (a) Sep and (b) K-Sep-Imp. 

Although the thermal treatment process is essential for the decomposition of the metal precursor, 151 

there is a significant change in the catalyst properties caused by heating above 250oC, which is 152 

associated with the loss of water and the collapse of the layered structure. In agreement with 153 

previous studies (Hayashi et al., 1969; Kok, 2013; Ogorodova et al., 2016), our TGA-DSC data 154 

confirmed the stepwise removal of water from Sep, which accounts for ~9% of the mass loss at 155 

100oC and ~4% at 250-300oC (both steps are endothermic processes as expected) with the total mass 156 
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loss of ~18% by 900oC (Figure 5). The exothermic peak observed at 850oC corresponds to a high 157 

temperature phase transition resulting in a complete loss of the Sep structure. The data obtained for 158 

K-Sep were largely similar, ~15% of the mass loss at 400oC and ~18% by 900oC, but showing a 159 

more gradual removal of water from this material as compared to the parent Sep sample (Hayashi et 160 

al.,1969). 161 

(a) 

 

(b) 

 

 Fig. 5. Thermogravimetric analysis data for (a) Sep and (b) K-Sep. 
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Chemical analysis data and SEM images for Sep, K-Sep-Imp and used K-Sep-Imp are presented in 162 

Table 1 and Figure 6, respectively. The chemical analysis results correspond to the empirical 163 

formula 2MgO·3SiO2·nH2O of the original sample. The potassium content of 6.1 wt% in K-Sep 164 

indicates ~60% efficiency of the impregnation procedure. The potassium concentration decreased 165 

significantly after the reaction-regeneration cycle, whereas there were no changes to the morphology 166 

of K-Sep-Imp and used K-Sep-Imp, which would have implications for the catalytic performance of 167 

these materials. Table 1 also summarises the SBET values obtained for the studied Sep based catalysts 168 

Interestingly, the nitrogen adsorption data show that the specific surface area of used K-Sep catalysts 169 

did not change noticeably after the reaction-regeneration cycle being in the region of ~80 m2/g, but 170 

the micropore volume decreased significantly, which is probably due to the micropore blockage by 171 

the reacting species that could not be removed under the relatively mild regeneration conditions. A 172 

greater reduction in the SBET may be expected due to the loss of micropores in the used catalysts, 173 

however, this is probably compensated by the removal of the K-containing species from the external 174 

surface (see below). 175 

 176 

Table 1. Elemental analysis and nitrogen adsorption data for Sep based catalysts. 177 

Elemental composition  

(wt %) 

SBET 

(m2/g) a 

Vmicro 

(cm3/g) a     Material 

 Silicon Magnesium  Potassium  Sodium   

Parent Sep     22.5     13.3         <0.2 - 195 0.39 

K-Sep-Imp    17.3     13.4          6.1 - 75 0.27 

K-Sep-Imp used    17.2     13.3          3.2 - 70 0.01 

K-Sep-IE    19.7     11.8          4.0 4.6 85 0.28 

K-Sep-IE used    19.8     12.0          2.5 1.8 80 0.01 

 178 

a All materials were activated at 200oC. 179 

 180 
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(a) 

 

(b) 
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(c) 

 

 Fig. 6. SEM images of (a) Sep, (b) K-Sep-Imp and (c) K-Sep-Imp following reaction and 
regeneration. 

 181 
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 182 

(a) 

 

(b) 

 

 Fig. 7. The OH-region of FTIR spectra for (a) Sep and (b) K-Sep-Imp catalysts 
activated at 50-450oC in 100oC steps. Spectra are offset for clarity. 

 183 
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 184 

The OH region of the FTIR spectra for Sep and K-Sep-Imp are presented in Figure 7 (the wide range 185 

spectra, from 1000 to 6000 cm-1 including the overtones and combination frequencies, are available 186 

in ESM, Figure S4). The evolution of the spectral bands of different types of OH groups was 187 

followed in situ during sample dehydration between 30 and 450oC. The initial spectra were 188 

dominated by the broad feature at ~3650-3300 cm-1 owing to weakly bound water molecules, which 189 

are commonly referred to as "zeolitic water" in the mineralogical literature, and which were removed 190 

upon mild dehydration at 150oC. Two overlapping bands at 1625 and 1616 cm-1 were also observed 191 

in the region of OH-bending vibrations. The spectra of the dehydrated samples exhibited six peaks in 192 

the region of stretching O-H vibrations. In agreement with the literature (Hayashi et al., 1969; Frost 193 

et al., 2001; Ruiz et al., 2010; Giustetto et al., 2010; Bukas et al., 2013; Post et al., 2014; Chryssikos 194 

et al., 2015), the peaks at 3740 and 3724 cm-1 are assigned to Si-OH groups of the tetrahedral silicate 195 

layer and those at 3691 and 3673 cm-1 to Mg(3)-OH groups in the octahedral sheets of the Sep 196 

structure. The bands at 3597 and 3531 cm-1 are attributed to water molecules coordinated to Mg 197 

cations, which is supported by the presence of a single band at 1616 cm-1 in the region of bending 198 

OH vibrations. Interestingly, these peaks persisted in the spectra of the samples dehydrated in 199 

vacuum at 450oC for 5 hours. It should be noted that there are minor variations in the position of the 200 

absorption bands reported in the literature, which is probably related to the fact that most of the 201 

previous data were obtained using ex situ experiments on calcined samples or KBr disks with 202 

somewhat uncertain degree of control over the hydration and dehydration processes. Although the 203 

interpretation of the spectra has been supported by extensive NIR characterisation of Sep (Frost et 204 

al., 2001; Ruiz et al., 2010; Giustetto et al., 2010; Chryssikos et al., 2015), a different assignment 205 

could not be completely ruled out. For instance, two OH bands at 3734 and 3583 cm-1 were observed 206 

in the spectra of magnesium oxide calcined at 500oC (Hadjiivanov, 2014). The spectra of K-Sep 207 

dehydrated at elevated temperatures displayed rather broad overlapping bands between 3750 and 208 

3600 cm-1. This is in agreement with our VT-XRD and nitrogen adsorption data indicating 209 

considerable structural degradation upon KOH impregnation and calcination of this material. 210 

The structural stability, high surface area and strong bonding with the active phase preventing the 211 

loss of the active sites are essential characteristics of a supported catalyst (Romero et al, 2016). 212 

Figure 8 presents a comparison of the catalytic performance of K-Sep-Imp in transesterification of 213 

triglycerides over several reactions – regeneration cycles. These data demonstrate a significant 214 

deactivation of K-Sep-Imp, which can be linked to its structural integrity and loss of the active sites. 215 

Although we obtained high yield and selectivity of FAMEs in the presence of K-Sep-Imp and K-216 

Sep-IE, these materials lack long-term stability in the methanolysis reaction. A considerable change 217 



15 

in the catalyst structure was found after calcination at elevated temperatures, accompanied by the 218 

loss of water and a significant reduction in its surface area. In contrast to our results and the data 219 

available in the literature, Degirmenbasi et al. (2014) concluded that a higher catalytic activity of 220 

Sep impregnated with K2CO3 in the transesterification of canola oil is achieved following its 221 

calcination to 500oC, apparently resulting in a catalyst more resistant toward the leaching of the 222 

active phase. However, our structural characterisation, chemical analysis and catalytic data for the 223 

Sep-based catalysts that were calcined or regenerated at temperatures between 250 and 450oC 224 

provide no evidence of enhanced catalytic performance or improved structural stability following the 225 

high temperature treatment. In addition, characterisation of the regenerated catalysts demonstrated 226 

that the K+ ions were leaching out during the transesterification reaction or the regeneration step, 227 

which was accompanied with a significant drop in the yield of FAMEs in the subsequent catalytic 228 

run from 100% to 78%. A similar drop in activity was observed for the K-Sep-IE.  229 

 230 

Fig. 8. Catalytic performance of the fresh and used K-Sep-Imp in the transesterification of grapeseed 231 

oil at 160oC and the wt% of potassium in these catalysts.  232 

Furthermore, in a blank reaction run with 0.0035g of KOH (approximately the amount of potassium 233 

hydroxide lost by K-Sep-Imp in the first reaction cycle), a triglyceride conversion of ~75% was 234 

observed, confirming that potassium hydroxide in solution was active in the transesterification 235 

reaction. Clearly, such effects should be taken into account, considering a significant number of 236 
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studies utilising clay-based catalysts either impregnated or ion-exchanged with potassium containing 237 

compounds (Corma and Martin-Aranda, 1991; Villamiel et al., 2002; Ilgen and Akin, 2012; 238 

Degirmenbasi et al., 2013, 2014; Chryssikos et al., 2015; Wang et al., 2017). 239 

 240 

4. Conclusion 241 

The application of heterogeneous catalysts in the production of biodiesel offers potential advantages 242 

including lower cost, high stability and the ease of separation. In this work, Sep modified with K-243 

bearing compounds was prepared using impregnation and ion exchange procedures. The evolution of 244 

the structural features of these catalysts was characterised in detail both before and after the reaction 245 

by variable-temperature in situ XRD, N2 adsorption-desorption, SEM-EDX and in situ FTIR 246 

spectroscopy in order to evaluate their structure - performance relationship in the methanolysis of 247 

vegetable oils. Our data demonstrated that the Sep structure undergoes irreversible changes upon 248 

heating above 250oC, which are accompanied by the loss of water and OH groups. High-temperature 249 

calcination resulted in dehydration of Sep followed by the folding of its structure with the loss of the 250 

micropore channels and significant decrease in the surface area. Sep impregnation with KOH also 251 

led to partial structural degradation and decrease in the surface area. Subsequent thermal treatment, 252 

required for the decomposition of the metal precursor with the formation of an oxide on the Sep 253 

support, can cause further structural changes associated with dehydration and the collapse of the 254 

layered structure. Although high yield of FAMEs was obtained in transesterification in the presence 255 

of K-Sep, our work demonstrated that both impregnated and ion-exchanged K-Sep lack long-term 256 

stability in this reaction due to the loss of the active component during the recycling stages. Overall, 257 

our reaction studies and extensive structural analysis point to a potentially significant contribution of 258 

the homogeneously catalysed transformation of triglycerides in the presence of clay-based catalysts.  259 
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