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Graphical Abstract
respectively; see Fig.1. We assume that the undeformed configuration is described by

0 ≤ R ≤ L, Z = 0,

and the deformation is given by

r = r(R), z = z(R). (2.1)

We also introduce function θ(R) that denotes the angle between the tangent line and the

vertical line at particle R of the membrane; see Fig.1. This problem can be viewed a special

case of the inflation of a full or truncated ellipsoidal membrane [4, 18, 24].

Figure 1: The undeformed (left) and deformed (right) configurations

The principal directions of stretch correspond to the directions of the latitude, the merid-

ian and the normal to the deformed membrane. The associated principal stretches are given

by

λ1 =
r

R
, λ2 =

√
r′2 + z′2, λ3 =

h

H
, (2.2)

where h is the deformed thicknesses and a prime denotes differentiation with respect to R.

The material is assumed to be incompressible so that λ1λ2λ3 = 1.

The total energy consists of the strain energy and the potential energy of the pressure

P , and is given by

E =

∫ L

0

W (λ1, λ2)2πRHdR − P

∫ L

0

πr2z′dR, (2.3)

where W (λ1, λ2) denotes the strain energy per unit volume in the undeformed configuration

after λ3 has been eliminated with the use of the relation λ3 = 1/(λ1λ2).

The equilibrium equations can most conveniently be obtained by setting the first variation

of E to zero, and are given by

r(hσ2)
′ + hr′(σ2 − σ1) = 0, (2.4)
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Figure 8: (a) Comparison on curve of the pressure versus the stretch between the numerical result by Gent

model and the experimental data. (b) Comparison on curve of the pressure versus the stretch between the

numerical result by GG model and the experimental data.

Table 3: Comparison of extreme points between numerical solution and experimental data

Category λ (At the peak) P (At the peak) λ (At the trough) P (At the trough)

Numerical calculation 1.917 1.888 4.848 1.502

Experimental data 1 1.960 1.796 4.558 1.430

Experimental data 2 1.944 1.813 4.582 1.469

Experimental data 3 1.960 1.883 4.704 1.485

Experimental data 4 1.993 1.826 4.633 1.488

Experimental data 5 1.919 1.841 4.554 1.478

We next consider the sensitivity of the theoretical predictions to the variations of the

material parameters in the GG model. We vary each material parameter above or below

its original value by 10% and study the effect of each change on the pressure/stretch and

stress/stretch curves.

We define a relative error ξ through

ξ =
tc/µc − to/µo

to/µo

,

where to and tc denote the nominal stress based on the original values and changed values of

material parameters, respectively, and µo and µc are the original and changed shear moduli,

respectively.
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Highlights

• A new set of experiments is conducted on the inflation of plane membranes;

• The performance of Gent and Gent-Gent material models is evaluated, and it is shown

that the Gent-Gent material model gives much better predictions than the original

Gent material model;

• The accuracy of using inflation of a plane membrane to mimic equibiaxial extension is

quantified.
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An evaluation of the Gent and Gent-Gent material

models using inflation of a plane membrane

Lei Zhou[1], Shibin Wang[1]∗, Linan Li[1], Yibin Fu[1,2]†,
1 Department of Mechanics, Tianjin University, Tianjin 300072, China

2 Department of Mathematics, Keele University, Staffordshire ST5 5BG, UK

Abstract

The Gent material model is the simplest extension of the neo-Hookean material

model that can describe the finite extensibility of the polymeric chains comprising

the elastomer network. However, it is known that its fitting to experimental results

of uniaxial tension is not satisfactory for moderate values of stretch, and the Gent-

Gent model was proposed to remedy this deficiency. In this paper we provide further

evidence on the good performance of the Gent-Gent model by using it to study the

inflation of a circular plane membrane. For this problem, the deformation near the pole

is equibiaxial and the associated nominal tension is a monotonic function of the stretch,

but the pressure as a function of the stretch has both a maximum and a minimum.

The Gent and Gent-Gent models are first fitted to our own experimental data for the

nominal tension, and then used to predict variation of the pressure with respect to the

stretch. By comparison with the experimental data, it is shown that the Gent-Gent

model gives much better predictions than the Gent model.

keywords: Nonlinear elasticity, constitutive model, bulging, Gent model, Membrane

1 Introduction

Rubber-like material is a type of organic macromolecular polymeric material. Its complex

molecular structure and ability to sustain large deformation requires a sophisticated nonlin-

ear theory to characterize its mechanical properties. We refer to [2, 22] for a comprehensive

review of the many constitutive models that have been proposed in the literature. Since

all the constitutive models are necessarily approximate in nature, an important question

∗Corresponding author at: shbwang@tju.edu.cn
†Corresponding author at: y.fu@keele.ac.uk
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to ask is how a material model will perform in more complex boundary value problems

when the unknown parameters are fitted to experimental data from simple boundary value

problems. The question is particularly pertinent if the material model is expected to give

accurate quantitative predictions. However, there now exists an abundant literature in which

approximate nonlinear constitutive models are unrealistically expected to give predictions

that agree well with experimental results. In view of the increased use and adaption of the

classical material models in the description of non-classical effects (e.g. those associated

with electric and magnetic fields) [13, 14, 21, 25, 27], a more thorough examination of the

performance of the classical models seems to be warranted.

Our current study focuses on the Gent material model that was proposed by Gent [5, 6]

to model the rapid stiffening behaviour of rubber materials at large values of stretch, which

is associated with the finite extensibility of the polymeric chains comprising the elastomer

network. It has two parameters. One is related to the ground-state shear modulus, and

the other one is a constant accounting for the extension limit. It is known that when the

Gent model is fitted to experimental data of uniaxial tension, the fitting is usually good

for small and large strains, but unsatisfactory for moderate values of strains. The reason

for this characteristic was recognized by Pucci and Saccomandi [19] to be due to the fact

that the Gent model predicts a Mooney plot that is flat in the large strain regime, but

the corresponding experimental data usually exhibit an upturn. To describe this upturn,

Pucci and Saccomandi [19] proposed a simple modification of the Gent model, which is

now known as the Gent-Gent model. The superiority of this improved model has been

discussed in [16, 18, 19]. The aim of this paper is to provide further evidence by revisiting

the classical problem of the inflation of a circular plane membrane. We pose and answer

the following question: if the material parameters are fitted to the experimental data for

the nominal tension, how accurately will each model predict the variation of the inflation

pressure as a function of the stretch? This is a non-trivial question because the pressure is

not monotonic as pointed out in the Abstract, and good fitting to a monotonic tension curve

does not necessarily imply good fitting to a non-monotonic pressure curve. This question is

important when, for instance, we wish to accurately predict the initiation pressure at which

localized bulging takes place in an inflated rubber tube [3, 4].

The boundary value problem associated with the inflation problem of a plane circular

membrane was first formulated by Adkins and Rivlin [1] in 1952 and solved in a most elegant

manner by a combination of Taylor expansion and scaling argument. Their formulation is

valid for a general strain-energy function although their numerical calculations were con-

ducted for the neo-Hookean and Mooney-Rivlin materials. Subsequent studies by Klingbeil

and Shield [11] and Hart-Smith and Crisp [9] considered other material models in order

to achieve better agreement with the experimental data of Treloar [23, 24]. Schmidt [21]
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carried out biaxial stretching of heat-softened plastic sheets, and multiple configurations

were measured and analyzed. By comparing experimental data with those from the nu-

merical solution, agreement over all configurations was about ±89.2 percent for the best

models considered. Yang [28] showed that the governing equations can be rewritten as a

system of three first order ordinary differential equations, which has since been followed

by all subsequent investigations of inflation of plane, spherical, and ellipsoidal membranes

[4, 20]. More recently, the inflation problem has been studied under the additional effect of

electric actuation [7, 8, 10, 25] motivated by increased use of inflated dielectric membranes

in actuators.

Experiments on the inflation of a circular membrane were first conducted by Treloar

[23, 24] who obtained the strain distribution and membrane shape at different stages of the

inflation process. He also recognized the fact that in a sufficiently small neighbourhood of

the pole, the deformation can be taken to be equibiaxial, and over a larger neighbourhood

of the pole the inflated membrane can be viewed to be spherical. This set of experimental

data is frequently used to calibrate material parameters in newly proposed material models.

In this paper, we conduct our own experiments, and quantify the above facts observed by

Treloar more precisely with the use of much better computing tools that now exist.

The rest of this paper is organized as follows. In the next section we summarize the

governing equations and explain the procedure for determining the deformed configuration.

In Sections 3 and 4 we present our experimental results, discuss the fitting of the Gent and

Gent-Gent material models to the experimental data, and compare the theoretical predictions

for the inflation pressure with experimental results. In our experiments, we also make use

of assumptions that the deformation in a sufficiently small neighbourhood of the pole is

homogeneous and equibiaxial, and that deformed membrane in a larger neighbourhood of

the pole is spherical. These two assumptions are validated in Section 5. In the final section,

we summarize our main results and conclude the paper with some additional remarks.

2 Problem formulation and determination of the bulging

solution

We consider the inflation of a circular membrane that initially has thickness H and radius

L. This can be realized, for instance, by mounting the membrane on a cylindrical tube

which contains compressed air. Since the profiles of the circular membrane before and after

inflation are both axisymmetric, cylindrical polar coordinates (R,Z) and (r, z) are used to

describe the position of material particles in the undeformed and deformed configurations,
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respectively; see Fig.1. We assume that the undeformed configuration is described by

0 ≤ R ≤ L, Z = 0,

and the deformation is given by

r = r(R), z = z(R). (2.1)

We also introduce function θ(R) that denotes the angle between the tangent line and the

vertical line at particle R of the membrane; see Fig.1. This problem can be viewed a special

case of the inflation of a full or truncated ellipsoidal membrane [4, 20, 26].

Figure 1: The undeformed (left) and deformed (right) configurations

The principal directions of stretch correspond to the directions of the latitude, the merid-

ian and the normal to the deformed membrane. The associated principal stretches are given

by

λ1 =
r

R
, λ2 =

√
r′2 + z′2, λ3 =

h

H
, (2.2)

where h is the deformed thicknesses and a prime denotes differentiation with respect to R.

The material is assumed to be incompressible so that λ1λ2λ3 = 1.

The total energy consists of the strain energy and the potential energy of the pressure

P , and is given by

E =

∫ L

0

W (λ1, λ2)2πRHdR− P
∫ L

0

πr2z′dR, (2.3)

where W (λ1, λ2) denotes the strain energy per unit volume in the undeformed configuration

after λ3 has been eliminated with the use of the relation λ3 = 1/(λ1λ2).

The equilibrium equations can most conveniently be obtained by setting the first variation

of E to zero, and are given by

r(hσ2)′ + hr′(σ2 − σ1) = 0, (2.4)
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z′σ1

rλ2

+
σ2(r′z′′ − r′′z′)

λ3
2

=
λ1λ2P

H
, (2.5)

where σ1 and σ2 are the principal Cauchy stresses given by σ1 = λ1∂W/∂λ1, σ2 = λ2∂W/∂λ2.

Equations (2.4) and (2.5) are equivalent to the equations (3.6) in Adkins and Rivlin [1] which

are written in terms of the principal curvatures κ1 = cos θ/r, κ2 = −θ′/λ2 = (r′z′′−r′′z′)/λ3
2.

With the use of the geometrical relations r′ = λ2 sin θ, z′ = λ2 cos θ, it is easy to show

[28] that the two equilibrium equations (2.4) and (2.5) can be rewritten as the following

system of first-order ordinary differential equations:

dλ1

dR
=
λ2 sin θ − λ1

R
, (2.6)

dλ2

dR
=
W1 − λ2W12

RW22

sin θ − W2 − λ1W12

RW22

, (2.7)

dθ

dR
=

W1

RW2

cos θ − Pλ1λ2

HW2

, (2.8)

dz

dR
= λ2 cos θ, (2.9)

where W1 = ∂W/∂λ1, W12 = ∂W 2/∂λ1∂λ2 etc. We note that (2.9) is only needed if the

variation of z is required.

We non-dimensionalize our problem by making the substitutions

(r, z, R)→ L(r, z, R), (W,σ1, σ2)→ µ(W,σ1, σ2), P → µH

L
P, (2.10)

where µ denotes the ground-state shear modulus. Under this substitution, the edge of the

membrane corresponds to R = 1.

At the pole of the deformed membrane, namely R = 0, the axial symmetry requires that

λ1(0) = λ2(0), θ(0) =
π

2
, (2.11)

and

λ′1(0) = λ′2(0) = θ′′(0) = 0. (2.12)

At the edge of the balloon, namely R = 1, the fixed boundary implies that

λ1(1) = 1. (2.13)

The numerical solution of inflation is obtained by integrating the equations (2.6)–(2.9) sub-

ject to appropriate boundary conditions. We note that there exists a removable singularity

at the pole R = 0. We therefore integrate from R = δ to R = 1 instead, where δ is a

sufficiently small constant. We then need to obtain sufficiently accurate estimate for the

values of λ1, λ2 and θ at R = δ.
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On differentiating Eqs.(2.6)–(2.7) with respect to R and evaluating at R = 0, we can

obtain two equations for λ′′1 and λ′′2, the solutions of which are given by

λ′′1(0) =
3λ1W11 − λ1W12 +W1

8W11

(−θ′2), (2.14)

λ′′2(0) =
λ1W11 − 3λ1W12 + 3W1

8W11

(−θ′2), (2.15)

where the right hand sides are evaluated at R = 0. The θ′(0) in the above expressions can

be determined by evaluating (2.8) at R = 0 and is given by

θ′(0) = − Pλ2
1

2HW2

, (2.16)

where again the right hand side is evaluated at R = 0. The expressions (2.14)-(2.16) can

also be deduced from equations (7.15) and (7.16) in Adkins and Rivlin [1].

We may then write

λ1(δ) = λ1(0) +
1

2
λ′′1(0)δ2 +O(δ4), (2.17)

λ2(δ) = λ2(0) +
1

2
λ′′2(0)δ2 +O(δ4), (2.18)

θ(δ) =
π

2
+ θ′(0)δ2 +O(δ3). (2.19)

Thus, the initial values λ1(δ), λ2(δ) and θ(δ) are expressed in terms of the single unknown

parameter λ1(0) (note that λ2(0) = λ1(0)). Following Adkins and Rivlin [1], we solve the

above boundary value problem using the following procedure: (1) Set λ1(0) at any desired

value, and make a guess for the pressure P ; (2) The system of equations (2.6)–(2.8) are

integrated from R = δ until R = R0 say, where λ1(R0) = 1; (3) The correct value of P is

then the above guessed value multiplied by R0 because the system of equations (2.6)–(2.8)

is invariant with respect to the substitutions (R,P ) → (R/R0, R0P ).

3 Experiment

In presenting our experimental results in this section, we suspend our non-dimensionalization

(2.10). A single large latex rubber membrane sheet with thickness 0.35 mm was purchased

from a commercial company. All the test sheets are cut out from this single membrane, and

the test area of each rubber membrane has a radius of 45 mm. The testing equipment is

made up of three parts: (1) the inflation chamber (Fig.2) onto which the membrane was

fixed and inflated into a bubble-like configuration, (2) the air pump that provided external

pressure and permitted monitoring of the air velocity in real time, (3) measuring equipment

and recording apparatus, including a multichannel recorder and a high speed camera which
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provided synchronized recording of the inflation pressure and bubble profile during bulging.

We follow the standard protocol for experiments on rubber. In particular, our experiments

were carried out at a room temperature of 23±2 ◦C, and to minimize Mullins effect, the

specimens were pre-inflated a number of times to the maximum stretch level reached in our

actual experiments. It was observed that after each pre-inflation had been completed, there

was some noticeable residual deformation and the membrane did not return to its plane form.

The thickness at the centre reduced to 0.34 mm, and there was a slight permanent bulging

out. We thought that pre-stretching the plane membrane along two perpendicular directions

in turn could reduce this permanent bulging out, but it turned out that pre-stretching made

little difference. Therefore, the subsequent inflation experiment did not start from a plane

circular plane exactly, as our theory part assumes. This is the major source of our error.

However, in our non-dimensionalisation, we do take the membrane thickness to be 0.34 mm,

rather than the original thickness before pre-inflation. Each inflation is completed in about

4 minutes.

In order to measure the stretch at the pole, before each experiment we mark the centre

of the circular membrane and two points on a straight line through the centre which are

both 4 mm from the center. The deformation in this small circular area of radius 4 mm is

assumed to be homogeneous and equibiaxial. The three points in the inflated configuration

are assumed to lie on a circle. Their coordinates are measured to 0.01mm, and used to

compute the arc length and hence the stretch of the line segment. The accuracy of this

approach to determine the stretch at the pole is assessed a posteriori in the penultimate

section.

Besides the stretch, the internal pressure and the curvature at the pole are also recorded/measured.

The radius of curvature could be determined from the three points described above, but for

higher resolution it is better determined using two other points on a larger circle with radius

9 mm. It is known that a larger neighbourhood of the pole can be assumed to be spherical

than the neighbourhood where the deformation can be assumed to be homogeneous [23, 24].

The accuracy of this approach will also be quantified in the penultimate section.

Thus, the raw data obtained from the experiments include the coordinates of five marked

points and the air pressure. The nominal stress texp is then determined from the following

expression that is derived based on force balance in the polar area:

texp =
λ2(0)P

2Hκ1(0)
, (3.1)

where κ1(0) is the curvature at the pole.

Fig. 3 shows the curvature determined by the method described above or by assuming

the entire membrane to be spherical. In the latter method, the height of the (approximately)

spherical balloon is measured and used to determine the curvature. As expected, the two

9
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Figure 2: Experimental device for inflating a plane membrane.

sets of results are close for small values of stretch, but they differ more and more in the large

stretch regime. When the stretch ratio is less than about 3.5, its relative error is less than

3%, but as the stretch ratio exceeds 3.5 the membrane should no longer be viewed as being

spherical.
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Figure 3: (a) Variation of curvature with respect to the stretch at the pole in the experiment, determined

by the method described in the text (black line) or by assuming the entire configuration to be spherical (red

line). (b) The relative error between the two different approaches.

Valid results are obtained for five circular membrane samples. Fig.4(a,b) shows that the

whole experimental observation process is quite consistent. It is seen in Fig.4.(b) that the

pressure curves exhibit the same N−shape as for most spherical balloons and cylindrical

rubber tubes.

With the use of the above experimental data, the unknown parameters in any material

model can be determined by the method of nonlinear least squares. In this work we consider
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Figure 4: Five sets of experimental results for (a) the nominal stress at the pole as a function of the stretch

at the pole, and (b) the pressure as a function of the stretch at the pole.

the Gent model [5, 6] and the Gent-Gent model (referred to as the GG model from now

on) [18, 19] for the strain energy density function. We fit each model to all five sets of

experimental data, and average the fitted parameter values to obtain the final result.

The Gent model has the form

W = −µ
2
Jm ln(1− I1 − 3

Jm
), (3.2)

where I1 = λ2
1 + λ2

2 + λ2
3, µ denotes the ground-state shear modulus, and Jm a material

constant characterizing the extension limit.

For equibiaxial extension, we have λ1 = λ2 = λ, λ3 = λ−2, and the nominal stress tfit is

given by

tfit =
σ1

λ1

= − µJm(λ6 − 1)

2λ7 − (Jm + 3)λ5 + λ
. (3.3)

We denote the set of measured stretches by {λ(1), λ(2), · · · , λ(m)}, and the associated nomi-

nal stresses computed using (3.1) and (3.3) by {t(1)
exp, t

(2)
exp, · · · , t(m)

exp} and {t(1)
fit , t

(2)
fit , · · · , t

(m)
fit },

respectively, where m is the number of experimental data. The material parameters µ and

Jm are then determined by minimizing the error

S =
m∑

i=1

(t(i)exp − t(i)fit )2. (3.4)

The averaged parameter values thus determined are given by

µ = 0.3200, Jm = 94.87, S = 0.1717,
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Figure 5: Fitting of the Gent model to experimental data of equibiaxial tension. (a) Variation of the nominal

stress with respect to stretch. (b) Relative error of fitting.

and the fitting results for a typical set of experimental data are displayed in Fig.5.

The GG model has the form

W = −µ0

2
Jm ln(1− I1 − 3

Jm
) + C2 ln

I2

3
, (3.5)

where I2 = λ−2
1 + λ−2

2 + λ−2
3 , and µ0, Jm and C2 are material parameters. The ground-state

shear modulus µ is given by µ = µ0 + 2C2/3.

The material parameters are fitted to the experimental data in a similar manner with

the use of (3.1) and the following expression for the nominal stress:

tfit =
σ1

λ1

= − µ0Jm(λ6 − 1)

2λ7 − (Jm + 3)λ5 + λ
+ 2C2

λ6 − 1

λ7 + 2λ
. (3.6)

Table 1: The fitting result by the GG model

GG model µ0 Jm C2 S

Data 1 0.2672 87.08 0.1967 0.04422

Data 2 0.2755 87.01 0.1904 0.04370

Data 3 0.3026 90.40 0.1892 0.03702

Data 4 0.2910 89.37 0.1695 0.03660

Data 5 0.2903 88.29 0.2032 0.02260

Averaged 0.2853 88.43 0.1898 0.03683

The fitted parameters associated with the five sets of experimental data together with

their averaged values are given in Table 1, and the fitting results for a typical set of exper-

imental data are displayed in Fig.6. The fitting results corresponding to the Gent model
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Figure 6: Fitting of the GG model to experimental data of equibiaxial tension. (a) Variation of the nominal

stress with respect to stretch. (b) Relative error of fitting.

and the GG model are both seemingly acceptable. However, when the Gent model is used

there are noticeable discrepancies in the moderate stretch regime between the fitting curve

and experimental data. The maximum error reaches 23% even if the first five data are disre-

garded. In comparison, the fitting result corresponding to the GG model is much better: it

can be seen in Fig.6(b) that the relative errors are below 7% when the first five data points

are ignored. We also note that the S value corresponding to the GG model is much smaller

than that for the Gent model. Thus we conclude that the fitting curve by the GG model is

in better agreement with the experimental data.

4 Comparison of theoretical predictions with experi-

mental results for the pressure

In this section, we use the material models determined in the previous section to compute

the pressure variation, and compare the results with the experimental data.

Fig.7 displays the predictions by the Gent and GG models, with the pressure maximum

and minimum listed in Table 2. There is obvious difference between the predictions of the

two models. To determine which prediction is better, in Fig.8 we compare the individual

predictions with the associated experimental results. The pressure determined from experi-

ments has been scaled by µH/L (see (2.10)), which takes different values for the two models

used (since µ takes different values). It is seen that the GG model describes the experimen-

tal results much better than the Gent model, especially so near the pressure maximum. To

highlight the good agreement between the predictions of the GG model and the experimental
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data, we have listed in Table 3 all the five sets of pressure maximum and minimum from

experiments together with the theoretical predictions.
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Figure 7: Theoretical predictions for the scaled pressure as a function of the stretch at the pole.

Table 2: Comparison of pressure maximum and minimum

Models λ (At the peak) P (At the peak) λ (At the trough) P (At the trough)

Gent model 2.474 1.976 4.290 1.903

GG model 1.917 1.888 4.848 1.502
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Figure 8: Comparison of experimental results with numerical results for the scaled pressure. (a) Gent model;

(b) GG model. In each case, the numerical results are obtained by integrating the system of equations (2.6)–

(2.8) using the appropriate strain energy function.

Table 3: Pressure maximum and minimum and the associated values of stretch

Category λ (At the peak) P (At the peak) λ (At the trough) P (At the trough)

Numerical calculation 1.917 1.888 4.848 1.502

Experimental data 1 1.960 1.796 4.558 1.430

Experimental data 2 1.944 1.813 4.582 1.469

Experimental data 3 1.960 1.883 4.704 1.485

Experimental data 4 1.993 1.826 4.633 1.488

Experimental data 5 1.919 1.841 4.554 1.478

We next consider the sensitivity of the theoretical predictions to the variations of the

material parameters in the GG model. We vary each material parameter above or below

its original value by 10% and study the effect of each change on the pressure/stretch and

stress/stretch curves.

We define a relative error ξ through

ξ =
tc/µc − to/µo

to/µo

,

where to and tc denote the nominal stress based on the original values and changed values of

material parameters, respectively, and µo and µc are the original and changed shear moduli,

respectively.
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Figure 9: (a) Variation of the nominal stress with respect to the stretch when µ0 is increased or reduced by

10% from its original fitted value. (b) The relative error.
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Figure 10: Variation of pressure with respect to the stretch when µ0 is increased or reduced by 10% from its

original fitted value.

The results corresponding to changes in µ0 are shown in Figs 9 and 10. It can be seen that

the greatest effects on the nominal stress and pressure are in the small-strain and large-strain

regimes, respectively.

Figs 11 and 12 display the effects due to changes in Jm. It is seen that for both the

nominal stress and pressure, the greatest effects are in the large strain regime, and the larger

the stretch, the greater the effects. This is not surprising since Jm characterizes the rapidly

stiffening behavior of the rubber material.
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Figure 11: (a) Variation of the nominal stress with respect to the stretch when Jm is increased or reduced

by 10% from its original fitted value. (b) The relative error.
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Figure 12: Variation of pressure with respect to the stretch when Jm is increased or reduced by 10% from

its original fitted value.

Finally, the effects due to changes in C2 are shown in Figs 13 and 14. It is seen that

the effects on the nominal stress are confined to the regime of small and moderate strains,

and the effects on the pressure are confined to the regime of large strains. This is consistent

with the known fact that adding the term involving C2 improves data fitting in the regime

of small and moderate strains.
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Figure 13: (a) Variation of the nominal stress with respect to the stretch when C2 is increased or reduced

by 10% from its original fitted value. (b) The relative error.

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

 

 

Sc
al

ed
 p

re
ss

ur
e 

P

Stretch at the pole

 Initial parameter
 C2increased by 10%
 C2decreased by 10%

Figure 14: Variation of pressure with respect to the stretch when C2 is increased or reduced by 10% from

its original fitted value.

5 Estimate of the accuracy of the assumptions made

In this section, we provide a posteriori justification of our experimental method. We first

quantify the error associated with the assumption that the deformation is equibiaxial in a

small neighbourhood of the pole.

Fig.15(a) shows the variation of λ1 and λ2 with respect to R corresponding to the four

indicated values of λ1(0). It is seen that whereas λ1 always decreases monotonically to its final

value of 1 at the edge, the λ2 may have a non-monotonic behaviour. This can be understood
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Figure 15: (a) Variation of λ1 and λ2 with respect to R with λ1(0) = 5.75, 5.97, 6.20, 6.34, respectively. (b)

Variation of λ′′1(0) and λ′′2(0) with respect λ1(0).

by an inspection of the signs of λ′′1(0) and λ′′2(0), the variation of which with respect to λ1(0)

is displayed in Fig.15(b). Whether λ2 will increase or decrease in a neighbourhood starting

from R = 0 is determined by whether λ′′2(0) is positive or negative [1]. Thus, we see that λ2

will increase for small or large values of λ1(0), but will decrease for intermediate values of

λ1(0).

In our experiment, a circle with non-dimensionalized diameter 2Rs is marked with the

pole as its center. If the arc length of the deformed diameter is 2s, then we have

λ̄(Rs) ≡
s

Rs

=
1

Rs

∫ s

0

ds =
1

Rs

∫ Rs

0

λ2dR, (5.1)

where the first equation defines λ̄(Rs). The relative error when (5.1) is used to approximate

the stretch at R = 0 is then given by 1 − λ̄(Rs)/λ1(0). Fig.16 shows how for some typical

values of Rs the relative error varies with respect to the stretch at the pole (i.e. λ1(0)). It

is seen that the maximum error occurs for intermediate values of the stretch at the pole.

In our experiment, Rs is taken to be Rs = 4/45 = 0.089. The maximum error incurred is

around 0.4%. To keep the relative error to be below 1% or 5%, the Rs needs to be less than

0.14 or 0.31, respectively.

We next assess the relative error associated with the estimation of the curvature that is

used in (3.1) to compute the nominal stress. The two principal curvatures at R = 0 are both

equal to −θ′(0)/λ2(0) with θ′(0) given by (2.16). Thus, we have

κ1(0) = κ2(0) =
Pλ1(0)

2HW2

. (5.2)

For each specified pressure P , the deformation can be obtained as illustrated in Section 3,

and the associated value of λ1(0), and hence κ1(0) can be determined. However, in our
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Figure 16: Dependence of relative error on λ1(0) for a selection of values of Rs.

experiments, this curvature value is approximated by the inverse of the radius of the circle

going through the three points corresponding to R = 0,±Rc, where Rc is larger than the

radius of the circle used to compute the stretch, and is taken to be 0.2 in our experiments.

To assess the accuracy, we now take the coordinates of the three points to be given by our

numerical solution and compute the approximate curvature. This approximate value is then

compared with the exact value given by (5.2). The relative error as a function of the stretch

at the pole for a selection of values of Rc is displayed in Fig.17. It is seen that the largest

errors are associated with the largest stretch, and when Rc = 0.2 the relative error less than

1.7%. To keep the relative error to be below 1% or 5%, the Rc needs to be less than 0.16 or

0.35, respectively.

6 Conclusion

The inflation of a plane membrane is a classical problem, but as soft materials are increasingly

used in high-tech applications, this problem is beginning to feature in a variety of situations

under additional fields. For instance, dieletric membranes are increasingly used in various

forms of actuators. Since many such actuators may operate on the verge of instability

(pressure maximum) to maximize the actuated deformation [10], it is vitally important

that the material models employed should be capable of predicting the maximum pressure

accurately. In this paper, we have focussed on the purely mechanical case and shown that

the Gent-Gent model is superior to the original Gent model in predicting the maximum and

minimum pressure in the inflation of a plane membrane. We conducted our own experiments

and recorded the variation of the tension at the pole and the inflation pressure with respect
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Figure 17: Dependence of relative error on λ1(0) for a selection of values of Rc.

to the stretch at the pole. The stretch at the pole is measured by following the deformation

of a small circular area with the pole as its centre, and the curvature at the pole is estimated

by making use of a larger circular area, as suggested by Treloar [24]. The errors incurred in

the estimation of both quantities are estimated. It is shown that to keep the relative error

below 1% the radii of the two circles should be less than 0.14 and 0.16 times the membrane

radius, respectively, and to keep the relative error below 5% the radii of the two circles

should be less than 0.31 and 0.35 times the membrane radius, respectively.

We remark that although we have focused on the Gent and Gent-Gent material models

because of their simplicity (for instance, they are amenable to explicit analytic solutions for

some basic problems of rubber elasticity involving nonhomogeneous deformations [12]), the

methodology explained in the present paper can also be used to study other material models.

In particular, we have also studied the performance of the Ogden model [17] although the

associated results are not presented for the sake of brevity. We have found that it performs

as well as the Gent-Gent model despite the fact that an infinite number of solutions can be

obtained for the material constants from data fitting by using different tolerance levels or

initial guesses in the method of nonlinear least squares [18].
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