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Abstract

The thesis deals with 1D and 2D scalar equations governing dynamic behaviour

of strongly inhomogeneous layered structures. Harmonic vibrations of a composite rod

and antiplane shear motions of a cylindrical body consisting of several components are

studied paying particular attention to the lowest frequencies. The main focus is on a

strong contrast between the parameters characterising structure components, including

their sizes, material stiffness, and densities.

We start with a multi-parametric analysis of the near-rigid body motions of rods

and cylindrical bodies with piecewise uniform properties. The listed problems allow

exact analytical solutions demonstrating that the values of all lowest eigenfrequencies

tend to zero at large/small ratios of material and geometric parameters. The low-

frequency behaviour is considered for so-called global and local regimes, and simple

explicit conditions on the problem parameters, underlying each of the regimes, are

derived.

Further, we present a perturbation procedure for a more general setup based on

the evaluation of the almost rigid body motions of �stronger� components assuming a

high contrast of material parameters. The proposed approach is extended to structures

of arbitrary shape, with variable material parameters, as well as to multi-component

structures. We obtain asymptotic formulae for the lowest natural frequencies and also

present illustrative examples for each of the studied problems. Many of asymptotic

estimations are compared with exact solutions. The results of the thesis are applicable

to a mathematical justification of shear deformation theories for multi-layered plates

and shells with a strong transverse inhomogeneity.
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1 Introduction

Composite elastic structures have many applications within the industry since

long ago. For example, both commercial and military aircraft, aerospace, automotive,

and civil engineering use a large amount of multi-layered structures, e.g. see Milton

(2002), Berthelot (2012), and references therein. In addition, geomechanics and biome-

chanics adapt composite material technology, see Ramakrishna et al (2001), Salernitano

and Migliaresi (2003), and Borja (2011).

In recent years, new applications associated with the development of multi-layered

structures with high contrast in the geometrical and mechanical properties appear

and revive interest to the subject. Various structural components may have contrast

material and geometric characteristics, including stiffness, volume density, and size. As

a typical example, sandwich plates can be mentioned. Sandwich structures are widely

used in civil and mechanical engineering and are therefore intensively studied, see for

instance Vinson (1999).

Another area that promises to increase significantly the number of potential ap-

plications is related to the fast developing field of metamaterials. The unique properties

of metamaterials are often originated from the combined performance of periodically ar-

ranged phases having extremely high contrast, see e.g. Perrins and McPhedran (2010),

Helsing et al (2011), and Martin et al (2012). In particular, acoustic metamaterials are

associated with the wave motion problems. These local resonators demonstrate a spe-

cific macroscopic behaviour such as a negative density. Among possible applications of

acoustic metamaterials are non-invasive probing, high-resolution tomography in medi-

cal imaging, acoustic camouflaging and seismic protection, see for example Craster and

Guenneau (2012), Titovich (2015).

Therefore, mechanical vibrations of multi-layered elastic structures composed of

parts with high-contrast material and geometrical characteristics is an important scien-

tific problem having multiple innovative industrial applications. It is well known that

high-frequency vibrations are very desirable in a view of their high energy content.
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However, low-frequency mechanical vibrations arise naturally in a variety of environ-

ments, such as body movements (footsteps or heartbeat), wind, thermal generated

vibrations, or air flow. Thus, due to their omnipresent character, low-frequency modes

are of much greater interest for investigation. Broad general studies of low-frequency

dynamics of composite structures can be found in Graff (1975), Le (2012), and Wang

and Wang (2013).

The present thesis deals with low-frequency vibrations of elastic structures com-

posed of parts with contrast properties. The analysis is performed for free vibrations of

elastic multi-component rods and antiplane shear motions of elastic multi-component

cylindrical bodies. It is worth noting that 2D equations describing antiplane shear mo-

tions of cylinders with fixed boundaries are identical to those for membranes. A large

amount of numerical approaches for solving this type of problems exist, see Zhang

and Yang (2009), Sayyad and Ghugal (2015), and references therein. However, we use

asymptotic methods, rather than numerical solutions. The use of asymptotic methods

provides a better understanding of the connection between the lowest eigenfrequencies

of a structure and the contrast in parameters of its components. The analysis presented

in this work based on asymptotic approach mainly involves perturbations in a small

parameter, e.g. see Nayfeh (2011), Simmonds and Mann (2013), and Kevorkian and

Cole (2013), taking into consideration a multi-parametric nature of the problem.

The main motivation of this study is to deduce the conditions on the structure

parameters supporting the low-frequency regime. We aim to show a clear link between

the contrast in parameters of composite structures and the lowest eigenfrequencies.

We deduce that under certain restrictions on material and geometrical parameters the

lowest natural frequencies become small tending to zero at the limit of large/small

contrasts. The basic problem parameters include the ratios of elastic moduli, densities,

and typical linear sizes of the components.

Two possible types of low-frequency motions are subject to a multi-parametric

analysis. The so-called global low-frequency regime assumes the quasi-static behaviour

of both stiffer and softer structure components. Another type, namely local low-

frequency regime, describes the quasi-static profile of stiffer components and does not
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prevent oscillating behaviour of softer parts. The studied local low-frequency behaviour

is similar to process of homogenization of contrast periodic media. In each case ex-

plicit asymptotic formulae for the lowest eigenfrequencies as well as the associated

displacement profiles are presented. Where it is possible the accuracy of the estab-

lished approximations is tested by comparison with exact solutions. The developed

methodology is not restricted to 1D and 2D problems considered in the thesis. It has

a potential to be extended to the framework of 3D elasticity. In particular, the lowest

cut-off frequencies of sandwich plates and shells could be analysed with help of the

obtained results.

1.1 Industrial applications

Composite rods, membranes, and sandwich plates find numerous applications in

various constructions under dynamics loading. As an example, a mathematical model

of a human body experiencing oscillatory motion can be considered as a 1D system

of multi-component rods whose material properties similar to the properties of the

body, see Yermolayev (1992). Another possible application is related to the analysis

of chain segment lengths of molecular systems. Polymers have a low eigenfrequency

proportional to a chain length. Thus, investigation of longitudinal acoustic modes in a

long chain polymer considered as a composite rod with perturbing forces at the ends

helps to deduce lengths of molecular segments, see Hsu and Krimm (1976), Hsu et al

(1977).

The propagation of longitudinal waves in smart periodic structures is another

possible field of research. A rod with shunted piezoelectric patches, periodically placed

to control the longitudinal wave propagation, is considered in Thorp et al (2001). The

described periodic structure allows filtering the propagation of waves over predeter-

mined frequency bands. The shunting capabilities of piezoelectric materials provide

high control flexibility in attenuation and localization of propagating waves. Another

structure that is capable to control wave transmission is a rod composed of shape
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memory alloy parts periodically inserted in a matrix material. By controlling Young’s

modulus of the shape memory alloy parts it is possible to prevent the wave propagation

along the rods, see Ruzzene and Baz (2000).

Next, let us mention a rapidly growing area of energy harvesting. It aims to gen-

erate small amounts of electrical energy from mechanical vibrations appearing in most

environments. Thus, self-sustaining micro- and nano-devices can use power harvested

from mechanical vibrations. To maximize the harvested energy the resonant frequen-

cies of the energy harvesting device should match ambient vibration frequencies, see

Song et al (2006).

Textile fabric devices have been proposed for a very low-frequency (< 10 Hz)

energy harvesting. In particular, low-frequency mechanical vibrations of textile fibers

can be harvested through friction and are used in energy scavenging fabric devices, see

Qin et al (2008), Nobili et al (2010). The problem can be described as free vibrations

of a two-component string with high-contrast material parameters subject to a variety

boundary conditions, see Kudaibergenov et al (2016).

Along with fibers, a membrane based energy harvesters are widely implemented,

Dong et al (2015). For example, a circular membrane with low resonant frequencies

was designed and analysed for implementation in polymer micro-structures with small

size energy harvesters in Rezaeisaray et al (2014). Wang et al (2012) presented a

piezoelectric circular membrane array for energy harvesting. Additionally, a theoretical

model of a piezoelectric circular membrane under pressure fluctuations was considered

to predict levels of harvested energy, see Mo et al (2014).

It is worth mentioning that membranes play an important role as basic elements

in microelectronics, especially for acoustic microelectromechanical systems. Moreover,

due to their numerous applications (musical instruments, condenser microphones, hear-

ing aids, etc.) circular membranes are very widely used in comparison with other types

of membranes. Among different applications in this field, we mention resonant systems,

which are employed for navigation of drones, autonomous system, or bio-mimetic de-

velopments based on animal instincts. It is shown that the navigation principle using

sound sources in complex environments can be applied to designing autonomous micro-
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flying objects, see Alsahlani and Mukherjee (2013). Natural frequencies of acoustic

resonant sensors can be set by controlling membrane parameters enabling good sensi-

tivity and selectivity without employing any passive and electronic filters, making such

systems ideal for bio-mimetic applications, see Sosa et al (2001), Ruffier et al (2011).

Membrane based resonators are also exploited in accelerometric and gyroscopic sensors.

Recent studies show that by incorporating nanometer-thin freestanding membranes it

is possible to obtain resonators that are capable to measure pressure or small forces

and masses with extremely high sensitivity, e.g. see Lee et al (2013), Schlicke et al

(2016).

There are also various applications of composite membranes in the aerospace in-

dustry. Deployable multi-layered membrane structures are used in spacecraft systems,

such as solar panels, antennas of satellites, or deployable roofs. Deployable spacecraft

systems can vary from extremely lightweight, such as solar sails, to relatively thick

rigid panels such as solar arrays of communications satellites, see Papa and Pellegrino

(2008), Lee and Pellegrino (2014). In addition, deploying multi-layered membrane mir-

rors become a part of space-borne telescopes due to their lightness and quality optical

imaging capabilities. However, undesirable vibrations can decrease the performance of

membrane mirrors forcing to design a system of smart actuators to prevent vibrations,

see Baruh (2001), Adetona et al (2003), Renno (2008).

Other widely used composite structures are sandwich panels. They are typically

composed of two thin and stiff face sheets or skins separated by a thick lightweight

layer or core. Commonly used materials for the sandwich skins are composite or wood

laminates and metals, while polymeric expanded foams, metallic and non-metallic hon-

eycombs or balsa wood are frequently used for the core. Sandwich panels have many

advantages over conventional constructions, such as high strengths and stiffness, as

well as good weight saving, see Zenkert (1995).

Therefore, sandwich composites are widely employed in modern mechanical de-

sign, where weight must be kept to a minimum. They are used not only in aeronau-

tical and aerospace structures, where they have been initially implemented, see Baker

(2004), but also in high-speed marine craft and trains, and racing cars, see Arbaoui et
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al (2015). In Belingardi et al (2003) glass fiber composite-foam sandwich structures

are investigated for the front shield of a high speed train, in Zinno et al (2010) and

Kim and Chung (2007) properties of composite sandwich panels analysed in case of

large scale test on a train, while Torre and Kenny (2000) discuss composite structures

in application to train or buses body shells.

For more specific high-tech solutions, such as a solar aircraft, see Romeo et al

(2004), solar cars or satellite solar panels, ultra-light photovoltaic sandwich structures

are used. This is a new multifunctional lowest-cost structure concept that enables

weight and thus energy to be saved, see Mines et al (1998), Rion (2008), and Beral

(2007). Photovoltaic panels demonstrate high contrast in their material properties. In

this case, the shear moduli ratio of a glass skin and a polymeric core with encapsulated

solar cells varies from 10 ∼ 5 to 10 ∼ 2, depending on temperature and polymer type,

see Schulze et al (2012), Aßmus et al (2016, 2017).

Other structures characterised by high contrast of material and geometrical prop-

erties of the layers are laminated glass beams and plates. The laminated glass used

in automotive and civil engineering is usually composed of three layers, including two

stiff relatively thick facings and a soft, thin polymeric core. This results in contrasts

of core and skin layer thickness and stiffness, see Aşık and Tezcan (2005), Kaplunov et

al (2017c).

Usually, sandwich structures are characterised by stiff facings. However, there

are also important examples of composites with a soft skin and a stiff inner layer.

An elastic sandwich plate with these characteristics is a good model for a precipitator

plate, which is an important part of gas filters collecting dust particles from passing

gas streams, see Tassicker (1972), Lee and Chang (1979).

1.2 Literature review

The present thesis is devoted to vibrations of elastic multi-component rods and

antiplane shear motions of elastic multi-component cylinders of circular and arbitrary
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cross sections focusing on the lowest frequencies. An asymptotic methodology is de-

veloped for analysing the lowest eigenvalues for 1D and 2D scalar equations governing

dynamic behaviour of layered elastic structures in case of strong contrast between the

parameters characterising each of the layers, including their sizes, material stiffness,

and densities. It is worth noting that the eigenfrequencies of a composite rod consid-

ered within 1D setup correspond to the lowest cut-off frequencies for a plate or a shell

within the framework of 3D elasticity. Thus, the current results can be also used for

the analysis of the so-called long-wave high-frequency vibrations in composite plates

and shells considered in the scope of 3D elasticity.

Mechanics of layered media is originated from studying the process of wave propa-

gation in an infinite two-layered elastic media. The governing equations of this problem

may be found in Ewing et al (1957). The numerical evaluation of the exact solution for

a two-layered half-space is given in Abramovici and Alterman (1965). The first analyt-

ical investigation of bending and buckling in a sandwich plate seems to be presented

by Reissner (1947). There the analysis relies on the assumption that the face-parallel

stresses in the core and the face stresses over the thickness of the plate are negligible.

The same analysis but in more general form with the derivation of the differential equa-

tions and boundary conditions for bending and buckling of a sandwich plate is carried

out by Hoff (1950). In Eringen (1951), the partial differential equations for bending

and buckling of a rectangular sandwich plate with an isotropic core and faces under

different loadings and edge conditions were obtained. Later, the propagation of waves

in elastic sandwich plates was investigated by Mindlin (1959) and Yu (1959). In Cheng

(1961), the Reissner problem was modified and the equations for a sandwich plate with

an orthotropic core were reduced to the bi-harmonic equation in the classical plate

theory. The most of the solutions in this area were obtained with help of numerical

computations, however, asymptotic results were also presented.

Numerous publications are dedicated to recent trends in dynamics of sandwich

plates, shells, and beams. The relationship between the solutions of the classical theo-

ries of beams and plates and those arising from various shear deformation theories are

studied in Wang et al (2000). Qatu (2004) textbook is devoted to linear free vibrations
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of thin and thick composite shells, plates, and curved beams. Approximate theories

and corresponding finite element models of laminated composite structures can be find

in Reddy (2004). Finally, a substantial review devoted to the computational treatment

of laminated composite and sandwich panels is presented in Kreja (2011).

Moreover, there is a large amount of studies devoted to vibrations of multi-

component rods. In Elishakoff (2004), a summary of results for closed form solutions

for vibrations and buckling of inhomogeneous rods, beams, columns, and plates, com-

posed of materials with high contrast mechanical and geometrical properties, is pre-

sented. One of the chapters is devoted to vibrations of inhomogeneous rods, especially

to the problem of construction of a rod that has the preselected fundamental and

second mode. An approach based on Green function is proposed for the analysis of

vibrations of a high-contrast two-component piecewise homogeneous string supported

on a Winkler elastic foundation in Nobili (2012). A low-frequency asymptotic analysis

of a viscoelastic inhomogeneous bar subject to end loads is applicable for modelling of

railway dynamics, see Kaplunov et al (2015). Another insight on vibrations of inho-

mogeneous strings, rods, and membranes with continuously varying properties can be

found in Horgan and Chan (1999). In this work closed-form exact solutions are derived

for some specific examples and lower bounds for vibration frequencies are obtained

through an integral-equation-based method.

A number of papers are specifically focused on dynamics of inhomogeneous mem-

branes. For example, composite membranes with discontinuous property changes are

analysed in Spence and Horgan (1983), Laura et al (1985), Cortinez and Laura (1992),

Laura et al (1997). In Spence and Horgan (1983), the natural frequencies of a cir-

cular membrane with stepped radial density are estimated with an integral equation

approach. Vibrations of a composite doubly connected membrane of regular polygonal

shape with an inner circular core are studied with a conformal mapping approach in

Laura et al (1985). In Cortinez and Laura (1992), the exact solution for the funda-

mental frequency of a two-layered rectangular membrane is compared with the results

obtained by the Kantorovich method and shown to be in a good agreement. An in-

tegral equation method is implemented in Laura et al (1997) to find upper and lower
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bounds for the eigenfrequencies of a circular membrane with a stepped radial density.

Although, mechanics of layered media being a field of thorough investigation for

a long time, nevertheless, only several works have a special focus on high contrast prob-

lems for strongly inhomogeneous multi-component structures. However, in many cases,

structural components may have contrast material and geometrical parameters, includ-

ing stiffness, volume density, and size. Thus, it is worth also mentioning a number of

recent asymptotic developments dealing with sandwich plates with high contrast in the

problem parameters. Simplified models for wave motions in an unbounded sandwich

plate with and without heavy fluid loading are compared with the results obtained

by the use of the exact theory in Sorokin (2004). These models can be used in naval

and aerospace engineering, as they accurately describe all propagating waves below

high-frequency range. In Lutianov and Rogerson (2010), the long wave motion in a

three-layered elastic plate under different boundary conditions is considered. The pa-

per contains dispersion relations and the results of the long-wave asymptotic analysis.

Chapman (2013) addresses finite product approximations for analysing wave propaga-

tion in a multi-layered plate. The approach results in a hierarchy of approximations to

the exact Rayleigh�Lamb dispersion relation. In Naumenko and Eremeyev (2014), a

generalized Timoshenko�Reissner type model is suggested for describing bending and

free vibrations of a thin beam and a thin plate composed of a transversally isotropic

linearly elastic material heterogeneous in the thickness direction. Structural analysis of

the glass and aforementioned photovoltaic laminates is described. The paper provides

a layer-wise theory that includes governing equations for individual layers, kinemati-

cal constraints, appropriate interaction forces, and results in a twelfth order system of

partial differential equations. In Altenbach et al (2015), first-order shear deformation

plate theory is applied to the analysis of laminates with thin and soft core layers. This

research is useful for calculating effective material properties of laminated glasses and

photovoltaic panels with high contrast in mechanical properties. Tovstik and Tovstik

(2017) emphasises that in case of a strongly heterogeneous material or for a composite

material with the large ratio between Young’s moduli of layers the Kirchhoff�Love and

Timoshenko�Reissner models are not effective.
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Another modern engineering application of vibrations in inhomogeneous elastic

structures is concerned with tailoring and design of structures with specified values of

natural frequencies. In Elishakoff and Perez (2006), a closed form polynomial solution

for free vibrations of an inhomogeneous bar with a tip mass is derived. The paper

of Elishakoff and Yost (2010) is devoted to vibration tailoring of an axially graded

elastically-constrained bar with a polynomial varying modulus of elasticity along the

axial coordinate. Closed-form analytic and numeric solutions are given oriented to

constructing a bar with pre-selected natural frequencies.

The design of waveguides with tailored filtering properties is based on using peri-

odic structures. In Figotin and Kuchment (1998), two-dimensional photonic band gap

structures are investigated for classical electromagnetic and acoustic waves in a high-

contrast, two-component periodic medium. The asymptotic results relied on the high-

contrast are developed for the frequency spectrum. To control filtering of electromag-

netic, acoustic, and elastic waves the position and the width of the photonic/phononic

band gaps have to be properly adjusted. Gei et al (2009) offers a method for controlling

the stop bands for a prestressed piecewise homogeneous elastic beam on an elastic foun-

dation via optimising prestress. Prestress can be incorporated into the model through

the coefficients in the chosen governing equations. The mechanism in which frequency

is controlled by prestress is illustrated by adapting Green's-function-based analysis.

In Piccolroaz and Movchan (2014), dispersive waves, band-gaps and localised wave-

forms in prestressed Rayleigh beams on elastic foundations are studied. The method

is especially useful for modelling high-frequency regimes.

Homogenization of high-contrast periodic composites is an another closely re-

lated field. The idea behind homogenization of periodic media is averaging of rapidly

oscillatory material properties of a periodic medium on a fine microscale to get an

equivalent homogeneous material with effective material parameters. The local low-

frequency regime studied in the thesis is characterized by a quasi-static behaviour of

stiffer components and oscillating profiles in other parts. Thus, it may be linked with

recent results for homogenization of contrast periodic media. A similarity of the asymp-

totic procedures underlying the long wave dynamic behaviour of thin structures and
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homogenization for periodic media is revealed in Craster et al (2014).

Among recent works on the topic, we can cite Cherednichenko et al (2006),

Smyshlyaev (2009), Cherdantsev and Cherednichenko (2012), and Kaplunov and No-

bili (2017). Cherednichenko et al (2006) is devoted to the homogenization of highly

anisotropic conducting fibres embedded into an isotropic matrix with focus on a high

contrast between conductivity along the fibres and the transverse conductivities. In

Cherdantsev and Cherednichenko (2012), the emphasis is on an analytical framework

for a high-contrast model with soft inclusions embedded into a stiff matrix. Smyshlyaev

(2009) studies wave propagation in periodic elastic composites with highly contrast-

ing and highly anisotropic stiffnesses along with moderately contrasting densities. It

is proven that under certain conditions high anisotropy allows achieving wave propa-

gation along several directions and attenuation along other directions. The paper by

Kaplunov and Nobili (2017) concerns with periodic waveguides in the shape of an in-

homogeneous string or beam supported by a uniform elastic Winkler foundation. The

asymptotic analysis shows that under derived conditions on problem parameters, quasi-

static uniform or linear microscale displacement profiles can exist at high-frequencies.

In view of the link between the current research and area of long-wave high-

frequency vibrations in composite plates and shells, we provide an overview of this

topic. A high-frequency long-wave profile can be characterised by a wave length much

greater than the thickness of a plate or shell along with a sinusoidal variation across

the thickness. There is a large amount of publications devoted to high-frequency long-

wave vibrations emerged near thickness resonant frequencies. These studies include

works devoted to pre-stressed and anisotropic structures. In particular, Kaplunov et

al (2000) developed the method of direct asymptotic integration for a layer with the

in-plane axis of transverse isotropy oriented to the vicinities of the cut-off frequencies.

In Kaplunov et al (2002), the effect of pre-stress on the long-wave high-frequency two-

dimensional motion in an incompressible elastic plate is investigated. Pichugin and

Rogerson (2001) derive a general model for the extensional motion of a prestressed in-

compressible elastic layer in the vicinity of the shear resonance frequencies. In Pichugin

and Rogerson (2002), the method of asymptotic integration is applied to analyse flex-
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ural motion near the cutoff frequencies in a pre-stressed incompressible elastic plate.

Analysis of forced vibrations and acoustic radiation of an elastic layer interacting with

media with a special attention to the vicinities of stretch thickness resonances is pre-

sented in Kaplunov and Markushevich (1993). Kaplunov (1995) studies long-wave

vibrations of a thin-walled body with fixed faces using an asymptotic method to derive

appropriate two-dimensional equations. This study shows that such vibrations exist

only at frequencies close to thickness resonances. Another paper dealing with long-

wave dynamics of a structure with clamped faces is Kaplunov and Nolde (2002). The

phenomenon of trapped high-frequency long-wave modes is considered in Kaplunov et

al (2005) and in Gridin et al (2005) for linear isotropic elastic plates and rods.

In the content of current work, the eigenfrequencies of a three-component elastic

rod could be associated with the cut-off frequencies of a three-layered elastic plate,

e.g. see Kaplunov et al (1998). Within a high contrast framework, the lowest non-zero

eigenfrequency of a composite rod corresponds to the lowest thickness shear resonance

frequency of a plate with similar properties. The case of a coupling between the funda-

mental bending mode and the above-mentioned shear lowest mode in sandwich plates

is investigated in Kaplunov et al (2017a), see also Ryazantseva and Antonov (2012),

Prikazchikova et al (2018). The latter is a key challenge for shear deformation plate

theories, e.g. see Noor and Burton (1989), Goldenveizer et al (1993), and references

there in. In addition, the natural frequencies of antiplane motion of a two-component

cylinder of arbitrary cross section correspond to the cut-off frequencies of elastic rods,

see e.g. Le (2012). Thus, the asymptotic formulae for the antiplane low-frequency

motion of two-layered cylindrical bodies of an arbitrary cross section are also actual

for the lowest cut-off frequencies of high-contrast layered rods.

1.3 Basic equations

The governing equations of linear isotropic elasticity are summarised here. First,

we give definitions of the deformation, and the strain and stress tensors, followed
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by the balance of linear momentum, which provides us with Cauchy’s first law of

motion. Our initial concern is solid structures composed of homogeneous, isotropic,

elastic materials. Thus, the related stress-strain relations are provided. Further, a one-

dimensional equation of motion, that approximates vibrations in thin rods, is derived,

as well as a two-dimensional equation of antiplane shear motion.

1.3.1 Deformation, stress tensor and balance of linear momen-
tum

Consider u(x, y, z, t), describing small displacements of particles in the fixed

Cartesian system Oxyz with t denoting time. Then, ux, uy, and uz are components

of the infinitesimal displacement vector. In Section 1.3, let indices i, j, k, l ∈ {x, y, z}
with a repeated index implies a summation. Thus, for the displacement vector u we

can write down

u = uiϑi = uxϑx + uyϑy + uzϑz, (1.1)

where ϑi are the base vectors.

The deformation is defined by the symmetric second order infinitesimal strain

tensor ε, with components εij = εji. Then, the strain-displacement relations are deter-

mined by

εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
. (1.2)

Next, we introduce the surface traction vector τ (n), defining a force per unit area

across a surface with a unit outward normal n. The surface traction may be represented

through the stress tensor by Cauchy stress formula

τ
(n)
i = σjinj, (1.3)

where σji are components of the stress tensor.

Suppose we have a body with a closed arbitrary region D. Γ is the boundary of

D with an outward unit normal n. Then, in the linearised theory the balance of linear
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momentum specifies that∫∫
Γ

τ
(n)
i dA+

∫∫∫
D

ρbi dV =

∫∫∫
D

ρ
∂2u

∂t2
dV, (1.4)

where bi are the body forces per unit mass, ρ is the material density, and dA and dV

indicate differential area and volume, respectively.

The surface integral can be transformed into the volume integral by the divergence

theorem, see Spencer (2004). Substitution of (1.3) into (1.4), together with the last

observation, provides us with∫∫∫
D

(
∂σji
∂j

+ ρbi − ρ
∂2u

∂t2

)
dV = 0. (1.5)

Since (1.5) relations must hold in every arbitrary region D of the body, it implies that

wherever the integrand is continuous, we obtain

∂σji
∂j

+ ρbi = ρ
∂2u

∂t2
, (1.6)

which is Cauchy’s first law of motion.

1.3.2 Stress-strain relations for homogeneous isotropic lin-
early elastic solid

The linear relation between components of the stress tensor and components of

the strain tensor is described by analogue of Hooke’s law for continuum media as

σij = Cijklεkl, (1.7)

where Cijkl are components of the fourth-order elasticity tensor and

Cijkl = Cjikl = Cklij = Cijlk. (1.8)

When coefficients Cijkl are constants the medium is called elastically homoge-

neous. In case of elastic isotropy constants Cijkl may be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (1.9)
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see for example Achenbach (2012). In (1.9) λ and µ are Lamé elastic constants and δij

is known as Kronecker delta, whose components are defined as

δij = 1, if i = j,

δij = 0, if i 6= j.
(1.10)

Expression (1.9) inserted into equation (1.7) provides us with another well-known

form of Hooke’s law

σij = λδijεkk + 2µεij. (1.11)

1.3.3 Equations of motion

1.3.3.1 Longitudinal stress

When components of the stress tensor and the body forces depend on one spatial

variable x, the stress equations of motion (1.6) reduce to

∂σix
∂x

+ ρbi = ρ
∂2ui
∂t2

. (1.12)

To approximate wave motion in a thin rod we consider a one-dimensional state of

stress. In this case the only non-vanishing stress component is the longitudinal normal

stress σxx, which depends on x and t only. Setting the transverse normal stresses σyy

and σzz to zero in (1.11) leads to the relations

εyy = εzz = − λ

2(λ+ µ)
εxx. (1.13)

The relation for σxx follows by substitution of (1.13) into (1.11)

σxx = Eεxx, (1.14)

where the constant E is called Young’s modulus

E =
µ(3λ+ 2µ)

λ+ µ
. (1.15)
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By substituting (1.14) into (1.12) and in absence of the body forces, we obtain

equation of motion in the from

∂σxx
∂x

= ρ
∂2ux
∂t2

. (1.16)

Using (1.14) with (1.2), we can rewrite the previous equation in terms of deformation

∂2ux
∂x2

=
1

c2
x

∂2ux
∂t2

, (1.17)

where cx =
√
E/ρ is the wave velocity.

We seek solution of equation (1.17) in the following form

ux(x, t) = Ux(x)eiωt. (1.18)

Hence, (1.17) can be rewritten as

∂2Ux
∂x2

− ω2

c2
x

Ux = 0, (1.19)

where Ux is the displacement, which is a function of x only, and ω is the vibration

frequency.

1.3.3.2 Antiplane shear

In two-dimensional problems components of the stress tensor and the body forces

are dependent on two variables only, for example, x and y. Thus, the stress equations

of motion can be obtained from (1.6) by setting
∂

∂z
equals to zero. Therefore, we can

separate the system of equations (1.6) into two uncoupled systems as

∂σxz
∂x

+
∂σyz
∂y

+ ρbz = ρ
∂2uz
∂t2

, (1.20)

and
∂σxx
∂x

+
∂σxy
∂y

+ ρbx = ρ
∂2ux
∂t2

,

∂σyx
∂x

+
∂σyy
∂y

+ ρby = ρ
∂2uy
∂t2

,

(1.21)
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where deformation described by the displacement uz(x, y, t) is known as antiplane shear

deformation.

We can derive the desirable stress components from Hooke’s law (1.11) as

σxz = µ
∂uz
∂x

,

σyz = µ
∂uz
∂y

.

(1.22)

Hence, in absence of the body forces the scalar wave equation for uz(x, y, t) follows

from substituting expressions for σxz and σyz into (1.20)

∂2uz
∂x2

+
∂2uz
∂y2

=
1

c2
z

∂2uz
∂t2

, (1.23)

where cz =
√
µ/ρ is the associated shear wave speed.

In case of time-harmonic dependence

uz(x, y, t) = Uz(x, y)eiωt, (1.24)

(1.23) can be reformulated as

∂2Uz
∂x2

+
∂2Uz
∂y2

+
ω2

c2
z

Uz = 0, (1.25)

where Uz is the out-of-plane displacement, which depends on x and y only.

Let us now consider the equation (1.23) in the polar coordinate system. For

two-dimensional problems we introduce two variables. They are the radial distance r

and the polar angle θ, where
x = r cos θ,

y = r sin θ.
(1.26)

Thus, rewriting function uz in terms of new variables, we get from (1.23)

∂2uz
∂r2

+
1

r

∂uz
∂r

+
1

r2

∂2uz
∂θ2

=
1

c2
z

∂2uz
∂t2

. (1.27)

In this case

uz(r, θ, t) = Uz(r)e
imθeiωt, (1.28)
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hence, (1.27) becomes

r2∂
2Uz
∂r2

+ r
∂Uz
∂r

+

(
ω2r2

c2
z

−m2

)
Uz = 0, (1.29)

where Uz is the displacement function of r only, and m = 0, 1, 2, 3 . . ..

The same equations describe vibrations in circular elastic membranes, however,

they are based on very different physical principles.

1.4 Outline of thesis

The structure of the thesis is presented here. Chapter 1 contains an introduction

to the topic. Chapter 2 is dedicated to vibrations of a composite elastic rod. We start

with the reviewing of the problem for an elastic homogeneous rod with fixed or free ends

in Section 2.1. An appropriate scaling for frequencies and space variables is introduced.

In Section 2.2 vibrations of a three-component rod with piecewise uniform properties

are analysed. In this case, we present the exact solution of the problem for three

types of boundary conditions. They are fixed ends, free ends, and mixed boundary

conditions, meaning a rod with one fixed end and one free end. In each case, a multi-

parametric analysis is performed to determine the dependence of the lowest natural

frequencies on the ratios of material and geometric parameters. We divide the low-

frequency behaviour into global and local regimes and study them separately. Section

2.3 focuses on dynamics of a three-component rod with variable material parameters.

Here a perturbation technique oriented to a more general setup of a rod composed

of inhomogeneous materials is developed. The last section is concerned with a more

general asymptotic model for a multi-component rod. Derivation of the model and

several examples are given.

In Chapter 3 antiplane shear motion of a composite elastic body with a circu-

lar cross section is examined with the focus placed on low frequencies. The classical

problem of antiplane shear motion of a homogeneous cylinder is reviewed in Section

3.1. In Section 3.2 the attention is first drawn to the model problem of low-frequency
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vibrations of a two-component piecewise-homogeneous body. This problem allows a

straightforward analytical treatment. A global low-frequency regime is obtained for

certain conditions on the problem parameters. In Section 3.3 this analysis is general-

ized to a non-uniform two-component body with variable material parameters. Here

we use a perturbation procedure to estimate low natural frequencies and related dis-

placement profile since a straightforward analytical approach is no longer possible.

Section 3.4 contains a general asymptotic model for a body with an arbitrary number

of components, which is similar to that presented for a multi-layered rod in Chapter

2. It is worth noting that similar equations describe dynamic behaviour of circular

membranes. Therefore, any fixed boundary problem of this chapter can be considered

as a problem of vibrations of an elastic circular membrane.

In Chapter 4 antiplane shear motion of a composite elastic body with an arbitrary

cross section is studied. Section 4.1 revises vibrations of a homogeneous body with a

square cross section. In Section 4.2 a two-component hollow body of arbitrary shape

is considered. The problem assumes either free or fixed inner and outer boundaries,

together with perfect continuity conditions at the interfaces. Following the scheme of

the previous chapter, a perturbation procedure is developed for evaluating the vibration

modes associated with a global low-frequency regime, corresponding to a quasi-static

behaviour of both stiffer and softer structure components. In Section 4.3, to illustrate

the efficiency of the developed scheme, we present two examples including a hollow

cylinder of a square cross section with a circular annular inclusion and a hollow cylinder

of a circular cross section with a rectangular annular inclusion. Such problem does not

allow a simple analytical solution. However, we manage to derive explicit asymptotic

formulae for the lowest natural frequencies and associated displacements.

In Chapter 5 a discussion on the main results obtained in the thesis is presented.

The potential developments and extensions of the obtained outcomes are also provided.



20

2 Vibrations of a composite elastic rod

This chapter describes low-frequency vibrations in a thin strongly inhomogeneous

elastic rod. First, we review vibrations of a homogeneous elastic rod with ends being

fixed or free. To do this we introduce appropriate scaling for frequencies together with

corresponding dimensionless spatial variables. Then, we present the outcomes of a

multi-parametric analysis of the near-rigid body motions of a three-component elastic

rod with piecewise uniform properties. It is observed that the values of the associated

lowest eigenfrequencies tend to zero at large/small ratios of material and geometric

parameters. We derive conditions supporting low-frequency behaviour, which could be

considered under global and local regimes. For a more general scheme of a rod having

variable material parameters, we develop a perturbation procedure. In the last section

an asymptotic model for a rod with arbitrary number of components is presented.

2.1 A homogeneous rod

Time-harmonic vibrations of an elastic homogeneous rod are revised in this sec-

tion.

2.1.1 Statement of the problem

We consider a finite rod that occupies the region |x| ≤ l, with the origin O

located in the center, see Figure 2.1.

The governing equation is given by

d2u

dx2
+
ω2

c2
u = 0, (2.1)

where u is the transverse displacement, ω is the vibration frequency, and c =
√
E/ρ is

the longitudinal wave speed, with E and ρ denoting Young’s modulus and the material

density, respectively.
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1

l−l 0 x

Figure 2.1: Geometry of the problem

We consider three types of boundary conditions, including fixed ends, with zero

displacements imposed on the ends

u||x|=l = 0, (2.2)

free ends, with zero stresses prescribed on both ends of the rod

du

dx

∣∣∣∣
|x|=l

= 0, (2.3)

and mixed boundary conditions, meaning a fixed left and a free right end of the rod

u|x=−l = 0,

du

dx

∣∣∣∣
x=l

= 0.
(2.4)

Below we use the dimensionless longitudinal variable

X =
x

l
, (2.5)

and the scaled frequency

Ω =
ωl

c
. (2.6)

Hence, (2.1) can be reformulated as

d2u

dX2
+ Ω2u = 0, (2.7)

and (2.2)-(2.4) take the form

u||X|=1 = 0, (2.8)
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du

dX

∣∣∣∣
|X|=1

= 0, (2.9)

and
u|X=−1 = 0,

du

dX

∣∣∣∣
X=1

= 0,
(2.10)

respectively. The displacement is found as

u = A cos ΩX +B sin ΩX, (2.11)

where A and B are arbitrary constants.

2.1.2 Free ends

The sought-for linear algebraic system can be obtained by substituting (2.11) into

the boundary conditions (2.9). Thus,

Ω(A sin Ω±B cos Ω) = 0. (2.12)

Let us assume first that Ω 6= 0. By solving (2.12) we deduce the frequency

equations describing symmetric and antisymmetric vibrations of the rod, i.e.

A = 0 and B cos Ω = 0, with Ω = −π
2

+ πn, (2.13)

and

B = 0 and A sin Ω = 0, with Ω = πn, (2.14)

respectively, where mode number n = 1, 2, 3, . . ..

For the lowest natural frequencies the displacement profile takes the form

u = A cosπX, (2.15)

or

u = B sin
π

2
X. (2.16)

Along with (2.13)-(2.14) the system (2.12) provides the zero eigenfrequency so-

lution (Ω = 0), associated with the rigid body motion of a rod with free ends

u = A. (2.17)
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2.1.3 Fixed ends

Substituting (2.11) into the boundary conditions (2.8) for a rod with fixed ends

we arrive at

A cos Ω±B sin Ω = 0. (2.18)

The system above provides us with the same set of solutions (2.13)-(2.14) as in the

previous subsection, except for the zero-frequency one, i.e.

B = 0 and A cos Ω = 0, with Ω = −π
2

+ πn, (2.19)

and

A = 0 and B sin Ω = 0, with Ω = πn, (2.20)

where mode number n = 1, 2, 3, . . ..

Then, for the lowest eigenfrequencies the displacement profile is given by

u = A cos
π

2
X, (2.21)

or

u = B sin πX. (2.22)

2.1.4 Mixed boundary conditions

Using (2.11) with the boundary conditions (2.10) we can write down the linear

algebraic system as
A cos Ω−B sin Ω = 0,

Ω(A sin Ω−B cos Ω) = 0.
(2.23)

The vibrations in this case can not be split to symmetric and antisymmetric.

Thus, solving (2.23), we obtain the frequencies as

A = −B, with Ω = −π
4

+ πn, n = 1, 2, 3, . . . , (2.24)

and

A = B, with Ω =
π

4
+ πm, m = 0, 1, 2, . . . . (2.25)
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For the lowest natural frequencies the displacement profile can be derived as

u = A

(
cos

3πX

4
− sin

3πX

4

)
, (2.26)

or

u = A

(
cos

πX

4
+ sin

πX

4

)
. (2.27)

2.2 A three-component piecewise-homogeneous rod

Consider now time-harmonic vibrations of an elastic geometrically symmetric rod

composed of three homogeneous parts of the same cross-sectional area.

2.2.1 Statement of the problem

We study a finite rod with the outer parts having free or fixed ends, and continuity

assumed between the components. The axis Ox is chosen such that the origin O is

located in the middle of the inner part. The rod is geometrically symmetric, with the

inner part occupying the region |x| ≤ l1, and the outer parts specified by l1 ≤ |x| ≤
l1 + l2, see Figure 2.2.

1

l1−l1 l1 + l2−l2 − l1 0 x

Figure 2.2: A three-component piecewise-homogeneous rod

The governing equations are written in the form

d2ui
dx2

+
ω2

c2
i

ui = 0, i = 1, 2, (2.28)



25

where ui are the displacements, ω is the vibration frequency, and ci =
√
Ei/ρi are

the longitudinal wave speeds, with Ei denoting Young’s module, and ρi denoting the

material densities. Here and below in this section, the indices 1 and 2 correspond to

the inner and outer components, respectively.

We introduce dimensionless longitudinal variables

Xi =
x

li
, i = 1, 2. (2.29)

This scaling allows to simplify equations for the subsequent consideration of a rod with

any finite number of components. The dimensionless parameters are taken as

E =
E1

E2

, ρ =
ρ1

ρ2

, c =
c1

c2

, l =
l1
l2
, (2.30)

along with the scaled frequencies

Ωi =
ωli
ci
, i = 1, 2. (2.31)

Thus, the dimensionless equations of motion can be formulated as

d2ui
dX2

i

+ Ω2
iui = 0, i = 1, 2. (2.32)

We consider the continuity of displacements and stresses at the interfaces, i.e.

u1||X1|=1 = u2||X2|=l , (2.33)

and
E

l

du1

dX1

∣∣∣∣
|X1|=1

=
du2

dX2

∣∣∣∣
|X2|=l

, (2.34)

respectively.

We assume three types of boundary conditions on the outer ends, namely free

ends
du2

dX2

∣∣∣∣
|X2|=l+1

= 0, (2.35)

fixed ends

u2||X2|=l+1 = 0, (2.36)
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and mixed boundary conditions being a combination of the previous two cases

u3|X3=−l−1 = 0,

du2

dX2

∣∣∣∣
X2=l+1

= 0.
(2.37)

For the first two types of boundary conditions it is sufficient to consider only x ≥ 0

to derive the sought-for frequency equations since the rod is geometrically symmetric.

Thus, symmetric and antisymmetric cases can be considered separately. For symmetric

and antisymmetric vibrations the displacement of the inner part is given by

u1 = A cos Ω1X1, |X1| ≤ 1, (2.38)

and

u1 = B sin Ω1X1, |X1| ≤ 1, (2.39)

respectively, following from (2.32). The displacement of the outer part is written as

u2 = C cos Ω2X2 +D sin Ω2X2, l ≤ |X2| ≤ l + 1, (2.40)

where A, B, C and D are arbitrary constants.

For the mixed boundary conditions all three parts of the rod should be considered,

and vibrations can no longer be classified as symmetric and antisymmetric ones. The

displacement then is provided in the form

u3 = F cos Ω2X3 +G sin Ω2X3, −l − 1 ≤ X3 ≤ −l,

u1 = A cos Ω1X1 +B sin Ω1X1, −1 ≤ X1 ≤ 1,

u2 = C cos Ω2X2 +D sin Ω2X2, l ≤ X2 ≤ l + 1.

(2.41)

2.2.2 Antisymmetric vibrations of a rod with free ends

Consider now antisymmetric vibrations of a rod subject to the boundary condi-

tions (2.35).
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Substituting (2.39) and (2.40) into (2.33), (2.34), and (2.35), we arrive at

B sin Ω1 − C cos Ω2l −D sin Ω2l = 0,

B
E

c
cos Ω1 + C sin Ω2l −D cos Ω2l = 0,

C sin
(
Ω2(l + 1)

)
−D cos

(
Ω2(l + 1)

)
= 0.

(2.42)

The linear algebraic system (2.42) possesses non-trivial solutions as long as the

associate determinant vanishes, resulting in the frequency equation

tan Ω1 tan Ω2 =
E

c
. (2.43)

From now on, we will use Ui, i = 1, 2, . . ., to denote the scaled dimensionless

displacements corresponding to displacements ui, i = 1, 2, . . .. Hereinafter, U = U1 for

|x| ≤ l1 and U = U2 for l1 ≤ |x| ≤ l1 + l2. Using (2.42), the scaled displacement profile

can be expressed as
U1 = sin Ω1X1,

U2 =
sin Ω1 cos

(
Ω2(l + 1−X2)

)
cos Ω2

.

(2.44)

The studied low-frequency motion may be classified into the global low-frequency

regime (Ω1 � 1, Ω2 � 1), and also the local low-frequency behaviour (Ω1 � 1, Ω2 & 1)

or (Ω1 & 1, Ω2 � 1). The local low-frequency regimes are in some-sense similar to

problems of homogenization of periodic contrast media, see e.g. Cherednichenko et al

(2006) and Cherdantsev et al (2013).

2.2.2.1 Global low-frequency regime

Global low-frequency regime can be characterised by Ω1 � 1 and Ω2 � 1, which

associates with the quasi-static behaviour of both inner and outer components of the

rod. We reduce the frequency equation (2.43) to the following approximate form

Ω1Ω2 =
E

c
. (2.45)
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In a view of the relation between the dimensionless frequency parameters cΩ1 = lΩ2,

(2.45) leads to

Ω2
1 = ρl, (2.46)

and

Ω2
2 =

E

l
. (2.47)

Using the formulae (2.46)-(2.47) together with the strong inequalities Ω1 � 1 and

Ω2 � 1, we derive

E � l� ρ−1, (2.48)

which imply an estimate for the material parameters supporting the global low-

frequency regime.

 0
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 10

 0  2  4  6  8  10

approximate solution - the first eigenfrequency for the inner part
exact solution - the first eigenfrequency for the inner part

exact solution - the first eigenfrequency for the outer parts
exact solution - the second eigenfrequency for the inner part

exact solution - the third eigenfrequency for the inner part

Ωi

l

Figure 2.3: Frequency vs relative thickness l for antisymmetric vibrations of a rod with
free ends; E = 0.1, ρ = 0.1
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Figure 2.3 displays dependence of the scaled frequencies on the relative length l,

including the asymptotic approximation (2.46) for the inner part, and the decreasing

function given by (2.47) for the outer part. The curves of the first three eigenfrequencies

for the inner part are defined by (2.43). It is readily observed from Figure 2.3 that Ω1

and Ω2 are both small if l satisfies condition (2.48). We also observe a good agreement

between the lowest value of Ω1 defined by (2.43) and its approximation (2.46).

The large distance between the first and second natural frequencies notable from

the graph can be significant for the dispersion analysis of sandwich plates composed of

layers with contrast properties. As was mentioned in the introduction, the frequencies

obtained here within a 1D problem correspond to the cut-off frequencies of an elastic

plate, see for example Kaplunov et al (1998). We assume that the small first cut-

off frequency implies a coupling effect between the fundamental mode and the first

harmonic in a plate, see e.g. Noor and Burton (1989), Goldenveizer et al (1993), Le

(2012), and Kaplunov et al (2017a).

Noting that the condition 0 ≤ (l + 1−X2)Ω2 � 1 holds true for the outer part,

we approximate the scaled displacement profile to the form

U1 = X1,

U2 = 1,
(2.49)

see Figure 2.4. It may be observed from Figure 2.4 that the outer parts at leading order

perform a rigid body motion, whereas the inner part undergoes an almost homogeneous

deformation, i.e. dU1/dX1 = 1.

It is also worth mentioning that in the intersection of the curves for Ω1 and Ω2

in Figure 2.3, over the low frequency region Ω1 = Ω2 = Ω� 1, implies l = c and

Ω2 =
√
Eρ. (2.50)

Therefore, now we analyse the low-frequency regime in terms of the small parameter

Eρ� 1, see Figure 2.5, which may be interpreted physically as the condition underly-

ing a �weaker� inner and �stronger� outer components. It can be seen from Figure 2.5

that the first eigenfrequency of the equation (2.43) decreases and the distance between
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Figure 2.4: Global low-frequency regime (2.49); l = 1

the first and second eigenfrequencies increases as Eρ → 0. In addition, we can note

that the accuracy of the asymptotic approximation (2.50) enhances as Eρ→ 0.

2.2.2.2 Local low-frequency regime for the inner part

The local low-frequency regime of Ω1 � 1 and Ω2 & 1 allows wave-like phenomena

in the outer parts and restricts those in the inner part of the rod.

The approximate frequency equation is then presented as

tan Ω2 =
E

lΩ2

. (2.51)

The corresponding scaled natural form is derived as

U1 = X1,

U2 =
cos
(
Ω2(l + 1−X2)

)
cos Ω2

.

(2.52)

The frequency equation (2.51) allows analytical treatment for several particular

cases.
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approximate solution - the first eigenfrequency
exact solution - the first eigenfrequency

exact solution - the second eigenfrequency

Ω
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Figure 2.5: Variation of the frequency Ω vs the parameter Eρ for antisymmetric vibra-
tions of a rod with free ends

Case 1. If E � lΩ2, then, from the frequency equation (2.51), | tan Ω2| � 1.

Hence,

Ω2 ≈ πn, with n = 1, 2, 3, . . . . (2.53)

Remarking that Ω1 � 1 and E � lΩ2, we infer

E

l
� n� c

l
. (2.54)

The scaled displacement takes the form

U1 = X1,

U2 = cos
(
πn(l −X2)

)
.

(2.55)

The resulting profile for the first two modes is given on Figure 2.6.

One of the possible physical interpretations of the limiting case | tan Ω2| � 1 cor-

responds to resonant frequencies of the �stronger� outer parts with free ends. Indeed,
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Figure 2.6: Local low-frequency regime for the inner part (2.55); l = 1

E � lΩ2 or E � cΩ1 leads to E1ρ1 � E2ρ2. This can be explained as a �weaker�

inner part, being not able to prevent the vibrations of �stronger� outer parts. At the

same time, Ω2 = πn indeed gives a set of natural frequencies of a homogeneous rod

with free ends, see Section (2.1.2).

Case 2. If E � lΩ2, then, (2.51) provides

Ω2 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.56)

Using the conditions Ω1 � 1 and E � lΩ2, we derive

n� min

[
c

l
,
E

l

]
. (2.57)

The scaled displacement is now given in the form

U1 = X1,

U2 = cos
π(2n− 1)(l −X2)

2
− tan Ω2 sin

π(2n− 1)(l −X2)

2
.

(2.58)

From initial assumption of this case | tan Ω2| � 1 and

U2 ∼ − tan Ω2 sin
π(2n− 1)(l −X2)

2
, (2.59)
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with the first term in (2.58) behaving similarly to a boundary layer, smoothing the

discontinuity at X2 = l. The overall profile for the first two modes is shown on Figure

2.7.

-10

-5

 0

 5

 10

-2 -1  0  1  2
-10

-5

 0

 5

 10

-2 -1  0  1  2

U

x

U

x
a) n=1 b) n=2

Figure 2.7: Local low-frequency regime for the inner part (2.58); l = 1

Similarly to the Case 1, a possible physical interpretation of the limiting Case

2 is related to resonant frequencies of the outer parts. Now, the condition E �
lΩ2 implies E1ρ1 � E2ρ2. This relation describes a �stronger� inner part, which

results in vibrations of the outer parts under mixed boundary conditions with the

eigenfrequencies Ω2 =
π(2n− 1)

2
.

Case 3. If E ∼ lΩ2, then, there is no simple explicit solution for Ω2, with the

conditions for Ω2 reducing to

Ω2 ∼
E

l
� c

l
. (2.60)

2.2.2.3 Local low-frequency regime for the outer parts

The conditions Ω1 & 1 and Ω2 � 1 describes the local low-frequency regime of

the outer parts.
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The frequency equation is then given by

tan Ω1 =
ρl

Ω1

, (2.61)

and the corresponding scaled displacement profile is written as

U1 = sin Ω1X1,

U2 = sin Ω1.
(2.62)

Similarly to the previous section, we split the problem into several cases.

Case 1. If ρl� Ω1, then, | tan Ω1| � 1. Thus,

Ω1 ≈ πn, with n = 1, 2, 3, . . . . (2.63)

Inequalities Ω2 � 1 and ρl� Ω1 imply

ρl� n� l

c
. (2.64)

The eigenform is then reduced to

U1 = sinπnX1,

U2 = 0,
(2.65)

see Figure 2.8 for numerical illustrations corresponding to the first two modes.

Case 2. If ρl� Ω1, then, from (2.61) we obtain

Ω1 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.66)

Using the conditions Ω2 � 1 and ρl� Ω1, we get

n� min

[
ρl,

l

c

]
. (2.67)
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Figure 2.8: Local low-frequency regime for the outer parts (2.65); l = 1

Then, the scaled displacement is expressed as

U1 = sin
π(2n− 1)X1

2
,

U2 = (−1)n+1,

(2.68)

see Figure 2.9.

The limiting Cases 1 and 2 correspond to an oscillatory behaviour for the inner

part of the rod and a polynomial dependence for the outer components. Moreover, Case

1 would be associated with the condition Ω2 � ρc, thus, E1ρ1 � E2ρ2. Therefore, a

�weaker� inner part will be under a homogeneous deformation, with Ω1 = πn providing

a set of natural frequencies of this part with fixed ends. Case 2 may be interpreted

physically as a �stronger� inner part having free ends.

Case 3. If ρl ∼ Ω1, the conditions allowing low-frequency regime, are derived

in the form

Ω1 ∼ ρl� l

c
. (2.69)
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Figure 2.9: Local low-frequency regime for the outer parts (2.68); l = 1

2.2.3 Symmetric vibrations of a rod with free ends

Let us now study symmetric vibrations of a rod with free ends, see boundary

conditions (2.35).

By substituting (2.38) and (2.40) into (2.33), (2.34), and (2.35), we get the linear

algebraic system

A cos Ω1 − C cos Ω2l −D sin Ω2l = 0,

Ω1

(
A
E

c
sin Ω1 − C sin Ω2l +D cos Ω2l

)
= 0,

Ω1

(
C sin

(
Ω2(l + 1)

)
−D cos

(
Ω2(l + 1)

))
= 0.

(2.70)

Solving (2.70), we obtain the frequency equation

− cot Ω1 tan Ω2 =
E

c
. (2.71)

Then, using (2.70), we can write down the eigenform as

U1 = cos Ω1X1,

U2 =
cos Ω1 cos

(
Ω2(l + 1−X2)

)
cos Ω2

.

(2.72)
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In this case the system also has zero-frequency solution with A = C and

U1 = U2 = 1, (2.73)

corresponding to the rigid body motion typical for a rod with free ends.

By assuming Ω1 � 1 and Ω2 � 1 and simplifying the frequency equation (2.71)

to an approximate form it can be easily shown that this problem does not allow the

global low-frequency regime. However, the local low-frequency regimes are possible.

2.2.3.1 Local low-frequency regime for the inner part

Now, we consider the case of the local low-frequency regime for the inner part

assuming the conditions Ω1 � 1 and Ω2 & 1.

The sought-for approximate equation following from (2.71) is given by

tan Ω2 = −lρΩ2. (2.74)

The scaled displacement profile can be approximated as

U1 = 1,

U2 =
cos
(
Ω2(l + 1−X2)

)
cos Ω2

.

(2.75)

Case 1. In case of lρΩ2 � 1, the frequency equation (2.74) leads to | tan Ω2| �
1. This results in

Ω2 ≈ πn, with n = 1, 2, 3, . . . . (2.76)

In view of Ω1 � 1 and lρΩ2 � 1, the conditions for n can be written down as

n� min

[
1

lρ
,
c

l

]
. (2.77)

The scaled displacement takes the form

U1 = 1,

U2 = cos
(
πn(l −X2)

)
.

(2.78)

see Figure 2.10.
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Figure 2.10: Local low-frequency regime for the inner part (2.78); l = 1

Case 2. If lρΩ2 � 1, then, from (2.74) we obtain | tan Ω2| � 1 and

Ω2 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.79)

The conditions Ω1 � 1 and lρΩ2 � 1 imply

1

lρ
� n� c

l
. (2.80)

The scaled displacement is given by

U1 = 1,

U2 = cos
π(2n− 1)(l −X2)

2
− tan Ω2 sin

π(2n− 1)(l −X2)

2
.

(2.81)

Figure 2.11 shows the eigenform for the first two modes.

In Case 1 the condition ρlΩ2 � 1 or cρΩ1 � 1 signifies that the inner part is

�weaker� with E1ρ1 � E2ρ2 and is not able to prevent the vibrations of the outer

parts. In Case 2 the condition ρlΩ2 � 1 transforms to E1ρ1 � E2ρ2 meaning a

�stronger� inner part. The behaviour is very similar to the antisymmetric vibrations

of the rod with fixed ends.
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Figure 2.11: Local low-frequency regime for the inner part (2.81); l = 1

Case 3. If lρΩ2 ∼ 1, the conditions for Ω2 take the form

Ω2 ∼
1

lρ
� c

l
. (2.82)

2.2.3.2 Local low-frequency regime for the outer parts

In case of the local low-frequency regime for the outer parts the studied conditions

are given by Ω1 & 1 and Ω2 � 1. Then, the approximate frequency equation is reduced

to

cot Ω1 = − lρ
Ω1

, (2.83)

with the corresponding approximate natural form is deduced as

U1 = cos Ω1X1,

U2 = cos Ω1.
(2.84)

Case 1. Assuming lρ� Ω1, we infer | cot Ω1| � 1, thus,

Ω1 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.85)
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Using Ω2 � 1 and lρ� Ω1, we obtain

lρ� n� l

c
. (2.86)

Then, the eigenform can be reformulated as

U1 = cos
π(2n− 1)X1

2
,

U2 = 0,

(2.87)

see Figure 2.12 presenting the first two modes.
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Figure 2.12: Local low-frequency regime for the outer parts (2.87); l = 1

Case 2. Using (2.83) with lρ� Ω1, we can infer that

Ω1 ≈ πn, with n = 1, 2, 3, . . . . (2.88)

The conditions Ω2 � 1 and lρ� Ω1 provide

n� min

[
lρ,

l

c

]
. (2.89)
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Figure 2.13: Local low-frequency regime for the outer parts (2.90); l = 1

Then, the approximate scaled displacement profile follows in the form

U1 = cosπnX1,

U2 = (−1)n,
(2.90)

see Figure 2.13.

Displacement profiles in both cases show expected due to the conditions Ω1 & 1

and Ω2 � 1 oscillatory behaviour for the inner section of the rod along with the

polynomial dependence for the outer components. Case 1 can be associated with

E1ρ1 � E2ρ2 or a �weaker� inner part with fixed ends. Case 2 corresponds to a

�stronger� inner part with free ends. The conditions on scaled frequencies are similar to

those for antisymmetric vibrations with changes taking place in displacement profiles.

Case 3. If lρ ∼ Ω1, the conditions for Ω1 can be formulated as

Ω1 ∼ lρ� l

c
. (2.91)
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2.2.4 Antisymmetric vibrations of a rod with fixed ends

Antisymmetric motions of a rod with fixed ends are considered in this section,

see (2.36).

We derive a frequency equation by substituting (2.39) and (2.40) into the condi-

tions (2.33), (2.34), and (2.36), resulting in

B sin Ω1 − C cos Ω2l −D sin Ω2l = 0,

B
E

c
cos Ω1 + C sin Ω2l −D cos Ω2l = 0,

C cos
(
Ω2(l + 1)

)
+D sin

(
Ω2(l + 1)

)
= 0.

(2.92)

The solvability of this system implies

− tan Ω1 cot Ω2 =
E

c
. (2.93)

The scaled displacement profile can be presented as

U1 = sin Ω1X1,

U2 =
sin Ω1 sin

(
Ω2(l + 1−X2)

)
sin Ω2

.

(2.94)

It can be verified by taking Ω1 � 1 and Ω2 � 1 and then simplifying the

frequency equation (2.93) to an approximate form that this problem again does not

have the global low-frequency regime.

2.2.4.1 Local low-frequency regime for the inner part

In view of the local low-frequency regime of Ω1 � 1 and Ω2 & 1 the equation

(2.93) is approximated to the form

cot Ω2 = − E

lΩ2

. (2.95)

The associated eigenform is obtained as

U1 = X1,

U2 =
sin
(
Ω2(l + 1−X2)

)
sin Ω2

.

(2.96)
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Case 1. Assuming E � lΩ2, we get the condition | cot Ω2| � 1, which provides

Ω2 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.97)

Inequalities Ω1 � 1 and E � lΩ2 allow to write conditions on n as

E

l
� n� c

l
. (2.98)

Then, the natural form is reduced to

U1 = X1,

U2 = cos
π(2n− 1)(l −X2)

2
,

(2.99)

see Figure 2.14 for the first two modes.

-1

 0

 1

-2 -1  0  1  2

-1

 0

 1

-2 -1  0  1  2

U

x

U

x
a) n=1 b) n=2

Figure 2.14: Local low-frequency regime for the inner part (2.99); l = 1

The limiting case | cot Ω2| � 1 implies
√
Eρ� Ω1 or the rod with the �stronger�

outer parts under mixed boundary conditions.

Case 2. If E � lΩ2, then, from (2.95) we deduce

Ω2 ≈ πn, with n = 1, 2, 3, . . . . (2.100)
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The conditions Ω1 � 1 and E � lΩ2 lead to

n� min

[
c

l
,
E

l

]
. (2.101)

The scaled displacement is now approximated to

U1 = X1,

U2 = cos
(
πn(l −X2)

)
+ cot Ω2 sin

(
πn(l −X2)

)
,

(2.102)

where | cot Ω2| � 1. Figure 2.15 shows the overall profile for the first two modes.
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Figure 2.15: Local low-frequency regime for the inner part (2.102); l = 1

The condition E � lΩ2 of the limiting Case 2 implies E1ρ1 � E2ρ2. This relation

is associated with �weaker� outer parts. Thus, we can observe vibrations of the outer

parts under fixed boundary conditions with the eigenfrequencies Ω2 = πn.

Case 3. If E ∼ lΩ2, then, the conditions on Ω2 are formulated as

Ω2 ∼
E

l
� c

l
. (2.103)
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2.2.4.2 Local low-frequency regime for the outer parts

The local low-frequency regime of the outer parts Ω1 & 1 and Ω2 � 1 allows to

reduce the frequency equation to the form

tan Ω1 = −EΩ1

l
. (2.104)

The corresponding natural form is approximated to

U1 = sin Ω1X1,

U2 = (l + 1−X2) sin Ω1.
(2.105)

Case 1. If EΩ1 � l, then, (2.104) provides | tan Ω1| � 1. Hence,

Ω1 ≈ πn, with n = 1, 2, 3, . . . . (2.106)

Using Ω2 � 1 and EΩ1 � l, we can write down for n

n� min

[
l

c
,
l

E

]
. (2.107)

Then, the natural form is given by

U1 = sinπnX1,

U2 = 0,
(2.108)

see Figure 2.16 for n equals 1 and 2.

Case 1 corresponds to the condition E1ρ1 � E2ρ2 implying a �weaker� inner

part having fixed ends.

Case 2. If EΩ1 � l, then, from (2.104) we infer

Ω1 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.109)

From Ω2 � 1 and EΩ1 � l the conditions on n follow as

l

E
� n� l

c
. (2.110)
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Figure 2.16: Local low-frequency regime for the outer parts (2.108); l = 1

We simplify the expressions for the eigenform as

U1 = sin
π(2n− 1)X1

2
,

U2 = (−1)n+1(l + 1−X2),

(2.111)

see Figure 2.17.
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Figure 2.17: Local low-frequency regime for the outer parts (2.111); l = 1

Possible physical interpretation of the Case 2 may be formulated as a �stronger�
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inner part with free ends having a set of vibration frequencies
π(2n− 1)

2
.

Case 3. Assuming ρl ∼ Ω1, we derive the conditions allowing the low-frequency

regime in the form

Ω1 ∼ ρl� l

c
. (2.112)

2.2.5 Symmetric vibrations of a rod with fixed ends

Here we study symmetric vibrations of a rod with fixed ends, see boundary con-

ditions (2.36).

The system of linear equations follows from the conditions (2.33), (2.34), and

(2.36) with the displacements (2.38) and (2.40) as

A cos Ω1 − C cos Ω2l −D sin Ω2l = 0,

A
E

c
sin Ω1 − C sin Ω2l +D cos Ω2l = 0,

C cos
(
Ω2(l + 1)

)
+D sin

(
Ω2(l + 1)

)
= 0.

(2.113)

The frequency equation is obtained from (2.113) in the form

cot Ω1 cot Ω2 =
E

c
. (2.114)

Then, the scaled displacement profile is given by

U1 = cos Ω1X1,

U2 =
cos Ω1 sin

(
Ω2(l + 1−X2)

)
sin Ω2

.

(2.115)

The consideration may be split into the global low-frequency regime (Ω1 � 1,

Ω2 � 1), and also the local low-frequency behaviour for the inner part (Ω1 � 1,

Ω2 & 1), and the outer parts (Ω1 & 1, Ω2 � 1).
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2.2.5.1 Global low-frequency regime

The low-frequency approximation of the frequency equation (2.114) results in

Ω1Ω2 =
c

E
, (2.116)

following by

Ω2
1 =

l

E
, (2.117)

and

Ω2
2 =

1

ρl
. (2.118)

The conditions on material parameters associated with the low-frequency vibrations in

all rod components are deduced as

ρ−1 � l� E. (2.119)

We derive the corresponding approximate eigenform as

U1 = 1,

U2 = l + 1−X2,
(2.120)

see Figure 2.18.
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Figure 2.18: Global low-frequency regime (2.120); l = 1
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Considering Ω1 = Ω2 = Ω� 1, we obtain the approximate solution for Ω� 1 as

Ω2 =

√
1

Eρ
. (2.121)

Figure 2.19 confirms that the first eigenfrequency defined by (2.121) decreases as

Eρ −→ ∞. The large values of Eρ can be interpreted as a composite rod having

a �stronger� inner component and �weaker� outer components.
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approximate solution - the first eigenfrequency
exact solution - the first eigenfrequency

exact solution - the second eigenfrequency

Ω

Eρ

Figure 2.19: Dependence of the frequency Ω on the parameter Eρ for symmetric vi-
brations of a rod with fixed ends

2.2.5.2 Local low-frequency regime for the inner part

Now, the local low-frequency regime for the inner part is considered. Using the

conditions Ω1 � 1 and Ω2 & 1, we derive the approximate frequency equation as

cot Ω2 = ρlΩ2. (2.122)
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The sought-for scaled displacement profile is found in the form

U1 = 1,

U2 =
sin
(
Ω2(l + 1−X2)

)
sin Ω2

.

(2.123)

Case 1. Taking ρlΩ2 � 1, we have | cot Ω2| � 1 meaning that

Ω2 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.124)

We use Ω1 � 1 and ρlΩ2 � 1 to derive the conditions on n as

n� min

[
c

l
,

1

ρl

]
. (2.125)

The scaled displacement profile takes the form

U1 = 1,

U2 = (−1)n+1 sin
π(2n− 1)(l + 1−X2)

2
,

(2.126)

see Figure 2.20.

-1

 0

 1

-2 -1  0  1  2

-1

 0

 1

-2 -1  0  1  2

U

x

U

x
a) n=1 b) n=2

Figure 2.20: Local low-frequency regime for the inner part (2.126); l = 1



51

Case 2. Setting ρlΩ2 � 1, we derive

Ω2 ≈ πn, with n = 1, 2, 3, . . . . (2.127)

The conditions Ω1 � 1 and ρlΩ2 � 1 lead to

1

ρl
� n� c

l
. (2.128)

Then, the eigenform is given by

U1 = 1,

U2 = cot Ω2 sin
(
πn(l −X2)

)
+ cos

(
πn(l −X2)

)
,

(2.129)

where cot Ω2 � 1. Figure 2.21 shows the displacement profile for the first two modes.
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Figure 2.21: Local low-frequency regime for the inner part (2.129); l = 1

Case 3. Having ρlΩ2 ∼ 1, we can write down the conditions for Ω2 in the form

Ω2 ∼
1

ρl
� c

l
. (2.130)
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2.2.5.3 Local low-frequency regime for the outer parts

The local low-frequency regime for the outer parts provides us with the conditions

Ω1 & 1 and Ω2 � 1 leading to the simplified frequency equation

cot Ω1 =
E

l
Ω1, (2.131)

with the corresponding approximate natural form

U1 = cos Ω1X1,

U2 = (l + 1−X2) cos Ω1.
(2.132)

Case 1. For EΩ1 � l the equation (2.131) implies

Ω1 ≈
π(2n− 1)

2
, with n = 1, 2, 3, . . . . (2.133)

In view of Ω2 � 1 and EΩ1 � l, we deduce

n� min

[
l

E
,
l

c

]
. (2.134)

Then, the scaled displacement profile takes the form

U1 = cos
π(2n− 1)X1

2
,

U2 = 0,

(2.135)

see Figure 2.22 presenting the first two modes.

Case 2. Assuming EΩ1 � l, we can infer that

Ω1 ≈ πn, with n = 1, 2, 3, . . . . (2.136)

From the conditions Ω2 � 1 and EΩ1 � l we obtain

l

E
� n� l

c
. (2.137)
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Figure 2.22: Local low-frequency regime for the outer parts (2.135); l = 1

Then, the approximate eigenform can be reformulated as

U1 = cosπnX1,

U2 = (−1)n(l + 1−X2),
(2.138)

see Figure 2.23.
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Figure 2.23: Local low-frequency regime for the outer parts (2.138); l = 1
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Case 3. If EΩ1 ∼ l, the conditions for Ω1 can be formulated as

Ω1 ∼
l

E
� l

c
. (2.139)

The local low-frequency regimes described in this section are very similar to those

of previous section for the antisymmetric vibrations of the rod with fixed ends.

2.2.6 Vibrations of a rod with mixed boundary conditions

Now, a rod subject to mixed boundary conditions is analysed. Using (2.33),

(2.34), and (2.37) with (2.41), we get the system

A cos Ω1 +B sin Ω1 − C cos Ω2l −D sin Ω2l = 0,

A cos Ω1 −B sin Ω1 − F cos Ω2l +G sin Ω2l = 0,

A
E

c
sin Ω1 −B

E

c
cos Ω1 − C sin Ω2l +D cos Ω2l = 0,

A
E

c
sin Ω1 +B

E

c
cos Ω1 − F sin Ω2l −G cos Ω2l = 0,

C sin
(
Ω2(l + 1)

)
−D cos

(
Ω2(l + 1)

)
= 0,

F cos
(
Ω2(l + 1)

)
−G sin

(
Ω2(l + 1)

)
= 0.

(2.140)

Hence, the frequency equation is obtained in the form

2 cot 2Ω1 cot 2Ω2 =
E

c
+
c

E
. (2.141)
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The scaled displacement profile is then derived as

U3 =

E

c
sin
(
Ω2(l + 1 +X3)

)
sin Ω1 cos Ω2 +

E

c
cos Ω1 sin Ω2

,

U1 =
sin
(
Ω1(1 +X1)

)
cos Ω2 +

E

c
cos
(
Ω1(1 +X1)

)
sin Ω2

sin Ω1 cos Ω2 +
E

c
cos Ω1 sin Ω2

,

U2 =
cos
(
Ω2(X2 − l)

)
(sin 2Ω1 cos Ω2 +

E

c
cos 2Ω1 sin Ω2)

sin Ω1 cos Ω2 +
E

c
cos Ω1 sin Ω2

.

(2.142)

Further analysis of the problem can be split into cases of the global and local

low-frequency regimes.

2.2.6.1 Global low-frequency regime

Having Ω1 � 1 and Ω2 � 1, we approximate the frequency equation to the form

1

2Ω1Ω2

=
E

c
+
c

E
, (2.143)

which results in

Ω2
1 =

l

2(E + ρ−1)
, (2.144)

and

Ω2
2 =

l−1

2(E−1 + ρ)
. (2.145)

Combining the latter together with the inequalities Ω1 � 1 and Ω2 � 1, we

arrive at the following restrictions on the parameters

(E−1 + ρ)−1 � l� E + ρ−1, (2.146)

supporting the global low-frequency regime.
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The approximate profile of the scaled displacement is written as

U3 =

E

l
(l + 1 +X3)

1 +
E

l

,

U1 =
1 +X1 +

E

l

1 +
E

l

,

U2 =
2 +

E

l

1 +
E

l

,

(2.147)

see Figure 2.24 for
E

l
� 1 and

E

l
� 1.
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Figure 2.24: Global low-frequency regime (2.147); l = 1

If Ω1 = Ω2 = Ω� 1, the approximate solution for Ω� 1 is given by

Ω2 =

√
Eρ

2(Eρ+ 1)
, (

√
Eρ+

√
(Eρ)−1 � 1). (2.148)

Figure 2.25 illustrates the behaviour of the first two eigenfrequencies described by

(2.141). The approximate solution for the first eigenfrequency (2.148) is also given on
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the graph. We can note that the first eigenfrequency decreases in both limits Eρ→ 0

and Eρ → ∞. This display a potential of global low-frequency vibrations arising in

a rod with mixed boundary conditions in both cases, i.e. a �weaker� inner part and

�stronger� outer parts, or a �stronger� inner part and �weaker� outer parts.
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Figure 2.25: Variation of the frequency Ω vs the parameter Eρ for the case of mixed
boundary conditions

2.2.6.2 Local low-frequency regime for the inner part

For the case of Ω1 � 1 and Ω2 & 1 the frequency equation can be approximated

to the following form

cot 2Ω2 = l(ρ+ E−1)Ω2. (2.149)
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The natural form is given by

U3 =
sin
(
Ω2(l + 1 +X3)

)
l

E
Ω2 cos Ω2 + sin Ω2

,

U1 =

l

E
Ω2(1 +X1) cos Ω2 + sin Ω2

l

E
Ω2 cos Ω2 + sin Ω2

,

U2 =

cos
(
Ω2(X2 − l)

)(
2
l

E
Ω2 cos Ω2 + sin Ω2

)
l

E
Ω2 cos Ω2 + sin Ω2

.

(2.150)

Case 1. If l(ρ+ E−1)Ω2 � 1, from the frequency equation (2.149) we get

Ω2 ≈
π(2n− 1)

4
, with n = 1, 2, 3, . . . . (2.151)

Noting that Ω1 � 1 and l(ρ+ E−1)Ω2 � 1, we obtain conditions on n as

n� min

[
1

l(ρ+ E−1)
,
c

l

]
. (2.152)

The corresponding natural form is transformed to

U3 =
sin

π(2n− 1)(l + 1 +X3)

4

sin
π(2n− 1)

4

,

U1 = 1,

U2 = cos
π(2n− 1)(X2 − l)

4
.

(2.153)

Figure 2.26 presents the resulting profile.

This case of l(ρ+E−1)Ω2 � 1 or (
√
Eρ+

√
(Eρ)−1)Ω1 � 1 corresponds to a rod

without high contrast in components parameters.
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Figure 2.26: Local low-frequency regime for the inner part (2.153); l = 1

Case 2. Inequality l(ρ+ E−1)Ω2 � 1 together with (2.149) implies

Ω2 ≈ πn, with n = 1, 2, 3, . . . , (2.154)

and

Ω2 ≈
π(2m− 1)

2
, with m = 1, 2, 3, . . . . (2.155)

Remarking that Ω1 � 1 and l(ρ+ E−1)Ω2 � 1, we can write down for n and m

1

l(ρ+ E−1)
� n,m� c

l
. (2.156)

In this case the condition l(ρ+E−1)Ω2 � 1 or (
√
Eρ+

√
(Eρ)−1)Ω1 � 1 implies

a high contrast with either a �stronger� inner part or �stronger� outer parts.

Let us first assume that lE−1Ω2 � 1 and ρ � E−1, which corresponds to a rod

with the �stronger� outer parts. Then, the scaled displacement (2.150) takes the forms

U3 = 0,

U1 = 1 +X1,

U2 = 2 cos
(
πn(X2 − l)

)
,

(2.157)
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Figure 2.27: Local low-frequency regime for the inner part (2.157); l = 1

and

U3 = (−1)m+12 sin
π(2m− 1)(l + 1 +X3)

2
,

U1 = 1−X1,

U2 = 0,

(2.158)

for (2.154) and (2.155) values of Ω2, respectively. The eigenforms (2.157) and (2.158)

are presented on Figure 2.27 and Figure 2.28, respectively, for the first two modes.

If lρΩ2 � 1 and E−1 � ρ we consider a rod with the �stronger� inner part. In

case of Ω2 ≈ πn let us first assume that lE−1Ω2 & 1. Then, the scaled displacement

can be simplified to the form

U3 =
(−1)nE

lΩ2

sin
(
πn(l + 1 +X3)

)
,

U1 = 1 +X1,

U2 = 2 cos(πn(X2 − l)),

(2.159)

see Figure 2.29 for the first two modes. If lE−1Ω2 � 1, then, multiplying Ui by
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Figure 2.28: Local low-frequency regime for the inner part (2.158); l = 1

[
lΩ2

E
+

1

2lρΩ2

]
we derive the eigenform as

U3 = (−1)n sin
(
πn(l + 1 +X3)

)
,

U1 = 0,

U2 = 0,

(2.160)

see Figure 2.30.

When Ω2 ≈
π(2m− 1)

2
the scaled displacement is given by

U3 = (−1)m+1 sin
π(2m− 1)(l + 1 +X3)

2
,

U1 = 1,

U2 = cos
π(2m− 1)(X2 − l)

2
,

(2.161)

see Figure 2.31.

Case 3. If l(ρ+ E−1)Ω2 ∼ 1, we can write down for Ω2

Ω2 ∼
1

l(ρ+ E−1)
� l

c
. (2.162)
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Figure 2.29: Local low-frequency regime for the inner part (2.159); l = 1,
E

Ω2

= 1

2.2.6.3 Local low-frequency regime for the outer parts

The conditions Ω1 & 1 and Ω2 � 1 characterise the local low-frequency regime

for the outer parts. The frequency equation is then written as

cot 2Ω1 =
E + ρ−1

l
Ω1, (2.163)

with the approximate natural form given by

U3 =

E

l
Ω1(l + 1 +X3)

sin Ω1 +
E

l
Ω1 cos Ω1

,

U1 =
sin
(
Ω1(1 +X1)

)
+
E

l
Ω1 cos

(
Ω1(1 +X1)

)
sin Ω1 +

E

l
Ω1 cos Ω1

,

U2 =
sin 2Ω1 +

E

l
Ω1 cos 2Ω1

sin Ω1 +
E

l
Ω1 cos Ω1

.

(2.164)
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Figure 2.30: Local low-frequency regime for the inner part (2.160); l = 1

Case 1. Assuming (E + ρ−1)Ω1 � l, we infer that | cot 2Ω1| � 1 and

Ω1 ≈
π(2n− 1)

4
, with n = 1, 2, 3, . . . . (2.165)

From the conditions Ω2 � 1 and E + ρ−1Ω1 � l we deduce

n� min

[
l

E + ρ−1
,
l

c

]
. (2.166)

Then, the eigenform is reduced to

U3 = 0,

U1 =
sin

π(2n− 1)(1 +X1)

4

sin
π(2n− 1)

4

,

U2 = 2 cos
π(2n− 1)

4
.

(2.167)

Figure 2.32 illustrates the profile.

Similarly to the previous section, the Case 1 characterised by (E + ρ−1)Ω1 � l

describes local low-frequency vibrations in a rod without high contrast in material

parameters of components.
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Figure 2.31: Local low-frequency regime for the inner part (2.161); l = 1

Case 2. If (E + ρ−1)Ω1 � l, then, (2.163) leads to

Ω1 ≈ πn, with n = 1, 2, 3, . . . , (2.168)

and

Ω1 ≈
π(2m− 1)

2
, with m = 1, 2, 3, . . . . (2.169)

Using the conditions Ω2 � 1 and E + ρ−1Ω1 � l, we obtain

l

E + ρ−1
� n,m� l

c
. (2.170)

In the Case 2 the condition (E+ρ−1)Ω1 � l allows either a rod with a �stronger�

inner part or with �stronger� outer parts.

If a rod has the �stronger� inner part we assume that EΩ1 � l and ρ−1 � E.

Then for (2.168) values of Ω1 we simplify the scaled displacement to the form

U3 = l + 1 +X3,

U1 = cos
(
πn(1 +X1)

)
,

U2 = 1,

(2.171)
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Figure 2.32: Local low-frequency regime for the outer parts (2.167); l = 1

see Figure 2.33 for the first two modes. If Ω1 ≈
π(2m− 1)

2
we divide Ui by 2El−1Ω1

to derive the approximate scaled displacement as

U3 = l + 1 +X3,

U1 = cos
π(2m− 1)(1 +X1)

2
,

U2 = −1,

(2.172)

see Figure 2.34. In (2.171), (2.172), and all further cases of current subsection we omit

the common factor (−1)n if Ω1 ≈ πn and (−1)m+1 if Ω1 ≈
π(2m− 1)

2
.

If ρ−1Ω1 � l and E � ρ−1, then, a rod has the �stronger� outer parts. Let us

first consider EΩ1 & l. For (2.168) the scaled displacement takes the form

U3 = l + 1 +X3,

U1 =
l

EΩ1

sin
(
πn(1 +X1)

)
+ cos

(
πn(1 +X1)

)
,

U2 = 1,

(2.173)

see Figure 2.35. For (2.169) dividing Ui by El−1Ω1 we obtain the approximate eigenform
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Figure 2.33: Local low-frequency regime for the outer parts (2.171); l = 1

as
U3 = l + 1 +X3,

U1 =
l

EΩ1

sin
π(2m− 1)(1 +X1)

2
+ cos

π(2m− 1)(1 +X1)

2
,

U2 = −1,

(2.174)

see Figure 2.36.

If EΩ1 � l for Ω1 ≈ πn we multiply Ui by

[
EΩ1

l
+

lρ

2Ω1

]
and approximate the

scaled displacement to the form

U3 = 0,

U1 = sin
(
πn(1 +X1)

)
,

U2 = 0,

(2.175)

see Figure 2.37. When Ω1 ≈
π(2m− 1)

2
the eigenform is derived as

U3 = 0,

U1 = sin
π(2m− 1)(1 +X1)

2
,

U2 = 0,

(2.176)
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Figure 2.34: Local low-frequency regime for the outer parts (2.172); l = 1

see Figure 2.38.

Case 3. If (E + ρ−1)Ω1 ∼ l, the conditions for Ω1 can be written down as

Ω1 ∼
l

E + ρ−1
� l

c
. (2.177)

2.3 A three-component rod with variable material

parameters

Next, our analysis is extended to a three-component rod with the densities and

Young’s moduli of parts depending on the coordinate. Since the exact solution could

not be found in this case, below we adapt a more general perturbation technique.

2.3.1 Statement of the problem

Consider an elastic rod composed of three inhomogeneous parts. The axis Ox

is chosen such that the origin O is located in the middle of the inner part. The rod
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Figure 2.35: Local low-frequency regime for the outer parts (2.173); l = 1,
1

EΩ1

= 1

is finite, with the outer parts having free or fixed ends. Continuity is assumed at the

interfaces. The inner part of the rod occupies the region |x| ≤ l1, with the outer parts

specified by −l1 − l3 ≤ x ≤ −l1 and l1 ≤ x ≤ l1 + l2, see Figure 2.39.

The governing equations are written in the form

d

dx

(
Ei(x)

dui
dx

)
+ ρi(x)ω2ui = 0, i = 1, 2, 3, (2.178)

where ui are the displacements, ω is the vibration frequency, Ei(x) are Young’s moduli,

ρi(x) are the material densities. Here the indices 1, 2, and 3 correspond to the inner,

right outer, and left outer parts, respectively.

We introduce dimensionless longitudinal variables

Xi =
x

li
, i = 1, 2, 3. (2.179)

The variable material parameters are taken as

Ei(Xi) = E∗i Ẽi(Xi), ρi(Xi) = ρ∗i ρ̃i(Xi), ci(Xi) = c∗i c̃i(Xi), i = 1, 2, 3, (2.180)

where ci(Xi) =
√
Ei(Xi)/ρi(Xi) are the longitudinal wave speeds and E∗i , ρ

∗
i , and c∗i

are typical values of the associated quantities.
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Figure 2.36: Local low-frequency regime for the outer parts (2.174); l = 1,
1

EΩ1

= 1

The dimensionless parameters are given by

Eij =
E∗i
E∗j

, ρij =
ρ∗i
ρ∗j
, cij =

c∗i
c∗j
, lij =

li
lj
, i, j = 1, 2, 3, (2.181)

along with the scaled frequencies

Ωi =
ωli
c∗i
, i = 1, 2, 3. (2.182)

Thus, the dimensionless equations of motion follow from (2.178) as

d

dXi

(
Ẽi(Xi)

dui
dXi

)
+ ρ̃i(Xi)Ω

2
iui = 0, i = 1, 2, 3. (2.183)

The continuity conditions for displacements and stresses are formulated as

u1|X1=−1 = u3|X3=−l13 ,

u1|X1=1 = u2|X2=l12
,

(2.184)

and

E13l31Ẽ1(X1)
du1

dX1

∣∣∣∣
X1=−1

= Ẽ3(X3)
du3

dX3

∣∣∣∣
X3=−l13

,

E12l21Ẽ1(X1)
du1

dX1

∣∣∣∣
X1=1

= Ẽ2(X2)
du2

dX2

∣∣∣∣
X2=l12

.

(2.185)
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Figure 2.37: Local low-frequency regime for the outer parts (2.175); l = 1

We consider the boundary conditions at free ends

du3

dX3

∣∣∣∣
X3=−l13−1

= 0,

du2

dX2

∣∣∣∣
X2=l12+1

= 0,

(2.186)

and fixed ends
u3|X3=−l13−1 = 0,

u2|X2=l12+1 = 0.
(2.187)

Now, we introduce a small parameter ε � 1 associated with contrast material

properties of the components. Then, the global low-frequency regime is considered in

the form Ω2
1 ∼ Ω2

2 ∼ Ω2
3 ∼ ε, with the frequencies and the displacements expanded as

asymptotic series

Ω2
i = ε(Ω2

i0 + εΩ2
i1 + ε2Ω2

i2 + . . .), (2.188)

and

ui = ui0 + εui1 + ε2ui2 + . . . . (2.189)

Below, we analyse this problem for several cases of different boundary conditions

and small parameter.
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Figure 2.38: Local low-frequency regime for the outer parts (2.176); l = 1

1

l1−l1 l1 + l2−l3 − l1 0 x

Figure 2.39: A three-component inhomogeneous rod

2.3.2 Free ends

In this section low-frequency vibrations of a rod with variable material parameters

and free ends are studied.

2.3.2.1 �Weaker� inner part

First, the small parameter is chosen as ε = E12l21. Thus, if l21 = O(1), then

E1 � E2 corresponding to a �weaker� inner part of the rod. Here and below, we also

assume that E23l32 = O(1).

On substituting the expansion (2.189) into the equation of motion (2.183) for the
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�stronger� outer parts, at leading order ε0 we obtain

d

dXi

(
Ẽi(Xi)

dui0
dXi

)
= 0, i = 2, 3, (2.190)

subject to
du30

dX3

∣∣∣∣
X3=−l13−1

= 0,

du30

dX3

∣∣∣∣
X3=−l13

= 0,

(2.191)

and
du20

dX2

∣∣∣∣
X2=l12

= 0,

du20

dX2

∣∣∣∣
X2=l12+1

= 0.

(2.192)

Integrating (2.190) over X3 (−l13 − 1 ≤ X3 ≤ −l13) and X2 (l12 ≤ X2 ≤ l12 + 1),

we deduce
dui0
dXi

=
Ci

Ẽi(Xi)
, i = 2, 3, (2.193)

where Ci are constants. From (2.191) and (2.192) we can conclude that

u30 = CL,

u20 = CR,
(2.194)

where CL and CR are constants.

The leading order problem for the inner displacement is written as

d

dX1

(
Ẽ1(X1)

du10

dX1

)
= 0, (2.195)

with
u10|X1=−1 = CL,

u10|X1=1 = CR.
(2.196)

Integrating (2.195) over X1 (−1 ≤ X1 ≤ 1) and employing (2.196), we have

u10 = CL +

X1∫
−1

CR − CL
Ẽ1(X1)e1

dX1, (2.197)
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where

e1 =

1∫
−1

Ẽ−1
1 (X1)dX1. (2.198)

It is worth mentioning that the leading order displacement (2.194) and (2.197) corre-

lates with (2.49) obtained above, see also Figure 2.4.

Frequency estimations and a relation between CL and CR can be obtained by

analysing the outer parts at next order ε. The problem is formulated as follows

d

dXi

(
Ẽi(Xi)

dui1
dXi

)
+ ρ̃i(Xi)Ω

2
i0ui0 = 0, i = 2, 3, (2.199)

subject to
du31

dX3

∣∣∣∣
X3=−l13−1

= 0,

Ẽ3(X3)
du31

dX3

∣∣∣∣
X3=−l13

= E23l32Ẽ1(X1)
du10

dX1

∣∣∣∣
X1=−1

,

(2.200)

and

Ẽ2(X2)
du21

dX2

∣∣∣∣
X2=l12

= Ẽ1(X1)
du10

dX1

∣∣∣∣
X1=1

,

du21

dX2

∣∣∣∣
X2=l12+1

= 0,

(2.201)

where due to (2.197)
du10

dX1

∣∣∣∣
X1=±1

=
CR − CL
Ẽ1(±1)e1

. (2.202)

Integrating (2.199) over X2 (l12 ≤ X2 ≤ l12 + 1) and using (2.194) for u20, we

arrive at

Ẽ2(X2)
du21

dX2

∣∣∣∣
X2=l12+1

− Ẽ2(X2)
du21

dX2

∣∣∣∣
X2=l12

= −Ω2
20CRr2, (2.203)

where

r2 =

l12+1∫
l12

ρ̃2(X2)dX2. (2.204)

Next, adopting the conditions (2.201), we derive the expression for Ω2
20 in the form

Ω2
20 =

CR − CL
e1r2CR

. (2.205)
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The expression for Ω2
30 is deduced similarly as

Ω2
30 =

E23l32(CL − CR)

e1r3CL
, (2.206)

where

r3 =

−l13∫
−l13−1

ρ̃3(X3)dX3. (2.207)

Combining the relation Ω2 = l23c32Ω3 and (2.206), we obtain the expression for

Ω2
20 in the form

Ω2
20 =

l23ρ23(CL − CR)

e1r3CL
. (2.208)

Therefore, from (2.205) and (2.208) we get Ω20 = 0 associated with the rigid body

motion as well as

Ω2
20 =

1

e1

(
1

r2

+
ρ23l23

r3

)
, (2.209)

with

CL = −CRρ23l23
r2

r3

. (2.210)

In case when Ei and ρi are independent of Xi, the expressions (2.209) and (2.210)

can be simplified as

Ω2
20 =

1

2
(1 + ρ23l23), (2.211)

with

CL = −CRρ23l23, (2.212)

respectively.

In case of a piecewise-homogeneous three-component rod studied previously in

Section 2.2.2, ρ23 = 1, l23 = 1, and

Ω2
2 ∼

E

l
, (2.213)

with

CL = −CR, (2.214)

which matches the previous results, see (2.47).
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2.3.2.2 �Weaker� outer parts

Next, we consider the small parameter ε = E21l12. Setting l12 = O(1), we get

E2 � E1 and E3 � E1 as E23l32 = O(1). This implies a rod with �weaker� outer

parts.

At leading order ε0 the equation of motion (2.183) for a �stronger� inner part

reduces to
d

dX1

(
Ẽ1(X1)

du10

dX1

)
= 0, (2.215)

subject to
du10

dX1

∣∣∣∣
X1=±1

= 0, (2.216)

which gives

u10 = C, (2.217)

where C is a constant.

The leading order problem for the displacement of the outer parts can be written

as
d

dXi

(
Ẽi(Xi)

dui0
dXi

)
= 0, i = 2, 3, (2.218)

subject to
du30

dX3

∣∣∣∣
X3=−l13−1

= 0,

u30|X3=−l13 = C,

(2.219)

and
u20|X2=l12

= C,

du20

dX2

∣∣∣∣
X2=l12+1

= 0.
(2.220)

The result is

u30 = u20 = C. (2.221)

The leading order displacement profile (2.217) and (2.221) matches the formula (2.73)

in Section 2.2.3, which describes rigid body motion of a piecewise-homogeneous rod

with free ends.
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To obtain leading order estimates for frequencies we study the boundary value

problem for a �stronger� part at next order ε. The equation of motion for the inner

part is given by
d

dX1

(
Ẽ1(X1)

du11

dX1

)
+ ρ̃1(X1)Ω2

10u10 = 0, (2.222)

subject to

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=−1

= Ẽ3(X3)
du30

dX3

∣∣∣∣
X3=−l13

,

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=1

= Ẽ2(X2)
du20

dX2

∣∣∣∣
X2=l12

,

(2.223)

where from (2.221) we deduce that

du30

dX3

∣∣∣∣
X3=−l13

= 0,

du20

dX2

∣∣∣∣
X2=l12

= 0.

(2.224)

Next, we integrate (2.222) over X1 (−1 ≤ X1 ≤ 1) and substitute (2.217) for u10

to obtain

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=1

− Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=−1

= −Ω2
10Cr1, (2.225)

where

r1 =

1∫
−1

ρ̃1(X1)dX1. (2.226)

Then, Ω10 = 0 follows from (2.225) and (2.224).

The uniform solutions for the displacements of inner (2.217) and outer parts

(2.221) together with zero-frequency correspond to the rigid body motion of a rod with

free ends.

2.3.3 Fixed ends

Let us now consider low-frequency vibrations of a rod with variable material

parameters and fixed ends.
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2.3.3.1 �Weaker� inner part

Let us assume that ε = E12l21, meaning that the rod has a �weaker� inner part.

The leading order problem for the �stronger� outer parts is formulated as

d

dXi

(
Ẽi(Xi)

dui0
dXi

)
= 0, i = 2, 3, (2.227)

subject to

u30 |X3=−l13−1 = 0,

du30

dX3

∣∣∣∣
X3=−l13

= 0,
(2.228)

and
du20

dX2

∣∣∣∣
X2=l12

= 0,

u20 |X2=l12+1 = 0.

(2.229)

Then, for the leading order displacement of the outer parts we arrive at

u30 = u20 = 0. (2.230)

Next, we consider the boundary value problem for the inner part at ε0. The

equation of motion

d

dX1

(
Ẽ1(X1)

du10

dX1

)
= 0, (2.231)

is subject to

u10|X1=±1 = 0, (2.232)

which results in

u10 = 0. (2.233)

Thus, we can conclude that the limit ε = E12l21 � 1 in case of fixed ends does not

allow low frequency vibrations.
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2.3.3.2 �Weaker� outer parts

Now, the focus is on the small parameter ε = E21l12 associated with a �stronger�

inner part of the rod.

The ε0 boundary value problem for the inner part is formulated similarly to

(2.215) and (2.216) leading to

u10 = C. (2.234)

For the displacement of the outer parts we have at leading order

d

dXi

(
Ẽi(Xi)

dui0
dXi

)
= 0, i = 2, 3, (2.235)

subject to
u30 |X3=−l13−1 = 0,

u30 |X3=−l13 = C,
(2.236)

and
u20 |X2=l12 = C,

u20 |X2=l12+1 = 0.
(2.237)

The resulting displacement profile is derived by integrating (2.235) over X3

(−l13 − 1 ≤ X3 ≤ −l13) and X2 (l12 ≤ X2 ≤ l12 + 1) and applying the boundary

conditions (2.236) and (2.237). Thus, we have

u30 =

X3∫
−l13−1

C

Ẽ3(X3)e3

dX3,

u20 = C −
X2∫
l12

C

Ẽ2(X2)e2

dX2,

(2.238)

where

e3 =

−l13∫
−l13−1

Ẽ−1
3 (X3)dX2, e2 =

l12+1∫
l12

Ẽ−1
2 (X2)dX3. (2.239)

The solutions (2.234) and (2.238) are in agreement with the previously obtained results

(2.120), see also Figure 2.18.
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At next order ε the problem for the inner part is formulated as follows

d

dX1

(
Ẽ1(X1)

du11

dX1

)
+ ρ̃1(X1)Ω2

10u10 = 0, (2.240)

subject to

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=−1

= E32l23Ẽ3(X3)
du30

dX3

∣∣∣∣
X3=−l13

,

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=1

= Ẽ2(X2)
du20

dX2

∣∣∣∣
X2=l12

,

(2.241)

where, according to (2.238),

du30

dX3

∣∣∣∣
X3=−l13

=
C

Ẽ3(X3)e3

,

du20

dX2

∣∣∣∣
X2=l12

= − C

Ẽ2(X2)e2

.

(2.242)

We integrate (2.240) over X1 (−1 ≤ X1 ≤ 1), insert the uniform solution (2.234)

for u10, and adopt the conditions (2.241) to arrive at the expression for Ω2
10 in the form

Ω2
10 =

1

e2r1

+
1

e3r1

. (2.243)

In case when Ei and ρi are constants the expression for the frequency Ω1 trans-

forms to

Ω2
1 ∼

l

E
, (2.244)

which coincides with the results for a piecewise-homogeneous rod with fixed ends, see

(2.117).

2.3.4 Mixed boundary conditions

Finally, we consider low-frequency vibrations of an inhomogeneous rod subject

to mixed boundary conditions.
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2.3.4.1 �Weaker� inner part

Let us start with a �weaker� inner part assuming the small parameter ε = E12l21.

The boundary value problem for the �stronger� parts at leading order ε0 is for-

mulated as
d

dXi

(
Ẽi(Xi)

dui0
dXi

)
= 0, i = 2, 3, (2.245)

subject to
u30|X3=−l13−1 = 0,

du30

dX3

∣∣∣∣
X3=−l13

= 0,
(2.246)

and
du20

dX2

∣∣∣∣
X2=l12

= 0,

du20

dX2

∣∣∣∣
X2=l12+1

= 0.

(2.247)

Thus, we arrive at the displacement profile for the outer parts in the form

u30 = 0,

u20 = C.
(2.248)

At leading order ε0 the equation of motion for the inner part

d

dX1

(
Ẽ1(X1)

du10

dX1

)
= 0, (2.249)

subject to the boundary conditions

u10|X1=−1 = 0,

u10|X1=1 = C,
(2.250)

provides the displacement in the form

u10 =

X1∫
−1

C

Ẽ1(X1)e1

dX1. (2.251)
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The obtained leading order displacement (2.248) and (2.251) confirms the correspond-

ing result (2.147), see also Figure 2.24 for E/l� 1.

At next order the problem for the outer right part with a non-zero displacement

is written in the form

d

dX2

(
Ẽ2(X2)

du21

dX2

)
+ ρ̃2(X2)Ω2

20u20 = 0, (2.252)

with

Ẽ2(X2)
du21

dX2

∣∣∣∣
X2=l12

= Ẽ1(X1)
du10

dX1

∣∣∣∣
X1=1

,

du21

dX2

∣∣∣∣
X2=l12+1

= 0,

(2.253)

where, using (2.251), we get

du10

dX1

∣∣∣∣
X1=1

=
C

Ẽ1(1)e1

. (2.254)

Integrating (2.252) over X2 (l12 ≤ X2 ≤ l12 + 1) with (2.248) for u20 and using

the conditions (2.253), we arrive at

Ω2
20 =

1

e1r2

. (2.255)

In case when Ei and ρi are independent of Xi, the frequency expression reduces to

Ω2
2 ∼

E

2l
. (2.256)

This correlates with the formula (2.145) in Section 2.2.6.1.

2.3.4.2 �Weaker� outer parts

Next, we consider the small parameter ε = E21l12 associated with the �weaker�

outer parts.

The leading order boundary value problem for a �stronger� inner part is given

by (2.215) and (2.216), which results in

u10 = C. (2.257)
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The equations of motion for the outer parts at ε0 can be written as

d

dXi

(
Ẽi(Xi)

dui0
dXi

)
= 0, i = 2, 3, (2.258)

subject to
u30|X3=−l13−1 = 0,

u30|X3=−l13 = C,
(2.259)

and
u20|X2=l12

= C,

du20

dX2

∣∣∣∣
X2=l12+1

= 0.
(2.260)

This provides the leading order displacements in the form

u30 =

X3∫
−l13−1

C

Ẽ3(X3)e3

dX3,

u20 = C.

(2.261)

As in the previous case, (2.257) and (2.261) match the displacement profile (2.147) for

mixed boundary conditions, see Figure 2.24 for E/l� 1.

The boundary value problem for the inner part at ε is derived as

d

dX1

(
Ẽ1(X1)

du11

dX1

)
+ ρ̃1(X1)Ω2

10u10 = 0, (2.262)

subject to

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=−1

= Ẽ3(X3)
du30

dX3

∣∣∣∣
X3=−l13

,

Ẽ1(X1)
du11

dX1

∣∣∣∣
X1=1

= Ẽ2(X2)
du20

dX2

∣∣∣∣
X2=l12

,

(2.263)

where, due to (2.261),
du30

dX3

∣∣∣∣
X3=−l13

=
C

Ẽ3(−l13)e3

,

du20

dX2

∣∣∣∣
X2=l12

= 0.

(2.264)
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Following the same procedure as in previous cases, we obtain the leading order

estimate for the sought-for frequency as

Ω2
10 =

1

e3r1

. (2.265)

For a piecewise-homogeneous rod considered in Section 2.2.6, (2.265) becomes

Ω2
1 ∼

l

2E
, (2.266)

which matches (2.144).

2.4 A multi-component rod

Finally, we present an asymptotic model of low-frequency vibrations of a piecewise-

homogeneous multi-component rod.

2.4.1 Statement of the problem

We study a rod composed of two materials, having finite n number of compo-

nents of length li and a periodic structure, such that the �stronger� parts alternate

the �weaker� parts, see Figure 2.40. We set axis Ox such that the origin O is placed

at the left end of the rod. Continuity conditions hold between the components. For

the �weaker�/�stronger� outer component we assume the end to be fixed or free, re-

spectively.

The dimensionless governing equations for the rod components are given by

d2ui
dX2

i

+ Ω2
iui = 0, i = 1, 2, . . . , n. (2.267)

Let us introduce dimensionless quantities

Bi =
l0 + . . .+ li−1

li
, where l0 = 0, i = 1, 2, . . . , n, (2.268)
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1

0 xl1 l2 . . . ln−1 ln

Figure 2.40: A multi-component piecewise-homogeneous rod

such that the local variables are defined within

Bi ≤ Xi ≤ Bi + 1, i = 1, 2, . . . , n. (2.269)

The continuity conditions for displacements and stresses are written as

ui|Xi=Bi+1 = ui+1|Xi+1=Bi+1
, (2.270)

and
dui
dXi

∣∣∣∣
Xi=Bi+1

= Lii+1

E2

E1

dui+1

dXi+1

∣∣∣∣
Xi+1=Bi+1

, (2.271)

where i = 1, 2, . . . , n− 1 and Lkj = lk/lj.

We assume free ends if outer parts are �stronger�

du1

dX1

∣∣∣∣
X1=0

= 0,

dun
dXn

∣∣∣∣
Xn=Bn+1

= 0,

(2.272)

or fixed ends if outer parts are �weaker�

u1|X1=0 = 0,

un|Xn=Bn+1 = 0.
(2.273)

In addition, we denote ε =
E1

E2

if the fist part of the rod is �weaker� or ε =
E2

E1
if the fist part of the rod is �stronger�. Below we focus on the global low-frequency
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regime of the form Ω2
1 ∼ Ω2

2 ∼ . . . ∼ Ω2
n ∼ ε. Similarly to the previous section, we

expand the frequencies and the displacements as asymptotic series for the each part of

the rod, see (2.188) and (2.189), respectively.

Noting that the relations between frequency parameters of the �stronger� and

�weaker� parts can be formulated as

Ωi = Lii+1

c1

c2

Ωi+1, (2.274)

we can conclude that Lii+1

c1

c2

∼ 1. Then, assuming that Lii+1 ∼ 1, we infer that

ρ1

ρ2

∼ ε if the fist part of the rod is �weaker� or
ρ2

ρ1

∼ ε if the fist part of the rod

is �stronger�. This conclusion coincides with the condition on parameters (2.48) for a

three-component piecewise-homogeneous rod.

Displacements of the �stronger� components

To deduce the displacements for the �stronger� parts we substitute (2.189) into

(2.267) and the conditions (2.271) and (2.272) at leading order to obtain the boundary

value problem as equations
d2ui0
dX2

i

= 0, (2.275)

subject to the Neumann boundary conditions

dui0
dXi

∣∣∣∣
Xi=Bi

= 0,

dui0
dXi

∣∣∣∣
Xi=Bi+1

= 0.

(2.276)

Thus, for the displacements of the �stronger� parts we have uniform solutions

ui0 = Ci, (2.277)

where Ci are constants and

Cj = 0, for j < 1 or j > n. (2.278)
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As we consider the rod having n number of parts, Cj with j < 1 or j > n refers to

the non existing parts. However, this notation allows us to formulate further boundary

value problems without splitting them on separate cases for the inner and outer parts.

Displacements of the �weaker� components

The leading order boundary value problem for the �weaker� components follows

from substitution of (2.189) into (2.267) and the conditions (2.270) and (2.273) as

d2ui0
dX2

i

= 0, (2.279)

subject to the Dirichlet boundary conditions

ui0|Xi=Bi
= Ci−1,

ui0|Xi=Bi+1 = Ci+1.
(2.280)

This provides us with the displacements of the �weaker� parts in the form

ui0 = Ci−1 + (Ci+1 − Ci−1)(Xi −Bi). (2.281)

The frequency estimation

To determine the leading order estimate of dimensionless frequencies we need to

consider the boundary value problem for the �stronger� parts at ε. The equations of

motion are approximated to the form

d2ui1
dX2

i

+ Ω2
i0ui0 = 0, (2.282)

with the boundary conditions

dui1
dXi

∣∣∣∣
Xi=Bi

= Lii−1

du(i−1)0

dXi−1

∣∣∣∣
Xi−1=Bi−1+1

,

dui1
dXi

∣∣∣∣
Xi=Bi+1

= Lii+1

du(i+1)0

dXi+1

∣∣∣∣
Xi+1=Bi+1

,

(2.283)
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where, according to (2.281),

dui1
dXi

∣∣∣∣
Xi=Bi

= Lii−1(Ci − Ci−2),

dui1
dXi

∣∣∣∣
Xi=Bi+1

= Lii+1(Ci+2 − Ci).

(2.284)

Then, we can integrate equations (2.282) over Xi (Bi ≤ Xi ≤ Bi+1), use (2.277)

for ui0, and with help of (2.283) derive the leading order estimations for the frequencies

of the �stronger� parts as

Ω2
i0 =

(Lii−1 + Lii+1)Ci − Lii−1Ci−2 − Lii+1Ci+2

Ci
. (2.285)

Keeping in mind that the relations between frequency parameters of the �stronger�

parts are given by

Ωk0 = LkjΩj0, (2.286)

we can use this model to find a solution for any particular number of components.

The number of the low eigenfrequencies is equal to the number of �stronger� parts.

Moreover, from (2.277) and (2.281) it can be observed that �stronger� parts at lead-

ing order always perform a rigid body motion, while �weaker� parts suffer an almost

homogeneous deformation.

2.4.2 Examples

Further we provide several examples, describing the methodology developed in

the previous section.

2.4.2.1 A three-component rod with two �stronger� parts

Let us now implement the model to find the low-frequency vibrations profile for

a three-component rod with two �stronger� parts. In this case to keep periodic struc-

ture the rod should have the �stronger� outer components subject to the Neumann
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boundary conditions. Using (2.285), we can write down for the �stronger� parts

Ω2
10 = L1

2

C1 − C3

C1

,

Ω2
30 = L3

2

C3 − C1

C3

,

(2.287)

with

Ω10 = L1
3Ω30. (2.288)

The expressions (2.287) with (2.288) provide us with the relation between the

constants and with the leading order estimation for the lowest eigenfrequencies

C3 = (1− k)C1, Ω2
10 = kL1

2, (2.289)

where k = 0 or k = 1 + L1
3.

If l1 = l3 as in Section 2.2, then k = 0 or k = 2 and

Ω2
1 = 0 or Ω2

1 = 2εL1
2, (2.290)

which correlates with the previous solutions (2.73) and (2.47), respectively.

Using (2.277) and (2.281) with (2.289) we can derive the scaled displacement

profiles as
U10 = 1,

U20 = 1− k(X2 −B2),

U30 = 1− k,

(2.291)

see Figure 2.41 with a symmetric motion of the rod when k = 0 and an antisymmetric

motion when k = 2.

2.4.2.2 A four-component rod with two �stronger� parts

For a four-component rod with two �stronger� parts we have

Ω2
10 = L1

2

C1 − C3

C1

,

Ω2
30 =

(L3
2 + L3

4)C3 − L3
2C1

C3

,

(2.292)
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Figure 2.41: Displacement profiles (2.291); l1 = l2 = l3

with

Ω10 = L1
3Ω30. (2.293)

Thus, the relation between constants and expression for the eigenfrequencies are

deduced as

C3 = (1− k)C1, Ω2
10 = kL1

2, (2.294)

where

k =
1 + L1

3 + L1
3L

2
4 ±

√
(1 + L1

3 + L1
3L

2
4)2 − 4L1

3L
2
4

2
. (2.295)

In case when l1 = l3 and l2 = l4, we get a simplification k =
3±
√

5

2
.

The eigenforms are given by

U10 = 1,

U20 = 1− k(X2 −B2),

U30 = 1− k,

U40 = (1− k)(1−X4 +B4).

(2.296)

On Figure (2.42) we can see that as the rod is subject to the mixed boundary conditions

we can not separate symmetric and antisymmetric motions.
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Figure 2.42: Displacement profiles (2.296); l1 = l2 = l3 = l4

2.4.2.3 A five-component rod with two �stronger� parts

As now we study a five-component rod with two �stronger� parts, it can be noted

that the rod should have the �weaker� outer parts subject to the Dirichlet boundary

conditions, thus,

Ω2
20 =

(L2
1 + L2

3)C2 − L2
3C4

C2

,

Ω2
40 =

(L4
3 + L4

5)C4 − L4
3C2

C4

,

(2.297)

with the relation

Ω20 = L2
4Ω2

40. (2.298)

Then, the relation between constants and the leading order eigenfrequencies are

followed as

C4 = (1 + L3
1 − k)C2, Ω2

20 = kL2
3, (2.299)

where

k =
1 + L3

1 + L2
4 + L2

4L
3
5 ±

√
(L2

4L
3
5 + L2

4 − L3
1 − 1)2 + 4L2

4

2
. (2.300)

Also, for the rod with l1 = l3 = l5 and l2 = l4 we get k = 1 or k = 3.
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The scaled displacement profiles are written in the form

U10 = X1,

U20 = 1,

U30 = 1 + (L3
1 − k)(X3 −B3),

U40 = 1 + L3
1 − k,

U50 = (1 + L3
1 − k)(1−X5 +B5),

(2.301)

see Figure 2.43. Again, we can observe a symmetric motion when k = 1 and an

antisymmetric motion when k = 3.

-1
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 0

 1
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U
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U

x
a) k = 1 b) k = 3

Figure 2.43: Displacement profiles (2.301); l1 = l2 = l3 = l4 = l5

2.4.2.4 A five-component rod with three �stronger� parts

This example describes a behaviour of a five-component rod with three �stronger�

parts. Thus, the rod has both ends subjected to the Neumann boundary conditions.
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Then,

Ω2
10 = L1

2

C1 − C3

C1

,

Ω2
30 =

(L3
2 + L3

4)C3 − L3
2C1 − L3

4C5

C3

,

Ω2
50 = L5

4

C5 − C3

C5

,

(2.302)

with

Ω10 = L1
3Ω30 = L1

5Ω50. (2.303)

The corresponding relations between the constants and the leading order fre-

quency estimation are found in the form

C3 = (1− k)C1, C5 =
1− k

1− L4
2L

5
1k
C1, Ω2

10 = L1
2k, (2.304)

where k = 0, and

k =
L1

5L
2
4 + L1

3 + L1
3L

2
4 + 1

2
±

±
√

(L1
5L

2
4 + L1

3 + L1
3L

2
4 + 1)2 − 4L2

4(L1
5 + L1

3 + L1
3L

1
5)

2
. (2.305)

Thus, for l1 = l3 = l5 and l2 = l4 the coefficient is reduced to k = 0, k = 1, and k = 3.

The natural forms are derived as

U10 = 1,

U20 = 1− k(X2 −B2),

U30 = 1− k,

U40 = 1− k +
L4

2L
5
1k(1− k)

1− L4
2L

5
1k

(X4 −B4),

U50 =
1− k

1− L4
2L

5
1k
,

(2.306)

see Figure 2.44. Here, as the middle part is �stronger� and performs a rigid body

behaviour, we have only a symmetric motion for each displacement profile.
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Figure 2.44: Displacement profiles (2.306); l1 = l2 = l3 = l4 = l5

2.4.2.5 A six-component rod with three �stronger� parts

Now, we consider a six-component rod with three �stronger� parts having free

end of the �stronger� left outer part and fixed end of the �weaker� right outer part.

Thus, we can write down

Ω2
10 = L1

2

C1 − C3

C1

,

Ω2
30 =

(L3
2 + L3

4)C3 − L3
2C1 − L3

4C5

C3

,

Ω2
50 =

(L5
4 + L5

6)C5 − L5
4C3

C5

,

(2.307)

with

Ω10 = L1
3Ω30 = L1

5Ω50. (2.308)

The expressions (2.307) with the relations (2.308) provide us with

C3 = (1− k)C1, and C5 =
1− k

1 + L4
6 − L4

2L
5
1k
C1. (2.309)

Also, we can derive the frequency equation for Ω2
10 as

Ω6
10 − (L1

2)3L1
3L

1
5L

2
4L

2
6 − Ω4

10L
1
2(L1

5(L2
4 + L2

6) + L1
3(1 + L2

4) + 1)+

+ Ω2
10(L1

2)2(L1
5(L2

4 + L2
6) + L1

3L
2
4 + L1

3L
1
5(L2

4 + L2
6 + L2

4L
2
6)) = 0. (2.310)
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We get the cubic equation, where it is possible to find a solution in the form Ω2
10 = L1

2k.

In case of l1 = l3 = l5 and l2 = l4 = l6 the equation (2.310) reduces to

Ω6
10 − 5L1

2Ω4
10 + 6(L1

2)2Ω2
10 − (L1

2)3 = 0. (2.311)

This equation has three distinct real roots. Thus, we can write down for the leading

order frequency

Ω2
10 = kL1

2, where k = 0.1981; 1.555; 3.247, (2.312)

where k is calculated numerically.

We find the scaled displacement profiles in the form

U10 = 1,

U20 = 1− k(X2 −B2),

U30 = 1− k,

U40 = 1− k − (1− k)(L4
6 − L4

2L
5
1k)

1 + L4
6 − L4

2L
5
1k

)(X4 −B4),

U50 =
1− k

1 + L4
6 − L4

2L
5
1k
,

U60 =
1− k

1 + L4
6 − L4

2L
5
1k

(1−X6 +B6),

(2.313)

see Figure 2.45. As the rod has mixed boundary conditions there are no symmetric or

asymmetric vibrations.

2.4.2.6 A seven-component rod with three �stronger� parts

Finally, we study a rod with three �stronger� components out of seven. There-

fore, both outer parts are �weaker� and the rod is subject to the Dirichlet boundary



95

-1

 0

 1

 0  1  2  3  4  5  6

-1

 0

 1

 0  1  2  3  4  5  6

-2

-1

 0

 1

 2

 0  1  2  3  4  5  6

U U U

x x x

a) k = 0.1981 b) k = 1.555 c) k = 3.247

Figure 2.45: Displacement profiles (2.313); l1 = l2 = l3 = l4 = l5 = l6

conditions. We can write down for the frequencies of the �stronger� components

Ω2
20 =

(L2
1 + L2

3)C2 − L2
3C4

C2

,

Ω2
40 =

(L4
3 + L4

5)C4 − L4
3C2 − L4

5C6

C4

,

Ω2
60 =

(L6
5 + L6

7)C6 − L6
5C4

C6

,

(2.314)

with the relations

Ω20 = L1
4Ω40 = L1

6Ω60. (2.315)

Then, the constants are connected as

C4 = (1 + L3
1 − k)C2, and C6 =

1 + L3
1 − k

1 + L5
7 − L5

3L
6
2k
C2, (2.316)

with the frequency equation for Ω2
20 deduced in the from

Ω6
20 − Ω4

20L
2
3(L2

4 + L2
4L

3
5 + L3

5L
2
6 + L2

6L
3
7 + 1 + L3

1)+

+Ω2
20(L2

3)2(L2
4(L3

1 +L3
5 +L3

1L
3
5)+L2

6(L3
5 +L3

7 +L3
1L

3
5 +L3

1L
3
7)+L2

4L
2
6(L3

5 +L3
7 +L3

5L
3
7))−

− (L2
3)3L2

4L
2
6(L3

1L
3
5 + L3

1L
3
7 + L3

5L
3
7 + L3

1L
3
5L

3
7) = 0. (2.317)
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The cubic equation (2.317) has real roots that could be derived in the form Ω2
20 = L2

3k.

If l1 = l3 = l5 = l7 and l2 = l4 = l6 we can simplify (2.317) as

Ω6
20 − 6L2

3Ω4
20 + 10(L2

3)2Ω2
20 − 4(L2

3)3 = 0. (2.318)

This equation has three distinct real roots, that are given by

Ω2
10 = kL2

3, where k = 0.5858; 2; 3.4142, (2.319)

where k is calculated numerically.

The natural forms follow as

U10 = X1,

U20 = 1,

U30 = 1 + (L3
1 − k)(X3 −B3),

U40 = 1 + L3
1 − k,

U50 = 1 + L3
1 − k −

(1 + L3
1 − k)(L5

7 − L5
3L

6
2k)

1 + L5
7 − L5

3L
6
2k

(X5 −B5),

U60 =
1 + L3

1 − k
1 + L5

7 − L5
3L

6
2k
,

U70 =
1 + L3

1 − k
1 + L5

7 − L5
3L

6
2k

(1−X7 +B7).

(2.320)

As the middle part of the rod is �stronger� we get only symmetric vibrations for the

all scaled displacement profiles, see Figure 2.46.

We considered several cases of low-frequency vibrations of multi-component rods.

In each case we provided the displacement profiles and expressions for the sought-

for frequencies that depend on the number of the rod components and the boundary

conditions.
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Figure 2.46: Displacement profiles (2.320); l1 = l2 = l3 = l4 = l5 = l6 = l7
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3 Antiplane shear motion of a composite
elastic circular cylinder

Antiplane shear motion of a composite elastic circular cylinder with an annu-

lar cross section is considered in this chapter focusing on low-frequency vibrations.

First, we review the solution for a homogeneous single-component body. We assume

two types of boundary conditions, namely free and fixed boundary. Next, we study

antiplane shear motion of a two-component piecewise-homogeneous cylinder. For all

considered problems we introduce appropriate scaling for the frequencies and the space

variables and derive the sought-for frequency equations and the displacement profiles.

The global low-frequency behaviour is studied and the general conditions allowing

global low-frequency regimes are obtained. Antiplane shear motion of a two-component

cylinder with variable material parameters is analysed for the low frequencies using a

perturbation technique. Finally, a general asymptotic model for a circular cylinder

with an arbitrary number of components is presented.

3.1 A homogeneous circular cylinder

Let us review antiplane shear motion of an elastic homogeneous circular cylinder.

The body with the free or fixed boundary is specified by r ≤ l. The axis Or is chosen

such that the origin O is placed in the geometrical center of the cross section, see Figure

3.1.

The equation of motion is formulated as

r2d
2u

dr2
+ r

du

dr
+ (ω2r2c−2 −m2)u = 0, (3.1)

where u is the out-of-plane displacement, ω is the vibration frequency, and c =
√
µ/ρ

is the associated shear wave speed, where µ defines the Lamé shear modulus, and ρ is

the density. Further we consider only m = 0.
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0
r0 l

Figure 3.1: The cross section of a homogeneous circular cylinder

Two types of boundary conditions are allowed, namely fixed boundary

u|r=l = 0, (3.2)

and free boundary
du

dr

∣∣∣∣
r=l

= 0. (3.3)

To solve the problem we present frequency and radial variable in dimensionless

form as

Ω =
ωl

c
, (3.4)

and

R =
r

l
. (3.5)
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Then, the equation of motion (3.1) can be transformed into the dimensionless form as

R
d2u

dR2
+
du

dR
+ Ω2Ru = 0, (3.6)

with the boundary conditions (3.2) and (3.3) reformulated as

u|R=1 = 0, (3.7)

and
du

dR

∣∣∣∣
R=1

= 0, (3.8)

respectively.

The displacement can be found as

u = AJ0(ΩR), (3.9)

where A is a constant and Jm(x) is Bessel function of the first kind of order m, for

details on properties of Bessel functions see e.g. Temme (2011). Substituting (3.9) into

the boundary conditions (3.7) and (3.8), we arrive at the frequency equations

J0(Ω) = 0, (3.10)

and

J1(Ω) = 0, (3.11)

for the body with the fixed and free boundary, respectively.

3.2 A two-component piecewise-homogeneous cir-

cular cylinder

Antiplane shear motion of an elastic circular cylinder with annular cross section

and two homogeneous domains is considered in this section.
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3.2.1 Statement of the problem

Here we assume a finite two-component body with the free or fixed boundary of

the outer domain and continuity of stresses and displacements between the domains.

The origin O of axis Or is placed in the geometrical center of the inner domain. Then,

the inner domain is placed between 0 ≤ r ≤ l1 and the outer one is located between

l1 ≤ r ≤ l1 + l2, see Figure 3.2.

0
r0 l1 l2

Figure 3.2: The cross section of a two-component circular cylinder

The equations of motion are provided as

r2d
2ui
dr2

+ r
dui
dr

+ ω2r2c−2
i ui = 0, i = 1, 2, (3.12)
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where ui are the out-of-plane displacements, ω is the vibration frequency, and ci =√
µi/ρi are the shear wave speeds, with µi denote the Lamé shear moduli, and ρi are

the densities. The indices 1 and 2 denote the inner and outer domains, respectively.

To analyse the problem further we need to present scaled frequencies and dimen-

sionless radial variables

Ωi =
ωli
ci
, Ri =

r

li
, i = 1, 2, (3.13)

and transform parameters to the dimensionless form as

µ =
µ1

µ2

, ρ =
ρ1

ρ2

, c =
c1

c2

, l =
l1
l2
. (3.14)

Thus, the equations of motion (3.12) can be reformulated in the dimensionless form as

Ri
d2ui
dR2

i

+
dui
dRi

+ Ω2
iRiui = 0, i = 1, 2. (3.15)

The continuity conditions on displacements and stresses are formulated as

u1|R1=1 = u2|R2=l , (3.16)

and

µ
du1

dR1

∣∣∣∣
R1=1

=
du2

dR2

∣∣∣∣
R2=l

, (3.17)

respectively. The outer boundary can be fixed

u2|R2=l+1 = 0, (3.18)

or free
du2

dR2

∣∣∣∣
R2=l+1

= 0. (3.19)

In view of the equations (3.15), we employ for the displacements

u1 = AJ0(Ω1R1), 0 ≤ R1 ≤ 1,

u2 = BJ0(Ω2R2) + CY0(Ω2R2), l ≤ R2 ≤ l + 1,
(3.20)

where Ym(x) is Bessel function of the second kind of order m.



103

3.2.2 Fixed boundary

The displacement profile (3.20) substituted into conditions (3.16), (3.17), and

(3.18) leads to a set of linear algebraic equations

AJ0(Ω1)−BJ0(Ω2l)− CY0(Ω2l) = 0,

A
µ

c
J1(Ω1)−BJ1(Ω2l)− CY1(Ω2l) = 0,

BJ0(Ω2(l + 1)) + CY0(Ω2(l + 1)) = 0.

(3.21)

The solvability of the latter gives the frequency equation

µJ1(Ω1)
[
J0(Ω2l)Y0(Ω2(l + 1))− Y0(Ω2l)J0(Ω2(l + 1))

]
−

− cJ0(Ω1)
[
J1(Ω2l)Y0(Ω2(l + 1))− Y1(Ω2l)J0(Ω2(l + 1))

]
= 0. (3.22)

Then, using (3.21), we can present the scaled displacement profile as

U1 = J0(Ω1R1),

U2 = J0(Ω1)
J0(Ω2R2)Y0(Ω2(l + 1))− Y0(Ω2R2)J0(Ω2(l + 1))

J0(Ω2l)Y0(Ω2(l + 1))− Y0(Ω2l)J0(Ω2(l + 1))
.

(3.23)

In case of Ω1 � 1 and Ω2 � 1 the frequency equation (3.22) can be simplified

and the following approximations for the frequencies can be obtained

Ω2
1 =

2ρµ−1

(ρ− 1) ln(l−1 + 1)− 1
, (3.24)

and

Ω2
2 =

2l−2

(ρ− 1) ln(l−1 + 1)− 1
. (3.25)

Formulae (3.24) and (3.25) combined with Ω1 � 1 and Ω2 � 1 imply the follow-

ing conditions on the parameters

l� 1, ρ� l−2

ln l−1
, µ� 1

ln l−1
,

l ∼ 1, ρ� 1, µ� 1,

l� 1, ρ� l, µ� l.

(3.26)



104

It can be seen that µ � l and ρ � l for all possible values of l, i.e. l � 1, l ∼ 1 and

l� 1. Thus, (3.24) and (3.25) can be reduced to

Ω2
1 =

µ−1

ln(l−1 + 1)
, (3.27)

and

Ω2
2 =

l−2ρ−1

ln(l−1 + 1)
. (3.28)

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50

exact solution - the first eigenfrequency for the inner component
approximate solution - the first eigenfrequency for the inner component

exact solution - the first eigenfrequency for the outer component
exact solution - the second eigenfrequency for the inner component

exact solution - the third eigenfrequency for the inner component

Ωi

l

Figure 3.3: Frequency vs relative thickness l for antiplane shear motion of a two-
component circular cylinder; µ = 100, ρ = 100

Figure 3.3 shows scaled frequencies depending on the relative thickness l with

known material properties µ and ρ. According to the conditions on parameters (3.26)

we have l� µ and l� ρ relations. It can be seen that if l is much smaller than µ and

ρ then Ω1 and Ω2 are both small.
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On Figure 3.3 the decreasing curve of the first scaled eigenfrequency for the

outer domain and the increasing curves for the first three scaled eigenfrequencies of

the inner domain are defined by (3.22) and represent exact solutions. There are also

approximation (3.27) of the first eigenfrequency for the inner domain. We can observe

good agreement between exact and approximate solutions. It may also be noticed that

distance between the first and second eigenfrequencies is substantial. This replicates

behaviour of a composite rod with high-contrast parameters, see Figure 2.3.

We arrive at the following approximate profile of the eigenform

U1 = 1,

U2 =
lnR2 − ln(l + 1)

ln l − ln(l + 1)
.

(3.29)

Figure 3.4 contains the scaled displacement profile (3.29) calculated at l1 = l2 = 1,

with the overall axisymmetric plot and its axial cross section at y = 0. It is worth

noting that the displacement variation of the softer domain is no longer polynomial,

as was observed previously in 1D case for the rod with fixed ends, see Figure 2.18.

U

r
x y

U

a) 3D b) 2D

Figure 3.4: Displacement profile (3.29); l1 = l2
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3.2.3 Free boundary

Additionally, let us present the exact solution for the free outer boundary. Sub-

stituting (3.20) into conditions (3.16), (3.17), and (3.19), we have

AJ0(Ω1)−BJ0(Ω2l)− CY0(Ω2l) = 0,

Ω2

[
A
µ

c
J1(Ω1)−BJ1(Ω2l)− CY1(Ω2l)

]
= 0,

Ω2

[
BJ1(Ω2(l + 1)) + CY1(Ω2(l + 1))

]
= 0.

(3.30)

Then, from the solvability of (3.30) we deduce the frequency equation

µJ1(Ω1)
[
J0(Ω2l)Y1(Ω2(l + 1))− Y0(Ω2l)J1(Ω2(l + 1))

]
−

− cJ0(Ω1)
[
J1(Ω2l)Y1(Ω2(l + 1))− Y1(Ω2l)J1(Ω2(l + 1))

]
= 0. (3.31)

In view of (3.30), the scaled displacement profile takes the form

U1 = J0(Ω1R1),

U2 = J0(Ω1)
J0(Ω2R2)Y1(Ω2(l + 1))− Y0(Ω2R2)J1(Ω2(l + 1))

J0(Ω2l)Y1(Ω2(l + 1))− Y0(Ω2l)J1(Ω2(l + 1))
.

(3.32)

Another solution for this system corresponding to the rigid body motion is

Ω1 = Ω2 = 0, (3.33)

with C = 0 and A = B. Then, the eigenform is

U1 = U2 = 1. (3.34)

In case of Ω1 � 1 and Ω2 � 1, the frequency equation (3.31) implies

Ω2
1 =

4ρ(ρ− 1− (l−1 + 1)2)

µ(l−1 + 1)2(ρ− 1)(ln(l−1 + 1)− 1)
, (3.35)

and

Ω2
2 =

4(ρ− 1− (l−1 + 1)2)

(l + 1)2(ρ− 1)(ln(l−1 + 1)− 1)
. (3.36)

It may be observed that the obtained results (3.35) and (3.36) are outside of the

considered low-frequency region 0 ≤ Ωi � 1, i = 1, 2. Thus, there is no non-zero low

natural frequency in this case.
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3.3 A two-component circular cylinder with vari-

able material parameters

In this section we study antiplane shear motion of a circular cylinder having two

inhomogeneous domains.

3.3.1 Statement of the problem

In case when a cylinder having two inhomogeneous domains, the material param-

eters are dependent on the variable and are defined in the form

µi = µ∗i µ̃i(Ri), ρi = ρ∗i ρ̃i(Ri), ci = c∗i c̃i(Ri), i = 1, 2, (3.37)

where µ∗i , ρ
∗
i and c∗i are typical values of the associated quantities. Then, the dimen-

sionless parameters along with the scaled frequencies are defined with use of material

typical values as

µ =
µ∗1
µ∗2
, ρ =

ρ∗1
ρ∗2
, c =

c∗1
c∗2
, (3.38)

and

Ωi =
ωli
c∗i
, i = 1, 2. (3.39)

Therefore, the dimensionless equations of motion can be rewritten as

Ri
d

dRi

(
µ̃i(Ri)

dui
dRi

)
+ µ̃i(Ri)

dui
dRi

+ ρ̃i(Ri)Ω
2
iui = 0, i = 1, 2. (3.40)

The continuity conditions at the interface are given by

u1|R1=1 = u2|R2=l , (3.41)

and
µ

l
µ̃1(R1)

du1

dR1

∣∣∣∣
R1=1

= µ̃2(R2)
du2

dR2

∣∣∣∣
R2=l

. (3.42)

The outer boundary is assumed to be fixed

u2|R2=l+1 = 0, (3.43)
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or free
du2

dR2

∣∣∣∣
R2=l+1

= 0. (3.44)

We employ a perturbation technique for the further analysis, starting with con-

sideration of the global low-frequency regime of the form Ω2
1 ∼ Ω2

2 ∼ ε with the small

parameter ε � 1. Therefore, we expand the frequencies and the displacements as

asymptotic series

Ω2
i = ε(Ω2

i0 + εΩ2
i1 + ε2Ω2

i2 + . . .), (3.45)

and

ui = ui0 + εui1 + ε2ui2 + . . . , (3.46)

respectively. The small parameter ε is linked to the contrast properties of the domains.

If ε =
l

µ
, we talk about the �stronger� inner domain, whether if ε =

µ

l
, it is associated

with the �stronger� outer domain.

3.3.2 �Stronger� inner domain

We start with the analysis of a body with a �stronger� inner domain, when

ε =
l

µ
.

3.3.2.1 Fixed boundary

Let us first consider a body with a �stronger� inner domain and a fixed outer

boundary.

We start our analysis with the boundary value problem for the displacement of

the �stronger� inner domain (i = 1). On substituting the expansion (3.46) into the

dimensionless equation of motion (3.40) at leading order ε0, we have

R1
d

dR1

(
µ̃1(R1)

du10

dR1

)
+ µ̃1(R1)

du10

dR1

= 0, (3.47)

subject to
du10

dR1

∣∣∣∣
R1=1

= 0. (3.48)
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The equation (3.47) results in

du10

dR1

=
A1

R1µ̃1(R1)
, (3.49)

where A1 is a constant. From (3.48) we can conclude that A1 = 0 and the inner

displacement takes the form

u10 = C1, (3.50)

where C1 is a constant.

Next, we can continue with consideration of the displacement of the outer domain

(i = 2). The leading order boundary value problem is given by

R2
d

dR2

(
µ̃2(R2)

du20

dR2

)
+ µ̃2(R2)

du20

dR2

= 0, (3.51)

subject to
u20|R2=l = C1,

u20|R2=l+1 = 0.
(3.52)

From (3.51) we deduce
du20

dR2

=
A2

R2µ̃2(R2)
, (3.53)

and

u20 = C2 + A2

∫ R2

l

1

R2µ̃2(R2)
dR2. (3.54)

Thus, using the conditions (3.52), we can obtain the outer displacement in the form

u20 = C − C

τ2

∫ R2

l

1

R2µ̃2(R2)
dR2, (3.55)

where C = C1 = C2 and

τ2 =

∫ l+1

l

1

R2µ̃2(R2)
dR2. (3.56)

At next order ε the analysis of the problem for the �stronger� inner domain gives

the estimates for frequencies. Then, the equation of motion for the inner domain is

derived in the form

R1
d

dR1

(
µ̃1(R1)

du11

dR1

)
+ µ̃1(R1)

du11

dR1

+ ρ̃1(R1)Ω2
10u10 = 0, (3.57)
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with the boundary conditions written as

µ̃1(R1)
du11

dR1

∣∣∣∣
R1=1

= µ̃2(R2)
du20

dR2

∣∣∣∣
R2=l

, (3.58)

where, in a view of (3.55),
du20

dR2

∣∣∣∣
R2=l

= − C

lτ2µ̃2(l)
. (3.59)

Integrating (3.57) over R1 (0 ≤ R1 ≤ 1), we obtain the expression

R1µ̃1(R1)
du11

dR1

∣∣∣∣R1=1

R1=0

= −CΩ2
10r1, (3.60)

where

r1 =

∫ 1

0

ρ̃1(R1)dR1. (3.61)

Next, employing the condition (3.58), we find the estimate for Ω2
10 as

Ω2
10 =

l−1

τ2r1

. (3.62)

Thus, we can infer that

Ω2
1 =

µ−1

τ2r1

. (3.63)

If the material parameters are constant (3.63) can be simplified to a form

Ω2
1 =

µ−1

ln(l−1 + 1)
, (3.64)

which correlates with the result (3.27) from the previous section.

3.3.2.2 Free boundary

Next, a body with a free outer boundary and a �stronger� inner domain is anal-

ysed.

The ε0 boundary value problem for the inner domain is formulated similarly to

(3.47)-(3.48) leading to

u10 = C. (3.65)
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At leading order for the outer displacement we infer

R2
d

dR2

(
µ̃2(R2)

du20

dR2

)
+ µ̃2(R2)

du20

dR2

= 0, (3.66)

subject to

u20|R2=l = C,

u20

dR2

∣∣∣∣
R2=l+1

= 0.
(3.67)

This provides us with the displacement profile in the form

u20 = C. (3.68)

We continue to analyse problem at next order ε for the �stronger� inner domain

to obtain the estimates for frequencies. The boundary value problem is written as

R1
d

dR1

(
µ̃1(R1)

du11

dR1

)
+ µ̃1(R1)

du11

dR1

+ ρ̃1(R1)Ω2
10u10 = 0, (3.69)

subject to

µ̃1(R1)
du11

dR1

∣∣∣∣
R1=1

= µ̃2(R2)
u20

dR2

∣∣∣∣
R2=l

, (3.70)

where, according to (3.68),

u20

dR2

∣∣∣∣
R2=l

= 0. (3.71)

Therefore, employing the condition (3.70), we derive the expression for the

sought-for frequency as Ω2
10 = 0, which together with the displacement profile cor-

responds to rigid motions of a body with free face.

3.3.3 �Stronger� outer domain

Consider now low-frequency vibrations of a body with a �stronger� outer domain,

which imply ε =
µ

l
.
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3.3.3.1 Fixed boundary

A body with a �stronger� outer domain and a fixed boundary is studied in this

section.

Now, we first consider the displacement of the �stronger� outer domain (i = 2).

Thus, the leading order boundary value problem is taken as

R2
d

dR2

(
µ̃2(R2)

du20

dR2

)
+ µ̃2(R2)

du20

dR2

= 0, (3.72)

subject to
u20

dR2

∣∣∣∣
R2=l

= 0,

u20|R2=l+1 = 0.

(3.73)

The resulting displacement profile is given by

u20 = 0. (3.74)

Next, we proceed with the inner displacement, writing down the boundary value

problem as

R1
d

dR1

(
µ̃1(R1)

du10

dR1

)
+ µ̃1(R1)

du10

dR1

= 0, (3.75)

subject to

u10|R1=1 = 0. (3.76)

The equation (3.75) together with the boundary condition (3.76) leads to

u10 = 0. (3.77)

We can infer that a body with a �stronger� outer domain and a fixed face does

not have low eigenfrequencies.

3.3.3.2 Free boundary

Finally, we consider a body with a �stronger� outer domain and a free boundary.
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In this case the leading order boundary value problem for the outer domain takes

the form

R2
d

dR2

(
µ̃2(R2)

du20

dR2

)
+ µ̃2(R2)

du20

dR2

= 0, (3.78)

subject to
u20

dR2

∣∣∣∣
R2=l

= 0,

u20

dR2

∣∣∣∣
R2=l+1

= 0,

(3.79)

which results in

u20 = C. (3.80)

For the inner displacement the leading order equation of motion is formulated as

R1
d

dR1

(
µ̃1(R1)

du10

dR1

)
+ µ̃1(R1)

du10

dR1

= 0, (3.81)

subject to

u10|R1=1 = C. (3.82)

Thus, we get the uniform displacement of the inner domain as well

u10 = C. (3.83)

To deduce the expression for the sought-for frequency we need to consider the

boundary value problem for the �stronger� domain at next order. Therefore, at order

ε the equation of motion for the outer domain is given by

R2
d

dR2

(
µ̃2(R2)

du21

dR2

)
+ µ̃2(R2)

du21

dR2

+ ρ̃2(R2)Ω2
20u20 = 0, (3.84)

subject to

µ̃2(R2)
du21

dR2

∣∣∣∣
R2=l

= µ̃1(R1)
du10

dR1

∣∣∣∣
R1=1

,

du21

dR2

∣∣∣∣
R2=l+1

= 0,

(3.85)
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where, due to (3.83),
du10

dR1

∣∣∣∣
R1=1

= 0. (3.86)

Integrating (3.84) over R2 (l ≤ R2 ≤ l + 1), we obtain the expression

R2µ̃2(R2)
du21

dR2

∣∣∣∣R2=l+1

R2=l

= −CΩ2
20r2, (3.87)

where

r2 =

∫ l+1

l

ρ̃2(R2)dR2. (3.88)

Substituting the conditions (3.85) into (3.87), we find the leading order estimate for

Ω2
2 as

Ω2
20 = 0. (3.89)

The uniform displacement profile together with the zero eigenfrequency agrees

with previous results and describes rigid motions of a body with free boundary.

3.4 A multi-component circular cylinder

Finally, an asymptotic model of low-frequency vibrations for a piecewise-homogeneous

multi-component hollow circular cylinder with an annular cross section is developed in

this section.

3.4.1 Statement of the problem

Consider a hollow circular cylinder composed of two materials having an annular

cross-section with finite n number of domains of thickness li. The body has a periodic

structure, such that the �stronger� domains alternate the �weaker� domains, see Fig-

ure 3.5. The origin O of axis Or is set in the middle of the inner hole. Continuity

conditions are assumed between the domains. An outer domain has a free boundary if

it is �weaker� or a fixed boundary in case if it is �stronger� .
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0 r0 l0 l1 . . . ln−1 ln

Figure 3.5: The cross section of a multi-component circular cylinder

The equations of motion are written in the form

Ri
d2ui
dR2

i

+
dui
dRi

+ Ω2
iRiui = 0, i = 1, 2, . . . , n. (3.90)

We use dimensionless quantities

Bi =
l0 + . . .+ li−1

li
, (3.91)

defined such that

Bi ≤ Ri ≤ Bi + 1, i = 1, 2, . . . , n. (3.92)

The continuity conditions are given by

ui|Ri=Bi+1 = ui+1|Ri+1=Bi+1
, (3.93)
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and
dui
dRi

∣∣∣∣
Ri=Bi+1

= Lii+1

µ2

µ1

dui+1

dRi+1

∣∣∣∣
Xi+1=Bi+1

, (3.94)

where i = 1, 2, . . . , n− 1, and Lkj = lk/lj.

We consider either free boundaries, i.e.

du1

dR1

∣∣∣∣
R1=B1

= 0,

dun
dRn

∣∣∣∣
Rn=Bn+1

= 0,

(3.95)

or fixed boundaries, i.e.
u1|R1=B1 = 0,

un|Rn=Bn+1 = 0.
(3.96)

Developed asymptotic model is based on the small parameter ε and the global

low-frequency regime of the form Ω2
1 ∼ Ω2

2 ∼ . . . ∼ Ω2
n ∼ ε. If the first inner domain of

the body is �stronger� , then, ε =
µ2

µ1

, otherwise, ε =
µ1

µ2

. As in the previous section,

the frequencies and the displacements are expanded as asymptotic series, see (3.45)

and (3.46), respectively.

Displacements of the �stronger� domains

At leading order the boundary value problems for the �stronger� domains are

formulated as

Ri
d2ui0
dR2

i

+
dui0
dRi

= 0, (3.97)

subject to the Neumann boundary conditions

dui0
dRi

∣∣∣∣
Ri=Bi

= 0,

dui0
dRi

∣∣∣∣
Ri=Bi+1

= 0.

(3.98)

Equations (3.97) lead to
dui0
dRi

=
Ai
Ri

, (3.99)
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and

ui0 = Ai lnRi + Ci, (3.100)

where Ai and Ci are constants. Thus, from (3.100) and the conditions (3.98) we can

conclude that

Ai = 0, (3.101)

and

ui0 = Ci, (3.102)

with

Cj = 0, for j < 1 or j > n. (3.103)

Displacements of the �weaker� domains

The leading order boundary value problems for the �weaker� domains are de-

rived as

Ri
d2ui0
dR2

i

+
dui0
dRi

= 0, (3.104)

subject to the Dirichlet boundary conditions

ui0|Ri=Bi
= u(i−1)0|Ri−1=Bi−1+1,

ui0|Ri=Bi+1 = u(i+1)0|Ri+1=Bi+1
.

(3.105)

Then, using the solution for the �stronger� domains (3.102), we can write down the

boundary conditions as

u(i−1)0|Ri−1=Bi−1+1 = Ci−1,

u(i+1)0|Ri+1=Bi+1
= Ci+1,

(3.106)

which results in

ui0 = Ci−1 + (Ci+1 − Ci−1)
lnRi − lnBi

ln(Bi + 1)− lnBi

. (3.107)
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The frequency estimation

Analysing the problem for the �stronger� domains at next order, we can write

down the equations of motion

Ri
d2ui1
dR2

i

+
dui1
dRi

+ Ω2
i0Riui0 = 0, (3.108)

and the boundary conditions

dui1
dRi

∣∣∣∣
Ri=Bi

= Lii−1

du(i−1)0

dRi−1

∣∣∣∣
Ri−1=Bi−1+1

,

dui1
dRi

∣∣∣∣
Ri=Bi+1

= Lii+1

du(i+1)0

dRi+1

∣∣∣∣
Ri+1=Bi+1

,

(3.109)

where, in view of (3.107),

du(i−1)0

dRi−1

∣∣∣∣
Ri−1=Bi−1+1

=
1

Bi−1 + 1

Ci − Ci−2

ln(B−1
i−1 + 1)

,

du(i+1)0

dRi+1

∣∣∣∣
Ri+1=Bi+1

=
1

Bi+1

Ci+2 − Ci
ln(B−1

i+1 + 1)
.

(3.110)

Integrating the equations of motion over Ri (Bi ≤ Ri ≤ Bi + 1), we deduce

Ri
dui1
dRi

∣∣∣∣
Ri=Bi+1

− Ri
dui1
dRi

∣∣∣∣
Ri=Bi

= −CiΩ2
i0

2Bi + 1

2
. (3.111)

Substituting the conditions (3.109) into (3.111), we arrive at the formulae for Ω2
i0 in

the form

Ω2
i0 =

2

Ci(2Bi + 1)

(
Ci − Ci−2

ln(B−1
i−1 + 1)

+
Ci − Ci+2

ln(B−1
i+1 + 1)

)
. (3.112)

Using (3.112) and the relation between frequency parameters of the �stronger�

parts

Ωk0 = LkjΩj0, (3.113)

we can build a system of equations for any particular number of domains. The number

of equations in the system is equal to the number of the low eigenfrequencies and to

the number of the �stronger� domains in the body.
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3.4.2 Examples

Below we consider several examples, illustrating the method derived in the pre-

vious section.

3.4.2.1 A three-component cylinder with a single �stronger� domain

Now, we can implement the model to find the low-frequency and the eigenform

for a three-component cylinder with an inner hole and the �stronger� inner domain. In

this case to keep periodic structure the body should have the �weaker� outer domains

subject to the Dirichlet boundary conditions. Using (3.112) we can write down for the

inner �stronger� domain

Ω2
20 =

2

(2B2 + 1)

(
1

ln(B−1
1 + 1)

+
1

ln(B−1
3 + 1)

)
. (3.114)

Employing (3.102) and (3.107) we can derive the natural form as

U10 =
lnR1 − lnB1

ln(B1 + 1)− lnB1

,

U20 = 1,

U30 = 1− lnR3 − lnB3

ln(B3 + 1)− lnB3

,

(3.115)

see Figure 3.6.

3.4.2.2 A three-component cylinder with two �stronger� domains

Next, we consider a three-component cylinder with an inner hole and the �stronger�

outer domains. Thus, the body has the �stronger� outer domains subject to the Neu-

mann boundary conditions. Taking (3.112) for the �stronger� domains, we get

Ω2
10 =

2

C1(2B1 + 1)

C1 − C3

ln(B−1
2 + 1)

,

Ω2
30 =

2

C3(2B3 + 1)

C3 − C1

ln(B−1
2 + 1)

,

(3.116)
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Figure 3.6: Displacement profile (3.115); l0 = l1 = l2

with the relation

Ω10 = L1
3Ω30. (3.117)

Therefore, expressions (3.116) with (3.117) result in the relations between the

constants and the leading order estimations for the sought-for eigenfrequencies

C3 = C1, Ω2
10 = 0, (3.118)

and

C3 = −C1(L1
3)2 2B1 + 1

2B3 + 1
, Ω2

10 =
2

ln(B−1
2 + 1)

(
1

2B1 + 1
+

(L1
3)2

2B3 + 1

)
. (3.119)

Substituting (3.118) and (3.119) into (3.102) and (3.107) we obtain the two dis-

placement profiles. The first eigenform corresponds to the zero-frequency and the rigid

body motion

U10 = U20 = U30 = 1. (3.120)

We also have the second scaled displacement profile, where only outer domains perform
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the uniform displacements

U10 = 1,

U20 = 1− ((L1
3)2 2B1 + 1

2B3 + 1
+ 1)

lnR2 − lnB2

ln(B2 + 1)− lnB2

,

U30 = −(L1
3)2 2B1 + 1

2B3 + 1
,

(3.121)

see Figure 3.7.

U

r

x y

U

a) 3D b) 2D

Figure 3.7: Displacement profile (3.121); l0 = l1 = l2 = l3

The considered two examples show how the low-frequency profile of a three-

component circular cylinder can vary depending on the number of �stronger� domains

and boundary conditions.
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4 Antiplane shear motion of a composite
elastic body of arbitrary shape

In this chapter we study antiplane shear motion of a composite elastic body of

arbitrary shape focusing on low frequency vibrations. We start with reviewing the solu-

tion for a single-component cylindrical body with a square cross section. Two types of

boundary conditions are introduced, namely free boundary and fixed boundary. Seek-

ing harmonic time-dependent solutions of the proposed boundary-value problems, we

derive the appropriate frequency equations and displacement profiles. Next, antiplane

shear motion of a two-component hollow cylindrical body with an annual arbitrary

cross section is considered. The consideration is performed for either free or fixed inner

and outer boundaries, together with perfect continuity conditions between domains.

In this case the problem does not have an exact solution. Following the scheme of the

previous chapter, we determine boundary conditions and contrast material properties

of components allowing the low frequency vibration. A perturbation procedure is de-

veloped for evaluating the almost rigid body motions of stiffer components and the

lowest vibration modes. Finally, the asymptotic model is implemented for two exam-

ples, deducing the estimates for the lowest natural frequencies and the displacement

profiles for two-component bodies of standard geometric forms, that do not allow the

exact solution.

4.1 A homogeneous body with a square cross sec-

tion

Antiplane shear motion of a single-component cylindrical body with a square

cross section is reviewed in this section.



123

4.1.1 Statement of the problem

Consider a homogeneous body with a square cross section, occupying a region D

bounded by a closed boundary Γ with the origin of the Cartesian system Oxyz located

at the lower left corner of the square, see Figure 4.1. Both traction-free and fixed

boundary conditions are considered.

d D Γ

l

y

x0

Figure 4.1: The square cross section of a homogeneous cylindrical body

For the components of the stress tensor independent of z, and in absence of body

forces, the governing equation is given by the 2D Helmholtz equation

∂2u

∂x2
+
∂2u

∂y2
+
ω2

c2
u = 0, (4.1)

where u is the out-of-plane displacement, ω is the vibration frequency, and c =
√
µ/ρ
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is the shear wave speed, with µ denoting the Lamé shear modulus, and ρ denoting the

volume mass density.

Next, we introduce the scaled frequency

Ω =
ωl

c
, (4.2)

where l is a side length of the square. Also, the Cartesian variables are converted into

a dimensionless form as

X =
x

l
, Y =

y

l
. (4.3)

Below we review both the case of a fixed boundary, i.e.

u|X=0 = u|X=1 = u|Y=0 = u|Y=1 = 0, (4.4)

and the case of a traction-free boundary, i.e.

∂u

∂X

∣∣∣∣
X=0

=
∂u

∂X

∣∣∣∣
X=1

=
∂u

∂Y

∣∣∣∣
Y=0

=
∂u

∂Y

∣∣∣∣
Y=1

= 0. (4.5)

The equation (4.1) can be reformulated as

∂2u

∂X2
+
∂2u

∂Y 2
+ Ω2u = 0. (4.6)

Applying separation of variables to (4.6), we adapt for the displacement

u = (A cos ΩXX +B sin ΩXX)(C cos ΩY Y +G sin ΩY Y ), (4.7)

where A, B, C and G are constants. Then, the vibration frequency is given as

Ω2 = Ω2
X + Ω2

Y . (4.8)

4.1.2 Fixed boundary

Substituting (4.7) into the boundary conditions (4.4), we arrive at

A cos 0 +B sin 0 = 0,

A cos ΩX +B sin ΩX = 0,
(4.9)
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and
C cos 0 +G sin 0 = 0,

C cos ΩY +G sin ΩY = 0.
(4.10)

The frequency equations can be obtained by solving the linear algebraic systems (4.9)

and (4.10) as

A = 0 and B sin ΩX = 0, with ΩX = πn,

C = 0 and G sin ΩY = 0, with ΩY = πm,
(4.11)

respectively, where mode values n,m = 1, 2, 3, . . ..

For the lowest natural frequency the displacement profile is given by

u = BG sin πX sin πY . (4.12)

4.1.3 Free boundary

The sought-for systems follow from substitution of (4.7) into the boundary con-

ditions (4.5) resulting in

Ω(A sin 0−B cos 0) = 0,

Ω(A sin ΩX −B cos ΩX) = 0,
(4.13)

and
Ω(C sin 0−G cos 0) = 0,

Ω(C sin ΩY −G cos ΩY ) = 0.
(4.14)

In this case, along with the set of eigenfrequencies (4.11), we observe at the zero

eigenfrequency the solution

u = AC, (4.15)

corresponding to a rigid motion typical for bodies with free faces. For the lowest

non-zero natural frequency the displacement profile is derived as

u = AC cos πX cos πY . (4.16)
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4.2 A two-component body of arbitrary shape

Antiplane shear motion of a two-component hollow cylindrical body with an

annular arbitrary cross section is studied in this section.

4.2.1 Statement of the problem

Consider a hollow cylindrical body with an annular arbitrary cross section having

inner and outer domains, D1 and D2, respectively, located between non-intersecting

closed contours Γ0, Γ1 and Γ2, see Figure 4.2. The origin of the Cartesian system Oxyz

set inside the inner hole. Both traction-free and fixed boundaries of the inner and outer

domains are considered, assuming continuity of displacements and stresses along Γ1.

The governing equations for the inner and outer domains are given as

∂2ui
∂x2

+
∂2ui
∂y2

+
ω2

c2
i

ui = 0, i = 1, 2, (4.17)

where ui are the out-of-plane displacements, ci =
√
µi/ρi are the associated shear wave

speeds, µi are the Lamé shear moduli, ρi are the volume mass densities, and indices 1

and 2 correspond to the inner and outer domains, respectively.

As in the previous sections, the scaled frequencies for both domains are defined

as

Ωi =
ωli
ci
, i = 1, 2, (4.18)

where li is the contour length of the appropriate domain. The other parameters and

variables transformed to the dimensionless form become

µ =
µ1

µ2

, l =
l1
l2
, ρ =

ρ1

ρ2

, c =
c1

c2

, (4.19)

and

Xi =
x

li
, Yi =

y

li
, i = 1, 2. (4.20)

The relation between two scaled frequencies following from (4.18) is

cΩ1 = lΩ2. (4.21)
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0
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D2
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Γ2

y

x0

Figure 4.2: The cross section of a two-component cylindrical body of arbitrary shape

The governing equations in a dimensionless form are given by

∂2ui
∂X2

i

+
∂2ui
∂Y 2

i

+ Ω2
iui = 0, i = 1, 2, (4.22)

with the conditions along fixed and traction-free contours for both inner and outer

domains formulated as follow

ui|Γj
= 0, (4.23)

and
∂ui
∂n

∣∣∣∣
Γj

= 0, (4.24)
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where i = 1, 2, as above, and n is the unit normal to the appropriate curve Γj, j = 0, 2.

The continuity conditions on Γ1 are written as

µ

l

∂u1

∂n

∣∣∣∣
Γ1

=
∂u2

∂n

∣∣∣∣
Γ1

, (4.25)

and

u1|Γ1 = u2|Γ1 . (4.26)

To solve this problem a perturbation technique is implemented, focusing on the

global low-frequency regime for which Ω2
1 ∼ Ω2

2 ∼ ε, with ε� 1 being a small parameter

associated with contrast geometrical and material properties of the components. The

displacements and frequencies are expanded as asymptotic series

ui = ui0 + ε ui1 + ε2ui2 + . . . ,

Ω2
i = ε (Ω2

i0 + εΩ2
i1 + ε2Ω2

i2 + . . .).
(4.27)

The focus is on two contrast cases, namely ε =
l

µ
� 1 corresponding to the

�stronger� inner domain, or ε =
µ

l
� 1 associated with the �stronger� outer domain

of the body. It also can be noted that relations (4.21) imply

l ∼ c. (4.28)

4.2.2 �Stronger� outer domain

First, study a body with a �stronger� outer domain, where

ε =
µ

l
� 1. (4.29)

Further we verify that the global low frequency regime Ω2
1 ∼ Ω2

2 ∼ ε is possible only

for the fixed Γ0 and free Γ2 contours in case of a �stronger� outer domain.

4.2.2.1 Fixed inner and free outer boundaries

First, attention is drawn to a body with the �stronger� outer domain D2, having

the fixed inner and free outer contours.
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In order to solve the problem for the �stronger� outer domain the expansions

(4.27) are substituted into the dimensionless equation of motion (4.22) at i = 2 and

the boundary conditions (4.24) and (4.25). As a result, at leading order the Laplace

equation
∂2u20

∂X2
2

+
∂2u20

∂Y 2
2

= 0, (4.30)

is obtained subject to the Neumann boundary conditions

∂u20

∂n

∣∣∣∣
Γ1

= 0,

∂u20

∂n

∣∣∣∣
Γ2

= 0.

(4.31)

Hence, we arrive at

u20 = C, (4.32)

where C is a constant, which corresponds to the rigid body motion of the �stronger�

domain.

Then, the leading order boundary value problem for the inner domain is derived

by substituting (4.27) into the dimensionless equation of motion (4.22) at i = 1 and

the boundary conditions (4.23) and (4.26) with use of the previous result (4.32). Thus,

the Laplace equation
∂2u10

∂X2
1

+
∂2u10

∂Y 2
1

= 0, (4.33)

is subject to the Dirichlet boundary conditions

u10|Γ0 = 0,

u10|Γ1 = C.
(4.34)

This leads to

u10 = CH1(X1, Y1), (4.35)

where H1(X1, Y1) is a harmonic function satisfying the conditions

H1(X1, Y1)|Γ0 = 0,

H1(X1, Y1)|Γ1 = 1.
(4.36)
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Treatment of the �stronger� domain D2 at next order provides an estimate for

the sought-for frequency. The analysed boundary value problem can be written as

∂2u21

∂X2
2

+
∂2u21

∂Y 2
2

= −Ω2
20u20, (4.37)

subject to the Neumann boundary conditions

∂u21

∂n

∣∣∣∣
Γ1

=
∂u10

∂n

∣∣∣∣
Γ1

,

∂u21

∂n

∣∣∣∣
Γ2

= 0,

(4.38)

where, as follow from (4.35),

∂u10

∂n

∣∣∣∣
Γ1

= C
∂H1

∂n

∣∣∣∣
Γ1

. (4.39)

In view of (4.32), integration of (4.37) over the outer domain D2 results in∫∫
D2

(
∂2u21

∂X2
2

+
∂2u21

∂Y 2
2

)
dX2dY2 = −Ω2

20C

∫∫
D2

dX2dY2. (4.40)

Let us now employ the Green’s first identity, stating that for any function u and

a bounded solid region D with a bounding surface Γ∫∫
D

(
∂2u

∂x2
+
∂2u

∂y2

)
dxdy =

∮
Γ

∂u

∂n
ds, (4.41)

where the right hand side is a usual line integral, with n being the unit outer normal

on Γ, e.g. see Strauss (1992). The Green’s first identity originates in Stoke’s theorem,

see Grossman (2014).

On employing (4.41), we have∮
Γ2

∂u21

∂n
ds−

∮
Γ1

∂u21

∂n
ds = −Ω2

20CA2, (4.42)

where A2 is the area of the domain D2.
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Due to (4.38), the first term in the left hand side of (4.42) vanishes. Hence, on

making use of (4.39), the leading order estimate for the sought-for frequency is given

by

Ω2
20 =

1

A2

∮
Γ1

∂H1

∂n
ds. (4.43)

Then, in view of (4.21) and (4.29), the frequencies can be written as

Ω2
1 =

ρl

A2

∮
Γ1

∂H1

∂n
ds, (4.44)

and

Ω2
2 =

µ

lA2

∮
Γ1

∂H1

∂n
ds. (4.45)

4.2.2.2 Free inner and outer boundaries

Now, a body with the �stronger� outer domain D2 and the free inner and outer

contours is considered.

The leading order boundary value problem for the outer domain can be formu-

lated as in the previous case, see (4.30) and (4.31). We arrive at the same result for

the displacement of the outer domain

u20 = C. (4.46)

Then, using (4.22) with (4.24), (4.26), and (4.46) we derive the leading order boundary

value problem for the inner domain as Laplace equation

∂2u10

∂X2
1

+
∂2u10

∂Y 2
1

= 0, (4.47)

subject to the mixed boundary conditions

∂u10

∂n

∣∣∣∣
Γ0

= 0,

u10|Γ1 = C.

(4.48)
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This implies

u10 = C. (4.49)

At next order the equation of motion for the outer domain D2 can be written as

∂2u21

∂X2
2

+
∂2u21

∂Y 2
2

= −Ω2
20u20, (4.50)

subject to
∂u21

∂n

∣∣∣∣
Γ1

=
∂u10

∂n

∣∣∣∣
Γ1

,

∂u21

∂n

∣∣∣∣
Γ2

= 0,

(4.51)

where, according to (4.49),
∂u10

∂n

∣∣∣∣
Γ1

= 0. (4.52)

Applying the same procedure as in (4.40)-(4.42), we get∮
Γ2

∂u21

∂n
ds−

∮
Γ1

∂u21

∂n
ds = −Ω2

20CA2, (4.53)

where both terms in the left hand side vanish due to (4.51). Hence, the leading order

estimate for frequency is given by

Ω2
20 = 0. (4.54)

This case corresponds to the rigid motion of a body with free boundaries.

4.2.2.3 Fixed inner and outer boundaries

Next, study a body with the �stronger� outer domain and the fixed inner and

outer boundaries.

The leading order boundary value problem for the outer domain includes the

boundary conditions (4.23) and (4.25) in the form

∂u20

∂n

∣∣∣∣
Γ1

= 0,

u20|Γ2 = 0,

(4.55)
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along with the equation
∂2u20

∂X2
2

+
∂2u20

∂Y 2
2

= 0. (4.56)

This is resulting at

u20 = 0. (4.57)

The leading order boundary value problem for the inner domain is given by

∂2u10

∂X2
1

+
∂2u10

∂Y 2
1

= 0, (4.58)

subject to the Dirichlet boundary conditions, originating from (4.23), (4.26), and (4.57),

i.e.
u10|Γ0 = 0,

u10|Γ1 = 0.
(4.59)

Hence, the solution for the inner displacement is again

u10 = 0, (4.60)

due to the maximum principle for harmonic functions, see Strauss (2007). Thus, it is

not possible to achieve the low-frequency regime in this case.

4.2.2.4 Free inner and fixed outer boundaries

Finally, a body with the �stronger� outer domain and free Γ0 and fixed Γ2 con-

tours is considered.

At leading order the boundary value problem for the outer displacement is for-

mulated in the same way as in the previous subsection, resulting in

u20 = 0. (4.61)

The equation of motion for the inner domain D1 at leading order becomes

∂2u10

∂X2
1

+
∂2u10

∂Y 2
1

= 0, (4.62)
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and the boundary conditions are obtained from (4.24), (4.26), and (4.61) in the form

∂u10

∂n

∣∣∣∣
Γ0

= 0,

u10|Γ1 = 0.

(4.63)

Then, the leading order inner displacement is given by

u10 = 0, (4.64)

indicating that the low-frequency regime is impossible for the considered boundary

conditions.

4.2.3 �Stronger� inner domain

Let us now consider a body with a �stronger� inner domain, when

ε =
l

µ
� 1. (4.65)

It can be verified that the global low frequency regime Ω2
1 ∼ Ω2

2 ∼ ε is possible only for

free Γ0 and fixed Γ2 boundaries.

4.2.3.1 Fixed inner and free outer boundaries

First, we study a body with the �stronger� inner domain D1, having fixed Γ0

and free Γ2 contours.

We begin with the �stronger� inner domain. In particular, the expansions (4.27)

are substituted into the dimensionless equation of motion (4.22) at i = 1 and the

boundary conditions (4.23) and (4.25) to arrive at the leading order boundary value

problem. Thereby, the equation

∂2u10

∂X2
1

+
∂2u10

∂Y 2
1

= 0, (4.66)
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is subject to the mixed boundary conditions

u10|Γ0 = 0,

∂u10

∂n

∣∣∣∣
Γ1

= 0,
(4.67)

leading to

u10 = 0. (4.68)

The leading order boundary value problem for the outer domain follows from

substitution of (4.27) into (4.22) at i = 2 and also involve the boundary conditions

(4.24) and (4.26) along with the inner domain solution (4.68). Then, the Laplace

equation
∂2u20

∂X2
2

+
∂2u20

∂Y 2
2

= 0, (4.69)

is subject to the mixed boundary conditions

u20|Γ1 = 0,

∂u20

∂n

∣∣∣∣
Γ2

= 0.
(4.70)

Therefore, at leading order the outer displacement is given by

u20 = 0, (4.71)

meaning again that the low-frequency regime is impossible for these boundary condi-

tions.

4.2.3.2 Fixed inner and outer boundaries

Now, attention is on a body having the �stronger� inner domain and the fixed

inner and outer boundaries.

In this case the leading order boundary value problem for the inner domain is

formulated similarly to that in the previous subsection, see (4.66) and (4.67), with the

same result for the inner displacement

u10 = 0. (4.72)



136

Then, the leading order boundary value problem for the outer domain is given

by
∂2u20

∂X2
2

+
∂2u20

∂Y 2
2

= 0, (4.73)

subject to
u20|Γ1 = 0,

u20|Γ2 = 0,
(4.74)

which leads to

u20 = 0, (4.75)

due to the aforementioned maximum principle for harmonic functions. Thus, there is

no low-frequency regime in this case.

4.2.3.3 Free inner and outer boundaries

The next set-up is a body with the �stronger� inner domain D1 and free bound-

aries Γ0 and Γ2.

At leading order the boundary value problem for the inner domain is given by

∂2u10

∂X2
1

+
∂2u10

∂Y 2
1

= 0, (4.76)

subject to
∂u10

∂n

∣∣∣∣
Γ0

= 0,

∂u10

∂n

∣∣∣∣
Γ1

= 0,

(4.77)

following from (4.24) and (4.25). Then, the inner displacement is a constant, i.e.

u10 = C. (4.78)

The leading order boundary value problem for the outer domain can be written

as
∂2u20

∂X2
2

+
∂2u20

∂Y 2
2

= 0, (4.79)
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subject to
u20|Γ1 = C,

∂u20

∂n

∣∣∣∣
Γ2

= 0,
(4.80)

following from (4.24) and (4.26). Hence, the solution for the outer displacement is

u20 = C. (4.81)

At next order the equation of motion for the inner domain D1 is given by

∂2u11

∂X2
1

+
∂2u11

∂Y 2
1

= −Ω2
10u10, (4.82)

subject to the boundary conditions

∂u11

∂n

∣∣∣∣
Γ0

= 0,

∂u11

∂n

∣∣∣∣
Γ1

=
∂u20

∂n

∣∣∣∣
Γ1

,

(4.83)

where, according to (4.81),
∂u20

∂n

∣∣∣∣
Γ1

= 0. (4.84)

Integrating (4.82) over the inner domain D1 and applying the solution (4.78), we

obtain ∫∫
D1

(
∂2u11

∂X2
1

+
∂2u11

∂Y 2
1

)
dX1dY1 = −Ω2

10C

∫∫
D1

dX1dY1. (4.85)

Seeing the Green’s first identity, (4.85) becomes∮
Γ1

∂u11

∂n
ds−

∮
Γ0

∂u11

∂n
ds = −Ω2

10CA1, (4.86)

where both terms in the left hand side vanish due to (4.83) and (4.84). Therefore, we

have at leading order

Ω2
10 = 0. (4.87)
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4.2.3.4 Free inner and fixed outer boundaries

Finally, attention is drawn to a body with the �stronger� inner domain, having

free inner and fixed outer boundaries.

The leading order solution of the boundary value problem for the inner domain is

similar to that in the previous subsection, see (4.76) and (4.77), giving the same result

for the inner displacement

u10 = C. (4.88)

The leading order boundary value problem for the outer domain is derived from

the boundary conditions (4.23) and (4.26), using the previous solution (4.88). Thus,

the Laplace equation
∂2u20

∂X2
2

+
∂2u20

∂Y 2
2

= 0, (4.89)

is subject to the Dirichlet boundary conditions

u20|Γ1 = C,

u20|Γ2 = 0,
(4.90)

resulting in

u20 = CH2(X2, Y2). (4.91)

Here H2(X2, Y2) is a harmonic function satisfying the conditions

H2(X2, Y2)|Γ1 = 1,

H2(X2, Y2)|Γ2 = 0.
(4.92)

At next order the boundary value problem for the �stronger� domain can be

formulated as
∂2u11

∂X2
1

+
∂2u11

∂Y 2
1

= −Ω2
10u10, (4.93)

subject to
∂u11

∂n

∣∣∣∣
Γ0

= 0,

∂u11

∂n

∣∣∣∣
Γ1

=
∂u20

∂n

∣∣∣∣
Γ1

,

(4.94)
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where, according to the solution (4.91),

∂u20

∂n

∣∣∣∣
Γ1

= C
∂H2

∂n

∣∣∣∣
Γ1

. (4.95)

In view of the solution (4.88), integration of (4.93) over the inner domain D1 and

employment of the Green’s first identity yields∮
Γ1

∂u11

∂n
ds−

∮
Γ0

∂u11

∂n
ds = −Ω2

10CA1. (4.96)

Due to (4.94), the second term in the left hand side of (4.96) vanishes. Hence, on

making use of (4.95), the leading order estimate for frequency is given by

Ω2
10 ∼ −

1

A1

∮
Γ1

∂H2

∂n
ds. (4.97)

Then, applying (4.21) and (4.65), the expressions for the frequency can be written as

Ω2
1 ∼ −

l

µA1

∮
Γ1

∂H2

∂n
ds, (4.98)

and

Ω2
2 ∼ −

1

lρA1

∮
Γ1

∂H2

∂n
ds. (4.99)

Thereby, it has been verified for all possible combinations of the boundary con-

ditions, that a non-trivial low-frequency regime exists only for a body with a fixed

boundary corresponding to a �weaker� domain and a free boundary corresponding to

a �stronger� domain.

This formal conclusion has also a simple intuitive interpretation. Indeed, if one

of the boundaries of a stronger domain is not clamped, its another domain is always

almost free due to the contrast in the problem parameters. As a consequence, almost

rigid body motion seems to be possible with a low natural frequency.

4.3 Examples

Now, we consider two examples illustrating the methodology developed in the

previous section.
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4.3.1 A two-component body with a �stronger� outer domain

First, we consider antiplane motion of a two-component solid cylindrical elastic

body of a square cross section. The body has a circular inclusion with an inner hole of

radius l0, and the origin O lying in the geometrical center of the hole. The softer inner

annular domain D1 is specified in polar coordinates by l0 ≤ r ≤ l0 + l1, whereas the

stiffer outer domain D2 is located between the circumference Γ1 of radius l0 + l1 and

the square Γ2 with side length of 2(l0 + l1 + l2), see Figure 4.3. This problem does not

allow a straightforward analytical treatment leading to a closed-form solution.

1

D1

D2

Γ0

Γ1

Γ2

y

x0 l0 l1 l2

Figure 4.3: The cross section of a cylindrical body with the �stronger� outer domain
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We introduce the dimensionless radial coordinates

Ri =
r

li
, i = 1, 2, (4.100)

with the dimensionless boundaries for the domains, i.e.

L1 =
l0
l1
, L2 =

l0 + l1
l2

. (4.101)

The equation of axisymmetric motion is written for the inner domain as

R2
1

d2u1

dR2
1

+R1
du1

dR1

+R2
1Ω2

1u1 = 0, (4.102)

and the equation of motion for the outer domain is given in the general form

∂2u2

∂X2
2

+
∂2u2

∂Y 2
2

+ Ω2
2u2 = 0. (4.103)

On adapting the general scheme of Section 4.2.2, consider the fixed inner

u1|R1=L1 = 0, (4.104)

and free outer face contours

∂u2

∂X2

∣∣∣∣
|X2|=L2+1

=
∂u2

∂Y2

∣∣∣∣
|Y2|=L2+1

= 0, (4.105)

with the continuity conditions on stresses

µ

l

du1

dR1

∣∣∣∣
R1=L1+1

=
du2

dR2

∣∣∣∣
R2=L2

, (4.106)

and displacements

u1|R1=L1+1 = u2|R2=L2 . (4.107)

Let us implement the same asymptotic method as in Subsection 4.2.2.1, relying

on the small parameter ε =
µ

l
� 1. On expanding the displacements and frequencies

as (4.27) and applying the procedure described in the previous section, we have for the

leading order eigensolution
u10 = CH1(R1),

u20 = C,
(4.108)
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see (4.32) and (4.35). Here, H1 is a harmonic function, satisfying

R1
d2u10

dR2
1

+
du10

dR1

= 0, (4.109)

along with the conditions (4.36), which take the form

H1|R1=L1 = 0,

H1|R1=L1+1 = 1,
(4.110)

thus

H1(R1) =
lnR1 − lnL1

ln(L−1
1 + 1)

. (4.111)

The illustrations of the displacement profile (4.108) are shown in Figure 4.4,

containing the overall axisymmetric plot along with its axial cross section at y = 0,

calculated at l0 = l1 = l2 = 1.

u

r
x y

u

a) Displacement profile b) Axial cross section

Figure 4.4: Displacement profile (4.108); l0 = l1 = l2 = 1

At next order it is sufficient to consider only the �stronger� domain to obtain an

estimate for frequency. The boundary value problem is formulated as

∂2u21

∂X2
2

+
∂2u21

∂Y 2
2

+ Ω2
20u20 = 0, (4.112)
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subject to
du21

dR2

∣∣∣∣
R2=L2

=
du10

dR1

∣∣∣∣
R1=L1+1

,

∂u21

∂X2

∣∣∣∣
|X2|=L2+1

=
∂u21

∂Y2

∣∣∣∣
|Y2|=L2+1

= 0,

(4.113)

where, making use of the solution (4.111), we have

du10

dR1

∣∣∣∣
R1=L1+1

=
C(L1 + 1)−1

ln(L−1
1 + 1)

. (4.114)

Integrating (4.112) over the outer domain D2 and using the solution (4.108) for

u20, we obtain ∫∫
D2

(
∂2u21

∂X2
2

+
∂2u21

∂Y 2
2

)
dX2dY2 = −CΩ2

20A2, (4.115)

where A2 = 4(L2 + 1)2 − πL2
2.

Then, on applying the Green’s first identity, it can be deduced that

L2+1∫
−(L2+1)

∂u21

∂X2

∣∣∣∣
|X2|=L2+1

dY2 +

L2+1∫
−(L2+1)

∂u21

∂Y2

∣∣∣∣
|Y2|=L2+1

dX2−

−L2

2π∫
0

∂u21

∂R2

∣∣∣∣
R2=L2

dϕ = −CΩ2
20A2.

(4.116)

Finally, on substituting (4.113) with (4.114), the leading order estimate for the

eigenfrequency is found as

Ω2
20 =

2πl

ln(L−1
1 + 1)(4(L2 + 1)2 − πL2

2)
, (4.117)

which coincides with the result in (4.43).

4.3.2 A two-component body with a �stronger� inner domain

As the next example, let us study antiplane motion of a circular cylinder with

an annular cross section and stiffer inner and softer outer domains. Suppose, the
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boundaries Γ1 and Γ2 are cylinders of radius l0 + l1 and l0 + l1 + l2, respectively. The

stronger domain D1 has an inner hole with a square cross section and a side length

of 2l0, situated such that the origin O lies in the geometrical center of the hole, see

Figure 4.5. As in the previous example, an analytical solution can not be found for

this problem.

1

D1

D2 Γ0

Γ1

Γ2

y

x0 l0 l1 l2

Figure 4.5: The cross section of a cylindrical body with the �stronger� inner domain

Here the equations of motion are taken in the form

∂2u1

∂X2
1

+
∂2u1

∂Y 2
1

+ Ω2
1u1 = 0, (4.118)
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and

R2
2

d2u2

dR2
2

+R2
du2

dR2

+R2
2Ω2

2u2 = 0, (4.119)

for the inner and outer domains, respectively.

As follows from Section 4.2.3, in order to have the global low-frequency regime

(Ω2
1 ∼ Ω2

2 ∼ ε) with the small parameter ε =
l

µ
, we consider a free inner contour, i.e.

∂u1

∂X1

∣∣∣∣
|X1|=L1

=
∂u1

∂Y1

∣∣∣∣
|Y1|=L1

= 0, (4.120)

and a fixed outer contour, i.e.

u2|R2=L2+1 = 0. (4.121)

The continuity conditions on stresses and displacements are formulated as in (4.106)

and (4.107), respectively.

As above, we arrive at the leading order eigenforms as

u10 = C,

u20 = CH2(R2),
(4.122)

where the harmonic function

H2(R2) =
ln(L2 + 1)− lnR2

ln(L−1
2 + 1)

, (4.123)

is the solution of (4.119) subject to

H2|R2=L2 = 1,

H2|R2=L2+1 = 0.
(4.124)

The eigensolution (4.122) is shown in Figure 4.6, containing both the displacement

profile and its cross section at y = 0, calculated at l0 = l1 = l2 = 1.

At next order the boundary value problem for the inner domain is given by

∂2u11

∂X2
1

+
∂2u11

∂Y 2
1

+ Ω2
10u10 = 0, (4.125)
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u

r
x y

u

a) Displacement profile b) Axial cross section

Figure 4.6: Displacement profile (4.122); l0 = l1 = l2 = 1

subject to

∂u11

∂X1

∣∣∣∣
|X1|=L1

=
∂u11

∂Y1

∣∣∣∣
|Y1|=L1

= 0,

du11

dR1

∣∣∣∣
R1=L1+1

=
du20

dR2

∣∣∣∣
R2=L2

,

(4.126)

where, employing the solution (4.123), we have

du20

dR2

∣∣∣∣
R2=L2

= − CL−1
2

ln(L−1
2 + 1)

. (4.127)

Thus, we integrate (4.125) over the inner domain D1 and substitute the solution

(4.122) for u10 to get

∫∫
D1

(
∂2u11

∂X2
1

+
∂2u11

∂Y 2
1

)
dX1dY1 = −CΩ2

10A1, (4.128)

where A1 = π(L1 + 1)2 − 4L2
1. Transforming integrals according to the Green’s first
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identity, we obtain

(L1 + 1)

2π∫
0

∂u11

∂R1

∣∣∣∣
R1=L1+1

dϕ−
L1∫

−L1

∂u11

∂X1

∣∣∣∣
|X1|=L1

dY1−

−
L1∫

−L1

∂u11

∂Y1

∣∣∣∣
|Y1|=L1

dX1 = −CΩ2
10A1.

(4.129)

Thus, the leading order estimate for frequency follows from substitution of the bound-

ary conditions (4.126) with (4.127) into (4.129), i.e.

Ω2
10 =

2πl−1

ln(L−1
2 + 1)(π(L1 + 1)2 − 4L2

1)
, (4.130)

which match the result in (4.97).
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5 Conclusion

The low-frequency vibrations of composite elastic rods and cylindrical bodies

with a high contrast in the material and geometric parameters have been investigated.

The study proves that a high contrast may result in lowest natural frequencies tend-

ing to zero. For each of the considered problems we reveal boundary conditions and

problem parameters supporting a non-zero low eigenfrequency and evaluate associated

displacement profiles.

In cases of a piecewise-homogeneous three-component rod and a two-component

circular cylinder exact solutions were studied. Then, the problems were analysed at

the low-frequency asymptotic limit. The associated conditions on problem parameters,

e.g see equations (2.48), (2.119), and (2.146) for a rod and equations (3.26) for a

circular cylinder, are derived. Both the global and local low-frequency regimes were

investigated for a three-component rod, see also Kaplunov et al (2016).

For a rod or a circular cylinder having variable material parameters, see Section

2.3 and Section 3.3, respectively, the related equations of motion usually do not allow

explicit analytical solutions. The perturbation technique developed for these cases re-

lies on the concept of the almost rigid body motion. It also has been used to develop

the general perturbation procedure adapted for multi-component rods and cylinders.

In Chapter 4 the obtained results have been extended to the antiplane low-frequency vi-

brations of two-layered cylindrical bodies of arbitrary cross sections, see also Kaplunov

et al (2017b). To illustrate the efficiency of the proposed scheme the examples of a

hollow cylinder of a square cross section with a circular annular inclusion and a two-

component cylinder of a circular cross section with a square hole have been considered.

It has been demonstrated that the perturbation technique in question enables tackling

of mathematical problems that are beyond the scope of exact analysis.

The leading order approximations obtained for properly chosen boundary condi-

tions show that uniform displacement variations corresponding to rigid body motions,

occur across all stronger components. In this case, �weaker� parts also experience
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quasi-static deformation, which is homogeneous for composite rods. The estimations

for the lowest natural frequencies follow from the solvability of boundary value problems

for the stronger components at next order of the developed perturbation procedure.

The proposed approach is similar in a sense to that presented in Kaplunov et al (2015)

for low-frequency motions of viscoelastic bars without the assumption of a contrast.

We also mention several extensions and possible applications of the developed

methodology. In particular, the derived asymptotic formulae have a clear relation to the

evaluation of the lowest cut-off frequencies of high-contrast layered plates and shells, see

Le (1999), Ryazantseva and Antonov (2012), and Kaplunov et al (2017a). In addition,

the proposed perturbation approach can be expanded to more sophisticated 2D and

3D eigenfrequency problems for multi-layered strongly inhomogeneous structures with

high contrast material and geometric properties, including but not restricted to the

computation of higher order corrections to lowest eigenvalues. However, in the latter

case, the solution procedure should apparently involve a numerical treatment, at least

for weaker parts of studied structures. Even so, such hybrid procedures may be more

preferable, then straightforward numerical methods, such as FEM.
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Schlicke, H., Schröter, C. J., and Vossmeyer, T. (2016). Electrostatically driven drum-

head resonators based on freestanding membranes of cross-linked gold nanoparticles.

Nanoscale, 8(35):15880–15887.

Schulze, S.-H., Pander, M., Naumenko, K., and Altenbach, H. (2012). Analysis of

laminated glass beams for photovoltaic applications. International Journal of Solids

and Structures, 49(15):2027–2036.

Simmonds, J. G. and Mann, J. E. (2013). A first look at perturbation theory. Courier

Corporation.

Smyshlyaev, V. P. (2009). Propagation and localization of elastic waves in highly

anisotropic periodic composites via two-scale homogenization. Mechanics of Mate-

rials, 41(4):434–447.

Song, J., Zhou, J., and Wang, Z. L. (2006). Piezoelectric and semiconducting cou-

pled power generating process of a single zno belt/wire. a technology for harvesting

electricity from the environment. Nano letters, 6(8):1656–1662.

Sorokin, S. V. (2004). Analysis of wave propagation in sandwich plates with and

without heavy fluid loading. Journal of Sound and Vibration, 271(3):1039–1062.



160

Sosa, M., Carneiro, A., Colafemina, J., and Baffa, O. (2001). A new magnetic probe to

study the vibration of the tympanic membrane. Journal of magnetism and magnetic

materials, 226:2067–2069.

Spence, J. and Horgan, C. (1983). Bounds on natural frequencies of composite circular

membranes: integral equation methods. Journal of Sound and Vibration, 87(1):71–

81.

Spencer, A. J. M. (2004). Continuum mechanics. Courier Corporation.

Strauss, W. A. (1992). Partial differential equations, volume 92. Wiley New York.

Tassicker, O. J. (1972). Aspects of forces on charged particles in electrostatic precipi-

tators. PhD thesis.

Temme, N. M. (2011). Special functions: An introduction to the classical functions of

mathematical physics. John Wiley & Sons.

Thorp, O., Ruzzene, M., and Baz, A. (2001). Attenuation and localization of wave

propagation in rods with periodic shunted piezoelectric patches. Smart Materials

and Structures, 10(5):979–988.

Titovich, A. S. (2015). Acoustic and elastic waves in metamaterials for underwater

applications. Rutgers The State University of New Jersey-New Brunswick.

Torre, L. and Kenny, J. (2000). Impact testing and simulation of composite sandwich

structures for civil transportation. Composite structures, 50(3):257–267.

Tovstik, P. E. and Tovstik, T. P. (2017). Generalized timoshenko-reissner models for

beams and plates, strongly heterogeneous in the thickness direction. ZAMM-Journal

of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und

Mechanik, 97(3):296–308.

Vinson, J. R. (1999). The behavior of sandwich structures of isotropic and composite

materials. CRC Press.



161

Wang, C., Reddy, J. N., and Lee, K. (2000). Shear deformable beams and plates:

Relationships with classical solutions. Elsevier.

Wang, C. Y. and Wang, C. (2013). Structural vibration: Exact solutions for strings,

membranes, beams, and plates. CRC Press.

Wang, W., Yang, T., Chen, X., and Yao, X. (2012). Vibration energy harvesting

using a piezoelectric circular diaphragm array. IEEE transactions on ultrasonics,

ferroelectrics, and frequency control, 59(9):1–9.

Yermolayev, B. (1992). The use of generalized functions in the problem of elastic

oscillations of a composite rod. Journal of Applied Mathematics and Mechanics,

56(3):383–389.

Yu, Y.-Y. (1959). Flexural vibrations of elastic sandwich plates. United States Air

Force, Office of Scientific Research.

Zenkert, D. (1995). An introduction to sandwich construction. Engineering materials

advisory services.

Zhang, Y. and Yang, C. (2009). Recent developments in finite element analysis for

laminated composite plates. Composite Structures, 88(1):147–157.

Zinno, A., Fusco, E., Prota, A., and Manfredi, G. (2010). Multiscale approach for the

design of composite sandwich structures for train application. Composite Structures,

92(9):2208–2219.


	etheses coversheet 2017.pdf
	Sergushova PhD 2018.pdf

