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Introduction

Small angle neutron scattering (SANS) and small-angle 
X-ray scattering (SAXS) provide important low resolu-
tion structural information on biological macromolecules 
in solution (Jacrot 1976; Glatter and Kratky 1982; Serdyuk 
et al. 2007). SANS approaches have the unique advantage of 
being able to exploit solvent contrast variation through the 
use of buffers containing specific D2O/H2O ratios (Stuhr-
mann 1974; Svergun et al. 2013). This capability arises 
from the different neutron scattering properties of hydrogen 
(1H, neutron coherent scattering length bc = −3.7423 fm) 
and its heavy isotope deuterium (2H or D, neutron coherent 
scattering length bc = 6.675 fm) (Shull 1962). This results 
in the very different scattering length densities (SLDs) of 
−0.562 × 1010 cm−2 and 6.404 × 1010 cm−2 for H2O and 
D2O, respectively. When specific H2O/D2O solvent mix-
tures are made, it is therefore possible to make solutions 
having any SLD in this range (Fig. 1, black line). In the 
normal (hydrogenated) context, the major classes of bio-
molecules (protein, lipid, nucleic acid) exhibit naturally 
occurring differences in SLD. By changing the SLD of 
the solvent (buffer) to match specific parts of the biomol-
ecule being studied, each part of the complex can be indi-
vidually ‘matched out’ and rendered invisible to SANS 
data collection (Jacrot 1976). Figure 1 shows the variation 
of SLD as a function of D2O/H2O composition by volume 
for the different classes of biomolecules, including deuter-
ated proteins. Hydrogenated protein shows a match point at 
approximately 40% D2O, while nucleic acids show a match 
point of ~62%. This means, for example, that SANS data 
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recorded for a protein-DNA complex in 40% D2O buffer 
will reveal only the DNA structure. Likewise, SANS data 
measured using ~62% D2O when the DNA is matched out 
will reveal the protein component alone (Fig. 1). This pow-
erful approach enables different parts of the same complex 
to be modelled both separately and together (Callow et al. 
2007; Niemann et al. 2008; Obarska-Kosinska et al. 2008; 
Rochel et al. 2011; Vijayakrishnan et al. 2011; Taylor et al. 

2012; Cuypers et al. 2013; Compton et al. 2014; Appolaire 
et al. 2014).

To distinguish between biomolecules having the same 
SLD, such as protein–protein complexes, deuterium label-
ling is necessary. Perdeuterated protein, where all the 
hydrogen atoms are replaced by deuterium, has an SLD 
higher than that of D2O (Fig. 1, magenta line) and cannot 
be fully solvent matched in SANS experiments. However, 
protein that is part-deuterium labelled such that its SLD is 
the same as that of 100% D2O can be readily exploited in 
SANS studies. We refer to such sample material as being 
matchout labelled. This type of labelling is particularly 
advantageous in studies of protein–protein complexes in 
which one protein partner is hydrogenated and the other 
is matchout labelled. Here, as illustrated schematically in 
Fig. 2, SANS data would typically be recorded in three 
different buffers: (a) where the full complex is observ-
able (e.g., 0% D2O), (b) where only the matchout labelled 
component is visible (~40% D2O), (c) where only the 
hydrogenated component is visible (100% D2O). In (a), 
there should be good correspondence between SANS and 
SAXS analyses of the complex, although a lower radius 
of gyration may be expected for the SANS analysis of the 
matchout-labelled protein; this will occur because it will be 
measured in conditions where a high fraction of the surface 
solvent layer around the complex will be H2O which has a 
SLD close to zero (Svergun et al. 1998; Perkins 2001).

Methods to prepare appropriately deuterated proteins for 
SANS are required. The Escherichia coli and Pichia pas-
toris expression systems are both well characterised with 
numerous cell lines and expression plasmids available. The 
effect of D2O in E. coli growth media on the deuteration of 
RNA polymerase and ribosomal proteins has been studied 
in detail (Lederer et al. 1986; Leiting et al. 1998). A method 

Fig. 1  The scattering length densities (SLDs) of the four major bio-
molecules are depicted as a function of the volume percentage of 
D2O, assuming all labile hydrogen atoms are exchanged. The black 
line represents the variation of the solvent SLD. The match point of 
each biomolecule corresponds to the intersection of the solvent SLD 
with that for each biomolecule. Perdeuterated protein, in which all the 
hydrogen atoms are replaced by deuterium, has an SLD that is higher 
than that of D2O and cannot be solvent matched.

Fig. 2  Matchout regimes for a protein–protein complex in which one 
protein is matchout labelled (D, dark blue) and the other is hydro-
genated (H, medium blue). Following the scenarios summarised in 
the text, these correspond to a 0% D2O in which both protein compo-

nents are visible, b 40% D2O where only the matchout labelled com-
ponent (D) is visible, and c 100% D2O where only the hydrogenated 
component (H) is visible
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to estimate deuteration levels in whole E. coli cells and cel-
lular proteins by NMR has been described (Perkins 1981). 
For P. pastoris (yeast), fewer studies have been reported, 
although it is clear that this yeast can grow in deuterated 
media (Haon et al. 1993). Here, following development 
work in the Deuteration Laboratory (D-Lab) of the Life 
Sciences group at the Institut Laue-Langevin (Haertlein 
et al. 2016), we describe new deuteration techniques by 
which matchout labelled proteins can be routinely prepared 
using E. coli and P. pastoris. Both expression procedures 
utilise cell growth in minimal media based on 85% D2O 
and a hydrogenated carbon source. The matchout labelled 
proteins were validated by mass spectrometry and SANS. 
In the case of the E. coli system, maltose binding protein 
(MBP) was used as a representative model system. MBP is 
a well-studied model protein that plays an important role in 
the metabolism of E. coli (Sharff et al. 1992) and is essen-
tial for the energy-dependent translocation of maltose and 
maltodextrins through the cytoplasmic membrane. For P. 
pastoris, a model system based on the C-terminal domain 
pair of human complement Factor H (CFH) was used. 
CFH is a key regulator of the complement system of innate 
immunity, in which its two C-terminal short complement 
regulator domains (SCR-19/20) are crucial for protecting 
host cells against undesired immune destruction (Rodri-
guez et al. 2014).

Materials and methods

Protein production from E. coli in matchout conditions

MBP was expressed using the E. coli BL21(DE3) 
cell line (Laux et al. 2008). High cell-density cul-
tures were achieved using fermenters for cell growth. 
Minimal medium was prepared with the composition 
6.86 g L−1 (NH4)2SO4, 1.56 g L−1 KH2PO4, 6.48 g L−1 
Na2HPO4·2H2O, 0.49 g L−1 diammonium hydrogen cit-
rate, 0.25 g L−1 MgSO4·7H2O, 1.0 mL L−1 (0.5 g L−1 
CaCl2·2H2O, 16.7 g L−1 FeCl3·6H2O, 0.18 g L−1 
ZnSO4·7H2O, 0.16 g L−1 CuSO4·5H2O, 0.15 g L−1 
MnSO4·4H2O, 0.18 g L−1 CoCl2·6H2O, 20.1 g L−1 EDTA), 
and 5 g L−1 glycerol. The medium was supplemented with 
40 mg L−1 kanamycin to select for the recombinant plas-
mid. The BL21(DE3) cells containing the DNA construct 
were firstly adapted to growth in minimal media using 
a stepwise process in which cells were inoculated into 
minimal media, grown for 36 h and then transferred into 
fresh minimal media. This was repeated until a sufficient 
growth rate was obtained. For the preparation of deuterated 
minimal media, the mineral salts were dried out in a rotary 
evaporator (Heidolph) at 60 °C, then dissolved in a mixture 
containing 85% D2O/15% H2O. Cells were then adapted to 

growth in deuterated media. When a sufficient growth rate 
was achieved, large scale expression was carried out. Then 
1.5 L of deuterated medium was inoculated with 100 mL 
pre-culture of adapted cells in a 3 L fermenter (Labfors, 
Infors). During the batch and fed-batch phases, the pH was 
adjusted to 6.9 by addition of NaOD, and the temperature 
was adjusted to 30 °C. The gas-flow rate of sterile filtered 
air was 0.5 L min−1. Stirring was adjusted to ensure a dis-
solved oxygen tension of 30%. The fed-batch phase was 
initiated when the optical density at 600 nm reached 5.1. 
Glycerol was added to the culture to keep the growth rate 
stable during fermentation. When the OD600 reached 14.7, 
over-expression was induced by the addition of 1 mM 
IPTG and incubation continued for 24 h. Cells were then 
harvested and stored at −80 °C.

Protein production from P. pastoris in matchout 
conditions

SCR-19/20 was expressed in yeast P. pastoris using the 
X-33 cell line. Cloning and expression of hydrogenated 
SCR-19/20 were described in detail elsewhere (Cheng et al. 
2005). Cells, which had previously been transformed with 
the plasmid construct, were adapted to growth in a minimal 
media. Minimal media consisted of 13.4% yeast nitrogen 
base, 0.02% biotin, 1% glycerol and 100 mM potassium 
phosphate, pH 6.0. Adaptation was carried out by a similar 
protocol to that of the E. coli system, with the cells grown 
for 48 h before transferral into fresh minimal media. When 
high-density cell growth was achieved, cells were then 
adapted to growth in 85% deuterated minimal media by the 
same process. Deuterated minimal media was prepared as 
for the hydrogenated media, but was dissolved in 85% D2O. 
Large scale expression was then carried out by sustaining 
cell growth for 72 h in deuterated minimal media contain-
ing glycerol. Cells were then harvested by centrifugation 
and re-suspended in deuterated minimal media with 0.5% 
methanol in place of glycerol to induce protein expression. 
Expression was sustained for 96 h by feeding with 0.5% 
methanol every 24 h. All cell growth and expression was 
carried out using baffled flasks with shaking at 220 rpm at 
29 °C. Final cell cultures were centrifuged to remove the 
cells from the supernatant containing the secreted protein.

Protein purification

MBP from E. coli was expressed in a soluble form. Cells 
were broken by sonication and the insoluble fraction 
removed by centrifugation. For both proteins, purification 
was carried out using hydrogenated buffers according to 
the same protocol used for the hydrogenated protein. In the 
case of the MBP purification immobilized metal ion affin-
ity chromatography (IMAC) on TALON (Clontech) was 
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used. The supernatant was loaded on a column filled with 
10 mL of TALON beads. This column was washed with 20 
column volumes of lysis buffer containing 5 mM imidazole 
in 10 mM Tris–HCl, 100 mM NaCl, pH 7.5. MBP was then 
eluted with 100 mM imidazole. Fractions were analysed 
by polyacrylamide gel electrophoresis (PAGE), pooled 
and dialysed against 10 mM Tris–HCl, 100 mM NaCl, 
pH 7.5. 300 mg of MBP was obtained from 1 L of media. 
For the SCR-19/20 purification, cation exchange chroma-
tography was used on an SP FF column (GE Healthcare). 
The supernatant was dialysed against 50 mM Tris, 25 mM 
NaCl, 1 mM EDTA, pH 7.4 and loaded onto the column. 
The column was washed with five column volumes of the 
same buffer. Elution was achieved by applying a NaCl salt 
gradient from 25 mM NaCl to 1 M NaCl. Fractions were 
analysed by PAGE and were pooled and dialysed against 
10 mM Hepes, 137 mM NaCl, pH 7.4. Approximately 7 mg 
of SCR-19/20 was obtained from 1 L of start media. Fur-
ther details for the MBP and SCR-19/20 purifications are 
given in Laux et al. (2008) and Dunne (2015) respectively.

Mass spectrometry

Matrix-assisted laser desorption/ionization-time of flight 
(MALDI-TOF) mass spectroscopy was carried out on the 
deuterated MBP and SCR-19/20 proteins. The matrix con-
sisted of sinapinic acid in acetonitrile/water-0.1% TFA 
(50:50). For both proteins, measurements were carried out 
at a concentration of 0.5 mg/mL in hydrogenated buffers. 
This meant that the calculation of the deuteration levels 
for the two matchout labelled proteins made the assump-
tion that all of the labile deuterium atoms were replaced by 
hydrogen.

SANS data collection

Data were collected on the SANS instruments D22 (MBP) 
and D33 (SCR-19/20) at the Institut Laue-Langevin, Greno-
ble, France (Dewhurst et al. 2016). To calculate the match 
point, samples were prepared in a range of D2O concentra-
tion in the appropriate buffer. SANS data from MBP were 
collected in 0, 20, 40, 60, 80% D2O buffers; SANS data for 
SCR-19/20 were collected in 0, 25, 40, 75 and 100% D2O 
buffers. Data reduction, buffer subtraction, and transmission 
calculations were carried out using the program GRASP. 
The curves were fitted using Guinier plots (Guinier and 
Fournet 1955) yielding the radius of gyration RG and the 
scattering intensity at zero angle I(0). From this the normal-
ised scattering amplitude of the proteins at each D2O con-
centration was calculated using the following expression:
√

I(0)

Tcl
,

where T is the sample transmission, l is the cuvette path 
length (cm) and c is the concentration (mg/mL). This scat-
tering amplitude was plotted as a function of D2O percent-
age and a linear fit carried out. The contrast match point was 
taken as the intersection of this plot on the abscissa.

Results

Escherichia coli and Pichia pastoris cultures were success-
fully adapted to growth in deuterated minimal media. For 
both organisms, five changes of media were sufficient for 
adaptation. High cell densities were achieved using 3 L 
fermenters in which the conditions for growth were tightly 
controlled. For the production of E. coli cells in high cell-
density cultures, the growth conditions were controlled and 
monitored using IRIS software (http://www.infors-ht.com). 
The induction of expression commenced at an OD of about 
15. Both proteins were expressed in their soluble forms and 
successfully purified using a similar protocol to that used 
for the same hydrogenated counterparts.

Maltose binding protein (MBP)

SDS-PAGE results before and after purification showed that 
MBP of high purity was obtained after a single IMAC puri-
fication step (Fig. 3A). The mass of normal hydrogenated 
MBP was measured to be 42,360 Da by mass spectrometry, 
and is identical to the value predicted from the sequence 
taking account for methionine aminopeptidase processing 
(Laux et al. 2008). Mass spectrometry measurements of the 
partially deuterated analogue (Fig. 4a) showed an increase 

Fig. 3  SDS-PAGE results for the expression and purification of 
matchout labelled protein. A Maltose binding protein (MBP). a Unin-
duced cellular extract; b extract from induced cells; c purified MBP 
after immobilized metal ion affinity chromatography. B SCR-19/20 
from CFH. a After cation exchange and size exclusion chromatogra-
phy

http://www.infors-ht.com
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in mass to 43,840 Da when measured in H2O buffer. The 
fully deuterated (aminopeptidase processed) MBP (in D2O 
solvent) was predicted to have a mass of 45,312 Da with 
the aid of the program ProtParam (Gasteiger et al. 2005); 
the deuteration level of the MBP was estimated to be 64.1% 
of the non-exchangeable hydrogen atoms. The smaller peak 
to the right of this in Fig. 4a is attributed to incomplete 
aminopeptidase processing of the matchout labelled MBP. 
The SANS data collected from MBP showed no evidence 
of aggregation at any contrast, and Guinier analyses were 
used to determine the I(0) and RG values for each contrast 
(Fig. 5A). The RG value of MBP was 2.6 nm. The varia-
tion of scattering amplitude 

√

I(0) as a function of solvent 
D2O composition for the partially deuterated MBP gave the 
contrast match point (Fig. 5B). That for the partially deu-
terated MBP expressed in a high cell-density culture with 
85% D2O as the only source of deuterium was determined 
to be 99.5% D2O.  

Complement factor H SCR‑19/20

Deuterated SCR-19/20 of high purity was obtained by 
cation exchange chromatography followed by size exclu-
sion chromatography. This was confirmed by the PAGE 
results after purification (Fig. 3B). The yield of deuter-
ated SCR-19/20 was calculated from the absorbance 
(A280 nm) of the pooled size exclusion chromatography 
fractions corresponding to the protein peak. From 1 L of 
glycerol growth media, an average of 7.2 mg protein was 
obtained. This yield was similar to the average of 7 mg 

obtained for hydrogenated SCR-19/20 in hydrogenated 
nutrient rich media. The mass of hydrogenated SCR-19/20 
was 14,734 Da. Mass spectrometry showed that the mass 
increased to 15,281 Da following deuteration (Fig. 4b). 
Because perdeuterated SCR-19/20 has an expected mass 
of 15,749 Da, the deuteration level was deduced to be 
71.4% of the non-exchangeable hydrogen atoms. An addi-
tional peak was observed at 15,490 Da, corresponding to 
two additional amino acids, and was attributed to erroneous 
Kex protease processing of the signal peptide.

The SANS data for SCR-19/20 also showed no evi-
dence of protein aggregation, and resulted in the I(0) and 
RG values for each contrast in Guinier plots (Fig. 5A). The 
RG value was 2.2 nm for SCR-19/20. The scattering ampli-
tude plot of 

√

I(0) for the partially deuterated SCR-19/20 
gave a contrast match point of 97% D2O and confirms that 
our protocol was optimal for the production of matchout 
labelled protein (Fig. 5B).

Discussion and conclusion

The novel deuteration methods described here allow the 
efficient production of matchout labelled proteins that are 
optimised for SANS structural studies in solution. For both 
proteins studied, the yields were similar to those observed 
for hydrogenated nutrient rich media. The difference in 
the deuteration levels (for the non-exchangeable hydrogen 
atoms) of the two proteins, as observed by mass spectrom-
etry, are attributed to their different amino acid composi-
tions and to differences in the growth media used. In both 
cases a ~100 Da broadening of the main peak was observed 
by mass spectrometry, compared to the hydrogenated or 
perdeuterated proteins, and this reflects the nature of the 
random fractional deuteration regime used. For a typical 
SANS experiment, this labelling heterogeneity is not nor-
mally a problem. Proteins that are matchout labelled in this 
way are particularly useful in structural analyses of pro-
tein–protein complexes for which one protein of the pair 
would be labelled.

The advantages of this method of labelling are:

1. Matchout labelled proteins are very effective in SANS 
studies of complexes. Only a single preparation of 
complex containing a matchout labelled component is 
required to allow measurements for a complete SANS 
structural analysis. Measurements at 100%, ~40%, and 
0% D2O solvent contrasts will yield structural informa-
tion on the unlabelled component, the labelled com-
ponent, and the full complex respectively, i.e., on con-
formational changes in either protein after complex 
formation, as well as the relative orientation of the two 
proteins in the complex. Such a study requires that the 

Fig. 4  Mass spectrometry measurement (MALDI-TOF) on the 
two matchout-labelled proteins. a For MBP, the single largest peak 
corresponds to a molecular weight of 43,840 Da, compared with 
42,360 Da for the hydrogenated analogue. b For SCR-19/20, the cen-
tral peak is associated with the properly processed SCR-19/20 protein 
(15,281 Da)
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complex is stable (i.e., a low dissociation constant) and 
that there is no propensity for aggregation in all the 
required solvents. The approach has significant advan-
tages over SANS experiments in which two separately 
labelled complexes are produced in which one of the 
two components is typically perdeuterated, and has 
already been successfully applied to numerous protein 
complexes.

2. The adaptation of host cells to growth conditions con-
taining a hydrogenated carbon source and 85% D2O is 
much more efficient than the culture conditions needed 
for perdeuteration.

3. Significant cost advantages are accrued, because no 
deuterated carbon source is needed in the culture 
medium. Since the solvent used is ~85% D2O, this 
permits the effective use of recycled D2O. Previously-
described methods used more expensive deuterated 

glycerol and deuterated methanol to obtain similar 
yields of protein (Massou et al. 1999; Pickford and 
O’Leary 2004).

The ability to label proteins using either E. coli or P. 
pastoris expression systems offers versatility in the label-
ling of recombinant proteins. For those systems where 
there are difficulties in expressing folded protein in E. coli, 
the use of P. pastoris offers a robust alternative in which 
issues associated with co-translational and post-transla-
tional modification are addressed. Future work of this type 
will focus on the development of similar matchout labelling 
approaches for insect cells and mammalian cells.
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