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Abstract

competing risks framework.

performed to assess the robustness of results.

Background: Analysis of competing risks is commonly achieved through a cause specific or a subdistribution
framework using Cox or Fine & Gray models, respectively. The estimation of treatment effects in observational data
is prone to unmeasured confounding which causes bias. There has been limited research into such biases in a

Methods: We designed simulations to examine bias in the estimated treatment effect under Cox and Fine & Gray
models with unmeasured confounding present. We varied the strength of the unmeasured confounding (i.e. the
unmeasured variable’s effect on the probability of treatment and both outcome events) in different scenarios.

Results: In both the Cox and Fine & Gray models, correlation between the unmeasured confounder and the
probability of treatment created biases in the same direction (upward/downward) as the effect of the unmeasured
confounder on the event-of-interest. The association between correlation and bias is reversed if the unmeasured
confounder affects the competing event. These effects are reversed for the bias on the treatment effect of the
competing event and are amplified when there are uneven treatment arms.

Conclusion: The effect of unmeasured confounding on an event-of-interest or a competing event should not be
overlooked in observational studies as strong correlations can lead to bias in treatment effect estimates and
therefore cause inaccurate results to lead to false conclusions. This is true for cause specific perspective, but moreso
for a subdistribution perspective. This can have ramifications if real-world treatment decisions rely on conclusions
from these biased results. Graphical visualisation to aid in understanding the systems involved and potential
confounders/events leading to sensitivity analyses that assumes unmeasured confounders exists should be
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Background

Well-designed observation studies permit researchers to
assess treatment effects when randomisation is not feas-
ible. This may be due to cost, suspected non-equipoise
treatments or any number of other reasons [1]. While ob-
servational studies minimise these issues by being cheaper
to run and avoiding randomisation (which, although
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unknown at the time, may prescribe patients to worse
treatments), they are potentially subject to issues such as
unmeasured confounding and increased possibility of
competing risks (where multiple clinically relevant events
occur). Although these issues can arise in any study, Ran-
domised Controlled Trials (RCTs) attempt to mitigate
these effects by using randomisation of treatment and
strict inclusion/exclusion criteria. However, the estimated
treatment effects from RCTs are of potentially limited
generalisability, accessibility and implementability [2].
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A confounder is a variable that is a common cause of
both treatment and outcome. For example, a patient
with a high Body Mass Index (BMI) is more likely to be
prescribed statins [3], but are also more likely to suffer a
cardiovascular event. These treatment decisions can be
affected by variables that are not routinely collected
(such as childhood socio-economic status or the severity
of a comorbidity [4]. Therefore, if these variables are
omitted form (or unavailable for) the analysis of treat-
ment effects in observational studies, then they can bias
inferences [5]. As well as having a direct effect on the
event-of-interest, confounders (along with other covari-
ates) can also have further reaching effects on a patient’s
health by changing the chances of having a competing
event. Patients who are more likely to have a competing
event are less likely to have an event-of-interest, which
can affect inferences from studies ignoring the compet-
ing event. In the above BMI example, a high BMI can
also increase a patient’s likelihood of developing (and
thus dying from) cancer [6].

The issue of confounding in observational studies has
been researched previously [7-9], where it has been con-
sistently shown that unmeasured confounding is likely
to occur within these natural datasets and that there is
poor reporting of this, even after the introduction of the
The Strengthening the Reporting of Observational Stud-
ies in Epidemiology (STROBE) Guidelines [10, 11].
Hence, it is widely recognised that sensitivity analyses
are vital within the observational setting [12]. However
these previous studies do not extend this work into a
competing risk setting, meaning research in this space is
lacking [13], particularly where the presence of a com-
peting event can affect the rate of occurrence of the
event-of-interest. These issues will commonly occur in
elderly and comorbid patients where treatment decisions
are more complex. As the elderly population grows, the
clinical community needs to understand the optimal way
to treat patients with complex conditions; here, causal
relationships between treatment and outcome need to
account for competing events appropriately.

The most common way of analysing data that contains
competing events is using a cause specific perspective,
as in the Cox methodology [14], where competing events
are considered as censoring events and analysis focuses
solely on the event-of-interest. The alternative is to as-
sume a subdistributional perspective, as in the Fine &
Gray methodology [15], where patients who have com-
peting events remain in the risk set forever.

The aim of this paper is to study the bias induced by
the presence of unmeasured confounding on treatment
effect estimates in the competing risks framework. We
investigated how unmeasured confounding affects the
apparent effect of treatment under the Fine & Gray and
the Cox methodologies and how these estimates differ
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from their true value. To accomplish this, we used simu-
lations to generate synthetic time-to-event-data and then
model under both perspectives. Both the Cox and Fine
& Gray models provide hazard ratios to describe the ef-
fects of a covariate. A binary covariate will represent a
treatment and the coefficients found by the model will
be the estimate of interest.

Methods

We considered a simulation scenario in which our popu-
lation can experience two events; one of which is the
event-of-interest (Event 1), the other is a competing
event (Event 2). We model a single unmeasured con-
founding covariate, I/ ~ N (0,1) and a binary treatment
indicator, Z. We varied how much U and Z affect the
probability distribution of the two events as well as how
they are correlated. For example, Z could represent
whether a patient is prescribed statins, I could be their
BMI, the event-of-interest could be cardiovascular dis-
ease related mortality and a competing event could be
cancer-related mortality. We followed best practice for
conducting and reporting simulations studies [16].

The data-generating mechanism defined two cause-spe-
cific hazard functions (one for each event), where the
baseline hazard for event 1 was k times that of event 2, see
Fig. 1. We assumed a baseline hazard that was either con-
stant (exponential distributed failure times), linearly in-
creasing (Weibull distributed failure times) or biologically
plausible [17]. The hazards used were thus:

MU, Z) = kP U2\ (1), My (t|U, Z) = L2142 ) (8)

Exponential
Weibull

1
Ao(t) = 2t
exp(-18 + 7.3¢t-11.5¢%° log(t) + 9.5t°%)  Plausible

In the above equations, S and y are the effects of the
confounding covariate and the treatment effect respect-
ively with the subscripts representing which event they
are affecting. These two hazard functions entirely de-
scribe how a population will behave [18].

We simulated populations of 10,000 patients to ensure
small confidence intervals around our treatment effect

Ay Event 1
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Az Event 2

Fig. 1 Transition State Diagram showing potential patient pathways
J
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estimates in each simulation. Each simulated population
had a distinct value for S and y. In order to simulate the
confounding of U and Z, we generated these values such
that Corr(U,Z) =p and P(Z=1) = [19]. Population end
times and type of event were generated using the relevant
hazard functions. The full process for the simulations can
be found in Additional file 1. Due to the methods used to
generate the populations, the possible values for p are
bounded by the choice of m such that when 7 =0.5, |p| <
0.797 and when 7=0.1 (or 0.9), |p| <0.57. The relation-
ship between the parameters can be seen in the Directed
Acyclic Graph (DAG) shown in Fig. 2, where T is the
event time and J is the event type indicator (1 for event-
of-interest and 2 for competing event).

From this, we also explicitly calculated what we would
expect the true subdistribution treatment effects, I'; and
I'5, to be in these conditions [20] (See Additional file 2).
It's worth noting that the values of I" will depend on the
current value of p since they are calculated using the ex-
pected distribution of end-times. However, it has been
shown [18, 21] that, due to the relationship between the
Cause-Specific Hazard (CSH) and the Subdistribution
Hazard (SH), only one proportional hazards assumption
can be true. Therefore the “true” values of the I" will be
misspecified and represent a least false parameter (which
itself is an estimate of the time-dependent truth) [20].

We used the simulated data to estimate the treatment
effects under the Cox and Fine & Gray regression
methods. We specify that U is unmeasured and so it
wasn’t included in the analysis models. As discussed earl-
ier, the Cox model defines the risk set at time ¢ to be all
patients who have not had any event by time ¢, whereas

U

N

Fig. 2 Directed Acyclic Graph showing the relationship between
some of the parameters

Page 3 of 11

the Fine & Gray defines it to be those who have not had
the event-of-interest (or competing event) by time ¢.

For our models, for the events, i = {1,2}, we therefore
defined the CSH function estimate, /1, and the SH func-
tion estimate, /1;, to be

T(t)2) = ho(£)e? I(t1Z) = hio(t)e?

Where /fio and %, are the baseline hazard and baseline
subdistribution hazard function estimates for the entire
population (i.e. no stratification), and y; and I; are the
estimated treatment effects. From these estimates, we
also extracted the estimate of the subdistribution treat-
ment effect in a hypothetical RCT, where p=0 and 1 =
0.5 to give I and Iy To investigate how the correl-
ation between U and Z affects the treatment effect esti-
mate, we compared the explicitly prescribed or
calculated values with the simulated estimates. Three
performance measures for both events, along with ap-
propriate 95% confidence intervals, were calculated for
each set of parameters:

o Orcri=E ([} - [p] ~ The average difference between
the SH treatment effect estimate from an idealised,
hypothetical RCT situation.

e Opyi=E [[; - T} ~ The average bias of the SH
treatment effect estimate from the explicitly
calculated value.

e Ocsyi=E [} -yl ~ The average bias of the CSH
treatment effect estimate from the predefined
treatment effect.

As mentioned above, the value of I" will depend on the
current value of p and so the estimation of the explicit bias
will be a measure of the total bias induced on our estimate
of the subdistribution treatment effect in those specific set
of parameters. We also evaluate the bias compared to an
idealised RCT to see how much of this bias could be miti-
gated if we were to perform an RCT to assess the effect-
iveness of the hypothetical treatment. Finally, we found
the explicit bias in the cause specific treatment effect to
again see the total bias applied to this measure. We did
not compared the CSH bias to an idealised RCT as we be-
lieved that this could easily be inferred from the CSH ex-
plicit results, whereas this information wouldn’t be as
obvious in the SH treatment effect due to the existence of
a relationship between I" and p.

Eight Scenarios were simulated based on real-world
situations. In each scenario, p varied across 5 different
values ranging from 0 to their maximum possible value
(0.797 for all Scenarios apart from Scenario 5, where it
is 0.57, due to the bounds imposed by the values of ).
One other parameter (different for different scenarios)
varied across 3 different values, and all other parameters
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were fixed as detailed in Table 1. Each simulation was
run 100 times and the performance measures were each
pooled to provide small confidence intervals. This gives
a total of 1,500 simulations for each of the 8 scenarios.
Descriptions of the different scenarios are given below:

No Effect. To investigate whether treatment with
no true effect (y; = y»=0) can have an “artificial”
treatment effect induced on them in the analysis
models through the confounding effect on the
event-of-interest. /3; varied between - 1, 0 and 1.
Positive Effect. To investigate whether treatment effects
can be reversed when the treatment is beneficial for
both the event-of-interest and the competing event
(y;=y2=-1). 5; varied between - 1, 0 and 1.
Differential Effect. To investigate how treatment
effect estimates react when the effect is different for
the event-of-interest (y; = - 1) and the competing
event (y,=1). B; varied between - 1, 0 and 1.
Competing Confounder. To investigate whether
treatments with no true effect (y; = y,=0) can have
an “artificial” treatment effect induced on them by
the effect of a confounded variable on the
competing event only (B; = 0). B, varied between —
1,0 and 1.

Uneven Arms. To investigate how having uneven
arms on a treatment in the population can have an
effect on the treatment effect estimate (y; = -1,

y2 =0). 7t varied between Y10, ¥% and /1.

Uneven Events. To investigate how events with
different frequencies can induce a bias on the
treatment effect, despite no treatment effect being
present (y; = y, =0). k varied between %, 1 and 2.
Weibull Distribution. To investigate whether a
linearly increasing baseline hazard function affects
the results found in Scenario 1. ; varied between
-1,0and 1.

Plausible Distribution. To investigate whether a
biologically plausible baseline hazard function
affects the results found in Scenario 1. j3; varied
between - 1, 0 and 1.

Table 1 Details of the parameters for each Scenario
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Results

The first row of Fig. 3 shows the results for Scenario 1
(No Effect). When f; = 5, =0 (the green line), correlation
between U and Z doesn’t imbue any bias on the treatment
effect estimate for either event under any of the three
measures, since all of the subdistribution treatment effects
(estimated, calculated and hypothetical RCT) are approxi-
mately zero. When f3; > 0, there is a strong positive associ-
ation between correlation (p) and the RCT and CSH
biases for the event-of-interest and a negative association
for the RCT bias for the competing event. Similarly, these
associations are reversed when S; < 0.

There was no effect on 6cgy for the competing event
in this Scenario regardless of p or f5;. These results are
similar to those found in Scenario 2 (Positive Effect) and
Scenario 3 (Negative Effect) shown in Figs. 4 and 5.
However, in both of these Scenarios, there is an overall
positive shift in Ocgy when f5; = 0.

The magnitude of O, is greatly reduced and is the re-
verse of the other associations when S; = 0 in Scenario 1
for the event-of-interest and when S;>0 it stays ex-
tremely small for low values of p, and becomes negative
for large p for the competing event. In Scenario 2, O,
behaves similarly to Scenario 1 for both events when
B1<0 and the event-of-interest, but for the competing
event, when f5; >0, the 6,, is much tighter to 0. The
competing event data for 6,, in Scenario 3 is similar to
Scenario 2 with ; > 0 shifted downwards, but the event-
of-interest has a near constant level of bias regardless of
p, apart from in the case when f; <0, the bias switches
direction.

In Scenario 4 (Competing Confounder), as would be
expected, the results for the event-of-interest and the re-
sults for the competing event are swapped from those of
Scenario 1 as shown in Fig. 6. Scenario 5 (Uneven Arms)
portrays a bias similar to Scenario 1 where 8; =1, how-
ever, the magnitude of the RCT and CSH bias is in-
creased when 7 # 0.5 as shown in Fig. 7.

The parameters for Scenario 6 (Uneven Events) were
similar to the parameters for Scenario 1 (No Effect),
when f5;=1. This also reflects in the results in Fig. 8

Sc p Baseline z 2] B; B> m k
1 0 020 040 060 080 Constant 0 0 -1 0o 1 0 '/, 1
2 0 020 040 060 080 Constant -1 -1 -1 1 ', 1
3 0 020 040 060 080 Constant -1 1 -1 0o 1 0 '/, 1
4 0 020 040 060 080 Constant O 0 0 -1 0 1 1
5 0 014 029 042 057 Constant 0 0 1 0 Vo o Yhe 1
6 0 020 040 060 080 Constant 0 0 1 0 '/, 12
7 0 020 040 060 080  Weibull 0 0 -1 0o 1 0 ', 1
8 0 020 040 060 080 Plausble 0 0 -1 0o 1 0 ', 1
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which look similar to the results for this set of parameters
in Scenario 1. This bias is largely unaffected by the value
of k. The results of Scenario 7 (Weibull Distribution) and
Scenario 8 (Plausible Distribution) were nearly identical to
those of Scenario 1 as shown in Figs. 9 and 10.

As per our original hypotheses, Scenario 1 demon-
strated that it is possible to induce a treatment effect
when one isn’t present through confounding effects on
all biases, apart from the competing event CSH. In Sce-
nario 2, with high enough correlation, the CSH event-of-
interest bias could be greater than 1, meaning that the
raw CSH treatment effect was close to 0, despite an ac-
tual treatment effect of - 1, similarly large positive biases
in the SH imply a treatment with no benefit and/or det-
rimental effect, despite the true treatment being benefi-
cial for both events. This finding is similar for Scenario
3 with large biases changing the direction of the treat-
ment effect (beneficial vs detrimental).

Scenario 4 demonstrated that even without a treat-
ment effect and with no confounding effect on the
event-of-interest, a treatment effect can be induced on
the SH methodology, which can imply a beneficial/detri-
mental treatment, depending on whether the confounder
was detrimental/beneficial. Fortunately, it does not in-
duce an effect on the CSH treatment effect for the
event-of-interest.

Scenarios 5 and 6 investigated other population level ef-
fects; differences in the size of the treatment arms and dif-
ferences in the magnitude of the hazards of the events.
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Scenario 5 demonstrated that having uneven treatment
arms can exacerbate the bias induced on both the Opcr
and Ocgy; for both events and Scenario 6 showed that the
different baseline hazards had little effect on the levels of
bias in the results. This finding was supported by the add-
itional findings of Scenarios 7 and 8, which showed that
the underlying hazard functions did not affect the treat-
ment effect biases compared to a constant hazard.

Discussion

This is the first paper to investigate the issue of unmeas-
ured confounding on a treatment effect in a competing
risks scenario. Herein, we have demonstrated that re-
gardless of the actual effect of a treatment on a popula-
tion that is susceptible to competing risks, bias can be
induced by the presence of unmeasured confounding.
This bias is largely determined by the strength of the
confounding relationship with the treatment decision
and size of confounding effect on both the event-of-
interest and any competing events. This effect is present
regardless of any difference in event rates between the
events being investigated and is also exacerbated by mis-
balances in the number of patients who received treat-
ment and the number of patients who did not.

Our study has shown how different the case would be
if a similar population (without inclusion/exclusion cri-
teria) were put through an RCT and how the correlation
between an unmeasured confounder and the treatment
is removed, as would be the case in a pragmatic RCT. By
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combining the biases from an RCT and the explicitly calcu-
lated treatment effect, we can also use these results to infer
how much of the bias found here is from omitted variable
bias [22] and how much is explicitly due to the correlation
between the covariates. Omitted variable bias occurs when
a missing covariate has an effect on the outcome, but is not
correlated with the treatment (and so is not a true con-
founder). It can occur even if the omitted variable is initially
evenly distributed between the two treatment arms be-
cause, as patients on one arm have events earlier than the
other, the distributions of the omitted variable drift apart.
This makes up some of the bias caused by unmeasured
confounding, but not all of it. For example, in Scenario 3
(Differential Effect), the treatment lowered the hazard of
the event-of-interest, but increased the hazard of the com-
peting event; with a median level of correlation (p =0.4),
the event-of-interest bias from the RCT when there is a
negative confounding effect (5; < 0) is — 0.628 and the bias
from the explicit estimate is 0.295 and therefore, the
amount of bias due purely to the correlation between the
unmeasured confounder and the treatment is actually -
0.923. In this instance, some of the omitted variable bias is
actually mitigating the bias from the correlation; if we have
two biasing effects that can potentially cancel each other
out, we could encounter a Type III error [23] which is very
difficult to prove and can cause huge problems for reprodu-
cibility (if you eliminate a single source of bias, your results
will be farther from the truth).

Our simulations indicate that a higher (lower) value of
B: and a lower (higher) value of 8, will produce a higher
(lower) bias in the event-of-interest. These two biasing ef-
fects could cancel out to produce a situation similar to
above. In our scenarios, we saw that, even when a treat-
ment has no effect on the event-of-interest or a competing
event (i.e. the treatment is a placebo), both a cause specific
treatment effect and a subdistribution treatment effect
can be found. This also implies that the biasing effect of
unmeasured confounders (both omitted variable and cor-
relation bias) can result in researchers reaching incorrect
conclusions about how a treatment affects a population in
multiple ways. We could have a treatment that is benefi-
cial for the prevention of both types of event, but due to
the effects of an unmeasured confounder, it could be
found to have a detrimental effect (for one or both) on pa-
tients from a subdistribution perspective.

Our investigation augments Lin et al's study into
unmeasured confounding in a Cox model [5] by ex-
tending their conclusion (that bias is in the same dir-
ection as the confounder’s effect and dependent on
its strength) into a competing risks framework (i.e. by
considering the Fine & Gray model as well) and dem-
onstrating that this effect is reversed when there is
confounding with the competing event. Lin et al. [5]
also highlight the problems of omitted variable bias,
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which comes from further misspecification of the
model; this finding was observed in our results as de-
scribed above for Scenario 3.

The results from Scenario 7 (Weibull Distribution)
and Scenario 8 (Plausible Distribution) are almost identi-
cal to those of Scenario 1 (No Effect) which implies that,
by assuming both hazard functions in question are the
same, we can assume they are both constant for simpli-
city. Since both the Cox and Fine & Gray models are
ambiguous to underlying hazard functions and treat-
ment effects are estimated without consideration for the
baseline hazard function, it makes intuitive sense that
the results would be identical regardless of what under-
lying functions were used to generate our data. This
makes calculation of the explicit subdistribution treat-
ment effect much simpler for future researchers.

Thompson et al. used the paradox that smoking reduces
melanoma risk to motivate simulations similar to ours,
which demonstrated how the exclusion of competing risks,
when assessing confounding, can lead to unintuitive, mis-
specified and possibly dangerous conclusions [24]. They
hypothesised that the association found elsewhere [25] may
be caused by bias due to ignoring competing events and
used Monte Carlo simulations to provide examples of sce-
narios where these results would be possible. They demon-
strated how a competing event could cause incorrect
conclusions when that competing event is ignored — a con-
clusion we also confirm through the existence of bias
induced on the Cox modelled treatment effect even with
no correlation between the unmeasured confounder and
treatment (i.e. Ocsry; 20 when p=0 in Scenarios 2 & 3).
Thompson’s team began with a situation where there may
be a bias due to a competing event and reverse-engineered
a scenario to find the potential sources of bias, whereas our
study explored different scenarios and investigated the
biased results they potentially produced.

Groenwold et al. [26] proposed methods to perform sim-
ulations to evaluate how much unmeasured confounding
would be necessary for a true effect to be null given that an
effect has been found in the data. Their methods can easily
be applied to any metric in clinical studies (such as the dif-
ferent hazard ratios estimated here). Currently, epidemiolo-
gists will instigate methods such as DAGs, see Fig. 2, to
visualise where unmeasured confounding may be a prob-
lem in analysis [27] and statisticians who deal with such
models will use transition diagrams, see Fig. 1, to visualise
potential patient pathways [28]. Using these two visualisa-
tion techniques in parallel will allow researchers to antici-
pate these issues, successfully plan to combat them
(through changes to protocol or sensitivity analysis, etc. ...)
and/or implement simulations to seek hidden sources of
bias (using the methods of Groenwold [26] and Thompson
[24]) or to adjust their findings by assuming biases similar
to those demonstrated in our paper exist in their work.
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The work presented here could be extended to include
more complicated designs such as more competing
events, more covariates and differing hazard functions.
However, the intention of this paper was to provide a
simple dissection of specific scenarios that allow for gen-
eralisation to clinical work. The main limitation of this
work, to use of the same hazard functions for both
events in each of our scenarios, was a pragmatic decision
made to reduce computation time. The next largest limi-
tation was the lack of censoring events, and was chosen
to simplify interpretation of the model. This situation is
unlikely to happen in the real world. However, since
both the Cox and the Fine & Gray modelling techniques
are robust to any underlying baseline hazard and inde-
pendent censoring of patients [14, 15, 29], these simplifi-
cations should not have had a detrimental effect on the
bias estimates given in this paper. This perspective on
censoring is similar to the view of Lesko et al. [30] in
that censoring would provide less clarity of the pre-
sented results.

Conclusion

This paper has demonstrated that unmeasured con-
founding in observational studies can have an effect on
the accuracy of outcomes for both a Cox and a Fine &
Gray model. We have added to the literature by incorp-
orating the effect of confounding on a competing event
as well as on the event-of-interest simultaneously. The
effect of confounding is present and reversed compared

to that of confounding on the event-of-interest. This
makes intuitive sense as a negative effect on a competing
event has a similar effect at the population level as a
positive effect on the event-of-interest (and vice versa).
This should not be overlooked, even when dealing with
populations where the potential for competing events is
much smaller than potential for the event-of-interest
and is especially true when the two arms of a study are
unequal. Therefore, we recommend that research with
the potential to suffer from these issues be accompanied
by sensitivity analyses investigating potential unmeas-
ured confounding using established epidemiological
techniques applied to any competing events as well as
the event-of-interest. In short, unmeasured variables can
cause problems with research, but by being
knowledgeable about what we don’t know, we can make
inferences despite this missing data.
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