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Abstract Recognizing users’ daily life activities without
disrupting their lifestyle is a key functionality to en-
able a broad variety of advanced services for a Smart
City, from energy-efficient management of urban spaces
to mobility optimization. In this paper, we propose a
novel method for human activity recognition from a
collection of outdoor mobility traces acquired through
wearable devices. Our method exploits the regularities
naturally present in human mobility patterns to con-
struct syntactic models in the form of finite state auto-
mata, thanks to an approach known as grammatical in-
ference. We also introduce a measure of similarity that
accounts for the intrinsic hierarchical nature of such
models, and allows to identify the common traits in the
paths induced by different activities at various granu-
larity levels. Our method has been validated on a data-
set of real traces representing movements of users in a
large metropolitan area. The experimental results show
the effectiveness of our similarity measure to correctly
identify a set of common coarse-grained activities, as
well as their refinement at a finer level of granularity.
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1 Introduction

Metropolitan areas have witnessed a steady increase in
the number of people living therein, which has triggered
an unprecedented concentration of resources and ser-
vices within their boundaries, as well as the deploy-
ment of pervasive urban sensing architectures. As a
result, Smart Cities [1] have emerged as a paradigm
to turn the large amounts of collected data into an as-
set for city planners and policy makers, transforming
the whole city into an intelligent environment with the
ultimate goal of improving the citizens’ lives. However,
smart services such as energy-efficient management of
urban spaces, automated surveillance or disaster risk
reduction require an understanding of human behavior
that goes beyond the mere processing of a collection of
measurements from pervasive sensing devices. For this
reason, Human Activity Recognition (HAR) [2, 3, 4] has
grown into a self-standing branch of machine learning.

Many of the proposals in the literature [4] heavily
rely on information gathered from the environment to
capture how everyday-life objects are used, or to de-
tect the presence of the users in relevant areas. Typ-
ically networked heterogeneous sensors, including cam-
eras, RFid or contact sensors, needs to be deployed in
selected points of interest. However, extensive and per-
vasive coverage is costly, and often impractical in large
outdoor settings, such as Smart Cities. Alternatively,
users may be actively involved in the monitoring pro-
cess, when wearable sensors (e.g., heartbeat and body
pressure monitors, or sensors integrated into portable
devices, such as smart wristbands) are used to gather
precise information about their actions. This, however,
might result in intolerable invasiveness for the users.

In our work, we argue that relevant insight about
the users’ behavior may be gathered by analyzing their
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mobility patterns, and we propose a novel approach to
complex human activity recognition from the the ana-
lysis of outdoor mobility traces. Contextual informa-
tion is gathered without extensive environmental sensor
coverage, and rather just by means of the GPS sensors
of commonly available portable devices, namely smart
phones, in a completely unobtrusive way. Given the
peculiar nature of human mobility, however, grasping
the common traits of seemingly unrelated paths may
be a daunting task. Nonetheless, advanced services like
traffic prediction or mobility optimization require that
an activity is captured in its entirety. It is thus essential
to know why users move across the space (i.e., identify
the activity that induced the trajectory), as opposed to
just how they perform the movement. For instance, a
route recommender system might be able to improve
the quality of the offered service, and tailor it to the
specific user’s needs by suggesting shortest routes to
people commuting to reach their job, scenic ones to
tourists on a sightseeing tour, or less traffic-intensive
ones to bikers.

We propose here to represent activities by means
of hierarchical models constructed within the frame-
work of Algorithmic Learning Theory (ALT), i.e., the
study of formal languages and their recognizers, auto-
mata. Our goal is to capture the natural regularities
in mobility traces induced by users’ activities by sym-
bolically encoding them, and regarding them as strings
generated by an unknown grammar. To this aim we use
Grammatical Inference (GI) [5], an inductive process
capable of selecting the best grammar consistent with
the provided samples, which in our case are trajectories
encoded in symbolic form, and labeled according to the
activities that triggered them. The obtained models are
constructed as a composition of simpler models of the
same nature, so they are naturally suitable to represent
the hierarchical nature of the activities, where each level
on the hierarchy corresponds to a level of geographical
granularity.

We have validated our approach on a publicly avail-
able dataset of real-life trajectories representing move-
ments of users occurring mostly within a large met-
ropolitan area, with occasional long-distance transfers.
Experimental results show that our models accurately
characterize the users’ activities at different geograph-
ical granularities, and that the proposed similarity meas-
ure can correctly classify them against a taxonomy rep-
resenting coarse- and fine-grained tasks in everyday life.

The contribution of this paper is threefold: 1) we
present a novel tool based on grammatical models to ex-
press and extrapolate the underlying semantics of com-
plex activities from mobility traces; 2) we describe a
framework showing how the same models can be used
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Figure 1: A taxonomy of HAR methodologies (adapted
from [4]).

to refine the recognition process, both with respect to
more specific activities, and to finer levels of geograph-
ical granularity; finally, 3) we define a similarity meas-
ure that mirrors the intrinsically hierarchical nature of
the proposed models, and makes it possible to use them
to infer the activity performed by previously unseen
users.

The remainder of the paper is organized as follows.
Section 2 summarizes the relevant work on activity re-
cognition. We describe our approach to building user
activity profiles by grammatical models in Section 3,
and the proposed global similarity measure in Section 4.
Section 5 presents our experimental results on a dataset
of actual mobility traces collected by GPS devices on
smart phones. Finally, Section 6 draws the conclusions
and discusses on-going research.

2 Related Work

Many different methodologies have been proposed to
automate the process of human activity recognition. A
first, broad distinction can be made according to the
taxonomy proposed by [4], between single-layered, and
hierarchical approaches (see Figure 1). In the former
case, human activities are regarded as series of gestures
and actions with sequential characteristics; models are
usually provided in terms of points in a space-time do-
main or as sequences of observations. Hierarchical ap-
proaches adopt a different viewpoint, in that they at-
tempt to describe high-level human activities in terms
of simpler ones, so that the inherent structure may
emerge. The authors of [22], for instance, show that
the overall accuracy of the activity recognition system
is improved when a structural representation of data
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Table 1: Qualitative comparison of HAR approaches.
Qualitative categories: (a) Atomic/Complex activities; (b) Personal/Environmental context; (c) In the Lab/in the Wild data
acquisition; (d) Subject- Dependent/Independent profiling.

HAR Qualit. categories Setting Type of Activities
approach (a) (b) (c) (d) sensors recognized
Bao et al. [6] A P L D Indoor and

outdoor
Wearable sensors (bi-
axial accelerometers)

20 activities: walking, running,
washing laundry, reading, vacu-
uming, ...

Leo et al. [7] A E W I Outdoor Vision-based sensors
(static cameras)

4 activities: walking, probing the
ground, picking object, damping
the ground

Choudhury et al. [8] A P W I Indoor and
outdoor

Weareable sensors,
GPS and wi-fi

10+ activities: walking, cycling,
brushing teeth, ...

Chen et al. [9] C E L D Indoor Ambient sensors (con-
tact, motion, tilt and
pressure sensors)

8 activities: making tea, making
coffee, making pasta, ...

Dernbach et al. [10] A/C P L I Indoor and
outdoor

Wearable sensors
(smart phones)

15 activities: biking, sitting,
sweeping, ...

Cook [11] A/C E L I Indoor Ambient sensors (mo-
tion, temperature,
door and interaction-
based sensors)

11 activities: bathing, cook, take
medicine, eating, relax, ...

Furletti et al. [12] A P L I Outdoor Vehicle GPS tracking
devices

10 activities: training, going
home, touring, ...

Saguna et al. [13] C P/E W I Indoor Wearable and
interaction-based
sensors (smart phones,
RFId)

16 activities: getting ready at
home, cooking, eating breakfast,
...

De et al. [14] C P/E W I Indoor Wearable sensors,
bluetooth beacons

19 activities: walk indoor, run
indoor, use refrigerator, clean
utensil, cooking, ...

Gaglio et al. [15] A E L I Indoor Kinect camera 8 activities: catch cap, toss paper,
take umbrella, walk, phone call,
drink, sit down, stand up

Blumrosen et al. [16] A E L D Indoor Kinect camera 2 activities: walking in a complex
pattern, repetitive hand tapping

Vaizman et al. [17] A P/E W I Indoor and
outdoor

Smart phones, wear-
able devices and
acoustic sensors

10 activities: bathing, in a meet-
ing, at a restaurant, ...

Natal et al. [18] A P W D Mainly
outdoor

Smart phones GPS 13 activities: dining, recreation,
shopping, studying, waiting trans-
port, ...

Liono et al. [19] C P W I Outdoor Smartphone sensors 4 activities (riding, walking,
drinking, playing) and additional
transportation modes

Saini et al. [20] C E L I Indoor Kinect camera 24 basic activities involving 2 per-
son interaction

Younes et al. [21] C E W I Indoor Ambient cameras 8 activities: eating, taking med-
ication, brushing teeth, mopping,
using a computer, writing, making
phone call, (simulated) driving

Our approach C P W I Outdoor Smart phones 6 activities: travel, work, shop-
ping, sport, social and spare time

features in the form of a graph is used, and the use of
a hierarchy of graphical models, namely layered hidden
Markov models, has been proposed by [23].

A work that is closely related to the approach presen-
ted here is described in [24]. The system proposed therein
maintains the representation of an activity describing
how its composing gestures must be concatenated tem-

porally, spatially, and logically. Interestingly, the au-
thors suggest using probabilistic context-free grammars
to implement a semantic-level activity recognition al-
gorithm, and they show that this leads to an improve-
ment on the overall system accuracy. However, the syn-
tactical structure itself is not inferred, but rather matched
against the occurrences of lower-level components. In
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our approach, on the other hand, we aim to let syn-
tactical models emerge from data. By building up on
previous work [25, 26], where trajectories of individual
users were represented in the form of finite state auto-
mata, we broaden the scope and focus here on the cap-
ture of the intrinsic structure of complex activities start-
ing from mobility traces.

Other systems from the literature on HAR are re-
ported in Table 1 on page 3 along with their discrim-
inating characteristics, such as the targeted setting –
either indoor or outdoor –, the employed sensors, and
the range of recognized activities. We further classify
them in terms of some representative qualitative cat-
egories: a) their ability to capture the complexity of
the activities; b) the requirements in terms of monit-
oring equipment to infer the context; c) the practical
applicability of the proposed approach in a real-life set-
ting; and d) the ability to produce subject-independent
models.

Many approaches are characterized by a focus on
elementary activities performed in constrained envir-
onments or during short periods of time, so they may
fail to catch the inherent complexity of human behavior.
As pointed out by [27], unless only simple, atomic acts
are considered, the diversity arising from concurrent or
interleaved activities necessarily requires the identifica-
tion of various levels of abstractions: a high-level activ-
ity (e.g., working, shopping or dining out) is to be ex-
pressed as a complex sequence of actions, which in turn
are series of atomic acts (i.e., primitive patterns, such
as gestures) that may be easily singled out. Clearly, this
usually implies using some kind of hierarchical model.

A second important parameter to be taken into ac-
count regards the use of context, which is usually asso-
ciated to the type of sensors used to detect the behavior
of users [28, 29]. The environment may play an active
role, as is the case when sensors are deployed in selected
points of interest to capture how everyday-life objects
are used, or when cameras are used to capture activity-
related features such as position, posture, or motion.
While pervasive monitoring increases the system pre-
cision, it clearly requires possibly costly, and hard-to-
maintain deployment. On the other hand, when users
are actively involved in the monitoring process, a per-
sonal context may be obtained by means of wearable
sensors, such as heartbeat and body pressure monit-
ors, or sensors integrated into portable devices, such as
smart wristbands. In [30], a review of the state of the
art in HAR by means of wearable sensors is reported,
where the authors assess 28 systems targeting medical,
military, or security scenarios. In this case, minimiz-
ing the inconvenience for the end-user and preserving
their privacy should be the primary concerns. When

mobility is the trait of human behavior that is to be
modeled, smart phones are a natural candidate as a
monitoring device. For example, tracking users exploit-
ing location data gathered through a cellular network
has been addressed in [31], with an interesting charac-
terization within an information-theoretic framework,
and in [10], where smart phones are used to recognize
complex activities in an indoor environment, such as
cooking or cleaning, by means of classifiers like multi-
layer perceptrons, naïve Bayes, and Bayesian networks.

A further characterizing feature of HAR systems
is the manner in which data collection is performed.
In many cases, only application-specific activities per-
formed in a laboratory setting and in a scripted manner
are considered. On one hand, this simplifies the task of
obtaining reliable labels for the training data, which is
essential when supervised methods are to be used for
classification; however, in a real-world scenario humans
perform complex activities in a variety of ways, and
such heterogeneity can only be captured by performing
experiments “in the wild”.

Finally, some of the cited approaches need to be
trained and tested for each individual, while others are
able to produce a classifier which is valid across differ-
ent subjects, and can thus deliver subject-independent
models for the activities under exam.

As compared to all of the mentioned works, our ap-
proach is the only one addressing complex activity re-
cognition in an outdoor setting, with minimal require-
ment in terms of the used sensors.

3 Building Activity Profiles Hierarchically

In this work, we aim to address the diversity of complex
human behavior by building structural mobility mod-
els, suitable for matching user mobility models against
prototypal ones relative to known activities by comput-
ing the relative similarity. The underlying assumption
is that human trajectories are likely to show a high de-
gree of temporal and spatial regularity which arguably
derives from simple, reproducible patterns rather than
abstract statistical models, such as basic random walk
[32]. The concept has been reaffirmed in [33], where a
remarkable lack of variability in predicted travel pat-
terns was observed by measuring the entropy of each
individual’s trajectory. Hence, it is reasonable to ex-
pect that comprehensive models for all trajectories re-
lated to the same activity may be inferred by capturing
such underlying regularities. In order to do so, we make
use of a structural learning approach.

A comprehensive outline of the proposed approach
is depicted in Figure 2. Considering the topmost half
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Figure 2: Outline of the proposed methodology.

of the picture, we assume that a collection of the paths
traveled by a group of users is available, either via a
public repository or acquired through an ad-hoc applic-
ation, and labeled according to the activities they were
performing. We will show how a proper encoding sys-
tem allows to turn such raw sequences of geographical
locations into strings, i.e., sequences of symbols cor-
responding to discrete areas. A key feature of human
mobility is that it is intentional, as it implies an un-
derlying purpose corresponding to the activity that is
to be performed, e.g., reaching the workplace, going
shopping, walking in a park, and so on. Hence, our syn-
tactic approach allows us to model trajectories sharing
an underlying regularity (i.e., reflecting the same un-
derlying activity) by means of finite state automata.
As will be discussed in the following, we will use a su-
pervised learning method to this end, and discuss the
techniques that can be used in a realistic scenario where
data are likely affected by noise.

The lower half of Figure 2 shows outlines the re-
cognition phase of our method. Once reliable general
activity models are produced, the same process may be
used on the traces of a previously unseen user. Their
model may then be matched against the reference activ-
ity models produced earlier, and labelled according to
the measure of similarity, which will be presented in
Section 4.

3.1 Expressing Trajectories Symbolically

Mobility traces are generally stored as sequences of loc-
ations, possibly coupled with a timestamp depending
on the sampling rate of the measurements. A common
representation is by pairs of latitude/longitude coordin-
ates.

Figure 3: Hierarchical structure of geohash cells.

Figure 4: A geohash trajectory crossing multiple sub-
cells.

Since our approach is based on automata designed
to recognize a language, the coordinates are to be trans-
lated into a symbolic form. To this aim, we selected
an encoding system known as geohash [34], which as-
signs a hash string to each latitude/longitude pair in
a hierarchical fashion. Considering a specific geograph-
ical zone, and the corresponding geohash cell, is equi-
valent to selecting a specific granularity for measure-
ments. Starting with the coarsest granularity (covering
the entire globe), any chosen region is divided into 32
subcells identified by a symbol, as shown in Figure 3.
The process may be recursively repeated up to the de-
sired precision.
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The collection of all sequences of geohash points, de-
scribing the paths travelled by a user while carrying on
a specific activity, represents the raw description of the
activity itself. While coarser granularities may allow us
to capture trajectories in their entirety, the correspond-
ing strings would lose detail about the geographical po-
sition, and the converse holds for finer granularities. For
instance, the simple example in Figure 4 represents a
path of 10 locations in a cell covering a metropolitan
area defined by the wx4 geohash cell. In our encoding,
this trajectory is defined by the sequence of symbols
following the cell geohash prefix, namely eeggggggff:

prefix
1. w x 4 e s 0 3 c r v r y
2. w x 4 e w j j 6 x g z b
3. w x 4 g b 6 0 u z y p v
4. w x 4 g f k n 6 p v 7 b
5. w x 4 g s q 0 3 r b p b
6. w x 4 g 6 t 8 7 x g r f
7. w x 4 g 7 c 8 m z v p u
8. w x 4 g j 6 5 q x v x v
9. w x 4 f g v g u x f z z

10. w x 4 f e 1 t 2 r z x c

prefix
1. w x 4 e s 0 3 c r v r y
2. w x 4 e w j j 6 x g z b
3. w x 4 g b 6 0 u z y p v
4. w x 4 g f k n 6 p v 7 b
5. w x 4 g s q 0 3 r b p b
6. w x 4 g 6 t 8 7 x g r f
7. w x 4 g 7 c 8 m z v p u
8. w x 4 g j 6 5 q x v x v
9. w x 4 f g v g u x f z z

10. w x 4 f e 1 t 2 r z x c

If we focused instead on a smaller area covering just
a neighborhood within the city, we could consider only
the points along the solid line in the figure, character-
ized by the longer prefix wx4g, and resulting in a sub-
trajectory described by string bfs67j. On the other
hand, if we selected a country-wide cell such as wx as
our base granularity, the sequence of locations would be
completely described by sequences of varying length of
the symbol 4, which would be recognized by the auto-
maton equivalent to regular expression 4∗. Although
completely accurate, this representation is not detailed,
as it only captures the fact that the user stays in the
country. A comprehensive model, that is able to cap-
ture similarities at the different levels of granularities
is hence needed.

3.2 Hierarchical Automata Models

We now turn our attention to the issue of learning a
model for the movements of a group of users reflecting
the activity that originated them. Provided a symbolic
encoding for the movements, this learning problem may
be formulated in terms of Grammatical Inference (GI)
as the task of inferring the most general recognizer of
a given set of strings, i.e., the minimal Deterministic
Finite Automaton (DFA), consistent with the data. In
our case, the alphabet for the strings used for training
is represented by the geohash symbols. The accepting
states of the inferred automaton would identify those
strings corresponding to trajectories actually traveled
by the user when performing the activity the automaton
is intended to recognize. In this work, we make use of
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Figure 5: A hierarchy of automata.

passive learning, a well known approach for inferring
the automaton recognizing a a set of strings provided as
training set. It may be regarded as an inductive process
of a supervised learning, where inference is formulated
as a search in a state space [5].

It is worth pointing out that the chosen symbolic
representation for our trajectory strings gives us the
freedom to apply the learning algorithm at any desired
granularity level. The automaton constructed for a geo-
hash subcell is thus just a specialization for the corres-
ponding transition of the parent model, so the overall
model can be conveniently expressed as a composition
of automata, as depicted in Figure 5.

3.3 Learning from Real-life Data

To train a passive learning algorithm, data must be
presented to it in the form of positive and negative ex-
amples, i.e., strings that are supposed to be accepted
(respectively, rejected) by the classifier. Labels will de-
pend, in our case, by the activity for which the model
is being built. Learning begins by formulating an ini-
tial hypothesis as the automaton representing the avail-
able examples. Note that this is always possible, but
one such automaton would trivially recognize just the
strings provided as training. The aim is then to have
it evolve toward a more general automaton, capable of
capturing more strings of the unknown language, which
roughly corresponds to the idea of generalization in typ-
ical machine learning methods. This may be carried
on by means of a structural operator, namely pairwise
state merging, that is able to generate automata de-
scribing languages larger than the original. From the
initial, overfitting, automaton a lattice of more general
recognizers is produced by repeated application of state
merging. In order to avoid mistakenly accepting neg-
ative samples, overgeneralization needs to be limited,
and it may be shown that this amounts to identify a
“frontier” in the search space [5]. When dealing with
symbolic data generated from real-life measurements,
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the selection of a meaningful training set of data may
be particularly challenging. It is crucial that examples
possibly leading to overfitting are discarded, while the
most relevant ones are kept. In particular, since the
search is constrained only by negative samples, it is es-
sential that they are as representative as possible of
the target language, and the order in which they are
presented to the algorithm is important.

For coarser granularities (corresponding to geohash
prefixes identifying cells larger than a metropolitan area)
we chose to use Regular Positive and Negative Infer-
ence (RPNI) [35]. This is a passive learning algorithm
that performs an exhaustive search of the automata
space built via repeated application of the state mer-
ging operator, until the frontier of acceptable automata
is reached. A remarkable property of RPNI is that it is
able to identify in the limit the minimum consistent
automaton provided that the learning sample is rep-
resentative of the unknown model. Its complexity is
heavily influenced by the size of the initial automaton,
whose width is a linear function of the number of ele-
ments in the training set, and whose depth is linear
on the size of the longest string in the training set.
However, coarser granularities are characterized by few,
short strings since many trajectories collapse into the
same encoding, so the overall running time of the al-
gorithm is effectively contained.

At finer granularities, on the other hand, we want
to account for the fact that our data are not guaran-
teed to be completely noise-free, which often results into
mislabeling. For instance, incomplete or noisy measure-
ments might cause a trajectory string to be assigned to
the wrong class, since a small error in a measure cor-
responds to a potentially very different symbolic encod-
ing. Additionally, structurally similar inputs with con-
trasting labels typically lead to a needlessly more com-
plex recognizer, which would make RPNI impractical.
Hence, at finer granularities we employed the Blue*
algorithm [36], which specifically addresses potentially
mislabeled data by statistically distinguishing between
relevant and irrelevant information, which is treated as
noise. While the aim is to evolve from the initial, over-
fitting automaton towards a more compact and general
automaton, as in RPNI, here some tolerance to an error
in classification is added if it improves generalization.
In particular, a generalization by state merging will be
deemed as statistically acceptable, and consequently the
reduction in the size of a DFA is accepted, only if the
resulting statistical error does not exceed some chosen
threshold. The underlying idea consists in verifying that
the proportions of misclassified samples do not increase
significantly after a state merging; more specifically, hy-
pothesis testing [37] is used to drive statistical inference.

As will be shown in Section 5, the combined use
of the two mentioned algorithms allows us to obtain
compact models at all granularities, without hindering
the overall accuracy.

4 Similarity between Activity Models

Once reliable models for the activities related to the
mobility traces of a group of users are available, we
need a method for comparing them. To this aim, we
propose a similarity measure between pairs of activity
models that takes into account their intrinsic hierarch-
ical nature. Initially, we will focus our attention to the
computation of the similarity score between pairs of
local models, i.e., automata built for the same granu-
larity level. Then, we will show how we can formulate
a comprehensive similarity measure suitable to reliably
compare the activity models in their entirety, i.e., con-
sidering all granularities of interest.

4.1 Computing Local Similarity Scores

Unlike statistical models, in which similarity is typically
assessed by evaluating statistical metrics on a chosen
set of features, here activities are described in terms of
strings. This implies that we need to assess the similar-
ity between two languages. At the same time, we want
to account for the nature of the recognizers we are using
(i.e., automata), so the chosen measure should also con-
sider similarity in terms of structure. This dual aspect
is well captured by the similarity measure proposed in
[38], which results from the combination of a linguistic
part and a structural part.

The first part of the similarity score is computed us-
ing the so-called w-method [39]. Considering two auto-
mata A1 and A2 over the same alphabet, a “represent-
ative” set of strings is constructed to be used as probes
for the two automata under observation. Roughly speak-
ing, such strings need to ensure that each state and
transition of the target automaton is triggered at least
once. The score will then depend on how many strings
are identically classified by both automata (with re-
spect to our scenario, this part of the measure aims to
assess whether geohash trajectory strings are assigned
to the same activity according to both automata), and
will be computed through classic metrics for classifica-
tion assessment. More precisely, in order to avoid a bias
of the score toward the positive or negative samples, the
linguistic similarity is expressed as the F-measure, i.e.,
the harmonic mean of precision (prec), and recall (rec):

SL = 2 · prec · rec
(prec + rec)

(1)
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Figure 6: Capturing dissimilarity at different granular-
ities.

The second part of the similarity score aims at com-
paring the recognizers not in terms of their languages,
but in terms of their states and transition structures.
The measure is based on the “neighbor matching” pro-
posed by [40], whose underlying idea is that the overall
structural similarity between two automata A1 and A2
can be expressed as the normalized sum of the highest
similarity scores between pairs of states. The pairwise
state similarity xi,j is computed iteratively in terms of
the number of matching incoming and outgoing trans-
itions in the respective neighborhoods of states i ∈ A1
and j ∈ A2. Finally, the best k states according to the
pairwise similarity are selected to compute the overall
structural similarity measure, as follows:

SA = 1
n

k∑
l=1

xf(l)g(l) (2)

where n is the maximum number of states in both auto-
mata; f : {1, . . . , k} → states(A1) is the enumeration
function over the states of A1, and g the analogous for
A2, that return the ordering for the final best mapping
between nodes of the two automata.

By construction, both the linguistic and the struc-
tural parts of the similarity score fall within the interval
[0, 1], with the upper bound indicating complete simil-
arity. A measure expressing the comprehensive similar-
ity of two automata at the same granularity level may
thus be obtained as a linear weighted sum of the two
parts:

S(A1, A2) = γ SL + (1 − γ) SA (3)

where the parameter γ may be used to fine tune the
relative influence of the linguistic and structural parts
on the composite measure. A small value of γ would bias
the measure towards automata of similar complexity (in
terms of number of states and transitions) and thus be
useful to disregard small differences in the sequence of

symbols in the strings. On the other hand, values of γ

close to 1 would produce higher similarities when the
same sets of strings are recognized identically by the
automata, regardless of their structure.

4.2 Composing Local Similarity Scores into a Global
Measure

In our approach the activities are modeled by a hier-
archical composition of automata, so the formulation
for a global similarity score must reflect the same struc-
ture.

Referring back to the example in Figure 5, wx was
selected as the base granularity so trajectories would
be completely described by the automaton equivalent
to regular expression 4∗, assuming that all locations fall
within the 4 geohash subcell. Even though such auto-
maton would provide a satisfactory model with regard
to the description of the user movements, it would not
represent their activities as well. In fact, while its stat-
istical precision would be optimal, it would not be able
to distinguish between sequences of movements corres-
ponding to the different activities.

With reference to Figure 6, assume that the solid
and dashed lines identify two classes of trajectories, cor-
responding to two different activities of the user (say,
“going to work”, and “do shopping”). The algorithm of
grammatical inference would produce the same recog-
nizer for both activities (i.e., the automaton labeled wx,
which would simply accept all sequences of 4’s and re-
ject the others). This implies that they would be com-
pletely indistinguishable from each other, at the con-
sidered geohash granularity, according to the previously
defined similarity measure. On the other hand, we would
like to retain the concept that, despite their differences,
two activities may show some degree of similarity as
they may occur within the same geographical area, or
involve movements that are structurally similar. To this
end, we can exploit the hierarchical nature of the auto-
mata models, and consider the fact that recognizers
for lower granularities are more likely to capture ad-
ditional details of the user movement. In our example,
this means we focus on the 4 subcell, i.e., select points
represented by strings sharing the wx4 prefix. The auto-
mata inferred for that granularity would specialize the
transition on symbol 4, and are likely to reflect in their
structure the differences in the shape of the trajectories
of different activities. The procedure can also be iter-
ated at lower granularities, until we reach such a finer
precision that the concept of trajectory would not be
representative any longer.

An important question arises in this regard: is it
possible to provide a comprehensive formulation of sim-
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ilarity for any pair of hierarchical automata that glob-
ally represent the model for the user activity? In real-
life settings, it has been shown that people tend to
travel frequently on very few paths, and more rarely
vary their routes [32]. This means that only a minority
of the geohash cells at any given granularity level will
contain a non-negligible amount of trajectories, so it is
sufficient to refine our models only for those subcells.

In order to obtain a measure of similarity account-
ing for the hierarchical nature of our models, we com-
pute a global similarity SG

p at prefix p in terms of the
“flat” score Sp, as computed by Eq. (3). The idea is that
we consider Sp as an initial approximation that can be
improved by considering all relevant lower-granularity
refinements. Formally:

SG
p = Sp +

∑
c∈Ψ(p)

ϕc(SG
c − Sp)

with
|C(p)|∑
c=1

ϕc = 1
(4)

where c ∈ C(p) denotes all the possible subcells of prefix
p, while Ψ ⊆ C selects the ones that we want to include
for refinement, and ϕc is the weight modulating the
contribution of each subcell.

The intuition behind the above formulation is as fol-
lows: human mobility is characterized by the fact that
most movements are concentrated in limited areas, not
all subcells will provide a relevant contribution to the
similarity score. Cells interested by limited, or no move-
ment at all can be excluded, so they do not contribute
to the score, which would just be determined by the
upper-level similarity. On the other hand if we choose
to refine the score at a given granularity p by using all
its subcells, then the similarity score would collapse in
SG

p =
∑

c∈C(p) ϕcSG
c , and hence be a function of the

lower refinements only.
It is also worth pointing out that the term SG

c in
the summation of Eq. (4), which refers to the similarity
of models in a subcell, is recursively computed with the
same formula.

5 Experimental Study

For validating our proposal, we considered the Geolife
dataset [41] provided by Microsoft Research Asia. It
contains a collection of geographical locations in the
form of (latitude, longitude, altitude) triples, represent-
ing the movements of 182 users monitored for 5 years in
the region of Beijing, China, although routes crossing
USA and Europe were occasionally present. More than
17, 000 trajectories are stored, acquired trough GPS log-
gers and smart phones, generally with a high sampling

rate of 1 to 5 seconds in time, and 5 to 10 meters in
space. However, as shown in Figure 7, for many of the
users only a small number of trajectories was collected,
some of which are too short, or contain clearly erro-
neous measurements. Hence, for our experiments, we
selected 10 representative users, each characterized by
more than about 300 non-trivial trajectories. Finally,
we disregarded the information about altitude, which
was not relevant for our purpose.

5.1 Preliminary Data Processing

The preliminarily step in our analysis consisted of gen-
erating a reliable ground truth for our data. In particu-
lar, even though the Geolife dataset is anonymized for
privacy reasons, the authors of [42] state that a pro-
jection of the available data on a map shows that “the
volunteers tend to have similar background since they
share a common area with the highest density of visits,
which is the assembling place of IT companies. This
indicates a high chance that the volunteers may have
similar interests to each other.”

In order to transform raw locations into trajector-
ies, the same authors suggest that only the so-called
stay points are considered, which represent groups of
nearby positions where a user lingered for a sufficient
amount of time. After eliminating outliers, they apply
a density-based algorithm to hierarchically cluster the
stay points into areas referred to as regions of interest
(RoI), to which a location semantics, that is, the in-
tended functionality of that region (e.g., park, school,
workplace, hospital), is associated. Temporal and loca-
tion semantics together constitute a so-called T-pattern,
as defined by [43], and an algorithm of frequent sequen-
tial pattern mining is used to extract the sequences of
places frequently visited by a user and to estimate their
similarity with respect to other users. In our experi-
ments, we retained the idea of computing RoIs from
users’ raw locations, but used them only to semantically
label trajectories. The most frequently visited locations
were clustered into RoIs. Their proximity to known loc-
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Table 2: List of the activities used for labeling trajectories.

Activity label Description Incidence
travel Transit through transportation hubs; movements outside of metropolitan area 1.69%
work Movements to and from university buildings, private companies 71.67%

leisure
shopping Malls, food and convenience stores 9.35%

26.64%sport Use of recreational centers, sport fields, parks, outdoor activities 3.27%
social Visit to entertainment areas, theaters, museums, friends 4.23%

spare time Routes within city limits further from other points of interest 9.79%

ations was analyzed and they were tagged as work-
places, transportation hubs, or recreational locations.
Trajectories starting, ending, or traversing them have
been labelled accordingly, and a set of categories rep-
resentative of typical users’ activities were assigned to
them. After this step, however, we retain the native se-
quence of locations, in geohash encoding, since our aim
is to extract the regularities in their original structure.

The actual encoding of a trajectory as a geohash
string requires choosing a base granularity or, equival-
ently, setting a common prefix for the locations. As
most of the trajectories in Geolife occur in the north-
eastern part of China, the shortest possible prefix, w,
would allow us to capture all of them. Considering that
strings falling within geohash cells with a prefix length
larger than 5 symbols would span an area roughly as
compact as a few city blocks, such prefix was assumed
to convey satisfactory precision for our purposes. At
the coarser granularity, on the other hand, the high
sampling rate provided by Geolife is redundant. A series
of measurements taken only a few seconds apart in
an area of more than 1,000 km2 would be encoded
as long repetitions of identical symbols. Therefore not
only would they fail to convey any significant inform-
ation about the trajectory, but also likely hinder the
inference process. In our experiments, we chose to ad-
aptively sample the data, with a lower rate (60 s) for
prefix length shorter than 4, while keeping the full de-
tail for finer geographical granularities.

Finally, we note that at any chosen granularity user
paths traverse only a potentially small subset of all
possible 32 subcells. The degree of coverage, defined

Table 3: Weights of subcells for global similarity.

Granularity Subcell (coverage)
w wx (94.53%)
wx wx4 (95.48%)

wx4 wx4g (51.36%)
wx4e (32.71%)

wx4g wx4g3 (18.51%)

wx4e wx4er (20.92%)
wx4ex (15.84%)

as the percentage of trajectories falling into a subcell
with respect to the overall number of trajectories at
that granularity, thus provides a good indicator of the
relative importance of the subcells. Table 3 shows the
subcells used to refine global similarity, and their rel-
ative weights, which were used in our experiments as
estimates for parameter ϕc in Eq. (4).

5.2 Accuracy of Structural Models

The complete list of activities we aim to identify is
reported in Table 2 together with a brief description,
and the relative percentage of trajectories they refer
to. Three of the categories (travel, work, and leis-
ure) are broadly-scoped, and capture typical activities
performed by users both within, and out of the metro-
politan area. As shown, according to our categorization
users are typically involved in work-related activities,
consistently with documented in previous works on the
same data [42], whereas only a minority of trajectories
are relative to travels. In order to assess the potential-
ity of the proposed similarity measure to discriminate
between finer-grained activities, we further specialized
the leisure activity into 4 sub-categories.

Evidently, the reliability of the similarity measure
depends on the accuracy of the inferred models. In a
grammatical inference framework, one of the most delic-
ate issues is the generation of negative samples. In gen-
eral, positive samples will improve the model precision,
while negative ones will guide the learning process and
limit its overgeneralization. Therefore, mislabeling may
have a disruptive effect not only on the accuracy, but
also on the complexity of the resulting model, which in
turn would negatively affect the similarity score. In our
case, however, the ground truth assignment provides a
reasonable initial choice of positive and negative sample
sets. In particular, when inferring the model for one of
the activities, trajectories corresponding to the other
activities will be used as negative samples. For instance,
in the case of the three broadly-scoped activities the
negative sample set for work would be represented by
leisure, and travel. In general, whatever is the chosen
taxonomy, we cannot be expected it to cover the whole
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Figure 8: Accuracy of the individual models for three coarse-grained activities at varying granularities for all users.

range of a user’s movements, so we enrich the negat-
ive set by excluding cells not covered by any traject-
ory. This has a beneficial side effect for the inference
algorithm, as it potentially reduces the size of the al-
phabet of a specific model. Together with our adaptive
subsampling at different prefixes, this allows to keep
samples short at lower granularities, thus lowering the
overall running time and complexity of the algorithm,
while keeping the model simpler.

Models for coarser granularities, where strings show
a simpler structure due to the nature of the movements
at large scale and to our preprocessing, were inferred
using the RPNI algorithm [35], whereas for granular-
ities corresponding to prefix lengths 4 and beyond, we
used Blue* [36], whose parameters controlling noise tol-
erance were selected using a grid search. In all experi-
ments, 75% of the available data was used for training
and the rest for the test. In order to obtain unbiased
results with regard to the specific subdivision, 10 runs
of cross-validation were performed and the average res-
ult was reported. The plots in Figure 8 report the ac-
curacy (expressed as the F-measure) of the models ob-
tained for work, leisure, and travel for the 10 selected
users with increasing granularity. No trajectories cor-
responding to a travel-related activity were found for
users 41 and 163, so the corresponding bars are missing
in Figure 8(c). Performances are usually satisfactory,
reaching 0.82 accuracy on an average for work and
0.73 for leisure, although not homogeneously across
the different granularities. Accuracy results are clearly
more stable for the work activity, to which the major-
ity of trajectories belong. travel models, on the other
hand, are less satisfactory. This is likely due to the high
imbalance in the training sets, where negative samples
greatly outnumbered the positive ones.

5.3 Test Scenarios for Activity Discrimination

Our main interest lies in discerning whether two sets of
trajectories were induced by the same activity, which
amounts to assessing how close those are to one another
in terms of our similarity score. In particular, our goal

is to be able to tell activities apart, not only at a coarse-
grain level, but with a finer precision as well.

We initially consider two test cases, targeting the
most representative high-level activities, namely work,
and leisure. Models for the two activities are inferred
from the trajectories of the 10 selected users, labelled
as described earlier. If our similarity measure is sound
and captures the underlying semantics of the indicated
activities, we would expect any trajectory labelled as
work to show a higher degree of similarity to any other
trajectory with identical label than to any one labelled
otherwise. This is indeed confirmed by inspection of
the confusion matrix reported in the leftmost part of
Figure 9, where darker colors indicate higher similar-
ity. The matrix clearly shows that, besides reporting
full self-similarity, homogeneous activities show a higher
similarity score even for different users than heterogen-
eous activity. This indicates that the proposed measure
is reliable, and indeed captures the nature of the activ-
ity regardless of who actually performed it.

A second test case was then considered, regarding
the ability of the HAR algorithm to refine its outcome.
Specifically, we considered the sub-activities of leisure:
shopping, spare time, social, and sport. In this case
trajectories for all users were considered together when
tagged with the same label, and the smaller matrix on
the right side of Figure 9 shows the corresponding res-
ults, grouped by activity. Again, the fact that similarit-
ies between models for different sub-activities are low,
indicates that they can be reliably distinguished from
each other. However, a closer look at the models produ-
cing the extremely low scores for the shopping activ-
ity revealed that the corresponding model was much
more complex than the others (it was in fact a 60-states
DFA). This indicates overfitting, and might be a sign
of imprecisions during the tagging of the trajectories.

It is worth noting that our results are in accordance
to what reported in [42], whose authors computed user
profiles based on the same dataset as ours. In their ex-
periments, they calculated the similarity of two sets of
activities depending on whether they were performed
on weekdays or weekends. Assuming that work activ-



12 E. Casella et al.

w
or

k
le

is
ur

e

work leisure

Figure 9: Similarity for the two most frequent coarse-
grained activities of 10 users.

ities are mostly performed during weekdays, whereas
weekends are typically reserved for leisure, the results
reported in Figure 9 show that the highest pairwise sim-
ilarities are between users 3-4, as regards work, and
users 153-163, for leisure, which corresponds to the
finding in [42].

Finally, our last experiment was conducted by build-
ing reference models for all coarse-grained activities,
using one of the users as test. The objective is to show
how our method might automatically label the activity
of a new user, by assessing the similarity score with re-
spect to the reference models. The results reported in
Table 4 show that the test models consistently receive
a similarity score that associates them with the correct
reference model. In other words, the label for the tra-
jectories of the test user could be inferred by assessing
the similarity with the reference models, which could
be useful for instance in the context of a recommender
system application.

6 Conclusions and On-going Work

In this work, we presented a method for the recogni-
tion of human activities from mobility traces acquired
through wearable devices, such as GPS loggers and smart
phones. The novelty of our approach lies both in the use
of syntactical models to represent user activities, and
in the definition of a suitable measure to capture the
similarity among such models by leveraging on their in-
trinsic hierarchical nature. Our experiments show that
the proposed grammatical models are able to accurately
discriminate between mobility patterns arising as a con-
sequence of such coarse-grained activities as work, leis-
ure, or travel. Moreover, the same models are suitable
to refine the classification and provide a finer distinc-
tion into sub-activities. The fact that the very nature of

Table 4: Similarity of test user against reference models.

Reference
work leisure travel

Test
work 0.43 0.23 0.08

leisure 0.18 0.37 0.17
travel 0.05 0.17 0.31

human mobility is hierarchical is mirrored in our formu-
lation for the similarity measure: even though different
activities may appear similar in a broader context, we
are able to selectively refine the measure, and provide a
more realistic score by considering lower granularities.

There are, however, open issues worth of further
analysis. First of all, more reliable ground truth is likely
to produce more accurate classifiers; we plan to refine
the RoI-based tagging algorithm, and to show the gen-
erality of our method in other contexts not necessarily
related to outdoor mobility. For instance, besides recog-
nizing common activities, or method could be profitably
used to detect anomalous behavior. Moreover, we plan
to test the method on additional datasets, possibly ex-
panding the taxonomy of the considered activities, for
instance by refining the work category further.

Finally, we are investigating alternative methods for
the inference of grammatical models, in particular with
reference to active learning [44]. This paradigm is based
on the assumption that an informant, or oracle, may be
used to guide inference by a process of queries and as-
sessment. One of the most interesting features is that
learning does not need to rely on negative samples,
whose selection is usually the weakest part of passive
learning methods. In particular, we plan to investigate
how an oracle may be constructed by adapting tradi-
tional machine learning methods (such as support vec-
tor machines, or deep learning algorithms) to our mo-
bility scenario.
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