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Abstract

Background: In pairwise meta-analysis, the contribution of each study to the
pooled estimate is given by its weight, which is based on the inverse variance of
the estimate from that study. For network meta-analysis (NMA), the contribution
of direct (and indirect) evidence is easily obtained from the diagonal elements of
a hat matrix. It is, however, not fully clear how to generalize this to the
percentage contribution of each study to a NMA estimate.

Methods: We define the importance of each study for a NMA estimate by the
reduction of the estimate’s variance when adding the given study to the others.
An equivalent interpretation is the relative loss in precision when the study is left
out. Importances are values between 0 and 1. An importance of 1 means that the
study is an essential link of the pathway in the network connecting one of the
treatments with another.

Results: Importances can be defined for two-stage and one-stage NMA. These
numbers in general do not add to one and thus cannot be interpreted as
‘percentage contributions’. After briefly discussing other available approaches, we
question whether it is possible to obtain unique percentage contributions for
NMA.

Conclusions: Importances generalize the concept of weights in pairwise
meta-analysis in a natural way. Moreover, they are uniquely defined, easily
calculated, and have an intuitive interpretation. We give some real examples for
illustration.

Keywords: Network meta-analysis; Study weight; Study contribution; Study
importance

Background
Pairwise meta-analysis (pairwise MA) is used to summarize the evidence for a treat-

ment effect from all eligible studies that compared the two interventions of interest.

In two-stage pairwise MA, the contribution of each study to the pooled estimate is

measured by its weight, which depends on the type of data, the chosen summary

measure, and the chosen statistical model. For example, for mean differences usually

the inverse of the variance of the estimated mean difference for a study is used as

that study’s weight, though this is an estimated, not a fixed number.

Network meta-analysis (NMA) extends the pairwise MA approach to an arbitrary

number of interventions. It is usually based on a set of randomized trials, each

comparing a subset of two or more of the treatments that are of interest for the

underlying research question. The evidence from these studies is then put together
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in a model, preferably respecting the principle of concurrent control by using a

model that is based on the within-study treatment contrasts [1].

The objective is to describe how important each study is for the estimate of a

given treatment effect in the NMA. We distinguish between approaches that focus

on the study’s contribution in the sense of attributing a ‘weight’ to each study,

mainly depending on the variances, and approaches that also take into account the

direction and size of each treatment effect, and which are seeking for ‘influential’

or explicitly ‘outlying’ studies. For the latter, see [2, 3, 4, 5]. In this paper, we

concentrate on the first approach; that is, we are mainly interested in measuring

study contributions without looking at their effect estimates.

For NMA, while several methods exist to obtain the contribution of direct (and

indirect) evidence of each comparison to its own NMA estimate, it is far less obvious

how to define the contribution, or the importance, of each study to any (other)

treatment effect estimate. Several proposals exist in the literature, based on different

approaches. Most of them come with some limitations; their results also do not in

general agree [6, 7, 8, 9].

The proportions of direct and indirect evidence have been investigated in the past.

The method of ‘back-calculation’, which we describe in the methods section, goes

back to Bucher’s work [10] and was proposed by Dias and others in a Bayesian

framework [11]. It was also given in a frequentist context [12]. In NMA based on

the inverse variance method, NMA estimates are linear combinations of treatment

effect estimates from primary studies with coefficients that constitute the rows

of the hat matrix. The direct evidence proportion of a study or a comparison is

easily obtained from the diagonal elements of the respective hat matrix [12]. As

an alternative, Dias and others suggested ‘node splitting’, which means estimating

the indirect evidence for a comparison by modeling out all studies that provide

direct information for this comparison [11]. This method was developed further

[13] and called ‘side splitting’ by others [14]. Whereas White [14] interpreted the

term ‘side’ as an edge in the network graph, others used SIDE as an abbreviation

of ‘Separating Indirect and Direct Evidence’ [15, 16]. Noma and others proposed

quantifying the indirect evidence based on a factorization of the total likelihood

into separate component likelihoods [17]. So far, these authors did not undertake

to define or estimate the contribution of each study to a given comparison in the

network.

A proposal to this aim, based on the off-diagonal elements of the hat matrix, was

made by Salanti and others [6]. Implicitly, this idea also underlies the net heat plot

that was suggested by Krahn and others, a heatmap visualization representing the

absolute size of the hat matrix elements by gray squares [18]. However, as an ap-

proach to define percentage study contributions, it has problems, as the hat matrix

elements are signed and do not add to 1. Papakonstantinou and others, acknowledg-

ing this limitation, developed a different concept, likewise based on the hat matrix,

using ideas by König and others [12], and successfully avoided these deficiencies [9].

Although the proposed algorithm is not strictly deterministic, it was empirically

shown that this did not materially affect the estimated percentage contributions.

These contributions are currently used in the software CINeMA (Confidence in Net-

work Meta-Analysis) to investigate the trustworthiness of each comparison’s NMA
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estimate, based on the risk of bias (and other features) of the individual studies

that contribute to the comparison [9, 19].

Another approach to percentage contributions was published by Jackson and oth-

ers [7] and also used elsewhere [8, 20]. They suggest decomposing the total variance

matrix of parameter estimates from the meta-analysis via a decomposition of the

observed Fisher information matrix into independent study-specific contributions,

which sum up to the total variance matrix. Their diagonal elements can be used to

derive percentage study weights for each parameter. They reveal how the variance

of a parameter is changed by the inclusion of a particular study, assuming that

all variance estimates (within- and between-study variances) are fixed at the same

value as in the full analysis of all studies. Although this approach is adequate when

within-study information is pooled across studies, the study-specific contributions

can become distorted in situations where across-study information contributes to

the parameter estimates, as in a network meta-analysis [9].

In the present paper we suggest an approach that does not require that the con-

tributions to each network estimate sum to 100%. The structure of the article is as

follows. In the methods section we introduce our notation and give the definition of

the statistical importance of a study to a network meta-analysis estimate. We then

show that this is a generalization of both the weights in a pairwise meta-analysis

and the direct and indirect evidence proportions in a NMA. We give several inter-

pretations of the quantity ‘direct evidence proportion’ and show that starting from

different interpretations of this quantity leads to different generalizations. In the

next section we present two real data sets for illustrating our method. In the results

section we illustrate our concept by first applying it to simple special cases and

standard networks like pairwise MA, a chain of treatments, and a circle, and then

apply it to the two real data examples. We discuss strengths and limitations of our

approach in the discussion section, and the paper ends with a recommendation in

the last section (Conclusion).

Methods
We start with defining the importance of a study for any network comparison in the

framework of the common effect model (traditionally termed ‘fixed effect model’).

We then show how our measure of importance is related to the proportions of

direct and indirect evidence for a NMA estimate and give various interpretations

for that. We also extend it to the random effects model. While the common effect

model assumes that, for each comparison, all studies in the network are estimating

the same (comparison-specific) true effect, the random effects model assumes that

the underlying effects of each comparison follow a distribution. Often a normal

distribution is assumed [21].

The importance of each study: Variance reduction by adding direct information

Consider a network meta-analysis. First concentrating on the common effect model,

we ask for the amount by which the variance of an estimate from only indirect

evidence is reduced if direct information is added, or the relative loss in precision

when direct evidence is removed. There is no reason to assume that these quantities

add up to 100%. We will come back to this point later.
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The importance of each study for each NMA estimate is defined as follows:

Conduct a NMA for the given network, called NMAall, and then repeat the fol-

lowing steps for each study i in turn:

1 Remove study i from the network.

2 Conduct a NMA for the network without study i. Let us denote this result

by NMA−i. Accordingly, denote the variance of any treatment effect estimate

c by Vall(c) if estimation is based on NMAall and by V−i(c) if estimation is

based on NMA−i .

3 For all comparisons c, define the importance of study i for comparison c as

p(i, c) = 1− Vall(c)

V−i(c)
=
V−i(c)− Vall(c)

V−i(c)
, (1)

thus giving the reduction of the variance of comparison c with respect to the

reduced network, if the removed study is reinstalled.

The first step (removing study i from the network) could lead to a disconnected

network, rendering the calculation of V−i(c) impossible. For implementation in prac-

tice, instead of removing study i, we set the standard errors for all comparisons from

study i to a very large value(e.g., 10000), thus downweighting study i to practically

zero. This approach, known as ‘data augmentation’, goes back to White and oth-

ers [22] and was also used by Riley and others [8]. While the interpretation of the

difference of the variances (numerator of (1)) depends on the particular scale, the

proposed measure is dimensionless. We have 0 ≤ p(i, c) ≤ 1 for all studies i and

comparisons c. We emphasize, however, that it makes no sense to add up these

importances across all studies, as they do not sum up to 100% (in fact, the sum is

often larger). We do not call them (percentage) contributions. Rather, they measure

the importance of a study for a comparison.

The idea can be illustrated by comparing a network of studies to a network of

roads in a town. We consider the traffic from some place A (a node in the network)

to another place B. The precision (or the weight) can be interpreted as the transport

capacity of the road network between A and B, comparable to the conductance in

an electrical network [23]. If a particular road is closed due to construction works,

a traffic accident, or flooding, many capacities decrease because some people have

to make a detour to go from A to B and thus add to the traffic on other roads. The

importance of this road for the way from A to B is given by the relative reduction

of the capacity of the network due to the road closure.

The algorithm to calculate importances is implemented in R function netimpact()

in the R package netmeta [24, 25], with a data set about Parkinson’s disease as ex-

ample. R code for all examples can be found in Additional File 1, with the resulting

plots shown in Additional File 2.

The importance of a comparison for itself: Direct and indirect evidence proportions

In this paragraph, we show how our definition of importance was motivated by (but

is not limited to) the known concepts of direct and indirect evidence proportions in

the context of two-stage meta-analysis with inverse variance weights, still based on

the common effect model.
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We denote the variance estimates of the NMA effect estimate, the direct effect es-

timate and the indirect effect estimate of a comparison c by Vnma(c), Vdir(c), Vind(c)

and the inverse variance weights by wnma(c) = [Vnma(c)]−1, . . . and so on. These

weights are quantities that must be estimated from the data. Direct and indirect

paths and thus effects can be assumed as independent. For readability, we omit hats

on the symbols. The rules of variance calculation lead to

Vnma(c) =

(
1

Vdir(c)
+

1

Vind(c)

)−1
=

Vdir(c) · Vind(c)

Vdir(c) + Vind(c)
(2)

[10, 11] and we may write

Vnma(c)

Vind(c)
=
Vdir(c)− Vnma(c)

Vdir(c)
= 1− Vnma(c)

Vdir(c)
(3)

Vnma(c)

Vdir(c)
= 1− Vnma(c)

Vind(c)
=
Vind(c)− Vnma(c)

Vind(c)
(4)

and in terms of inverse variance weights

Vnma(c)

Vdir(c)
= 1− wind(c)

wnma(c)
=
wnma(c)− wind(c)

wnma(c)
. (5)

The direct evidence proportion of comparison c can be defined via the inverse vari-

ance weights as

p(c) :=
wdir(c)

wdir(c) + wind(c)
=

Vind(c)

Vdir(c) + Vind(c)
. (6)

Inserting (2) into (6) and using also (3) and (4), we obtain for the proportions of

direct and indirect evidence

p(c) =
Vnma(c)

Vdir(c)
; 1− p(c) =

Vnma(c)

Vind(c)
. (7)

In practice, users of the R package netmeta obtain the values of p(c) via function

netmeasures() [24]. We now show that different interpretations for p(c) are possible

and that these lead to different concepts of generalization.

Interpretation 1: Proportion of direct evidence

The first interpretation of p(c), an immediate consequence of the definition (6), is

that it describes the proportion of network precision for comparison c attributed to

direct evidence (from pairwise MA), in short, the contribution of direct evidence to

the network estimate c. Accordingly, 1−p(c) represents the contribution of indirect

evidence to this estimate.

Interpretation 2: Reduction of the variance of a direct comparison by adding

indirect information

Equation (7) provides another interpretation: p(c) is the proportion to which the

variance of a pairwise MA is shrunk when indirect evidence from the whole network

is added to the direct evidence, or, in other words, when all network information is

used.
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Interpretation 3: Relative reduction of the variance of a comparison based solely

on indirect evidence when adding direct information

This interpretation is suggested by equation (4): p(c) is the relative reduction of

the variance of a comparison with only indirect evidence when information from

the direct comparison is added. Similarly, p(c) could be interpreted as the loss in

precision of a comparison when removing direct evidence (i.e., using exclusively

indirect evidence). This interpretation is motivated by equation (5).

Whatever interpretation is preferred, high values mean a high importance of the

direct comparison for itself, and low values mean low importance. The concept

of ‘direct evidence proportion’ quantifies the contribution of the direct evidence

from a comparison to its own NMA estimate. Our definition (1) generalizes this

to the importance of a comparison/a study for the NMA estimate of any (other)

comparison.

Extension to the random effects model

So far, we used the common effect model to derive the importances. The estimate

τ̂2 of the variance of the random effects did not enter the calculations. Leaving

out a study from the data is expected to change τ̂2. Particularly, the variance may

decrease if the omitted study contributed a lot to the between-study heterogeneity

or inconsistency, resulting in a negative importance for this comparison. A possible

workaround is to insert the estimate τ̂2 from the original network as a common

heterogeneity variance estimate for all subnetworks [7]. For pairwise MA, this leads

to the usual random effects weights, as we will see in the next subsection.

Pairwise meta-analysis

We consider a pairwise MA with inverse variance weighting, such that the (un-

standardized) weight of study i is given by wi = 1/Vi where Vi is the (estimated)

variance of study i. The variance of the pooled common effect estimate is then esti-

mated by 1/
∑

j wj . Removing study i from the MA gives another pooled estimate

with variance 1/
∑

j 6=i wj . Equation (5) provides the importance of study i for the

pooled estimate ∑
j wj −

∑
j 6=i wj∑

j wj
=

wi∑
j wj

which is the relative weight of study i in line with what we would expect. For the

random effects model, we use an estimate of the heterogeneity variance τ̂2 for the

full pairwise MA, and then remove one study in turn while fixing the heterogeneity

variance to this value. The same argumentation as above shows that the procedure

leads to the usual random effects weights, w∗i = 1/(Vi + τ̂2) and corresponding

relative weights.

This equality of weights is exact only if inverse variance weighting is used (e.g., for

mean differences or Peto odds ratios) and strictly only if these variances are known

(which is not true in practice), but not in general. For example, due to the different

weighting method, it does not hold exactly for binary outcomes when using the

Mantel-Haenszel method.
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One-stage network meta-analysis

Of note, however, the importance concept allows approximate ‘study weights’ to

be derived also for one-stage pairwise meta-analyses based on a generalized linear

model, such as logistic regression, where study weights are not commonly provided.

Importances can also be derived from a one-stage approach based on the Mantel-

Haenszel method for NMA [26]. We provide an example in Additional File 1.

This allows deriving not only study weights, but also direct and indirect evidence

proportions for one-stage NMA. For a comparison c, consider the network meta-

analysis of all studies except those that include c, and let V−c(c) be the variance of

the NMA effect estimate of c for this reduced network. In analogy to (1), we may

define the direct evidence proportion of comparison c as

p(c, c) = 1− Vall(c)

V−c(c)
=
V−c(c)− Vall(c)

V−c(c)

and the indirect evidence proportion as 1 − p(c, c) = Vall(c)/V−c(c). We suggest

also removing multi-arm studies that include c, following the ‘separate indirect

from direct design evidence’ (SIDDE) approach suggested by Efthimiou et al. [26].

Data sets

Parkinson’s data

This network consists of seven studies comparing five treatments: placebo, coded 1,

and four active drugs, pramipexole (coded 2), ropinirole (3), bromocriptine (4), and

cabergoline (5) [27]. The outcome is the mean lost work-time reduction in patients

given dopamine agonists as adjunct therapy in Parkinson’s disease, given as sample

size, mean and standard deviation in each trial arm. The data, shown in Table 1,

is used as an example in the supplementary material of [28] and available from the

R package netmeta [24], see the R code in Additional file 1.

Thrombolytic data

This data set, originally published by Boland and others [29], was extended and pre-

sented by Lu and Ades [30] and successively analyzed by many others. We took the

data from Riley and others [8]. The outcome is mortality at 30-35 days. This net-

work consists of 28 studies (13 designs, i.e., different combinations of treatments in

a study) of 8 treatments after acute myocardial infarction. We follow Riley and oth-

ers [8] denoting these treatments by A = streptokinase, B = accelerated alteplase,

C = alteplase, D = streptokinase + alteplase, E = tenecteplase, F = reteplase,

G = urokinase, and H = anistreptilase. Figure 1 shows the network graph for the

thrombolytic data which are provided in Additional File 3.

Results
We first apply our method to a number of hypothetical examples that nevertheless

lead to insight into the interpretation of our new measure of importance.

Hypothetical networks

A chain of n− 1 studies connecting n treatments

Suppose we have three studies comparing A to B, B to C, and C to D with vari-

ances V1, V2, V3. We look at comparison A:D. The direct evidence proportion for
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comparison A:D is 0, the indirect evidence proportion is 1. The variance of the

NMA (i.e., the indirect) estimate for comparison A:D is Vall(A:D) = V1 +V2 +V3. If

one of the studies, regardless which, is omitted, the variance becomes infinite, and

the importance of this study for comparison A:D becomes 1. The interpretation

is that this study (like the others) is of maximum importance for the comparison,

which is indeed true. For the approach by Papakonstantinou and others, henceforth

called contributions approach, each study would contribute 1/3 to the estimate of

comparison A:D [9].

A circle of n treatments with equal variances

Suppose we have a closed circular network of n treatments connected by exactly n

two-arm studies, each comparing two treatments in turn like in Figure 2 (left, here

n = 7) and each having variance 1.

We consider an arbitrary comparison c = t1 : t2 of treatments t1 and t2 (t1 6= t2) in

the network such that the distance (the number of steps) from t1 to t2 is 1 ≤ l ≤ n/2.

The NMA variance of comparison c is

Vall(c) =
1

1
l + 1

n−l
=
l(n− l)

n
.

For example, comparison A:D (distance 3) has the NMA variance 3*4/7. If a study

is removed from the network, evidence for comparison c can only go one way. If, for

example, the study connecting B and C is removed from the network, the variance

for comparison A:D becomes 4, because the shorter connection via B and C is

broken. In general, if the removed study lies on the shorter path from t1 to t2

(length l), the variance becomes n− l, if the removed study lies on the longer path,

the variance becomes l. Thus the importance of each study i on the shorter path

for comparison c is

p(i, c) = 1− Vall(c)

V−i(c)
= 1− l(n− l)

n(n− l)
= 1− l

n
=
n− l
n

and the importance of each study j on the longer path for comparison c is

p(j, c) = 1− Vall(c)

V−j(c)
= 1− l(n− l)

nl
= 1− n− l

n
=

l

n
.

Thus, plausibly, each of the l studies on the shorter path has greater importance

for the comparison than the n− l studies on the longer path, as we have presumed

l ≤ n− l. For the example, the importance of study B:C for comparison A:D is (7

- 3)/7 = 4/7. Particularly, it follows that the direct evidence proportion for each

pair that is directly compared (i.e., adjacent, l = 1) is (n − 1)/n and the indirect

evidence proportion is 1/n, while for all other pairs the direct evidence proportion is

0 and the indirect evidence proportion is 1. By contrast, the contributions approach

would attribute a contribution of n−l
nl to each piece on the shorter path and l

n(n−l)
to each piece on the longer path, such that the sum of all contributions is 1.
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A network with a bridge

We consider the network given on the right-hand panel of Figure 2 with seven stud-

ies, all again having variance 1. We call comparison C:D a bridge [9, Supplementary

file 3]. Table 2 gives the importances of each study for all comparisons. Study CD

has importance 1 for all comparisons between the two parts of the network (A:D,

A:E, A:F, B:D, B:E, B:F, C:D, C:E, C:F) and importance 0 for all comparisons

within the same part of the network (A:B, A:C, B:C, D:E, D:F, E:F). Studies AB,

AC and BC have no importance for comparisons outside the triangle ABC (C:D,

C:E, C:F, D:E, D:F, E:F), and vice versa for triangle DEF. The table also shows

that the direct evidence proportion for comparisons A:B, A:C, B:C, D:E, D:F, and

E:F is 2/3, and the direct evidence proportion for comparison C:D (the bridge) is

1.

To compare this with the contributions approach [9], Table 3 shows the contribu-

tions of each study to a comparison in the bridge network. For all comparisons of

treatments from different parts of the network the values of contributions differ from

those of importances. This is because the contributions approach attributes lower

weights to a study when the network distance between the treatments is greater.

A generic triangle

Consider a NMA with three treatments A, B and C and three studies comparing A

to B, A to C, and B to C with variances VAB , VAC , VBC . We focus on comparison

A:B. Its direct estimate has variance VAB and its NMA estimate has variance

Vall(A : B) =
1

V −1AB + (VAC + VBC)−1
=
VAB (VAC + VBC)

VAB + VAC + VBC

The direct evidence proportion for A:B is

VAC + VBC

VAB + VAC + VBC
.

If one of the studies on the indirect pathway from A to B (say AC) is removed, only

direct evidence remains, and we get its importance for comparison A:B as

p(AC,A : B) = 1− Vall(A : B)

VAB
= 1− VAC + VBC

VAB + VAC + VBC
=

VAB

VAB + VAC + VBC
,

the same if BC is removed. In other words, it does not matter whether we remove

AC or BC or which of them has smaller variance, the importance of the two studies

is equal and also equal to the indirect evidence proportion. The indirect evidence

proportion comes from the combination of studies AC and BC and depends on the

sum of their variances. This example shows that it does not make sense to add up

the importances of all studies. It also challenges the idea of breaking up the indirect

evidence proportion into additive parts from each study.

Real data networks

We now apply our method to the two real data sets presented before.
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Parkinson’s data

Figure 3 shows the network graph of the Parkinson’s data [28] (top left panel)

and, for each of the seven studies, the effect of removing a single study (study 1:

comparison 1:3; study 2: comparison 1:2; study 3: comparisons 1:2, 1:4, 2:4; studies

4,5: comparison 3:4; studies 6,7: comparison 4:5).

The resulting importances from the common effect model are given in Table 4. The

last row of the table provides the direct evidence proportions for each comparison.

We see that, not surprisingly, the most important study is the three-arm study 3.

It is important not only for comparisons 1:2, 1:4 and 2:4, but also for comparison 1:3

and the indirect comparisons 1:5, 2:3 and 2:5. However, for comparison 1:2, study 2

is even more important, and for comparison 1:3 study 1 is more important. Study

4 (comparison 3:4) is the most important study for both comparisons 3:4 and 3:5,

whereas the less precise Study 5 (likewise comparing 3:4) is less important for all

comparisons. For comparison 4:5, only studies 6 and 7 are important. Study 6 is

uniformly more important than study 7 (both comparing 4:5).

Study 1, though not very precise, is surprisingly important for comparison 1:4.

The only direct evidence for comparison 1:4 comes from the three-arm study 3 with

relatively small precision. The only other path from treatment 1 to treatment 4

goes via treatment 3: study 1 provides comparison 1:3, and studies 4 and 5 both

provide comparison 3:4. If study 1 is deleted, this path (1 → 3 → 4) breaks down,

whereas if either study 4 or 5 is deleted, the other study (4 or 5) remains, and the

path still exists. Thus study 1 is more important for comparison 1:4 than studies 4

and 5.

For each direct comparison, we may compare this to the contributions (weights)

of each study in a pairwise meta-analysis, given in Table 5. For comparisons solely

informed by direct evidence (here comparison 4:5) they agree with the corresponding

importances.

Thrombolytic data

Table 6 shows results of our method (random effects model) when applied to the

thrombolytic data [8, Tables 3 and 4]. The importance values are not directly com-

parable to percentage contributions, as they do not add up to 100%. Therefore we

find major differences to the percentage contributions given by Riley and others

[8]. In all these cases, the importance (as we measure it) exceeds the percentage

contribution (as defined in [8]). Particularly, study 17 is the only one including

treatment E (it compares B to E), and if it is omitted, E is no more part of the net-

work. Therefore study 17 has maximal importance for comparison A:E, compared

to 67.13% contribution following Riley’s method. The three-arm study 1 (A:B:D) is

more important for comparisons A:E and A:F than when measured by Riley et al.’s

% contribution approach. Also study 18, comparing B:F, has higher importance for

comparisons A:B, A:E and A:F than when measured by Riley et al.’s % contribution

approach. Again, the importance values may be compared to the study weights in

pairwise meta-analyses, given in Table 7 for the random effects model.

A visualization as a heatmap is shown in Figure 4. Dark colors mean that a study

(in the column) is important for the comparison in the row. It is not surprising

that studies 1 and 2, both three-arm studies with over 40.000 patients each, are
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at the top level of importance for most, but not all comparisons. As mentioned

before, study 17 (B:E) is important for all comparisons with E, study 18 (B:F) for

all comparisons with F, and study 21 (B:G) for all comparisons with G.

Discussion
In two-stage pairwise MA, the pooled effect estimate is a weighted mean of

the study-specific estimates. Relative study weights (for example inverse variance

weights) can be defined and interpreted as proportions or percentages, adding to

100%. Notably, inverse variance weights are treated as if they were fixed, though

they are estimates of random variables, which has been criticized [31]. Most exist-

ing approaches to generalize the concept of ‘weights’ to NMA aim to define study

contributions that can be represented as proportions or percentages, like in pair-

wise MA. At least, it is possible to quantify the proportion of direct and indirect

evidence for each NMA estimate, as outlined in the methods section.

Papakonstantinou and others showed that entries in a hat matrix row can be

interpreted as a flow through the network where different signs indicate the direction

of the flow [9]. Consequently, it makes little sense to add the values of the entries of

the hat matrix, as the direction is embedded. In the analogy of a flood, it is always

the same water we see in all these coefficients.

Other possible generalizations of the direct evidence proportion

The idea of comparing variances also underlies the ‘Borrowing of strength’ (BoS)

measure, developed in the more general framework of multivariate meta-analysis

[7, 8]. With respect to interpretation, Copas and others distinguish between ‘Direct

interpretation’ (which corresponds to our interpretation 1), ‘Add-one-in interpreta-

tion’ and ‘Leave-one-out interpretation’ (which both refer to our interpretation 3)

[20].

Different interpretations suggest different ideas of generalizing the p(c). A gener-

alization of interpretation 1 (i.e., splitting direct and indirect contributions) aims to

determine the contribution of each comparison (or, alternatively, of each study) to

a given NMA estimate, such that these contributions add up to 100% (‘percentage

contributions’). This means splitting 1 − p(c), the proportion of indirect evidence,

further into parts coming from different comparisons or studies, as done by [9].

Starting from interpretation 2 would mean looking for a quantity that describes

the proportion to which the variance of a given direct estimate at hand decreases

by adding indirect evidence from a particular other study. However, adding another

comparison to a given direct comparison makes only sense if the enlarged network is

connected, that is if the new study and the comparison in question have treatments

in common or if further studies are added. Thus, interpretation 2 does not seem to

be a good starting point for generalization. Therefore, we focus on a generalization

that is motivated by interpretation 3.

The concept of importance for the variance

Our concept of study importance does not start from the hat matrix, but interprets

the importance of a study to a comparison as the relative reduction of the variance

of the estimate when adding the study to the network. We refrain from requesting
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the values to sum up to 1. For example, a study can be essential for a comparison

(like study 17 in the thrombolytic data for all comparisons involving treatment E),

thus providing an importance of 1, but other studies may be also (or even equally)

important. For instance, in the chain or the circle example, all studies on a path

are equally important for the comparison of the path’s ends.

Versatility of the importance approach

We emphasize that our definition does not rely on, and actually is not restricted

to, inverse variances. This is because no variance estimate of a direct comparison

enters definition (1). Rather, we define importances as ratios of estimated variances

from two different NMAs which could be based on any method, including one-stage

approaches or specific methods for binary outcomes. In Additional File 1, we show

how to use the Mantel-Haenszel (MH) method to estimate importances both in a

pairwise meta-analysis and a network meta-analysis using the recently developed

MH method for NMA [26]. This works also in a Bayesian framework.

Importance and contribution

For pairwise MA there is no ambiguity: the contributions (weights) of all studies

add to 1, however they were determined. Likewise, in NMA the direct evidence

can be broken down into percentage weights. The division into direct and indirect

contributions in NMA (which add to 1) is also possible. However, it is the breakdown

of percentage weights for the indirect evidence that does not work. Therefore, for

the more general situation, we use ‘importance’ instead of ‘contribution’, because

these two words have different connotations. Coming back to the example of the

chain, the importance of each of the studies connecting A to D is 1, meaning that

each of these studies is needed for comparing A to D. By contrast, the concept of

‘contribution’ by Papakonstantinou and others [9] accounts for the fact that though

all these studies are necessary, none of them alone is sufficient for comparing A and

D. Therefore for this example they divide 1 by the number of linking studies, which

is three, leading to a contribution of 1/3 for each study in the path. However, this

approach is not strictly deterministic, as demonstrated in [9, Supplementary File

3].

Combinations of studies matter

The importance of a study for a comparison must be seen in combination with other

studies. Possible extensions could be to define the importance of combinations of

studies, or the importance of a single patient in a study to a NMA estimate. We

emphasize that the importance of a study is always conditional on the other studies

being included in the network. There is an analogy to a multivariable regression

model: If the association of each regressor (covariate) xi with the dependent vari-

able is considered in isolation, the proportion of explained variance of the dependent

variable is given by its coefficient of determination, r2i , which is bounded between

0 and 1. When considering more than one covariate, it does not make sense to con-

sider their r2i values separately (or even to add them). The proportion of explained

variance for the multivariable model depends on the selected variables and their

correlation structure. While the goodness of fit for the model can be measured by
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its coefficient of determination, it is far less clear what is meant by (or how to mea-

sure) the ‘contribution of each variable to the outcome’, let alone in percent. This

is also true for the regression coefficients, as each of them depends on the selected

model. In our view, the situation in NMA is similar. Indeed, NMA can be written

as a meta-regression model, and so has the same issues of defining the contribution

of each variable in isolation.

Random effects model

For the random effects model, the omission of a study may decrease some variances,

if τ̂2 is not fixed. For example, for a circular network (Figure 2, left panel) leaving

out a study always leads to zero inconsistency, because the resulting network is

free of loops. If inconsistency is large for the primary network, the variances of

all estimates decrease for the subnetworks, resulting in negative importances. In

principle, we could accept negative importances: an obvious interpretation would

be that a study with negative importance ‘disturbs’ the network. However, we prefer

to fix τ̂2 to the heterogeneity variance estimate from the full network, in line with

the definition of the random effects weights for pairwise MA. This means that for

the random effects model information of the full network enters the estimation

for all subnetworks. Moreover, as τ̂2 does not only depend on the variances, but

also on the treatment effect estimates of all studies, information on the treatment

effect estimates enters the importance values in the random effects model (as do

the random effects weights in a pairwise MA). This issue is covered in detail in [7]

and led Copas and others to focus mainly on common effect models [20].

Impact on the variance or on the effect estimates?

The importance of a study in a network MA can be considered from different as-

pects. In this article, we follow [6, 8, 9], focussing on the impact of a study on the

variances. This type of approach generalizes the inverse variance weights in pair-

wise common effects MA and, like these, ignores the impact of a study on the actual

treatment effect estimates. A study may be important because of its high precision,

but this does not necessarily impact the size or direction of the effect estimates.

For example, there is a marked inconsistency between the direct and the indirect

estimates for comparison B:H in the thrombolytic data example: the direct effect

for B:H deviates from the indirect effect, which is mainly driven by the large studies

1 and 2. Such deviations are not the focus of variance-based methods. For those

mainly interested in treatment effects, we point to approaches to identify influential

studies (including ‘outliers’) which impact the effect estimates [2, 3, 4, 5]. These

concepts do not rely exclusively on the structure of the network and the variances

of the studies, but also account for their effect estimates and the extent to which

they are consistent with estimates from other studies. These methods differ from

the variance-based methods in their aims.

Conclusion
We propose to measure the importance of a study for a comparison in a NMA as

the relative reduction of the variance of the estimate when adding the study to

the network, or, equivalently, the relative loss of the precision when the study is
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left out. This works with both two-stage and one-stage NMA, also in a Bayesian

framework. For pairwise MA, importances reduce to the usual inverse variance

weights. Importances are values between 0 and 1 and cannot be expected to add up

to 1. An importance of 1 means that the study is an essential link of the pathway in

the network connecting one of the treatments with the other. This may possibly also

hold for multiple studies on a pathway. The importance of a study for a comparison

depends on the network structure and on other studies on the paths from one node

in the network to another. Accordingly, our variance-based measure provides some

insight into the network structure. For the common effect model, importances, like

the weights in pairwise MA, are not informative with respect to the size, direction,

or risk of bias of the effect estimates. This is different for the random effects model

where the effect estimates influence the importances via τ̂2 like the random effect

weights in pairwise MA.
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Figures

Figure 1 Figure 1. Network graph of thrombolytic data. The gray shaded areas indicate two
three-arm studies: study 1 (lightgray, A-B-D), and study 2 (darkgray, A-C-H). A = streptokinase,
B = accelerated alteplase, C = alteplase, D = streptokinase + alteplase, E = tenecteplase, F =
reteplase, G = urokinase, H = anistreptilase.

Figure 2 Figure 2. Left panel: A circle of n treatments with equal variances. Right panel: A
network with a bridge.

Figure 3 Figure 3. Parkinson’s data (top left panel) with each study removed in turn (other
panels). 1 = placebo, 2 = pramipexole, 3 = ropinirole, 4 = bromocriptine, 5 = cabergoline.

Figure 4 Figure 4. A grayscale heatmap of importances for thrombolytic data. Darker colors
represent greater importance of a study (column) for a comparison (row).

Additional Files
Additional file 1 — Additional File 1.R

R code to produce all analyses described in this paper.

Additional file 2 — Additional File 2.pdf

Plots resulting from running all commands in Additional File 1.

Additional file 3 — Additional File 3.csv

Thrombolytic data in csv format (can be viewed as an Excel file).

Tables

Table 1 Parkinson’s data. mean = mean lost worktime reduction, sd = standard deviation, n =
sample size.

Arm 1 Arm 2 Arm 3
Study Treatment mean sd n Treatment mean sd n Treatment mean sd n
1 placebo -1.22 3.70 54 ropinirole -1.53 4.28 95
2 placebo -0.70 3.70 172 pramipexole -2.40 3.40 173
3 placebo -0.30 4.40 76 pramipexole -2.60 4.30 71 bromocriptine -1.2 4.3 81
4 ropinirole -0.24 3.00 128 bromocriptine -0.59 3.00 72
5 ropinirole -0.73 3.00 80 bromocriptine -0.18 3.00 46
6 bromocriptine -2.20 2.31 137 cabergoline -2.50 2.18 131
7 bromocriptine -1.80 2.48 154 cabergoline -2.10 2.99 143

Table 2 Importances of each study for the network with a bridge. For sake of transparency, the
symbol − represents zero.

Comparisons
Study A:B A:C B:C C:D D:E D:F E:F A:D B:D C:E C:F A:E A:F B:E B:F
AB 0.67 0.33 0.33 – – – – 0.17 0.17 – – 0.12 0.12 0.12 0.12
AC 0.33 0.67 0.33 – – – – 0.44 0.17 – – 0.36 0.36 0.12 0.12
BC 0.33 0.33 0.67 – – – – 0.17 0.44 – – 0.12 0.12 0.36 0.36
CD – – – 1 – – – 1 1 1 1 1 1 1 1
DE – – – – 0.67 0.33 0.33 – – 0.44 0.17 0.36 0.12 0.36 0.12
DF – – – – 0.33 0.67 0.33 – – 0.17 0.44 0.12 0.36 0.12 0.36
EF – – – – 0.33 0.33 0.67 – – 0.17 0.17 0.12 0.12 0.12 0.12
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Table 3 Contributions of each study for the network with a bridge following the contributions
approach [9]. Entries in italics differ from those in Table 2.

Comparisons
Study A:B A:C B:C C:D D:E D:F E:F A:D B:D C:E C:F A:E A:F B:E B:F
AB 0.67 0.33 0.33 – – – – 0.11 0.11 – – 0.07 0.07 0.07 0.07
AC 0.33 0.67 0.33 – – – – 0.33 0.11 – – 0.22 0.22 0.07 0.07
BC 0.33 0.33 0.67 – – – – 0.11 0.33 – – 0.07 0.07 0.22 0.22
CD – – – 1 – – – 0.44 0.44 0.44 0.44 0.29 0.29 0.29 0.29
DE – – – – 0.67 0.33 0.33 – – 0.33 0.11 0.22 0.07 0.22 0.07
DF – – – – 0.33 0.67 0.33 – – 0.11 0.33 0.07 0.22 0.07 0.22
EF – – – – 0.33 0.33 0.67 – – 0.11 0.11 0.07 0.07 0.07 0.07

Table 4 Importance of each study for the comparisons in the Parkinson’s data. Direct evidence is
printed in bold. The last row shows the proportion of direct evidence for each comparison. 1 =
placebo, 2 = pramipexole, 3 = ropinirole, 4 = bromocriptine, 5 = cabergoline.

Comparisons
Study Design 1:2 1:3 1:4 1:5 2:3 2:4 2:5 3:4 3:5 4:5
1 1:3 0.029 0.531 0.405 0.364 0.418 0.294 0.264 0.126 0.092 –
2 1:2 0.756 0.076 0.121 0.104 0.402 0.379 0.345 0.013 0.009 –
3 1:2:4 0.244 0.469 0.595 0.553 0.503 0.617 0.582 0.126 0.092 –
4 3:4 0.005 0.128 0.101 0.086 0.130 0.064 0.056 0.535 0.449 –
5 3:4 0.002 0.061 0.048 0.041 0.062 0.030 0.026 0.339 0.266 –
6 4:5 – – – 0.178 – – 0.157 – 0.285 0.577
7 4:5 – – – 0.105 – – 0.092 – 0.177 0.423
Direct evidence (%) 97.1 53.1 47.4 0.0 0.0 55.8 0.0 87.4 0.0 1.0

Table 5 Study weights for pairwise meta-analysis of comparisons in the Parkinson’s data (common
effects model). 1 = placebo, 2 = pramipexole, 3 = ropinirole, 4 = bromocriptine, 5 = cabergoline.

Comparison Study Design Weight
1:2 2 1:2 0.779

3 1:2:4 0.221
3:4 4 3:4 0.612

5 3:4 0.388
4:5 6 4:5 0.577

7 4:5 0.423
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Table 6 Importance of each study for the comparisons to treatment A for the thrombolytic data,
multiplied by 100 for comparison to [8, Table 4]. Direct evidence is printed in bold. The last row
shows the proportion of direct evidence for each comparison in a column. A = streptokinase, B =
accelerated alteplase, C = alteplase, D = streptokinase + alteplase, E = tenecteplase, F = reteplase,
G = urokinase, H = anistreptilase.

Comparisons
Study Design A:B A:C A:D A:E A:F A:G A:H
1 ABD 82.10 0.03 99.50 59.69 50.56 2.68 0.06
2 ACH 0.30 59.39 0.03 0.10 0.07 0.50 96.81
3 AC 0.00 0.31 0.00 0.00 0.00 0.00 0.05
4 AC 0.00 0.13 0.00 0.00 0.00 0.00 0.02
5 AC 0.00 0.13 0.00 0.00 0.00 0.00 0.02
6 AC 0.00 38.20 0.00 0.00 0.00 0.21 9.20
7 AC 0.00 0.22 0.00 0.00 0.00 0.00 0.04
8 AC 0.00 0.38 0.00 0.00 0.00 0.00 0.06
9 AC 0.00 0.29 0.00 0.00 0.00 0.00 0.05
10 AD 0.04 0.00 0.50 0.01 0.01 0.00 0.00
11 AF 15.78 0.00 1.57 5.70 45.67 0.11 0.00
12 AG 0.14 0.08 0.01 0.05 0.03 19.35 0.01
13 AH 0.00 0.03 0.00 0.00 0.00 0.00 0.15
14 AH 0.00 0.04 0.00 0.00 0.00 0.00 0.26
15 AH 0.00 0.03 0.00 0.00 0.00 0.00 0.16
16 AH 0.00 0.12 0.00 0.00 0.00 0.00 0.75
17 BE 0.00 0.00 0.00 100.00 0.00 0.00 0.00
18 BF 14.98 0.00 1.47 5.38 52.79 0.11 0.00
19 BF 0.11 0.00 0.01 0.03 0.67 0.00 0.00
20 BG 0.11 0.02 0.01 0.04 0.02 6.75 0.00
21 BG 0.70 0.15 0.06 0.23 0.16 31.50 0.02
22 BH 0.71 0.08 0.06 0.23 0.16 0.00 0.49
23 BH 0.45 0.05 0.04 0.15 0.10 0.00 0.31
24 CG 0.08 0.09 0.01 0.03 0.02 12.11 0.01
25 CG 0.12 0.13 0.01 0.04 0.03 17.31 0.02
26 CG 0.09 0.09 0.01 0.03 0.02 12.59 0.01
27 CH 0.00 0.13 0.00 0.00 0.00 0.00 0.32
28 CH 0.00 0.07 0.00 0.00 0.00 0.00 0.16
Direct evidence 0.82 0.99 0.98 0.00 0.46 0.19 0.89

Table 7 Study weights for the thrombolytic data (random effects model). A = streptokinase, B =
accelerated alteplase, C = alteplase, D = streptokinase + alteplase, E = tenecteplase, F = reteplase,
G = urokinase, H = anistreptilase.

Comparison Study Design Weight (%)
A:C 2 ACH 59.93

3 AC 0.32
4 AC 0.13
5 AC 0.13
6 AC 38.59
7 AC 0.22
8 AC 0.39
9 AC 0.30

A:D 1 ABD 99.49
10 AD 0.51

A:H 2 ACH 98.52
13 AH 0.17
14 AH 0.29
15 AH 0.17
16 AH 0.85

B:F 18 BF 68.54
19 BF 31.46

B:G 20 BG 17.79
21 BG 82.21

B:H 22 BH 61.26
23 BH 38.74

C:G 24 CG 28.83
25 CG 41.19
26 CG 29.99

C:H 2 ACH 98.77
27 CH 0.81
28 CH 0.42
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