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Abstract 

  Pancreatic cancer is well known for its extremely high death rate, with the current 

treatments purely used to extend and better the quality of the patient's life instead of 

providing a “cure”. Because of this, novel drug delivery methods are being looked into. 

Initially, hybrid nanoparticles (HNPs) comprised of iron and silver were synthesised and 

characterised using dynamic light scattering (DLS), transmission electron microscopy 

(TEM) and inductively coupled plasma optical emissions spectroscopy (ICP-OES). The 

heating ability of these nanoparticles was tested using the surface plasmon resonance 

properties which silver is well known for, with the only issue found being the spread of 

heat when dispersed in agar. As well as this, the HNPs were tested for their ability to kill 

gram-negative bacteria, both with and without the modified gemcitabine, with no 

statistically significant differences in their effects. A novel targeting agent was successfully 

attached to the surface of the HNPs but was unsuccessful in targeting the pancreatic cancer 

cell lines BxPC-3 and PANC-1. Modified gemcitabine, as used in previous studies within 

this research group, was successfully loaded onto the surface of HNPs, as proven by 

HPLC. The drug release was not consistent with previous reports and the cytotoxicity 

results were also found to be inconclusive overall.  

  Overall, the HNPs synthesised here could potentially be used as a dual treatment 

for pancreatic cancer tumours, but further work is necessary in order to allow them to be 

used in a clinical setting.  
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1.0 Introduction 

1.1 Cancer 

1.11 Pancreatic cancer 

  Cancer remains a global problem, with increasing incidence being attributed to a 

variety of factors including the ever-increasing ageing population and the many risk factors 

that have been correlated to cancer (Bray et al., 2018). Although there has been a great deal of 

progress when it comes to the treatment of the majority of cancers, some types of cancer have 

been somewhat left behind in regard to improvements in survival rates and treatment options.  

  Pancreatic cancer is often diagnosed in people within the age range of 40-80 (Siegel, 

Miller and Jemal, 2018), with an expected 5-year survival in the United Kingdom and the 

United States of less than 10% (Siegel, Miller and Jemal, 2018; Office for National Statistics, 

2019). On a global scale, this translates to pancreatic cancer being, for both men and women, 

the 7th leading cause of cancer-related death, with as many deaths as there are new cases of 

pancreatic cancer (Bray et al., 2018). Several risk factors for pancreatic cancer have been 

identified, including obesity (Larsson, Orsini and Wolk, 2007; Jiao et al., 2010), smoking 

(Zou et al., 2014), heavy alcohol consumption (Michaud et al., 2010; Tramacere et al., 2010), 

long-term diabetes (Ben et al., 2011; Starup-Linde et al., 2013), and hereditary factors 

(Permuth-Way and Egan, 2009; Jacobs et al., 2010). The involvement of genetic factors in 

pancreatic cancer was determined when it was discovered that tumour tissues, metastasised 

tissues, and the intratumoral environment were determined to be heterogenic (Yachida et al., 

2010; Burrell et al., 2013).  

  More than 90% of patients diagnosed with pancreatic cancer have pancreatic ductal 

adenocarcinoma (PDAC), where cancer develops from exocrine pancreatic cells (Hidalgo et 

al., 2015). As well as being the most prevalent form of pancreatic cancer, PDAC also has a 
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high mortality, with a 6% 5-year survival rate (Ying et al., 2016). By 2030, PDAC is expected 

to be the second greatest cause of cancer-related death in the US (Rahib et al., 2014). PDAC 

is clearly identifiable by the presence of precursor lesions, with these being well documented 

within the literature (Matthaei et al., 2011; Wu et al., 2011; Macgregor-Das and Iacobuzio-

Donahue, 2013). These lesions are categorised into three different grades based on the levels 

of abnormal cell growth, known as dysplasia, within tissues, with 1 being low levels of 

dysplasia and 3 high levels of dysplasia (Hruban et al., 2001).  

 Survival rates of pancreatic cancer are very poor, with several different reasons 

attributed to this.  

  One of the main contributors is the absence of early warning signs that can be noted in 

some other forms of cancer, increasing the difficulty of early diagnosis (Kleeff et al., 2016). 

This is clearly reflected in the fact that locally advanced and metastatic pancreatic cancer, 

stages 3 and 4 respectively, are the most commonly diagnosed stages of pancreatic cancer 

(Chiaravalli et al., 2017). Metastasis is often seen in patients with pancreatic cancer, with the 

most common sites of spread being the liver, peritoneum, and lungs (Chiaravalli et al., 2017) 

and 90% of patients presenting with metastasis after death (Nguyen and Massagué, 2007). 

There are, however, several methods that can be used for the diagnosis of pancreatic cancer 

available, including magnetic resonance imaging (MRI), biopsy and fine-needle aspiration 

(Lee and Lee, 2014).  

  Other contributing factors towards poor pancreatic cancer survival rates include a lack 

of biomarkers (Chand et al., 2016), progression of metastasis in the early stages of the disease 

(Saung and Zheng, 2017), a poor immune response and tumours hijacking the immune system 

(Kleeff et al., 2016), and current chemotherapeutics facing resistance (Chand et al., 2016).  

1.12 Current pancreatic cancer therapies 

  Several different therapies have been utilised against pancreatic tumours with little 

effect. Commonly used chemotherapy agents and radiotherapy face the ever-increasing issue 
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of resistance, whereas new treatments face issues including slow development and approval 

(Garrido-Laguna and Hidalgo, 2015). The main therapeutic used as a treatment for pancreatic 

cancer is gemcitabine (2’,2’-difluorodeoxycytidine), which can be used for the treatment of 

other cancers, including lung and breast cancers (Geller et al., 2017). However, gemcitabine 

merely prolongs the lives of patients, providing no real “cure” (Burris et al., 1997) and now 

faces resistance, like other traditional chemotherapeutic agents. Gemcitabine itself, seen in 

Figure 1, has an interesting mechanism of action. Gemcitabine is initially phosphorylated 

within cells by two known enzymes, initially by deoxycytidine kinase and secondly by 

pyrimidine nucleoside monophosphate kinase (Heinemann et al., 1988; Hatiz et al., 1998; Van 

Rompay et al., 1999), to form the gemcitabine diphosphate. There are several ways in which 

these phosphorylated gemcitabine moieties work, including inhibition of DNA synthesis 

(Huang et al., 1991), inhibition of enzymes (Heinemann et al., 1992), and apoptosis induction 

via caspase signalling (Ferreira et al., 2000).  

  Gemcitabine has been used as a baseline of sorts when trialling new treatments for 

pancreatic cancer, with this drug being used either as a comparison to a potential new 

treatment for pancreatic cancer or used in conjunction with other cancer therapeutics in order 

to enhance the anticancer effects.   

 

Figure 1: The structure of gemcitabine 
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  Reni and co-workers treated patients with advanced pancreatic cancer with 

gemcitabine in combination with cisplatin, epirubicin, and fluorouracil (5FU) (Reni et al., 

2005). 60% of patients were found to have a progression-free survival (PFS) of 4 months 

when taking the combination treatment in comparison to 28% for gemcitabine alone. As well 

as this, there was a 2-year overall survival of 11.5% for patients on the combination treatment, 

compared to a 2.1% 2-year survival when taking gemcitabine alone. Generally, the quality of 

life of patients taking the combination treatment was better than those on gemcitabine alone 

or those undergoing no treatment (Reni et al., 2006). This study is flawed in the short length 

of time that the patients were monitored after treatment, using a 2-year overall survival 

instead of determining a median overall survival, as seen in a plethora of other research, 

making it less comparable. As well as this, establishing an average PFS is also useful in 

determining the effects of the drug, or drug combination, on halting the progression of cancer.  

  Erlotinib has previously been combined with gemcitabine and used as a treatment for 

patients with pancreatic cancer that was either unresectable, locally advanced, or metastatic 

(Moore et al., 2007). There was a median overall survival of 6.24 months for the gemcitabine 

and erlotinib compared to 5.91 months for gemcitabine alone, with a PFS of 3.75 months and 

3.55 months respectively. There were more side effects reported for the combination 

treatment than for gemcitabine alone, but these were mainly mild to moderate. Interstitial lung 

disease-like syndromes were seen to occur more frequently in patients undertaking the 

combination treatment, which was explained as being due to an additive effect of the drugs.  

  Gemcitabine and capecitabine have also been combined as a treatment for patients 

with advanced pancreatic cancer to give a slightly improved overall survival, with patients on 

the combination treatment having a median survival of 7.1 months and gemcitabine alone 6.2 

months (Cunningham et al., 2009). The PFS of each treatment was found to be 5.3 months 

and 3.8 months respectively. The incidence of grade 3 (severe) and grade 4 (potentially life-

threatening) side effects decreased other than hand-foot syndrome, which increased by 4%, 
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and neutropenia, which increased by 13%. A large-scale study also compared the combination 

of gemcitabine and capecitabine against gemcitabine alone in over 700 patients who had 

previously received surgical resection treatments for pancreatic cancer tumours (Neoptolemos 

et al., 2017). There was found to be a median overall survival of 28 months for the 

combination treatment compared to 25.5 months for the group taking gemcitabine alone. The 

relapse-free survival of patients was also seen to differ between the treatments, with the 

median values being 13.9 months and 13.1 months respectively. The grade 3 and 4 side 

effects neutropenia (38 versus 24%), hand-foot syndrome (7% versus 0%) and diarrhoea (6% 

versus 2%) were all more common in patients taking the combination treatment than those on 

gemcitabine alone, but otherwise the side effects were generally low for each treatment 

pathway. 6 patients died during the treatment due to an adverse event, 5 from the gemcitabine 

treatment arm and 1 from the combination treatment. Of the five patients on gemcitabine, one 

person died from a cardiac disorder, one from multi-organ failure and three from benign, 

malignant, and unspecified neoplasms. The patient on the gemcitabine plus capecitabine 

therapy died from infection or infestations. This combination treatment is currently used in 

the UK as a pancreatic cancer therapy (NHS England Specialised Services Clinical Reference 

Group for Chemotherapy, 2018).  

  Patients with metastatic pancreatic adenocarcinoma were treated with gemcitabine and 

nab-paclitaxel (Abraxane®) (von Hoff et al., 2013). There was a 1.8-month greater survival 

when using Abraxane® than when on gemcitabine alone, which is reflected in the median PFS 

for each treatment, with these being 5.5 and 3.7 months for Abraxane® and gemcitabine 

respectfully. One of the issues with this combination was an increase in grade 3 and 4 side 

effects, including neuropathy (16% increase), neutropenia (11% increase) and fatigue (10% 

increase).  

  A similar study tested gemcitabine-nab-paclitaxel combined with cisplatin and 

capecitabine (PAXG) to nab-paclitaxel-gemcitabine (AG) for patients with locally advanced 
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or borderline resectable pancreatic adenocarcinoma (Reni et al., 2018). The median PFS of 

patients on the PAXG treatment was 12.5 months compared to 9.9 months for those on the 

AG treatment. The median survival of patients in both treatment arms were very similar, with 

the median survival of PAXG patients being 20.7 months compared to 19.1 months for AG 

patients. However, there were fewer grade 3 and 4 side effects reported in the PAXG arm, 

other than cholangitis (1% increase) and neutropenia (15% increase). 

  FOLFIRINOX, a treatment that combines 5FU, folinic acid, irinotecan, and 

oxaliplatin, has also been suggested as a treatment for pancreatic cancer (Conroy et al., 2011). 

Conroy et al. compared FOLFIRINOX to gemcitabine in a study for patients with metastatic 

pancreatic cancer (Conroy et al., 2011). Patients in the FOLFIRINOX arm had an overall 

survival and PFS of 11.1 months and 6.4 months respectively, with both of these values 

greater than those of patients in the gemcitabine arm, who had an overall survival of 6.8 

months and a PFS of 3.3 months. However, the FOLFIRINOX treatment did not work for 60-

70% of patients and came with worsening of grade 3 and 4 side effects. Side effects that were 

seen to worsen included thrombocytopenia, neutropenia and sensory neuropathy, with no 

statistics on the degree to which the side effects were worsened present in the research and 

indicating high toxicity to healthy cells. In a separate paper, the same researchers further 

explored the effects of the FOLFIRINOX treatment versus gemcitabine on the same patient 

population (Gourgou-Bourgade et al., 2013). It was determined that patient quality of life was 

not significantly different between the two pathways. The only major difference was that 

patients in the FOLFIRINOX arm of the study had diarrhoea during the first two months of 

treatment.  

  Ducreux et al. administered oxaliplatin alongside 5FU to patients with advanced 

pancreatic cancer, which gave a greater overall survival than each agent individually, with the 

overall survival of patients being 9 months for the combination treatment in comparison to 3.4 

months and 2.4 months for oxaliplatin and 5FU respectively (Ducreux et al., 2004). The 
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median time to progression for each of these treatments were 4.2 months, 2.0 months, and 1.5 

months respectively. Although some patients presented with grade 3-4 side effects, including 

neutropenia, nausea, vomiting, and stomatitis, there were deaths related to toxicity.  

  Another study by Wang-Gillam et al. utilised nanoliposomal irinotecan with 5FU and 

folinic acid, which was also found to extend survival in patients with PDAC who had 

previously been receiving some form of gemcitabine therapy (Wang-Gillam et al., 2016). 

There was a median survival of 6.1 months for patients using nanoliposomal irinotecan with 

5FU and folinic acid compared to 4.2 months when using 5FU and folinic acid alone. There 

was found to be a median PFS of 3.1 months using the nanoliposomal treatment and 1.5 

months for 5FU and folinic acid. There were also some grade 3-4 side effects, including 

neutropenia, vomiting, and fatigue, but this did not appear to majorly impact the quality of life 

of patients. 

  Another treatment for pancreatic cancer is nimotuzumab (nimo). Strumberg and 

colleagues used nimo initially as a monotherapy for 54 patients, finding a median PFS of 6.7 

weeks and a median overall survival of 18.1 weeks (Strumberg et al., 2012). Of these patients, 

only 3 were found to exhibit grade 3 side effects, where one suffered a haemorrhage but went 

on to have a full recovery, one had a gastrointestinal obstruction and the other deep vein 

thrombosis. Other side effects were exhibited but these were grade 1 and 2 so were far more 

manageable.  

  Later studies went on to use nimo alongside gemcitabine (nimo-gem). Su et al. tested 

nimo-gem on 18 patients, finding a median PFS of 3.71 months, a median overall survival of 

9.29 months, and a 1-year survival of 38.9% (Su et al., 2014). 6 of the patients in this study 

experienced a grade 3 side effect, with no grade 4 side effects reported. One patient was seen 

to exhibit grade 3 neutropenia and 5 patients grade 3 nausea/vomiting. A gemcitabine 

monotherapy was not used in this case, so it is hard to determine a synergistic effect between 

nimo and gem than in other studies. Schultheis and co-workers tested nimo-gem against 
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gemcitabine co-administered with a placebo, with 192 patients were split equally into each 

treatment group (Schultheis et al., 2017). The median overall survival for patients taking 

nimo-gem was found to be 2.6 months longer than for gemcitabine alone (8.6 versus 6.0 

months respectively) and the median PFS was 1.7 months longer than using gemcitabine 

alone (5.1 months versus 3.4 months). Grade 1 and 2 side effects were common in both 

treatment groups and the number of patients experiencing at least one serious adverse event 

were similar for the nimo-gem and gemcitabine groups (65.6% and 58.1% respectively). 

There was also found to be no statistically significant difference in the quality of life found 

between the two groups.  

  Even though the studies presented have been able to increase the survival time of 

patients with pancreatic cancer, there are currently no studies that are able to provide a 

definitive “cure”. Many of the drugs currently used for pancreatic cancer are used to extend 

and improve the quality of life of patients, but often to no avail with quite severe side effects. 

These side effects occur because the current delivery system is not targeted towards cancerous 

tissues and therefore can affect other tissues and organs. It would be possible to bypass these 

side effects using a drug delivery system, with a targeted system being especially useful. In 

fact, the only option that may provide a cure for patients with pancreatic cancer is surgical 

resection, but this is only viable for approximately 15% of patients who must be in the early 

stages of disease progression (Stathis and Moore, 2010), then must subsequently undergo 

chemotherapy (Conroy et al., 2016). In the majority of cases, this is still unsuccessful, with a 

poor 5-year survival rate and 80% chance of relapse even with surgical resection and 

chemotherapy (Neoptolemos et al., 2004; Ducreux et al., 2015). 
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1.13 Pancreatic tumours, the tumour microenvironment, and resistance 

to chemotherapeutics 

 Several different aspects of tumours and their microenvironment are causing the 

current issues with perfusion of chemotherapeutics into tumours, with this being the most 

pressing issues we face in treating cancer.  

  A clear example of issues with the perfusion of drugs into solid tumours was seen in 

the study by Tannock and colleagues using MGH-U1 human bladder cancer cells and EMT-6 

mouse mammary cells to develop multicellular layers for their permeation into solid tumours, 

including paclitaxel, etoposide, vinblastine, cisplatin, and gemcitabine, with etoposide having 

the greatest and vinblastine the worst permeation (Tannock et al., 2002). The poor perfusion 

of drugs into tumours becomes more obvious when considering the greater intercapillary 

distance and poor blood flow present in tumours.  

  The tumour microenvironment contains a plethora of components that increase the 

difficulty of drug penetration into solid tumours (Topalian et al., 2012; Klemm and Joyce, 

2015), as well as several features of the tumour microenvironment being implicated in cancer 

initiation, progression and metastasis (Hwang et al., 2008).  

  Dermal fibroblasts have also been seen to confer resistance, as when co-cultured with 

pancreatic and colorectal cell lines, resistance to gemcitabine was seen to increase 

(Straussman et al., 2012). 

  Cancer stem cells have also been identified in pancreatic tissues (Hermann et al., 

2007; Li et al., 2007). Li et al. noticed in human pancreatic adenocarcinoma the existence of 

cancer stem cells (Li et al., 2007). Cells expressing the markers CD44, CD24 and ESA were 

seen to differentiate or self-renew in NOD/SCID mice when human pancreatic 

adenocarcinomas were injected intraperitoneally. These cells were also seen to have a much 

greater tumorigenic potential than cells that were non-tumorigenic. Similarly, Hermann et al. 

found evidence for the existence of cancer stem cells in pancreatic cancer (Hermann et al., 
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2007). It was noted that pancreatic cancer cells that expressed the CD133 marker had high 

tumorigenicity than those that did not express the marker, causing an orthotopic tumour to 

form in athymic mice.  

  Tumour-associated macrophages have been heavily implicated in tumour progression, 

typically recruited by various cytokines, including vascular endothelial growth factor and 

chemokines (Mantovani and Sica, 2010). As well as this, they are able to generate pro-

angiogenic factors, including vascular endothelial growth factor and COX-2-derived 

prostaglandin E2, and can decrease tumoricidal activity (Mantovani et al., 2008). tumour-

associated macrophages have also been known to produce Sema4D (Sierra et al., 2008) and 

Gas6 (Loges et al., 2010), which promote angiogenesis and proliferation of cancer cells 

respectively. Components of the extra-cellular matrix of tumour cells (Kim et al., 2009b) and 

products from tumour cells, including CSF-1 and IL-10 (Hagemann et al., 2006) are known to 

enhance the pro-tumour abilities of tumour-associated macrophages. 

 Cancer-associated fibroblasts are able to stimulate angiogenesis and mediate 

inflammation by employing macrophages (Erez et al., 2010). As well as this, cancer-

associated fibroblasts can promote tumour growth via extracellular matrix remodelling and 

angiogenesis, with a gene signature recognised within these fibroblasts being able to promote 

inflammation. Finally, it was shown that carcinoma cells were able to “educate” normal 

dermal fibroblasts to express proinflammatory genes.  

  Chronic inflammation is another source of tumour progression. B cell activation has 

been seen to initiate chronic inflammation, leading to epithelial carcinogenesis in an HPV16 

mouse model (de Visser, Korets and Coussens, 2005).  

  Several proteoglycans have been seen to play a role in cancer biology. Heparan 

sulphate proteoglycans have pro-angiogenic activity (Iozzo, 2001), glypicans and syndecans 

cause the promotion and inhibition of the initiation and progression of cancer (Filmus and 

Selleck, 2001; Sanderson and Yang, 2008), and small leucine-rich proteoglycans block 



11 

 

receptor tyrosine kinase activity (Iozzo and Schaefer, 2010).  

  Repetitions in the MYC oncogene have allowed this gene to initiate and propagate 

tumour formation (Grippo and Sandgren, 2012; Lin et al, 2013). MYC expression has been 

seen to increase within precursor tumours and lesions (Mazur et al., 2010; Witkiewicz et al., 

2015), with Notch2 implicated as a MYC modulator in PDAC in numerous cell lines (Mazur 

et al., 2010).  

  There are several components of tumours in PDAC that are associated with enhancing 

tumour progression and resistance to chemotherapeutics, including stroma and dense 

desmoplastic infiltration, frequently found in solid tumours (Hwang et al., 2008). Human 

pancreatic stellate cells have also been seen to increase colony formation, tumour proliferation 

and invasion (Hwang et al., 2008). 80% of the tumour mass in PDAC is stroma (Erkan et al., 

2012), with the suggestion that pancreatic stellate cells are responsible for this (Apte et al., 

2004). Pancreatic stellate cells make up 4% of the pancreas (Apte et al., 1998), with the 

relationship between activated pancreatic stellate cells and collagen expression being used as 

an index for stroma activation, frequently used for patients with PDAC to determine their 

prognosis, with lower values meaning relatively good prognosis for the patient (Erkan et al., 

2008). Pancreatic stellate cells have also been implicated in the facilitation of local tumour 

growth and metastasis using both in vivo and in vitro models (Xu et al., 2010). 

 Several factors within tumours can increase resistance to different anticancer agents, 

increasing the difficulty of treating pancreatic cancer. 

1.2 Bacteria 

1.21 The role of intratumoural bacteria in anti-cancer therapies 

  Intratumoral bacteria is the most recently implicated cause of resistance for anticancer 

therapies. As tumour tissues are hypoxic and necrotic, they provide the perfect environment 

for bacterial growth (Zu and Wang, 2014). These conditions can be explained by the speed of 
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growth of tumour tissues and poor vascularisation, leading to a poor supply of oxygen (St 

Jean, Zhang and Forbes, 2008). Tumour tissues have a much lower oxygen pressure than their 

non-cancerous counterparts, with the normal range being 20-100 mmHg and the range within 

cancer tumours being 0-20 mmHg (Dewhirst, Cao, and Moeller, 2008). These intratumoral 

bacteria have been implicated specifically in gemcitabine resistance.  

 A study completed by Lehouritis and co-workers looked into the impact of bacteria on 

anticancer drugs, one of which being gemcitabine (Lehouritis et al., 2015). CT26 tumours 

injected with Escherichia coli subsequently injected with gemcitabine showed a larger tumour 

volume than the bacteria-free counterpart. As well as this, the overall survival of the mice was 

poorer for those injected with Escherichia coli, with these mice living on average 11 days less 

than their control counterparts.  

  Straussman et al. also completed a study looking into the components of the tumour 

microenvironment that mediate resistance (Straussman et al., 2012). When filtering their 

fibroblast-conditioned medium, they noticed that resistance to gemcitabine no longer 

occurred, indicating something else that was present could cause resistance. Further studies 

went on to determine that the cancer cell lines co-cultured with human dermal fibroblasts 

contained Mycoplasma DNA, with a large proportion of the bacterial DNA belonging 

specifically to Mycoplasma hyorhinis (Geller et al., 2017). Within a mouse model, 

Mycoplasma hyorhinis was seen to enter tumour cells, causing resistance by the deamination 

of gemcitabine to 2’2-difluorodeoxyuridine. Further, gemcitabine resistance was tested for in 

27 different bacterial species, with 13 of these able to inhibit gemcitabine’s function in 

preventing the human colorectal carcinoma cell line RKO. Human PDAC tissues were 

specifically tested for bacteria, especially important when considering gemcitabine is the main 

line of treatment. A much greater proportion of PDAC tissues were found to contain bacteria 

than the control counterparts, with 76% of the PDAC tissues and 15% of normal pancreatic 

tissues containing bacteria. Based on the rDNA, the most commonly found class bacteria 



13 

 

within the cancerous tissues was Gammaproteobacteria, with most of these belonging to the 

families Pseudomonadaceae and Enterobacteriaceae. When co-culturing the bacteria found 

to be present in PDAC tissues with both human colon carcinoma cell lines RKO and HCT116, 

it was found that 93% of these were gemcitabine resistant.  

  To counteract this, antibiotics could be co-administered with anti-cancer drugs. This 

was investigated within the research of Geller et al., who determined that antibiotic 

administration alongside gemcitabine improved the efficacy of the anti-cancer drug using a 

colon carcinoma mouse model (Geller et al., 2017).  

  However, resistance to antibiotics is constantly getting worse, with some bacteria even 

becoming resistant to multiple antibiotic agents as a consequence of our misuse of these 

valuable drugs over the past 20 years or so.  

1.22 The effect of antibacterial resistance on pancreatic cancer 

treatment  

  Pancreatic cancer tissues have been shown to contain bacteria, with a large proportion 

of these (51.7%) attributed to the class Gammaproteobacteria (Geller et al., 2017). Of these, 

the majority were found to belong to the Pseudomonadaceae and Enterobacteriaceae 

bacterial families. Some bacteria categorised into these families have been associated with 

resistance to at least one or more antibiotic. Examples of these include Escherichia coli, 

Salmonella species, and Pseudomonas aeruginosa. It has been hypothesised by these 

researchers that the bacteria present in pancreatic tissue are able to migrate from the 

duodenum, where the pancreatic duct opens, as bacteria are well known to reside within this 

area (Ou et al., 2009; Nistal et al., 2012). Supporting evidence to this hypothesis was seen 

from patient samples, as instrumentation of the pancreatic duct was associated with 

considerably more bacteria in patient tumours in comparison to patients who had not 

undergone such procedures (Geller et al., 2017). Other routes, such as bacteria entering 
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through the vasculature into pancreatic cancer tumours, are theoretically possible but at the 

time of writing, there was no evidence to support this.  

  Because of this, there is a clear need to co-administer an antibacterial agent alongside 

pancreatic cancer treatments in order for gemcitabine to retain its efficacy. It would be 

possible to co-administer current antibiotics alongside this treatment, but there are several 

issues with this. Resistance to antibiotics is rising, with several bacteria now resistant to one 

or more type of antibiotic, including Escherichia coli (Picozzi et al., 2014), Klebsiella 

pneumoniae (Ruiz de Alegría et al., 2011; Sarojamma and Ramakrishna, 2011) and 

methicillin-resistant Staphylococcus aureus (Kaur and Chate, 2015). As well as this, lack of 

education surrounding the use of antibiotics has led some of the populous to believe that 

antibiotics could be used for several ailments, including the common cold which is a virus. 

Finally, there are no antibiotics currently on the market that could cater to the many different 

types of bacteria present within tumour tissues. This is because antibiotics rely on several 

different mechanisms to kill bacteria that do not work for all species.  

 The mechanisms by which these bacteria are resistant to antibiotics differ, with these 

either being intrinsic or acquired. There are several mechanisms by which either of these can 

occur.  

  Intrinsic resistance is the resistance that bacteria have naturally. One of the most 

common types of intrinsic resistance is overexpression of efflux pumps, allowing bacteria to 

remove antibiotics from within the cells. Examples of this include Staphylococcus aureus 

(Kosmidis et al., 2012), Pseudomonas aeruginosa (Pumbwe and Piddock, 2000) and 

Enterobacteriaceae (Everett et al., 1996). Another key that can have an impact on whether 

antibiotics can successfully penetrate bacteria is the ultrastructure of bacteria. A key example 

of this is the antibiotic vancomycin, as this is unable to cross the membrane of gram-negative 

bacteria but can cross the membrane of gram-positive bacteria (Nikaido, 1976). This is due to 

differences in the cell walls of gram-negative and gram-positive bacteria, with gram-negative 
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bacteria having an extra outer membrane within their cell walls.  

  Acquired resistance is where bacteria either mutate or obtain genes from other bacteria 

that confer resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is an important 

example of where gene transfer can cause further antibiotic resistance (Ito et al., 2013). 

Acquisition of the Staphylococcal Cassette Chromosome mec changes methicillin-susceptible 

Staphylococcus aureus to methicillin-resistant Staphylococcus aureus, therefore increasing 

the resistance of Staphylococcus aureus to a greater range of antibiotics. A key example of 

where gene mutations have led to antibiotic resistance is the development of extended-

spectrum β-lactamases, which are present in several bacteria including Escherichia coli 

(Picozzi et al., 2014). These enzymes are able to hydrolyse certain antibiotics, including 

aztreonam and cephalosporins, rendering them inactive (Picozzi et al., 2013).  

  The obvious issues with administering general antibiotics outweigh any benefits of 

administering them alongside current chemotherapeutics. Other materials with antibacterial, 

or even antimicrobial, properties may be more appropriate and would provide a more broad-

spectrum antibacterial effect.  

1.3 Nanoparticles 

1.31 Iron oxide nanoparticles for cancer therapy 

  Iron oxide nanoparticles (IONPs) have multiple biomedical uses, including their use as 

MRI contrast agents (Estelrich, Sánchez-Martín, and Busquets, 2015) and drug delivery 

agents (Jain et al., 2005; Petri-Fink et al., 2005; Hu, Neoh and Kang, 2006).  

 IONP-based delivery systems for hydrophobic drugs have been explored by Jain and 

co-workers (Jain et al., 2005). Formulations of oleic acid-pluronic-coated IONPs were 

generated and then loaded these with doxorubicin. Alike other studies, there was no effect on 

the magnetic properties of the IONPs after adding the additional layers. The formulations 

generated were successful, with cellular uptake and dose-dependent cytotoxicity demonstrated 
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against both the PC-3 prostate cancer cell line and the MCF-7 breast cancer cell line.  

  Other studies have developed superparamagnetic IONPs (SPIONs) with polyvinyl 

acetate attached, then further functionalised these with amino, carboxy, or thiol groups in a 

study by Petri-Fink et al. (Petri-Fink et al., 2005). Here, the work aimed to determine if any of 

the nanoparticles, functionalised or non-functionalised, could interact with the human 

melanoma cell lines Me191, Me237, Me275, and Me300. It was ascertained that the amino-

SPIONs had preferential uptake in two of the cell lines, Me237 and Me275, entering the cells 

rather than solely binding to the surface of the cells. The other nanoparticle formulations were 

not seen to interact with any of the cell lines. Cytotoxicity of the amino-SPIONs was tested on 

Me237 and Me275, with a higher polymer concentration being able to induce a cytotoxic 

effect. 

  Hu, Neoh, and Kang loaded tamoxifen onto magnetite-PLLA composites in order to 

provide a potential targeted treatment for oestrogen receptor-positive breast cancer, due to the 

treatment alone being known to cause endometrial cancer (Hu, Neoh and Kang, 2006). 

Varying concentrations of the composites, from 50 to 500 mg mL-1, were used and tested 

these against the MCF-7 breast cancer cell line at 37°C. Overall, it was found that the viability 

of the cells decreased from 76 to 23% over 4 days, with increasing concentrations of the 

composites causing increased damage.  

  Khan and co-workers looked into the effects of bare IONPs on the human lung 

adenocarcinoma cell line A549 and the human lung epithelial cell line IMR-90 (Khan et al., 

2012). IONPs were found to cause necrotic cell death in the cancerous cell line alone via the 

production of reactive oxygen species and autophagy, which did not occur in the normal 

human cell line. 

  Kumar et al. looked into the use of quercetin alongside dextran-coated IONPs and 

quercetin-coated IONPs (Kumar et al., 2014). Quercetin itself is very versatile, with anti-

cancer effects exhibited on colon, lung and ovarian cancer cell lines, as well as having anti-



17 

 

inflammatory, anti-oxidant and anti-viral properties (Kumar et al., 2014). In this study, the 

MCF-7 breast cancer cell line was used to test the combinations and individual components. 

There was good biocompatibility with the magnetite carrier, with cell viability of 78-90%, 

using a maximum concentration of 100 µg mL-1 over 24 h. There was a dose-dependent effect 

seen when using the quercetin-loaded IONPs, with a low cell viability of 25%, lower than that 

of quercetin alone. The release of quercetin was also found to be pH-dependent, with greater 

quantities released in acidic conditions than basic.  

  Alarifi and co-workers aimed to assess the toxicity and genotoxicity of IONPs in the 

human breast cancer cell line MCF-7, and the mechanisms by which these occur (Alarifi et 

al., 2014). IONPs exhibited both a cytotoxic and genotoxic effect on this cell line, with 

apoptosis being deemed the primary cause of cell death, acting in both a time-dependent and 

dose-dependent manner.  

  A study by Wu et al. looked into polydopamine coated SPIONs as potential cancer 

theranostic agents (Wu et al., 2015). These were tested on the mouse fibroblast cell line 

(HT3T3), human hepatocellular cell line (HepG2) and human cervical cancer (HeLa) cell 

lines, as well as testing cytotoxicity on these cell lines and NIH3T3 (mice fibroblast). Overall, 

cytotoxicity was low when using the nanoparticles alone, with the highest concentration of 

nanoparticles (0.5 mM) unable to reduce cell viability below 80%. Cytotoxicity was affected 

when using the combination of laser irradiation, an external magnetic field, and the 

nanoparticles, with no greater than 20% cell viability in the two cancerous cell lines.  

  Rao et al. created SPIONs loaded with epirubicin that are pH-sensitive, with the aim 

of these being able to selectively release epirubicin into tumour tissue or cancerous cells (Rao 

et al., 2015). SPIONs were found to have good biocompatibility on both a normal skin model 

(HaCaT) and a model based on melanoma cells (WM266), with antitumour activity also seen 

with the drug-loaded SPIONs. 

 Peixoto et al. tested free rhodium (II) citrate, rhodium (II) citrate loaded maghemite 
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nanoparticles, and citrate loaded maghemite nanoparticles, with these tested on breast cancer 

tumours xenografted onto Balb/c mice (Peixoto et al., 2015). It was found that both the 

rhodium (II) citrate and citrate-loaded maghemite nanoparticles were able to significantly 

reduce tumour area, with significant toxicity seen.  

   Mu et al. developed IONPs to carry gemcitabine, chlorotoxin and hyaluronic acid in 

order to try and effectively bypass the blood-brain barrier for the treatment of glioblastoma 

(Mu et al., 2016). Initially, the loaded IONPs were tested on two types of glioblastoma 

multiform cells: SF-763 and U-118. From the results obtained, the conjugated gemcitabine 

was seen to be as good at causing a decrease in cell viability as free gemcitabine. A mouse 

model was also used to find out that this combination successfully crossed the blood-brain 

barrier. 

  Ali et al. made IONPs coated with dextran and then conjugated onto this erlotinib, as 

it has been known to be selective for epidermal growth factor receptor that is found in many 

cancer types (Ali et al., 2016). The system was designed to release the drug at pH 5 in order 

to ensure release solely into intracellular late endosomes. The cytotoxic effects of this 

combination were confirmed both in vitro and in vivo, both using the human lung 

adenocarcinoma cell line CL1-5-F4, where the in vivo study was completed on a tumour 

xenografted onto BALB/c mice. It was also noted that the IONP-dextran combination without 

the drug was unable to cause any cytotoxic damage to the cells. 

  Zanganeh et al. looked into the use of a type of IONPs called ferumoxytol as a 

potential treatment of cancer (Zanganeh et al., 2016). Initially, it was determined that these 

nanoparticles had no direct effect on cancer cells alone but were able to cause macrophage 

polarization towards M1 macrophages. In several models, including the in vivo small lung 

cancer cell liver metastases mouse model and female FVB/N mice with MMTV-PyMT-

derived cancer cells injected into the mammary fat pads, it was demonstrated that there was a 

significant reduction in tumour growth. This was deemed to be caused by the polarisation 
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effect ferumoxytol has on macrophages, as an in vitro test determined these had no cytotoxic 

effect on several cell lines, including the cancerous cell lines MMTV-PYMT (mouse model of 

breast cancer), MDA-MB-468 (human mammary gland), HT1080 (human fibrosarcoma) and 

non-cancerous cell lines RAW264.7 (macrophages), ATCC (human dermal fibroblast), PCS-

201-012 (human dermal fibroblast), and HUVECS (human umbilical vein endothelial cells). 

  Popescu et al. tested gemcitabine-functionalised IONPs and free gemcitabine on 

BT474 (breast cancer carcinoma), HepG2 (human liver cancer) and MG-63 (osteocarcinoma) 

cell lines (Popescu et al., 2017). The BT474 and HepG2 cell lines showed greater resistance 

to both free and conjugated gemcitabine than the MG-63 cell line, with this resistance seen in 

other studies (Matsumoto et al., 2008; Wu et al., 2014). There was greater cytotoxicity in both 

BT474 and HepG2 when using the IONPs as a carrier of gemcitabine than gemcitabine alone 

and slower release of gemcitabine. The MG-63 cells were reported to be highly sensitive to 

gemcitabine, with free gemcitabine having a more noticeable cytotoxic effect but the 

nanoconjugate being as equally cytotoxic over 72 h. In each case, both free gemcitabine and 

conjugated gemcitabine were able to cause morphological changes in each of the cell lines. 

1.32 Silver nanoparticles for cancer therapy  

Generally, nanoparticles have several properties that make them useful in imaging, 

drug delivery, and creating cancer biomarker profiles of cancerous tumours (Lim, Gurung and 

Hande, 2017). Silver nanoparticles (AgNPs) have several applications for cancer, have been 

associated with anticancer properties and have used against several cancer types including 

leukaemia (Guo et al., 2013), breast cancer (Franco-Molina et al., 2010), lung carcinoma 

(Foldbjerg et al., 2011), hepatocellular carcinoma (Kim et al., 2009a) and glioblastoma (Lim, 

Gurung and Hande, 2017). 

  There are different methods by which AgNPs act in an anti-cancer manner.  

  Gou et al. determined that AgNPs produce reactive oxygen species, reducing the 

viability of the cells, causing DNA damage and inducing apoptosis (Guo et al., 2013). This 
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confirmed results from Lim et al. and Ahamed, AlSalhi and Siddiqui (Ahamed, AlSalhi and 

Siddiqui, 2010; Lim et al., 2012).  

   Lim, Gurung, and Hande determined that AgNPs have antineoplastic activity and 

appear to act in a similar manner to many current chemotherapeutics and have been seen to 

cause cytoskeletal deformities (Lim, Gurung and Hande, 2017). Another study by Sriram et 

al. looked into the effects of AgNPs against Dalton’s lymphoma (Sriram et al., 2010). It was 

confirmed that there was a significant decrease in tumour volume of 5 mL compared to a 

control in Swiss albino mice, with the average tumour volumes being 7.3 mL and 2.3 mL 

respectively. AgNPs administered via intraperitoneal injection were able to extend the 

lifespan of the mice to 32 days compared to the control, with an average life span of 18 days.  

  Several studies have utilised AgNPs, often in conjunction with other anti-cancer 

agents, to produce some anti-cancer effects on cancer cell lines.  

  AgNPs have been biogenically synthesised using phloroglucinol in a study by Kumar 

et al., in which these AgNPs were tested against the breast cancer cell line MCF-7 and were 

described as having impressive cytotoxicity (Kumar et al., 2018). Using phloroglucinol alone 

was seen to have a greater cytotoxic effect than the phloroglucinol synthesised AgNPs. 

However, there were no tests to determine any cytotoxic effects of phloroglucinol on healthy 

cells. However, the phloroglucinol AgNPs did show good cytotoxicity and would probably be 

less toxic to the surrounding healthy cells. 

  Guo et al. created PVP-coated AgNPs and found that they caused damage in 

leukaemia cell lines MB4, HEL, HL-60, THP-1, DAMI and SHI-1 cells, with less damage 

seen to occur in healthy cells (Guo et al., 2013). AgNPs were seen to cause the most damage 

to THP-1 cells and the least damage to the SHI-1 cells. It was also determined that there was 

no difference in the anticancer activities of the sizes AgNPs of 3 and 11 nm due to the 

insignificant difference between their hydrodynamic diameters. There was also evidence for 

apoptosis, mitochondrial damage, reactive oxygen species formation, and DNA damage.  
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 Jeyaraj et al. generated biogenic AgNPs which showed cytotoxicity towards breast 

cancer MCF-7 cancer cell lines, where an increase in AgNPs concentration gave an improved 

effect (Jeyaraj et al., 2013). Along with this, there was clear evidence of apoptosis in the form 

of apoptotic bodies, supporting the Guo et al. study. The MCF-7 cells showed visible signs of 

damage, mainly in the form of shape changes, including shrinkage and coiling, when treated 

with AgNPs compared to the controls.  

 DNA-dependent protein kinases have been used alongside AgNPs, modifying their 

anticancer ability against glioblastoma (U257) and breast cancer (MCF-7 and MDA-MB-231) 

cells (Lim, Gurung, and Hande, 2017). It was found that after 48 h, the shape of the cancerous 

cells had altered, compared to their control counterparts, alike other studies. Further, their 

report found that AgNPs were able to reduce cancer proliferation, cause cell death, a 

reduction in the expression of c-Myc and caused DNA damage.  

 Biogenic AgNPs have also been used alongside Galactomannan, which enhanced their 

anticancer abilities against human A549 lung adenocarcinoma cells, HCT116 colorectal 

carcinoma cells and HepG2 hepatocellular carcinoma cell lines, compared against a control of 

3T3-L1 mouse fibroblast cell lines, displaying a lower level of toxicity towards normal cells 

(Padinjarathil et al., 2018).  

 In a study by Zhang and Xiao, AgNPs combined with low-intensity ultrasound were 

tested against healthy human BEAS-2B bronchial epithelial cells and human A549 lung 

adenocarcinoma cells (Zhang and Xiao, 2018). This led to a massive decrease in cell viability 

in the cancer cell line compared to the healthy cell line, in which there was minimal damage.  

  Yuan, Peng, and Gurunathan utilised AgNPs with gemcitabine to determine if their 

combined effect had any enhanced anticancer effects against ovarian cancer cells (Yuan, Peng 

and Gurunathan, 2017). AgNPs and gemcitabine were initially tested individually, 

determining that a concentration of 25 nM of gemcitabine produced a cytotoxic effect. There 

was an also an increase in cytotoxicity in AgNPs seen at 25 mM, both after a 24 h incubation 
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period. The combination of AgNPs and gemcitabine was able to cause a much more efficient 

decrease in cell viability compared to the two alone. The results also showed that a lower 

concentration of AgNPs alongside gemcitabine was able to cause the death of cancer cells.  

  Overall, AgNPs are known to have a strong anti-cancer ability against several 

different types of cancer and varying cell lines, which is enhanced by using other anti-cancer 

agents alongside them. Although there is clearly a plethora of research into the use of AgNP 

for cancer therapy, research into the use of AgNPs for pancreatic cancer is very limited, with 

only two examples available at the time of writing.  

  Zielinska and co-workers tested the anticancer ability of two differently sized AgNPs, 

2.6 nm and 18nm, on the human pancreatic cancer PANC-1 and non-cancerous telomerase 

immortalised hTERT cell lines (Zielinska et al., 2018). AgNPs were seen to have a much 

stronger cytotoxic effect against the PANC-1 cell lines than the hTERT, with the smaller 

nanoparticles outperforming the 18 nm nanoparticles, giving a 16 times stronger cytotoxic 

effect. The effects of AgNPs were compared to the use of gemcitabine alone, showing that 

AgNPs were better at decreasing PANC-1 cell viability. The AgNPs were found to act in 

different methods, including inducing apoptosis, necrosis, causing ultrastructure changes to 

cause cell death in PANC-1 cells, and preventing cell proliferation, and were also seen to 

cause an increase in the levels of nitric oxide present in the cells, with 2.6 nm AgNPs 

producing the greater amount.  

  Similarly, Barcińska et al. essentially confirmed several findings in the Zielisnka et al. 

study, with reactive oxygen species production and nitric oxide found in PANC-1 cell lines at 

higher concentrations than those in hTERT (Barcińska et al., 2018). Nitric oxide 

concentrations in this study were also found to be much higher than in Zielinska et al. for the 

PANC-1 cells, as well as determining the production of reactive oxygen species was found to 

be twice as high in the PANC-1 cell lines than the hTERT cell lines. Finally, the cell cycle 
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was found to be significantly impacted, with changes to the ultrastructure of mitochondria 

also evident.  

1.33 The antimicrobial properties of silver nanoparticles  

  Several materials could be utilised alongside gemcitabine to kill intratumoral bacteria, 

including silver. Silver has been used for its antibacterial properties since ancient times, with 

these properties investigated for multiple applications, including wound dressings and films 

(Holt and Bard, 2005). 

  Silver ions have several modes of action by which they can inhibit bacteria, such as 

affecting DNA replication (Marini et al., 2007), interfering with the permeability of bacterial 

membranes and respiratory chain enzyme inhibition (Lok et al., 2007). As well as this, the 

distribution of silver differs, with 40% only surface binding and 60% entering the bacteria 

(Holt and Bard, 2005). A recent suggestion by Marini et al. noted AgNPs releasing silver 

ions, alike the mode of action of silver nitrate (Marini et al., 2007) and have also been seen to 

exhibit antibacterial action via entering bacteria by means of binding and passing through the 

cell wall (Shrivastava et al., 2007).  

  As well as exhibiting an antibacterial effect, AgNPs have also been seen to affect 

fungi, viruses, and protozoa.  

  Multiple studies have looked into this, with AgNPs having effects on different viruses, 

including influenza virus (Papp et al., 2010), HIV-1 (Elechiguerra et al., 2005; Lara et al., 

2010), and hepatitis B (Lu et al., 2008). Pathogenic plant fungi, including Botrytis cinereal, 

Alternaria alternata, and Fusarium oxysporum, have been shown to be affected by AgNPs 

even at low concentrations in vivo (Kim et al., 2012a). AgNPs have also been seen to 

decrease the viability of Cryptosporidium parvum oocytes, a type of protozoan egg that is 

relatively unaffected by chlorination and are a leading cause of water-related diseases 

(Cameron et al., 2016).  
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  The antimicrobial activity of AgNPs is heavily affected by their properties, including 

their size, surface charge, drug-carrying ability, and biocompatibility.  

  Both Morones et al. and Martinéz-Castañón et al. have shown that smaller AgNPs 

have a greater bactericidal effect (Morones et al., 2005; Martínez-Castañón et al., 2008). 

Brown and co-workers found that using AgNPs to carry the antibiotic ampicillin drastically 

improved its efficacy (Brown et al., 2012). The surface charge and the stability of AgNPs can 

also be determined, allowing insight into if the synthesis has occurred successfully and to 

evade agglomeration (Petica et al., 2008). A final key property that AgNPs need to have is 

biocompatibility, with toxicity to surrounding tissues needing to be at a minimal level.  

 Several studies have looked into utilising the antibacterial properties of AgNPs against 

several types of bacteria.   

  Shrivastava et al. tested AgNPs antibacterial effects on Staphylococcus aureus (ATCC 

25923), Escherichia coli (ATCC 25922), multi-drug resistant Salmonella typhus strain and 

ampicillin-resistant Escherichia coli (Shrivastava et al., 2007). High concentrations of 

AgNPs, 25 μg mL-1, were able to inhibit the growth of all bacterial strains.  

  Morones and co-workers tested the effects of AgNPs on the gram-negative bacterial 

strains Salmonella typhus, Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae, 

with no information about where these bacteria came from (Morones et al., 2005). At 

concentrations higher than 75 µg mL-1, none of the bacteria tested showed significant growth, 

but below this concentration, there were differences in the resistance, with Escherichia coli 

and Salmonella typhus being less resistant than Pseudomonas aeruginosa and Vibrio 

cholerae. 

   An investigation of the effects of size on AgNPs antibacterial effect was undertaken 

by Martinéz-Castañón et al. by synthesising nanoparticles of 7, 29 and 89 nm (Martínez-

Castañón et al., 2008). Initial observations determined that the 89 nm nanoparticles had a 

slightly altered shape and were found to have the poorest effect on the bacteria Escherichia 
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coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923). The smallest of the AgNPs 

exhibited the greatest antibacterial effect on both bacteria.  

  Although AgNPs clearly have an antimicrobial effect, multiple studies have looked 

into combining AgNPs with current antibacterial agents.  

  Biogenically synthesised AgNPs have been tested alongside antibiotics against four 

bacterial strains; Escherichia coli, Salmonella typhi, Staphylococcus aureus and Micrococcus 

luteus, all of which were obtained from the Culture Collection Centre but the specific strains 

used were not listed (Fayaz et al., 2010). The antibacterial effect of the antibiotics was 

increased when used with the AgNPs, with a greater effect on Escherichia coli and 

Salmonella typhi, both gram-negative, than Staphylococcus aureus and Micrococcus luteus, 

both gram-positive, an effect of their differently structured cell walls. 

  Efforts have also been made into the combination of antimicrobial agents in order to 

improve their effects, with a large number of studies utilising AgNPs.  

  Polymeric colloids coated with AgNPs were developed by Chen and co-workers and 

tested against Escherichia coli (DH5-Alpha) for their antibacterial properties (Chen et al., 

2014). Bacterial growth was found to be completely inhibited. The antibacterial effects were 

also seen to be size and dose-dependent, with the lowest dosage range of 1 to 10 μg mL-1 

having minimal impact and the 500 μg mL-1 being able to completely prevent bacterial 

growth.  

  Silver ion release had been tested in a variety of different silver forms in a study by 

Shankar, Wang, and Rhim (Shankar, Wang and Rhim, 2016). Here, AgNPs were added into 

alginate-based composite films in order to maintain a steady release of silver ions, then tested 

these on Escherichia coli (ATCC 43895) and Listeria monocytogenes (ATCC 15313). These 

citrate-reduced AgNPs were able to exert a significant antibacterial effect, with a greater 

impact on Escherichia coli (gram-negative) than Listeria monocytogenes (gram-positive). In 

the same study, laser-ablated AgNPs were also found to have a poorer effect than the AgNPs 
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alone.  

  Acharya et al., in a similar study to that of Shankar, Wang, and Rhim, developed 

nano-formulations of AgNPs and alginate or gelatine (Acharya et al., 2017). Gram-negative 

strains of bacteria were again found to be more susceptible to the effects of these nano-

formulations than gram-positive bacteria, with testing completed on various species including 

Staphylococcus aureus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa, all 

of which were characterised by the Microbial Type Cell Culture (MTCC).  

 AgNP-containing poly(methyl methacrylate) nanofibers were synthesised by Kong 

and Jang to allow for an antibacterial effect over a prolonged period, alike that in Shankar, 

Wang and Rhim (Kong and Jang, 2008). These nanofibers were tested on the bacteria 

Escherichia coli (ATCC 8739) and Staphylococcus aureus (ATCC 6538), for which these 

nanofibers had superior antibacterial properties to both silver sulfadiazine and silver nitrate.  

  Most of the studies utilised various bacteria to test AgNPs. There was a clear 

difference in their effects on gram-positive and gram-negative bacteria, with gram-positive 

bacteria not succumbing to the effects of AgNPs so easily. However, there was still clear 

cellular damage and cell death detected in gram-positive bacteria.  

1.4. Aims and objectives 

  In this thesis, hybrid nanoparticles (HNPs) containing iron oxide and silver will 

initially be synthesised and characterised. Following this, laser irradiation will be performed 

on naked hybrid nanoparticles to determine their ability to heat to a temperature suitable to 

trigger the retro Diels-Alder mechanism for the release of the drug L-GEM using agar as a 

mimic for human tissues. Naked hybrid nanoparticles will also have the drug L-GEM attached 

to their surface, then testing of the release of the drug from the surface of these nanoparticles 

will be tested, as well as their cytotoxicity and uptake in vitro. Following this, naked hybrid 

nanoparticles will have a novel targeting agent attached to their surface to determine 

successful uptake and retention of these nanoparticles within two pancreatic cancer cell lines 
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in vitro. Finally, the prodrug gemcitabine, naked hybrid nanoparticles, and hybrid 

nanoparticles with L-GEM attached will be tested for their antibacterial activity on gram-

negative bacteria.   
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2.0 Synthesis and characterisation of hybrid 

nanoparticles  

2.1 Introduction  

2.11 Hybrid iron oxide nanoparticle synthesis 

  There has been increasing interest in developing HNPs. They can be used to provide 

IONPs with a layer of protection against oxidation and subsequent free radical production, as 

well as providing them with the unique properties from both the core and shell materials used 

(Mandal et al., 2005). The majority of HNPs reported in the literature focus on gold-coated 

IONPs for use as image-guided and thermally triggered drug delivery systems. As knowledge 

and progress in this field grows, researchers have turned to other metallic coating options for 

IONPs which hold their own unique and interesting properties. Of these, silver-coated IONPs 

have been of recent interest. This is because of the unique plasmonic properties of silver 

(much like gold) as well as their inherent antimicrobial action. 

  In a study by Mandal and co-workers, gold and silver were reduced onto the surface of 

IONPs using glucose, which allows for better control of shell growth due to being only a mild 

reducing agent, as well as being both biofriendly and nontoxic (Mandal et al., 2005). The 

nanoparticles generated still retained their magnetic properties and had increased stability, 

compared to non-coated IONPs. Alike this study, Iglesias-Silva et al. also generated silver-

coated IONPs using glucose as a reducing agent (Iglesias-Silvia et al., 2007). Chin, Iyer, and 

Raston functionalised IONPs with dopamine, then coated these with a layer of gold 

nanoparticles, with a final layer of gold or silver reduced onto the surface using glucose, as 

seen in the aforementioned studies (Chin, Iyer and Raston, 2009).  

  Mahmoudi and Serpooshan created silver-coated SPIONs (Mahmoudi and 
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Serpooshan, 2012). SPIONs coated with carboxylated dextran had silver ions attached using 

ethanediylbis-(isonicotinic) then the silver reduced onto the surface using sodium borohydride 

in deionised water (DI).  

  This chapter details both the synthesis and characterisation of hybrid silver-coated 

IONPs which will subsequently be used an antimicrobial nano-ninja for thermally triggered 

delivery of gemcitabine to pancreatic cancer. 

2.2 Experimental  

2.21 Synthesis of iron oxide nanoparticles 

  Sodium hydroxide (1.02 g, 0.14 M) and potassium nitrate (1.82 g, 0.10 M) were 

dissolved in DI water, with nitrogen bubbled through and left to reflux for 1 h. Iron sulphate 

heptahydrate (3.82 g, 0.69 M) was sonicated in sulphuric acid (20 mL, 0.02 M) using an MSE 

Soniprep 150 Plus. This was then added dropwise to the solution under nitrogen and left for 1 

h. A nitrogen balloon replaced the stream of nitrogen and the reaction was stirred for 24 h. 

The nanoparticles were magnetically separated, washed, and then redispersed in DI water. 

The size, surface charge, and polydispersity index were all measured.  

2.22 Synthesis of silver nanoparticles 

  The procedure to generate silver nanoparticles (AgNPs) was established by Agnihotri, 

Mukherji, and Mukherji (Agnihotri, Mukherji and Mukherji, 2014). Briefly, sodium 

borohydride (7.5 mg, 1.98 mM) and trisodium citrate dihydrate (0.11 g, 3.74 mM) were 

dissolved in deionised water and heated to 60˚C for 0.5 h. Silver nitrate (0.0172 g, 1.01 mM) 

was added dropwise and the temperature was subsequently increased to 90˚C. Sodium 

hydroxide (0.1 M) was used to increase the pH to 10.5 and the solution was stirred until there 

was a noticeable colour change, where the solution went from clear to orange. 
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2.23 Surface modification of IONPs 

2.231 PEI750,000 

  IONPs were sonicated in poly(ethylenimine) (PEI) solution (molecular weight: 

750,000, 100 mL, 5 mg mL-1) for 2 h using an MSE Soniprep 150 Plus. The nanoparticles 

were magnetically separated, washed, and then redispersed in DI water, forming IONP-PEI. 

The size, surface charge, and polydispersity index were all recorded. 

2.232 Silver nanoparticles 

  IONP-PEI (5 mL) was stirred in the silver seed nanoparticle solution for 2 h at room 

temperature. The nanoparticles were magnetically separated, washed, and then redispersed in 

DI water, giving IONP-PEI-AgNP. The size, surface charge, and polydispersity index were all 

recorded.  

2.233 PEI2000 

  IONP-PEI-AgNP (5 mL) were stirred in solution of PEI2000 for 2 h (molecular weight: 

2000, 1 mg mL-1). The nanoparticles were magnetically separated, washed, and then 

redispersed in DI water, giving IONP-PEI-AgNP-PEI. The size, surface charge, and 

polydispersity index were all recorded. 

2.234 Silver coating to form HNPs 

2.2341 5 layers 

  IONP-PEI-AgNP-PEI (5 mL) was added to sodium hydroxide (110 mL, 9.09 mM), 

stirred at 60˚C. Solutions of silver nitrate (58.9 mM) and hydroxylamine (0.2 M) were 

created.  

  The hydroxylamine (750 μL) and silver nitrate (500 μL) were added to the solution 

once every 10 min for a total of 5 times, the solution then stirred for 30 min. The final 

nanoparticles were washed with DI water, magnetically separated, then redispersed in DI 
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water, forming the IONP-PEI-AgNP-PEI-Ag (HNPs). The size, surface charge, and 

polydispersity index were all recorded.  

2.24 Dynamic Light Scattering 

  The size, surface charge, and polydispersibility index of the nanoparticles at each 

stage of the synthesis were determined using a Malvern Zetasizer Nano ZS. Solutions were 

diluted in DI water and measured at 25ºC. Samples were measured in triplicate and an 

average value recorded.  

2.25 Transmission Electron Microscopy 

  Copper grids (200 mesh, Agar Scientific Co, UK) were placed in chloroform, then left 

to air dry on filter paper. A glass slide was cleaned using Velen tissue, then quickly dipped in 

Formvar® solution (0.5 mg mL-1), so that 75% of the slide was covered and subsequently 

removed, drained then dried by swirling the slide under the heat of a lamp. A razor blade was 

then used to score the sides of the slide and lowered onto the surface of the water in order to 

release the film from the glass glide. The copper grids were then placed onto areas of the 

Formvar that appeared the correct thickness, indicated by the colour of the film (gold or 

silver), shiny side up. The copper grids were then removed from the slide by gently going 

around the edge of the grids, then stored until samples were loaded onto them. 

  The samples (2 µL) were pipetted onto the grids on a strip of parafilm and numbered, 

left to air dry, with a cover to avoid dust contaminating the samples, then stored prior to 

viewing using TEM. The samples were then visualised using JEOL 100CX TEMSCAN/JEOL 

1230 TEM. 
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2.26 ICP-OES analysis of the metal content of the hybrid 

nanoparticles 

2.261 Preparing standard solutions 

Iron (1001 ppm) and silver (1000 ppm) ICP standards were prepared in water (0.5 – 10 ppm). 

This stock solution was analysed at 238.204 nm for iron and 328.068 nm for silver on an 

Agilent Technologies 700 Series ICP-OES. 

2.262 Preparing the samples and blank 

Samples (400 μL) were added to 2 mL Aqua Regia (1:1 HCl:HNO3), then heated to 60˚C until 

a colour change occurred indicating that all the particles had been digested. This solution was 

diluted in DI water and analysed at 238.204 nm for iron and 328.068 nm for silver. Where 

appropriate, the standard deviation (SD) is stated for three repeats

2.3 Results and discussion 

2.31 Synthesis of hybrid nanoparticles 

 There were several stages involved in the synthesis of these HNPs, with a schematic 

of the layering involved shown in Figure 2. 

 

Figure 2: A schematic of the synthetic process utilised to generate the HNPs 

 Initially, IONPs were generated using a standard coprecipitation method. Since both 

iron oxide and silver have a negative surface charge, the polymer cationic PEI was used as a 

cushion between layers. As well as acting as a “charge buffer”, these layers also help to 
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increase the stability of the nanoparticles in solution, especially as the magnetic nature of 

IONPs causes them to aggregate. Furthermore, the addition of a polymer cushion hinders any 

electron migration from the silver coating inward towards the IONP which can quench 

magnetic ability. After the initial addition of a long chain PEI, with a molecular weight of 

750,000, the AgNP seeds were added. These AgNPs were specifically synthesised at a low 

size (<20 nm) using a method by Agnihotri, Mukherji, and Mukherji as these were required to 

act as anchor points for the subsequent reduction of silver to form the complete HNP coating 

(Agnihotri, Mukherji and Mukherji, 2014). 

 After this, a short-chained PEI, with a molecular weight of approximately 2000, was 

used to stabilise the silver seeds onto the surface and prevent any drop-off, subsequently, 

silver was reduced onto the surface under basic conditions, forming the complete silver shell. 

The silver shell will be tested for its ability to heat up when exposed to laser irradiation in 

later studies for applications in the triggered release of modified gemcitabine and as a 

potential thermally labile delivery vehicle.  

2.32 Characterisation of hybrid nanoparticles 

  HNPs were successfully characterised using several techniques, including dynamic 

light scattering (DLS), transmission electron microscopy (TEM), and inductively coupled 

plasma optical emission spectroscopy (ICP-OES), with DLS and TEM used at each stage of 

the synthesis. 

  Zeta potential measurement was a key technique used to monitor and to determine 

whether each step in the synthetic pathway was successful. As IONPs, AgNP, and silver all 

have a negative surface charge, a cationic polymer, PEI, was added in between these layers in 

order to successfully combine these to form HNPs. Polymers of different lengths were used at 

the two separate stages, with the first long-chained PEI used for wrapping around the IONPs 

and the shorter chained PEI for stability. The addition of the differently charged layers 

allowed for the relatively successful determination of whether each synthesis stage had 
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worked correctly. A clear example of this comes from an early stage synthesis of the HNPs, 

with Figure 3 illustrating the changes in surface charge throughout the synthesis. Initially, the 

IONPs were found to have a positive surface charge, which was unusual, but the addition of 

PEI was seen to be a success due to the increase in positive charge from +20.3 mV to +48.7 

mV. The addition of the silver seeds brought the surface charge down to -17.5 mV, with this 

returning to +17.3 mV upon the addition of the second PEI layer. Finally, the addition of the 

silver layer was found to have a surface charge of -8.91, indicating that the nanoparticles 

definitely had some silver coating. These hybrids could not be used, however, due to their low 

silver content, implying that HNPs were not fully coated, and their overall low iron content. 

Complete coating is necessary for these nanoparticles because of the reliance on sulphur-

silver interactions for drug loading and the attachment of any targeting ligands.  

 

Figure 3: The change in the surface charge of the HNPs at different stages of their synthesis, from the initial 

"naked" IONPs to the final HNPs, where the error bars indicate the standard deviation. 

  Table 1 contains detailed information about one batch of HNPs synthesised. Here, the 

size decreases as you go through the synthesis, with the zeta potential increasing and 

decreasing throughout the process. Closer to the end of the synthesis, it clearly became more 

difficult to see a clear size decrease. For the AgNP attachment and the final silver layer, the 
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surface charge is positive, but these are lower positive values than those of the PEI layers and 

they are relatively low values of positivity.  

Table 1: The size and surface charge information for a later batch of the HNPs for each stage of the synthesis. 

The final iron and silver concentrations were 3.27 mg mL-1 and 4.20 mg mL-1 respectively. 

 Diameter (nm) ± SD Zeta potential (mV) ± SD PDI ± SD 

IONP 1663 ± 294.3 -40 ± 0.737 0.683 ± 0.106 

IONP-PEI 1090 ± 79.32 +54.5 ± 1.07 0.654 ± 0.008 

IONP-PEI-AgNP 856 ± 120.3 +6.98 ± 2.09 0.448 ± 0.073 

IONP-PEI-AgNP-

PEI 

279.4 ± 6.505 +24.7 ± 2.94 0.288 ± 0.039 

HNP 271 ± 27.65 +9.55 ± 1.82 0.356 ± 0.006 

 

  As well as looking at the surface charge, other factors that were used to determine the 

addition of each layer were the polydispersity index (PDI) and the size of the nanoparticles. 

IONPs tend to initially have a much higher size and PDI than expected due to their magnetic 

properties. Hence, the addition of new layers tends to stabilise the nanoparticles, which is 

reflected in a decrease in both the size and PDI values, with PDI indicating the size 

uniformity of the nanoparticles. Table 1 shows a general decrease from the initial PDI of the 

naked IONPs to a much lower value for the final HNPs generated. Although a lot of 

information can be obtained about the hybrids, DLS cannot be used alone to determine the 

successful generation of these nanoparticles, due to several limitations with the technique, 

hence TEM was used to confirm the size of the nanoparticles. 

  The magnification power of TEM allows for the visualisation of HNPs, as well as 

allowing for the visualisation of each stage of the synthesis. There are, however, limitations 

with the technique, including not necessarily being able to tell the difference between the 

nanoparticle types, as seen in some of the TEM images taken in Figure 4.  
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Figure 4: TEM images of HNPs at various stages of their synthesis A1) IONPs coated with PEI750,000, A2) Silver 

nanoparticle seeds, A3) and A4) IONPs coated with PEI750,000, silver nanoparticles, and PEI2000. 

  These were synthesised early in the research, hence the sizes of the IONPs and AgNPs 

are probably larger than the nanoparticles used in the later stages of the synthesis, where the 

techniques were better executed.  

 TEM images taken of HNPs synthesised within another batch, can be observed in 

Figure 5. Here, there are changes in the morphology that make the hybrid nanoparticle 

synthesis more obvious. For example, in B1, the IONPs appear to be more angular than the 

final HNPs presented in B2, which are clearly spherical. As well as this, the IONPs alone also 

appear to aggregate more than the final HNPs, which is more than likely due to the magnetic 

forces being stronger without the extra layers. The silver nanoparticles alone also appear to 

aggregate, but this is a normal property of colloidal solutions.  
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Figure 5: Synthesis of IONPs (B1) and HNPs (B2). 

 The concentrations and the proportions of metals that made up HNPs were determined 

by inductively coupled plasma optical emission spectroscopy (ICP-OES). This was 

particularly important for later studies, in which the addition of these metals was important, 

including the antibacterial testing and cell culture work. This involved the use of Aqua Regia 

to acid digest the metallic nanoparticles, as solid samples will lead to a blockage in the ICP-

OES machine. Two different batches of hybrid IONPs were generated and used for later 

studies. The initial batch had a much lower concentration of Fe and Ag (0.65 ± 0.012 mg mL-1 

and 0.02 ± 0.001 mg mL-1 respectively) than the newer batch (1.02 ± 0.01 mg mL-1 and 0.602 

± 0.015 mg mL-1
 respectively). This is most likely due to initial teething areas in the synthesis 

and repetition of the technique, allowing for consistent improvements to be made. Further 

evidence of this can be seen in more recent syntheses of the HNPs, where there was found to 

be 3.27 mg mL-1 of iron and 4.20 mg mL-1 of silver.  

  Coating of the nanoparticles in silver was determined to be successful using several 

techniques in combination. Other studies who have generated similar materials include those 

by Mandal and co-workers (Mandal et al., 2005), Chin, Iyer, and Raston (Chin, Ayer and 

Raston, 2009), and Iglesias-Silva and colleagues (Iglesias-Silva et al., 2007). Within each of 

these studies, there was no use of a technique to determine the concentrations of each metal 

present on these nanoparticles. This makes it more difficult to determine if the concentrations 
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obtained during this work are relatively standard to other studies. All of the studies did utilise 

TEM in order to visualise their nanoparticles. Generally, the nanoparticles synthesised within 

the aforementioned research were smaller than the ones obtained in this study, where all of 

the papers listed used TEM to determine the size. The difference in size can be explained, as 

this study utilises an extra layer of polymer and silver seeds in the centre of the hybrids, 

which is not seen in the studies by Mandal and co-workers, Chin, Iyer and Raston, and 

Iglesias-Silva and colleagues.  

  In other studies, similarly structured HNPs have been generated but with gold used in 

place of silver. Hoskins et al. developed IONPs coated with gold seeds, a gold coating, and a 

gold coating with a layer of polyethylene glycol (Hoskins et al., 2012). It is obvious that the 

concentration of iron obtained was greater than that obtained within this study, with the 

greatest concentration being 1.02 mg mL-1 and the smallest concentration of iron in the 

Hoskins et al. study being 1.86 mg mL-1 for the gold HNPs (AuHNPs). The concentration of 

gold loaded onto these nanoparticles was also much higher than for the silver hybrids 

developed here, with the lowest amount of gold loaded being 3.06 mg mL-1 for the PEGylated 

hybrids. This study also managed to get gold concentrations at larger values than those of the 

iron, which implies a much better coating ability than what was seen in this study. Barnett and 

co-workers looked into the loading of gold seeds and a gold layer onto different sized IONPs, 

in order to form AuHNPs (Barnett et al., 2012). Their results differ depending on the 

thickness of the layers of gold added onto the IONPs, as well as the size of the IONPs 

themselves. Generally, the nanoparticles with gold seeds had a much lower concentration of 

gold than those with the shell alone, meaning that the seeded nanoparticles had a lower 

loading than the silver HNPs here and the coated nanoparticles generally had a higher loading 

than the silver HNPs. 

  Curtis et al. completed ICP-OES analysis on their samples, determining that the 

concentrations of iron and gold were 2.6553 ± 0.155 mg mL-1 and 0.6827 ±  
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0.0043 mg mL-1 respectively (Curtis et al., 2015). This does, however, imply that there was 

greater coating with the silver hybrids than with the gold hybrids when comparing the loading 

of each metal per 1 mg mL-1 of iron. This study is most similar to the work here, as they 

contain both gold seeds and a final gold layer, hence is the easiest to compare to in that 

respect. However, it is difficult to truly understand the success of loading silver onto the iron 

oxide, as there are few studies that layer silver in the same manner that is shown here. 

 A potential method that could be used in order to try and make the synthesis of these 

HNPs more replicable is microfluidics. Microfluidics allows for the use of smaller quantities 

of reagents and samples, decreasing costs (Whitesides, 2006). This would allow for greater 

control of the size of the nanoparticles, whether these be IONPs, AgNPs or the overall final 

product, and would greatly improve the reproducibility. As well as this, using microfluidics 

may allow for better control of the thickness of the silver shell. Microfluidics has previously 

been used to make liposomes for biomedical purposes (Guimarães Sá Correia et al., 2016).  

2.4 Conclusion 

  Here, HNPs composed of silver and iron oxide were successfully synthesised, with 

confirmation of this involving the use of three analytical techniques; TEM, DLS, and ICP-

OES. The ability of these particles to act as ‘nano-heaters’ for thermally releasing drug 

delivery vehicles will be explored in Chapter 3. 
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3.0 Investigation into the plasmonic properties 

of hybrid nanoparticles 

3.1 Introduction 

  HNPs have been synthesised for various applications, with one of the more recent 

uses for these being heat triggered drug delivery agents. This is due to their unique plasmonic 

properties. These properties arise from “surface plasmons”, collective oscillations which 

occur due to the interaction between the free electrons in silver nanoparticles and light (Mie, 

1908; Xia and Halas, 2005). This causes peaks to become visible in extinction spectra when 

excited by a specific wavelength of light, known as the resonance frequency. This 

phenomenon has been widely studied and has led to the development of several different 

applications, such as biosensing (Haes and Van Duyne, 2002; Mock et al., 2002; McFarland 

and Van Duyne, 2003), characterisation of films (Johnston et al., 1995; Granqvist et al., 

2013), binding kinetics (Tassa et al., 2010), and drug release kinetics (Korhonen et al., 2015).  

  Hoskins and co-workers developed gold-coated IONPs as thermally triggered drug 

delivery systems (Hoskins et al., 2012). These nanoparticles were tested for toxicity on 

pancreatic cancer cell lines in vitro and in vivo, having no significant effect on the viability of 

these cells (Malekigorji et al., 2017; Oluwasanmi et al., 2017). Further testing determined that 

time and concentration had a clear effect on the heating ability of these nanoparticles when 

exposed to laser irradiation, with the highest concentration having the best heating ability, 

based on the concentration of iron (Curtis et al., 2015; Oluwasanmi et al., 2016).  

  Curtis et al. tested the heat dissipation of hybrid gold IONPs (Curtis et al., 2015). 

Different concentrations of HNPs were dispersed in 2% agar phantom, exposed to laser 

irradiation for 60 sec, with the temperature monitored using an infrared camera. Within this 

study, there was found to be no statistically significant difference in the heating ability of the 
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highest concentrations of nanoparticles (50 µg mL-1 and 500 µg mL-1), with each showing a 

temperature increase of 25˚C and 30˚C respectively over the 60 sec irradiation cycle. As well 

as this, heat dissipation was seen as wide as 6 mm from the irradiation point at the 60 sec time 

point, which led to the conclusion that this may have implications in the use of this 

technology in cancer therapeutics. 

  In this chapter, the HNPs synthesised within Chapter 2 will be analysed using UV-

visible spectroscopy in order to determine an appropriate laser wavelength for irradiation. 

From here, both the heating profile of the HNPs and the associated heat dissipation will be 

determined during laser irradiation.  

3.2 Methods 

3.21 Preparation of nanoparticles 

  Hybrid gold nanoparticles were prepared by Dr Clare Hoskins using a previously 

established method (Hoskins et al., 2012).  

  All other nanoparticle preparations are described in Chapter 2 (sections 2.21 to 2.23).  

3.22 UV-Visible spectroscopy 

  Diluted samples of IONPs, IONP-PEI-AgNP, AgNPs, AgHNPs and AuHNPs were 

generated and run on a Varian CARY 50 Bio UV-visible spectrophotometer. The samples 

were scanned between 200-800 nm on the Varian UV Scan Application using a Hellma® 

Analytics High Precision Cell (HQQ 310H, 10 mm path length). Repeats were not run.   

3.23 Laser irradiation of the hybrid nanoparticles 

  This procedure was adapted from Curtis et al. (Curtis et al., 2015). A 2% agar 

phantom was added into 35 mm Petri dishes. HNPs of 0 µg mL-1, 25 µg mL-1 and 50 µg mL-1, 

were dispersed within the phantom. These were then subjected to laser irradiation at 1064 nm 

for around 60 sec using a MAL-LASER-YB5 Q-switched Nd:YAG Laser Treatment System 
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(WeiFang MingLiang Electronics Company Ltd., China) pulsed with a laser spot diameter of 

3 mm (10 ns, 6 Hz). Temperature changes within the bulk agar were recorded using an Optris 

PI640 Thermal Imaging Camera (Optris, Germany). Samples were measured in triplicate and 

compared to a control sample of agar alone. The thermal changes within the beam 

culmination point and the heat dissipation away from this point were measured and reported. 

Optris PI Connect software was used to record the data (Optris, Germany). Samples were 

measured in triplicate and compared to a control sample of agar alone 

3.24 Statistical analysis 

  Any graphs generated were created on Microsoft Excel, with the mean value reported 

and error bars indicating the SD.  

  Statistical tests were run on the IBM SPSS Statistics 24 software, with the statistical 

test or tests run stated in the results and discussion.  

3.3 Results and discussion 

  UV-visible spectroscopy was utilised to determine the surface plasmon resonance of 

silver and from this the wavelength that the laser should be used at. The spectra of IONPs, 

IONP-PEI-AgNP, AgNPs, AgHNPs and AuHNPs can be seen in Figure 6. AuHNPs were 

generated by Dr Clare Hoskins, as per the method stated in Barnett et al. (Barnet et al., 2012).  

  There are clear peaks for the IONPs (586.94 nm), AgNPs (404.96 nm), AuHNPs 

(616.99 nm) and HNPs (638.00 nm). For the IONP-PEI-AgNPs, the peak was not as clear as 

those of the other nanoparticles, which may be due to not having the full coating of silver. 

The peak positions give an indication of the success of IONP coating with silver, as the IONP 

peak has clearly shifted in the AgHNP sample. The same can be said when looking at the 

difference in the peak positions of the AgNPs and the AgHNPs. These shifts are also 

indicative of a change in the size of the nanoparticles, as the final hybrids will be larger than 

both the IONPs and AgNPs. As well as this, the dip in the spectrum of AgHNPs at around 300 
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nm can also be seen in the UV-visible spectrum of AgNPs, which can also be used to 

determine the presence of silver on the surface of the final HNPs.  

 

Figure 6: The UV-vis spectra silver HNPs (AgHNPs), AuHNPs, IONPs, IONPs coated with PEI and AgNPs, 

and AgNPs alone.  

 Previous studies using AuHNP were irradiated at 1064 nm, allowing these HNPs to 

produce heat quickly. In order to determine whether the same method could be applied to the 

AgHNPs, it was clear that UV-vis should also be run on the AuHNPs to compare their surface 

plasmon resonances. When looking at the spectra, it can be seen that the two samples greatly 

overlap, with the only clear differences seen around 300 nm where there is a dip in the spectra 

of the AgHNPs that matches the one seen around that area in the AgNPs. The AgHNPs do 

appear to plateau more than the AuHNPs, but there does not appear to be any other major 

differences between the two. This overlap implies that the surface plasmon resonances for 

these hybrids should be the same, hence the 1064 nm laser could be used for the AgHNPs. 

Hoskins and co-workers previously used UV-visible spectroscopy to determine an appropriate 

wavelength for laser irradiation of AuHNPs (Hoskins et al., 2012). The peaks for the IONPs 

and gold nanoparticles were seen to be further to the left of the spectrum than that of the 

AuHNPs, indicating successful coating of the IONPs by gold. The shift in the peak seen in the 
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Hoskins et al. study matches what was seen within the within this work, except using silver 

instead of gold.  

 In order to determine if HNPs generated here were able to successfully heat up inside 

biological tissues, HNPs were dispersed in 2% agar phantoms, with irradiation using a 

wavelength of 1064 nm for 60 sec. Agar has been used in several studies as a mimic for 

biological tissues (Aranda-Lara, Torres-Garcia, and Oros-Pantoja, 2014; Dabbagh et al., 

2014; Curtis et al., 2015) hence would be able to provide accurate information about the 

heating ability of these hybrids within the tumour environment. The wavelength 1064 nm has 

been proven to be safe for human skin, as this wavelength is commonly used for tattoo 

removal, skin rejuvenation (Tanaka, Matsuo, and Yuzuriha, 2011) and mole removal (Kim et 

al., 2012b). An infrared camera was used in order to provide accurate information about the 

temperature change of the agar over time and the dissipation of the heat across the agar, with 

these measurements taken at the laser culmination point. The data showed that there was a 

difference in the heating abilities of both the 25 µg mL-1 and 50 µg mL-1 nanoparticles when 

looking at the average temperature over time (Figure 7) and when looking at the average 

temperature change over time (Figure 8).  

 

Figure 7: The average temperature at different time intervals for different concentrations of HNPs. 
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Figure 8: The average change in temperature over time for hybrid nanoparticle concentrations, 25 µg mL-1 and 

50 µg mL-1, alongside a control, when exposed to laser irradiation at 1064 nm. 

  When exposed to laser irradiation, the control heated to a maximum temperature of 

19.6˚C, with a no real increase in temperature over the period. The nanoparticles with an iron 

concentration of 25 μg mL-1 showed a steady increase over the time period, with the 

maximum temperature reaching 26.0˚C. The nanoparticles with an iron concentration of 50 

μg mL-1 showed a relatively fast increase over the time period, with the maximum 

temperature reaching 34.9˚C. The maximum increase in temperature was found to be 0.7˚C, 

6.2˚C and 12.9˚C for the control, 25 μg mL-1 and 50 μg mL-1 respectively.  

  A two-way ANOVA was used to analyse the data for the temperature change over 

time when using HNPs of different concentrations. This was in order to deduce whether the 

time, concentration, and an interaction between the two had a statistically significant impact 

on the temperature. As the data was found to both deviate from normality using Shapiro-Wilk 

(p<0.05) and had inequality of variances based on Levene’s test (p<0.05), data 

transformations were attempted on the data. After completing a log10 data transform, the 

equality of variances based on Levene’s test was found to be above the threshold (p>0.05), 

but the data still deviated from normality. Because ANOVA’s are relatively robust against 

deviations from normality, and there were minimal deviations within the data acquired, the 
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two-way ANOVA was continued, with a significance level of p = 0.01 to compensate for the 

error in normality. The results of this determined that there was a statistically significant 

interaction between time and concentration of HNPs (p<0.01) and that the data for the 

concentration and time were both individually statistically significantly different. Pairwise 

comparisons were then completed in order to determine at which time and concentration there 

was a statistically significant difference.  

  Initially, the mean differences between the concentrations were looked at over time 

with the mean differences between the time points for each concentration looked at 

subsequently.  

  At the initial time point (0 sec), there was a statistically significant difference between 

the 0 µg mL-1and 50 µg mL-1 samples (p<0.01). There was no statistically significant 

difference between the 0 µg mL-1and 25 µg mL-1
. As well as this, there was also no 

statistically significant difference between 25 µg mL-1 and 50 µg mL-1 samples. The same 

results can be seen for both the 5 sec and 10 sec time intervals. After this, there are 

statistically significant differences between all of the concentrations at each of the time points, 

indicating that over time, there is better heating when using the nanoparticles than without the 

nanoparticles and that the higher concentration nanoparticles were better able to heat than the 

lower concentration after 10 sec.  

  There was deemed to be no statistically significant difference between any of the time 

points for the control (p>0.01). For the 25 µg mL-1, there was no statistically significant 

difference between the time points 0, 5, 10, and 15 sec. The 5 sec time point was also not 

statistically significantly different from the 20 sec time point. The 10 and 15 sec time points 

were both not statistically significantly different to all of the remaining time points (20, 25, 

30, 35, 40, 45, 50 and 55 sec). All of the remaining time points were found to only be 

statistically significantly different to the 0 sec time point except for 45, 50 and 55 sec, which 

were all also statistically significantly different from 5 sec. For 50 µg mL-1, 0 sec was 
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statistically significantly different to all other time points (p<0.01). 5 sec was found to be 

statistically significantly different to 30, 35, 40, 45, 50 and 55 sec. The 10, 15, 20 and 25 sec 

time points were all found to only be statistically significantly different from 0 sec. 30, 35, 40, 

45, 50 and 55 were all only found to be statistically significantly different to the 0 and 5 sec 

time points.  

  These data seem to give an indication that time has a very weak effect on the 

temperature produced by HNPs and that the concentration of HNPs is the main reason for the 

difference in temperature produced. The starting temperature for the 50 µg mL-1 HNPs was 

statistically significantly different from the control and 25 µg mL-1 sample, being higher than 

both other samples by 3.1˚C and 2.2˚C respectively. The average start temperature did 

increase for all of the samples, and it can be very difficult to control the temperature of the 

room. As well as this, the temperature was still relatively ambient and initial start temperature 

did not appear to have a significant effect on the results when looking at the overall 

temperature increase, comparing each sample to its own starting temperature (Figure 8).  

  As well as determining the heating capacity of these nanoparticles, the spread of the 

heat was also investigated (Figures 9 and 10). Heat dissipation is an important factor in the 

use of thermally triggered drug delivery or, indeed, thermal ablation therapies. In both of  

these applications, it is desirable to produce localised heat in order to exert the desired effect 

only within the irradiation site whilst protecting the surrounding healthy tissues. 
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Figure 9: The heat dissipation when firing laser light (1064 nm), where the diamonds represent the control, the 

triangles the 25 μg mL-1 HNPs and the circles 50 μg mL-1 HNPs. The time intervals indicate the temperature 

during nanoparticle irradiation.  

 

Figure 10: The change in temperature from the starting temperature of the agar when firing laser light (1064 

nm), where the diamonds represent the control, the triangles the 25 μg mL-1 HNPs and the circles 50 μg mL-1 

HNPs. The time intervals indicate the temperature during nanoparticle irradiation. 
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  The heat dissipation from the laser culmination point was measured at four different 

time intervals; 0 sec, 10 sec, 20 sec and 40 sec with the spread of the temperature measured 

using the thermal imaging software provided in order to obtain accurate information of the 

temperature across the agar. Figures 8 and 9 show the data collected, with Figure 8 

representing the average temperature of the agar across the 10 mm distance, and Figure 9 the 

average temperature increase across the same distance. 

  From the data (Figures 8 and 9), it is easy to see that the data for the control at each of 

the time points did not differ greatly from one another. For the 25 μg mL-1 hybrids, there is an 

increase in the temperature spread at each time point, but these do not seem to differ 

massively from the controls until the 20 sec and 40 sec points and do not reach the levels of 

spread seen with the 50 μg mL-1. The change in the control is relatively minimal, with the 

maximum increase seen to be around 1˚C around where the laser was focused. 50 μg mL-1 

hybrids had values that were relatively well separated in both Figures. As shown in Figure 9, 

the 50 μg mL-1 hybrids had the greatest dissipation overall, with a 2˚C increase from the 

baseline temperature even 6 mm away from the centre.  

  Statistical analysis of this data was completed by running separate Kruskal-Wallis H 

tests, as the data was not normal, as determined by Shapiro-Wilk, nor did it have equality of 

variances, determined using Levene’s test (p<0.001). There was found to be no statistically 

significant difference in the temperature across the agar gel (p>0.05), which matches the data 

obtained. Further, there was found to be a statistically significant difference in the 

temperature with both concentration (p<0.05) and time (p<0.05). Pairwise comparisons then 

determined that the 0 sec time point was statistically significant from all other time points 

(p<0.05). As well as this, there was a statistically significant difference between the 10 and 40 

sec time points (p<0.05), and all of the concentrations were all found to be statistically 

significantly different from one another (p<0.05). These all generally seem to well explain the 

data obtained, but it is much harder to tell by eye due to the nature of the graph.  
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  Although these experiments started at ambient room temperature, it is believed from 

the literature that the extent of heating production remains unchanged when the starting 

temperature is elevated. With this being said, the temperature increase attained by the silver 

HNPs was over 10˚C for the 50 µg mL-1 HNPs. As body temperature is known to be 37˚C, the 

50 µg mL-1 hybrids should be able to generate over the 44˚C required to allow for the retro 

Diels-Alder mediated release of gemcitabine.  

  Similar experiments have used AuHNPs rather than silver, with testing completed 

both in vitro and in vivo in order to determine the success of using a thermally triggered 

release mechanism (Oluwasanmi et al., 2017; Malekigorji et al., 2017). Curtis et al. reported 

that the 50 µg mL-1 AuHNPs were able to produce a 25˚C heat increase, with a maximum 

temperature of 40˚C reached almost immediately after irradiation had begun. In further 

studies, 4-6-week-old Nu/Nu female mice with BxPC-3 xenografted tumours  

were used as a model, with the tumours irradiated for 20 sec each using 1064 nm laser 

(Malekigorji et al., 2017). There was a clear reduction in tumour volume of the mice when 

HNPs were used in conjunction with the bisnaphthalamide propyl spermine 

tetrahydropbromide.  

 There are obvious pros and cons to the heating profile of the silver HNPs, especially 

as the AuHNPs were able to heat instantaneously then plateau (Curtis et al., 2016; 

Malekigorji et al., 2017), whereas silver HNPs heated more steadily over time. The steadier 

heating period may allow for more controlled release of the gemcitabine from the surface of 

HNPs in comparison to the AuHNPs, as these have been found to release almost all of the 

drug at once (Oluwasanmi et al., 2017). However, this would require larger administration of 

the silver HNPs in order to get the same heating, and therefore the same level of release as 

shown by the gold. Silver HNPs were also seen to have a wider heat dissipation than the 

AuHNPs, which may be problematic as there needs to be minimal damage to any healthy 

surrounding tissues. In order to reach the temperature required to release gemcitabine via the 
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retro Diels-Alder mechanism (44˚C), a heat increase of 7˚C would be required, which may 

mean that there would need to be a longer irradiation period. In mice studies using the 

AuHNPs at 50 µg mL-1, the maximum time that the tumours were irradiated was 20 sec 

(Oluwasanmi et al., 2017). The 50 µg mL-1 silver HNPs were able to increase the temperature 

by 7˚C at the 10 sec time point, which means that these HNPs would be able to release some 

of the drug within the time frame used. However, the gold hybrids were able to do this at a 

much faster rate and were able to release a large proportion of the drug (80%) within the time 

frame (Oluwasanmi et al., 2017). Nevertheless, this could be beneficial if there was a need for 

the prolonged release of a drug. Potentially, there would be applications if it were possible to 

attach drugs that were previously too toxic for clinical use even at a low dosage, as silver 

HNPs could be used as a delivery system and allow for both controlled and slow release of 

the drug.  

  It may be possible to tune these HNPs in order to improve the heating profile. 

Increasing the concentration of the silver may help, as for these nanoparticles, the proportion 

of loading of silver onto the IONPs was much lower than that of gold, if comparing them 

based on the concentration of iron. As time progressed, the amount of silver loaded onto the 

HNPs did increase, as seen in Chapter 2, and the hybrids tested here were the ones with the 

lowest concentration of silver generated. Hence, further testing is required to determine what 

the optimum silver shell thickness is in order for these hybrids to heat to a temperature 

suitable for the thermal release of modified gemcitabine.  

 Overall, the data obtained imply that the HNPs generated here may be better suited for 

thermal ablation therapies within the clinical setting rather than for thermally triggered drug 

release unless there was the need for prolonged release of a drug into tissues. 

3.4 Conclusion 

  This work has shown that the HNPs formed were capable of thermal rise within the 

temperatures required for elevation to 44˚C. The statistical analysis of the data determined 
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that there were clear effects of time and concentration of HNPs on the temperature reading of 

the agar. It was especially clear that there was some form of interaction between the two 

effects, given the low p-value. Despite the overall results being generally positive and the 

silver HNPs being able to be used for thermally triggered drug release, caution must be taken 

to ensure localised heating given the extended irradiation time required and heat dissipation. 

The next chapter will explore the ability of these HNPs to release the drug gemcitabine, 

determine the uptake of HNPs into pancreatic cancer cell lines in vitro, and determine the 

cytotoxic effects of HNPs, gemcitabine alone and HNPs with gemcitabine attached.  
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4.0 Drug loading and drug release 

4.1. Introduction 

4.11. Thermally labile drug delivery systems 

  Although nanoparticles of various types have been proven to be successful drug 

delivery agents, one of the main issues faced is controlling the release of drugs from these 

systems. For systems where the connections to the nanoparticles are relatively unstable, drug 

release could occur in any tissues, not just those for which the delivery system was intended. 

This could cause side effects, like those seen with a generally administered drug. However, 

systems that release the drug too slowly would also be unfavourable, with a decreased 

therapeutic effect possible.  

  One method to combat this is the use of a thermally labile drug delivery system. Here, 

the drug is attached to the surface of the nanoparticle, which can be done using a variety of 

methods, then released when exposed to higher temperatures, potentially allowing for the 

controlled heating of certain tissues. This has been demonstrated using both iron oxide and 

HNPs.  

  Oluwasanmi and co-workers used a Diels-Alder linker to attach gemcitabine onto the 

surface of gold iron oxide HNPs, allowing for the possibility of thermal release via reversal of 

the Diels-Alder mechanism (Oluwasanmi et al., 2017). There was a clear effect of 

temperature on release, with lower temperatures of 20˚C and 37˚C showing lower rates of 

release of the gemcitabine than when at 44˚C, where after 60 sec 80% of the drug was 

released at pH 7, and similar release rates were seen at pH 7.4 and 5.6 over the same period of 

time.  
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Figure 11: The chemical structure of L-GEM 

 Most recently, Fuller et al. worked on the thermally controlled release of the drug 

fluorescein in the form of a polymer attached to magnetically controlled nanocarriers, with 

release via a Diels-Alder mechanism (Fuller et al., 2019). Here, superparamagnetic IONPs 

were combined with a thermally labile polymer, where the drug was loaded onto side chains 

of the polymers. There was found to be a <1% release of the drug at 37˚C, with minimal 

release at room temperature (23˚C) when using an alternating magnetic field (AMF). The 

temperature was found to have an effect on release, with increasing temperature causing an 

increase in drug release over a period of 1 h. AMF pulses were also used to trigger release, 

with these being able to release a much greater proportion of the cargo than the control and 

the temperature of the samples seen to increase to 50˚C.  

  In this chapter, the initial aim was to complete and determine the loading of the 

modified gemcitabine (L-GEM), shown in Figure 11, onto the surface of the HNPs. After this, 

the aims were to determine if release of the drug from the surface was greater with an elevated 
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temperature. Finally, both the uptake of the drug into the cells and the cytotoxic effects of 

naked HNPs, free gemcitabine and L-GEM conjugated onto the surface of the HNPs were 

determined. 

4.2 Methods 

4.21 Loading of gemcitabine  

4.211 Calibration curve of gemcitabine 

  A calibration curve was generated using known concentrations of gemcitabine plotted 

against the peak area (R2 = 0.9989). The procedure used was adapted from Oluwasanmi et al. 

(Oluwasanmi et al., 2017). All samples were run using a solvent system of 1:1 

acetonitrile/water at a flow rate of 1 mL min-1
 in a C18 reverse-phase column (150×3mm) 

[ACE Equivalence] and an injection volume of 10 μL on a UV-HPLC (Shimadzu 

Prominence). Samples were analysed at 275 nm, with this being gemcitabine’s optimum 

detection wavelength (Kirstein et al., 2006).  

4.212 Addition of L-GEM onto the surface of hybrid nanoparticles 

  L-GEM (20.6 mg) was stirred with 2 mL HNPs (1 mg mL-1) for 1.5 h. The solution 

was removed, the nanoparticles washed and then redispersed in 2 mL water. The amount of 

L-GEM successfully loaded onto the surface of the HNPs was determined using HPLC, using 

the same method as in 4.211. Samples were measured in triplicate and an average value 

recorded. 

4.22 Thermal release study 

  L-GEM loaded HNPs (1 mL, 0.05 mg mL-1 based on L-GEM concentration) were 

placed into Eppendorf tubes. Samples were either heated at 44˚C or left at room temperature. 

At the time intervals of 1 min, 5 min, 10 min, 20 min, and 30 min, 100 μL of the sample was 

removed by holding the HNPs against a magnet. HPLC was then used to determine the 
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success of release, using the method stated in 4.211. Samples were measured in triplicate and 

an average value recorded. 

4.23 Cell culture  

4.231 MTT cytotoxicity assay 

  BxPC-3 and PANC-1 cells were cultured in RPMI and DMEM media respectively, 

with media supplemented with 10% foetal bovine serum and 5% penicillin-streptomycin, with 

5% L-glutamine also added into DMEM. MEM was substituted for DMEM in this case when 

the DMEM ran out. BxPC-3 and PANC-1 cells were seeded into 96-well plates at 15,000 

cells per well, with three wells used per time interval for each of the cell lines.  

  L-GEM (70 µL) loaded nanoparticles were diluted in 2.5 mL of DMEM and RPMI 

respectively, then subsequent dilutions of this and other generated solutions completed to give 

drug concentrations of 0 μg mL-1, 0.01 μg mL-1, 0.1 μg mL-1, 1 μg mL-1, 5 μg mL-1, 10 μg 

mL-1, 25 μg mL-1, 50 μg mL-1 and 100 μg mL-1. Gemcitabine alone was also made to 

concentrations of 0 μg mL-1, 0.01 μg mL-1, 0.1 μg mL-1, 1 μg mL-1, 5 μg mL-1, 10 μg mL-1, 25 

μg mL-1, 50 μg mL-1 and 100 μg mL-1. Dilutions of HNPs were also generated by diluting 24 

µL in 5 mL of DMEM and RPMI respectively, then subsequent dilutions of this and other 

generated solutions completed to give with iron concentrations of 0 μg mL-1, 0.0028 μg mL-1, 

0.028 μg mL-1, 0.28 μg mL-1, 1.4 μg mL-1, 2.8 μg mL-1, 7 μg mL-1, 14 μg mL-1and 28 μg mL-

1.  

  After confluent growth was determined, 100 μL of each sample and concentration 

were added into a well, where media and DI water were used for positive and negative 

controls respectively. One plate for each sample was removed and placed in a separate oven 

heated to 44˚C for 1 h, then replaced in the incubator for the remaining time. The media/water 

was then removed, each well was washed with 100 μL media, then fresh media added. 50 μL 

of MTT was then added into each well, then the plates were replaced in the oven for 4 h. The 
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solutions were removed from the wells, then 100 μL DMSO added. The samples were 

scanned using a Tecan Infinite M200 Pro and the Tecan i-Control software. Plates were run 

under the Absorbance setting, with the wavelength set to 570 nm. Shaking was completed for 

10 sec with an amplitude of 1 mm in the “Linear” mode before analysis. Samples were 

measured in triplicate and an average value recorded. 

4.232 Drug uptake study 

  L-GEM (111 µL) loaded nanoparticles were diluted in 5 mL of DMEM and RPMI 

respectively, then subsequent dilutions of this and other generated solutions completed to give 

drug concentrations of 0 μg mL-1, 0.0125 μg mL-1, 1.25 μg mL-1, 50 μg mL-1 and 100 μg mL-1 

based on the concentration of gemcitabine. A control of naked IONPs was generated based on 

the 100 μg mL-1 concentration of gemcitabine, giving an iron concentration of 28 μg mL-1. 

After the media was removed, 300 µL of each solution was added into a well, then left for 1 h, 

6 h and 24 h. After each time interval, the media containing the nanoparticles, and the control, 

was removed and washed with 1 mL phosphate-buffered saline (PBS). 185 mL trypsin was 

added to each well, then 1 mL of fresh media added into each when cell detachment was 

completed.  

  Cells were lysed using water (1 mL), any nanoparticles removed by magnetisation. 

The amount of drug released was determined using HPLC, using the same method as in 

4.211. Samples were measured in triplicate and an average value recorded. 

4.233 Cell counting 

  The number of live cells was determined by adding 20 μL of cells in media to 100 μL 

of Trypan Blue, then the cell count determined on a cell counter.  

4.24 Statistical analysis 

  Any graphs generated were created on Microsoft Excel, with the mean value reported 

and error bars indicating the SD.  
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  Statistical tests were run on the IBM SPSS Statistics 24 software, with the statistical 

test or tests run stated in the results and discussion.  

4.3 Results and discussion 

  The addition of L-GEM onto the surface of the HNPs was carried with relative ease, 

as stirring at room temperature for 2 h was enough to facilitate the addition due to the strong 

bonds formed between silver and sulphur. The nanoparticles were washed after loading in 

order to accurately determine the amount of L-GEM that successfully attached to the surface 

of the hybrids.  

  The loading of L-GEM onto the surface of the HNPs was determined using high-

pressure liquid chromatography (HPLC). Calibration standards of the drug gemcitabine were 

made up in water, then run through the HPLC under conditions adapted from Oluwasanmi et 

al. (Oluwasanmi et al., 2017), with the calibration data shown in Figure 12.  

 

Figure 12: The calibration curve created by plotting the known concentrations of gemcitabine from the peak 

area obtained from HPLC at a wavelength of 275 nm, where error bars indicate the standard deviation.  
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  The solution removed from the HNPs was then run on the HPLC, giving a 

concentration for the amount of gemcitabine present in the sample. The concentration of the 

L-GEM was then back-calculated from this using the molar masses of both gemcitabine and 

L-GEM respectively. It was determined that 73.8% of the L-GEM was attached to the 

nanoparticle’s surface. Based on this data, it can be said that the ratio of gemcitabine to 

HNPs, based on the iron concentration, was 3.7:1, which is similar to the 5:1 ratio obtained in 

the Oluwasanmi et al. study (Oluwasanmi et al., 2017).  

  Subsequently to the successful loading of the drug onto the surface of the HNPs, the 

uptake, release and cytotoxicity were all established.  

  Release of the drug from the surface of the HNPs is induced via laser irradiation. The 

ideal temperature to allow for the retro Diels-Alder mechanism to occur is 44˚C, with the 

mechanism for this seen in Figure X.  

 

Figure 13: The mechanism of release of modified gemcitabine from the surface of the HNPs. This thermally 

triggered release occurs at 44˚C when irradiated with a laser.  

  The results from the release study can be seen in Figure 13, where both the room 

temperature sample and the 44˚C sample clearly show minimal release. HNPs were able to 

release a maximum of 0.13% and 1% for the heated and non-heated nanoparticles 

respectively.  

  Because the data both deviated from normality and had inequality of variances that 

could not be fixed using data transformations, an independent samples Kruskal-Wallis H test 
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was run on the data for both the time and temperature (heated or not heated). It was confirmed 

that the percentage drug release was the same at each time point (p>0.05) but there was a 

statistically significant difference between the two temperatures (p<0.001). Although the 

statistical analysis did confirm that there was a statistically significantly poorer release of 

gemcitabine from the heated HNPs that those without heating, in the grand scheme of things, 

the release was minimal, with the difference between the maximum amount of drug released 

for each of the samples being less than 1%.   

 

Figure 14: The percentage of L-GEM released from the HNPs. 
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demonstrated in Chapter 3, hence the Diels-Alder mechanism cannot go ahead like that in the 

Oluwasanmi study. As well as this, the concentration of silver present in the hybrids is much 

lower than that of gold, as discussed in Chapter 2, hence more silver may be required for 

better heating and therefore greater release of the drug at the higher temperature.  

  Another study that used the Diels-Alder release mechanism used a thermoresponsive 

polymer attached to IONPs containing the drug fluorescein, then used an AMF to stimulate 

heat generation and therefore drug release from the polymer (Fuller et al., 2019). Although 

the method of release is not entirely the same, the AMF is used to trigger heating and 

therefore release of the cargo, therefore has an overall similar desired effect. Here, samples 

were in 25:75 methanol PBS (v/v) then either used AMF to heat the samples to 37˚C, 45˚C, 

52.5˚C and 60˚C external heating for an hour. Release of the drug was seen to increase with 

temperature, with less than 1% release at 37˚C and 4% at 60˚C. The release is much lower in 

this study due to a layer of PEG-PLA (polyethylene glycol-polylactic acid), which only 

allowed for the release of the drug at a higher temperature. Although the method here did not 

work and may need more refinement to allow for release at 44˚C, release at temperatures as 

high as those used in the Fuller study would most likely not be viable in the clinical setting, 

due to damage to surrounding tissues caused by the necessary temperature to cause release 

becoming more likely. 

  Further, the uptake of gemcitabine into the cells when attached to HNPs has also been 

measured in both the BxPC-3 and PANC-1 cell lines (Figures 14 and 15 respectively).  
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Figure 15: The uptake of the drug gemcitabine into BxPC-3 when attached to HNPs 

  In the BxPC-3 cell line, the control and naked HNPs showed no uptake of the drug, as 

expected. The different concentrations of the drug on HNPs also showed different levels of 
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seen for the 0.05 mg mL-1 drug concentration, with an even larger error than that of the 
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to have any impact on either of the statistics. Because of this, a Kruskal-Wallis H test was 

used to analyse the data for both the time and concentration. When looking at the effects of 

time on the uptake of the drug, it was found that there was a statistically significant difference 

between the 6 h and 24 h time points, with there being no statistically significant difference 

between both the 1 h and 6 h and the 1 h and 24 h time points. This means that there was 

greater uptake of gemcitabine at the 6 h time point than the 24 h time point, which is reflected 

in the data (Figure 14). It also means that there is no difference in the uptake of gemcitabine 

between the 1 h and 24 h time points and the 1 h and 6 h time points. This is harder to see 

when looking at the data initially, until considering the major error in the 1 h data in 

comparison to the 6 h and 24 h data. For the concentrations, both the control and the naked 

HNPs were found to be statistically significantly different to 0.0125 mg mL-1, 0.05 mg mL-1 

and 0.1 mg mL-1 samples (p<0.05). The control and naked HNPs were not found to be 

statistically significantly different from one another, as well as to the 0.00125 mg mL-1 

(p>0.05). The two controls clearly were not different from one another when looking at the 

data, as neither of these should have contained any gemcitabine. The controls not differing 

from 0.00125 mg mL-1 was expected, as the 6 h and 24 h values were quite low and the 1 h 

value had such large error that it would not end up being statistically significantly different to 

the controls. The 0.0125 mg mL-1, 0.05 mg mL-1 and 0.1 mg mL-1 were not statistically 

significantly different from one another, which also makes sense when looking at error bars in 

proportion to the average values obtained. The 0.00125 mg mL-1 was also found not to be 

statistically significantly different from 0.1 mg mL-1, 0.05 mg mL-1 and 0.0125 mg mL-1 

(p>0.05). This also makes sense when looking at the data, as the three concentrations (0.1 mg 

mL-1, 0.05 mg mL-1 and 0.0125 mg mL-1) clearly have proportionally much larger error bars 

than the 0.00125 mg mL-1. Overall, though, there was clearly uptake of gemcitabine into the 

cells, with the peak being at 6 hours.  
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Figure 16: The uptake of the drug gemcitabine into PANC-1 when attached to HNPs 

  Alike the BxPC-3 cell line, the PANC-1 cells were not found to contain any 

gemcitabine in the control and HNP only samples (Figure 15). The data here suggest that 

overall, the uptake was greatest at the 6 h time point, with these levels decreasing at 24 h. The 

0.0125 mg mL-1 and 0.00125 mg mL-1 concentrations had a low influx of the drug, hitting 

peak uptake at 6 h, then uptake decreasing at 24 h, with low error for each data set. For the 

0.05 mg mL-1, the same trend was seen but with the 1 h and 24 h points having a much greater 

error. Finally, the 0.1 mg mL-1 sample was seen to uptake the drug well at 1 h, increase at 6 h, 

then decreases at 24 h. The error bar for the 1 h sample is clearly much larger than those of 

the 6 and 24 h, hence statistical analysis is required to determine the significance.  

  Statistical analysis was then completed on this data. Initially, the data was found to 

both deviate from normality, determined by Shapiro-Wilk (p<0.05), and had inequality of 

variances, as determined by Levene’s test (p<0.001). A square root data transformation was 

able to normalise the data but had no effect on the equality of variances. With the value for 

the equality of variances still being so low (p<0.001), it was not possible to run a two-way 

ANOVA. Instead, a Kruskal-Wallis H test was used to analyse the statistical significance of 

the data. When looking at the effect of time, the Kruskal-Wallis H test determined that there 
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was no difference in drug uptake between any of the time points used. Overall, this means that 

there was no difference in the uptake of the drug over time, which is well reflected in the data 

when considering the impact of the error bars.  

The two controls clearly were not different from one another when looking at the data, as 

neither of these should have contained any gemcitabine. The controls not differing from the 

0.00125 mg mL-1 was expected, as the 6 h and 24 h values were quite low and the 1 h value 

had such large error that it would not end up being statistically significantly different to the 

controls. The 0.1 mg mL-1, 0.05 mg mL-1 and 0.0125 mg mL-1 were not statistically 

significantly different from one another, which makes sense again when looking at error bars 

in proportion to the average values obtained. The 0.00125 mg mL-1 was also found not to be 

statistically significantly different from 0.1 mg mL-1, 0.05 mg mL-1 and 0.0125 mg mL-1 

(p>0.05). This also makes sense when looking at the data, as the three concentrations (0.1 mg 

mL-1, 0.05 mg mL-1 and 0.0125 mg mL-1) generally either have proportionally much larger 

error bars than the 0.00125 mg mL-1 (0.1 and 0.05 mg mL-1) or have similar average values 

(0.0125 mg mL-1).  

  Although the data does appear to show that there was uptake of L-GEM into each of 

the pancreatic cancer cell lines, repeating this test would be required in order to determine the 

success of uptake into both pancreatic cancer cell lines used. It could not be done here due to 

both time constraints and lack of L-GEM to repeat the study. 

  Oluwasanmi et al. determined that there was greater uptake of the modified 

gemcitabine attached to AuHNPs than when using gemcitabine alone within the BxPC-3 cell 

line (Oluwasanmi et al., 2017). There was also a clear increase in uptake over time that was 

not seen within either cell lines used in this study, with the 6 h and 24 h time points both 

having greater uptake than 1 h. The results of this study are much less concrete as the ones 

presented by Oluwasanmi et al., hence further studies may be required in order to determine 

the success of uptake of gemcitabine into cells.  
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 Finally, the cytotoxicity of HNPs, gemcitabine alone and HNPs with gemcitabine 

were tested on both BxPC-3 and PANC-1 pancreatic cancer cell lines respectively.  

 

Figure 17: The cell viability of the BxPC-3 cell line when exposed to HNPs at different time intervals (24, 48 

and 72 h), with those that also spent 1 h in another over at 44˚C to promote release of the drug indicated by the 

letter T. The concentrations here are related to the concentration of drug attached to HNPs. 
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Figure 18: The cell viability of the PANC-1 cell line when exposed to HNPs at different time intervals (24, 48 

and 72 h), with those that also spent 1 h in another over at 44˚C to promote release of the drug indicated by the 

letter T. The concentrations here are related to the concentration of drug attached to HNPs. 

  The data for the HNPs alone was deemed to be inconclusive due to the variability in 

the data especially in comparison to the previous studies using AuHNPs (Oluwasanmi et al., 

2017).  

  From the data obtained from the BxPC-3 cell line (Figure 16), it appears that the 24 h 

and 24 h (T) samples do not appear to be greatly affected by the HNPs, with viability 

remaining above 70% even when there were dips in viability at low concentrations of HNPs. 

As time progressed, there was an increase in the cytotoxicity of the HNPs, with 48 h, 48 h (T) 

and 72 h (T) reaching viabilities below 50%, and 72 h decreasing to lows of around 55%.  

  For the PANC-1 cell line (Figure 17), the cell viability for both 24 h and 24 h (T) are 

very varied, with there being clear fluctuations in the data as the concentration increases. 

Because of this, 24 h and 24 h (T) appear to have two or more IC50 values. For these data, 

there appear to be large error bars for 24 h across the entire graph, with the error bars for 24 h 

(T) being small until the dip at 0.05 mg mL-1 and the increase at 0.1 mg mL-1. The 48, 48 h 

(T), 72 h and 72 h (T) time points generally seem to decrease with increasing concentration, 
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but never go below 80%. Because of this, it can be said that at these time points there was no 

real impact on the cytotoxicity. Overall, the results here are generally inconclusive due to the 

variability in the graphs obtained, especially when looking between the cell lines. It was 

expected that the HNPs generated here would have some anti-cancer effects, as the anticancer 

effects of silver were discussed in Chapter 1. This was expected to occur in the later time 

points, which was not the case in the PANC-1 cell line.  

 

Figure 19: The cell viability of the BxPC-3 cell line when administered difference concentrations of the drug 

gemcitabine at different time points (24, 48 and 72 h), with those that also spent 1 h in another over at 44˚C to 

promote the release of the drug indicated by the letter T. 
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Figure 20: The cell viability of the PANC-1 cell line when administered difference concentrations of the drug 

gemcitabine at different time points (24, 48 and 72 h), with those that also spent 1 h in another over at 44˚C to 

promote the release of the drug indicated by the letter T. 

  The data for gemcitabine alone appears equally inconclusive, with this being more 

obvious when looking at the two different cell lines.  

  For the BxPC-3 data (Figure 18), the cell viability for 24 h was the most consistent 

across all concentrations of the drug, with cytotoxicity never decreasing below 70%. For 24 h 

(T), there was a much greater cytotoxic effect, with the cell viability being lower than 50% for 

each concentration. The results for 48 h, 72 h and 72 h (T) were all odd, with the cell viability 

appearing to increase then decrease, rather than the decrease usually seen. Even more odd is 

the fact that these increases in viability brought the cell viability above 50% at a much higher 

concentration of gemcitabine.  
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  For the PANC-1 data (Figure 19), there was a much more consistent cell viability 

across each of the time points, with none of the data having cell viability of less than 80%. 

For all of the data, there were clear fluctuations as the concentration of drug increased, with 

the clearest examples of this being 24 h (T) and 72 h. The most consistent data was seen in at 

48 h, where the data initially fluctuated at the lower concentrations, but then plateaued 

between 0.025 and 0.1 mg mL-1. 

 

Figure 21: The cell viability of the BxPC-3 cell line when administered difference concentrations of the drug 

gemcitabine loaded onto HNPs at different time points (24, 48 and 72 h), with those that also spent 1 h in 

another over at 44˚C to promote the release of the drug indicated by the letter T. 
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Figure 22: The cell viability of the PANC-1 cell line when administered difference concentrations of the drug 

gemcitabine loaded onto HNPs at different time points (24, 48 and 72 h), with those that also spent 1 h in 

another over at 44˚C to promote the release of the drug indicated by the letter T. 

 The data for the HNPs loaded with gemcitabine also appears to be less inconclusive 

than for the other data, but there are still some obvious issues with the data obtained, 

especially when looking at the PANC-1 data.  

  For the BxPC-3 data (Figure 20), the 24 h time point did have decreasing viability as 

drug concentration increased, but this did not decrease any lower than 90%. For 24 h (T), 

there was a much clearer decrease in viability than for the 24 h, but there were only two 

points where the cell viability decreased below 50%. The results for 48 h were very similar, 

but the cell viability did not decrease any lower than 60% around 0.05 mg mL-1. For 48h (T), 

the decrease in viability was much later than that of 48, but the viability decreased to much 

lower than 40%. For 72 h, there was a clear drop in cell viability to 0.025 mg mL-1 that then 

increased slightly up to 0.05 mg mL-1 and 0.1 mg mL-1. For 72 h (T), there was a similar 

decrease to that seen for 72 h, but there was a clear increase between 0.025 mg mL-1 and 0.05 

mg mL-1.  

  For the PANC-1 data (Figure 21), the 24 h time point did have decreasing viability as 
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drug concentration increased, with this decreasing to a minimum value of 40%. For 24 h (T), 

the decrease in viability was initially much greater for the lower concentration of the drug, but 

then the cell viability began to increase after 0.05 mg mL-1. The results for 48 h, 48 h (T) and 

72 h (T) all had very similar results, with a decrease in viability over time but the overall 

viability was greater than 80%. For 72 h, the decrease in viability was more linear, alike 24 h, 

but did not decrease below 50%. 

Table 2: The IC50 values of naked HNPs (HNP), gemcitabine alone (Drug) and the gemcitabine conjugated 

HNPs (HNP+Drug). Dashes (-) denote where the cell viability was above 50%. Where the viability was below 

50%, the maximum percentage cell viability has been quoted in brackets. Incidences where 50% was hit twice, 

both values are listed in the table. (T) indicates where the sample had been heated to 44˚C for 1 hour.  

Time (h) Sample BxPC-3 IC50 value (mg mL-1) 

± SD 

PANC-1 IC50 value (mg mL-1) 

± SD 

24 HNP - 0.0230 ± 0.099 

24 Drug - - 

24 HNP+Drug - 0.0756 ± 0.024 

48 HNP - - 

48 Drug 0.001 ± 0.0014 

0.074 ± 0.028 

- 

48 HNP+Drug - - 

72 HNP - - 

72 Drug 0.0145 ± 0.0029 

0.0388 ± 0.0182 

- 

72 HNP+Drug 0.015 ± 0.0089 - 

24 (T) HNP - 0.0115 ± 0.0344 

24 (T) Drug 0.005 ± 0.003 - 

24 (T) HNP+Drug 0.019 ± 0.012 

0.029 ± 0.036 

0.0482 ± 0.0385 

0.0526 ± 0.0439 
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48 (T) HNP 0.01 ± 0.013 

0.019 ± 0.012 

- 

48 (T) Drug 0.0002 ± 0.00008 - 

48 (T) HNP+Drug 0.035 ± 0.013 - 

72 (T) HNP 0.0138 ± 0.03343 - 

72 (T) Drug 0.015 ± 0.0038 

0.0346 ±0.0018 

- 

72 (T) HNP+Drug 0.004 ± 0.0023 

0.012 ± 0.0083 

- 

 

  IC50 values were then obtained by inspection from the graphs generated, with a 

summary of these in Table 2. For these data, it was obviously more difficult to determine the 

IC50 values, as there was either no decrease below 50%, the cell viability was already below 

50% or there was a trough that meant there were two different possible IC50 values. 

  Statistical analysis was then completed on the cytotoxicity data obtained from the 

BxPC-3 cell line. Initially, a three-way ANOVA was attempted, but could not be completed 

due to lack of normality in the data, inequality of variances and data transformations having 

no impact on either of the aforementioned aspects. Because of this, both Kruskal-Wallis H 

and Mann-Whitney U tests statistical tests were used to analyse the data, where appropriate.  

  Time was found to have a statistically significant effect on the cytotoxicity of HNPs 

(p<0.05), HNPs with the drug (p<0.05) and the drug alone (p<0.05), as determined by a 

Kruskal-Wallis H test. For the HNPs, there was a significant difference between the 24 and 48 

h (p<0.05) and the 24 h and 72 h time points (p<0.05). For the HNP with L-GEM, there was a 

statistically significant difference between 24 h and 72 h (p<0.05) and 48 and 72 h (p<0.05). 

For gemcitabine alone, there was a statistically significant difference between 48 and 72 h 

(p<0.05).  

  The temperature was also found to have a statistically significant effect on the 
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cytotoxicity of the HNP with L-GEM (p<0.05) and gemcitabine alone (p<0.05), as 

determined by the Mann-Whitney U test. The temperature did not have a statistically 

significant effect on the cytotoxicity of the naked HNPs (p>0.05). 

  Concentration was found to have a statistically significant effect on the HNPs 

(p<0.05) and HNPs with L-GEM (p<0.05), as determined by the Kruskal-Wallis H test. For 

the HNPs, there was only found to be a statistically significant difference between the 0.1 and 

0.001 mg mL-1 concentrations (p<0.05). For the HNPs with L-GEM, there were a few results 

that were statistically significantly different. 0.05 mg mL-1 was found to be statistically 

significantly different to 0.005 mg mL-1, 0.001 mg mL-1, 0.0001 mg mL-1, and 0.00001 mg 

mL-1. 0.1 mg mL-1 was found to be statistically significantly different to 0.001 mg mL-1, 

0.0001 mg mL-1, and 0.00001 mg mL-1. Finally, 0.025 mg mL-1 was found to be statistically 

significantly different to 0.001 mg mL-1, 0.0001 mg mL-1 and  

0.00001 mg mL-1 (p<0.05).  

  This statistical analysis of the effects of time, concentration and temperature for the 

BxPC-3 data seem to well reflect the data obtained. Due to the variability in the data, the 

results of the statistical analysis were not surprising. 

  Statistical analysis was then completed on the cytotoxicity data obtained from the 

PANC-1 cell line. Initially, a three-way ANOVA was attempted, but could not be completed 

due to lack of normality in the data, inequality of variances and data transformations having 

no impact on either of the aforementioned aspects. Because of this, both Kruskal-Wallis H 

and Mann-Whitney U tests statistical tests were used to analyse the data, where appropriate.  

  Time was found to have a statistically significant effect on the cytotoxicity of HNPs 

(p<0.05), HNPs with the drug (p<0.05) and the drug alone (p<0.05), as determined by a 

Kruskal-Wallis H test. For the HNPs, there was a significant difference between the 24 h and 

48 h (p<0.05), 24 and 72 h (p<0.05) and 48 h and 72 h time points (p<0.05). For the HNP 

with L-GEM, there was a statistically significant difference between 24 h and 48 h (p<0.05) 



75 

 

and the 24 h and 72 h time points (p<0.05). For gemcitabine alone, there was a statistically 

significant difference between 24 h and 48 h (p<0.05). 

  The temperature was also found to have a statistically significant effect on the 

cytotoxicity of the gemcitabine alone (p<0.05), as determined by the Mann-Whitney U test.  

  Concentration was found to have a statistically significant effect on the HNPs and 

HNPs with L-GEM, as determined by the Kruskal-Wallis H test. For HNPs, there was a 

statistically significant difference between 0.1 mg mL-1 and 0.001 mg mL-1 (p<0.05). For the 

HNPs with L-GEM, the 0.1 mg mL-1 sample was found to be statistically significantly 

different to 0.01 mg mL-1, 0.005 mg mL-1, 0.001 mg mL-1, 0.1 mg mL-1 and 0.0001 mg mL-1. 

0.05 mg mL-1 was also found to be statistically significantly different to 0.001 mg mL-1, 

0.0001 mg mL-1, and 0.00001 mg mL-1. Finally, 0.025 mg mL-1 was found to be statistically 

significantly different to 0.001 mg mL-1 (p<0.05).  

  This statistical analysis of the effects of time, concentration and temperature for the 

PANC-1 data seem to well reflect the data obtained. Due to the variability in the data, the 

results of the statistical analysis were not surprising. 

  Finally, statistical analysis was used to determine if there were any statistically 

significant differences between the cytotoxicity of free gemcitabine and gemcitabine attached 

to the HNPs. A Mann-Whitney U test was used due to outliers in the data and lack of 

normality (p<0.05).  

  For the BxPC-3 cell line, there was found to be a statistically significant difference in 

the cytotoxicity of the two treatments (p<0.01), with the data appearing to show that 

gemcitabine alone had a greater cytotoxic effect than the HNPs with gemcitabine. For the 

PANC-1 cell line, there was no statistically significant difference between the two treatments 

(p>0.05). This means that the HNPs with gemcitabine had been equally as cytotoxic as free 

gemcitabine. These results are odd, as it is was expected that the results would be the same 

across the cell lines considering there is not much difference between them.  
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  Because of the levels of error seen within this study, both the data and the statistical 

analysis must be taken with a pinch of salt. Repeats could not be attempted to check the 

results of this study due to production issues with L-GEM, as explained previously. 

Comparisons between the data, including determining if there were combination effects, were 

also unable to be completed due to the level of abnormality and error of variances that were 

found for the data sets. As well as the need to repeat these studies, there is also a need to test 

these HNPs against normal/non-cancerous cell lines. This is important in order to allow for 

any further use of these HNPs, as the whole point of delivery systems like these are to ensure 

that there is minimal damage to surrounding healthy tissues. 

 The results here do differ to those found in the previous studies using AuHNPs 

(Oluwasanmi et al., 2017). Within that study, Trypan Blue and MTT assays were both used to 

look at cell viability within the BxPC-3 cell line. There was no evidence of an IC50 value 

during the 24 h period, other than for the modified gemcitabine alone, which had an IC50 of 

38 µg mL-1. Both gemcitabine and the hybrids with L-GEM exhibited an IC50 value at 48 h, 

with the 72 h time point giving the lowest IC50 values for each treatment type. The HNPs 

were found to have no IC50 value, with relatively consistent cell viability that never decreased 

far below 80%. This does not match what was seen within this study, as the HNPs were found 

to have some cytotoxicity at different time points between the two cell lines tested and 

gemcitabine generally had a better cytotoxic effect at 24 h than the remaining time points for 

gemcitabine, and there was an apparent increase in the cytotoxicity over time for the BxPC-3 

cell line.  

  The cytotoxicity of the AgNPs has been seen in the literature, with evidence of the 

cytotoxic effects of silver on pancreatic cancer cell line PANC-1 seen in two different recent 

studies (Barcińska et al. et al., 2018; Zielinska et al., 2018), with other cell lines seeing 

similar effects within different cancerous cell lines (Yuan, Peng and Gurunathan, 2017; 

Padinjarathil et al., 2018; Zhang and Jiao, 2018). Because of these previous results, it is 
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understandable why the HNPs alone were able to cause a reduction in the cell viability of the 

pancreatic cancer cell lines used within this study. 

  It is not possible to determine whether uptake of the HNPs increased cytotoxicity, due 

to the different time points used to in both of the studies. Much shorter time points were used 

for the uptake study in comparison to the cytotoxicity study. It is only possible to suggest that 

future work using these HNPs complete cytotoxicity testing and uptake of the HNPs on the 

same time scale in order to make accurate comparisons between the two. 

4.4 Conclusion 

  Overall, the data obtained here points to the fact that the delivery system used here 

does not work as well as when using gold hybrids nanoparticles. This has been shown in the 

drug release, where the drug was unable to be released in the same quantities as seen with 

gold at the same temperature. Cytotoxicity results were generally unclear, causing confusion 

as to whether the HNPs themselves were toxic to cancerous cell lines.  

  Clearly, further testing is required to determine the suitability of the HNPs generated 

for drug delivery applications, as well as testing on a non-cancerous cell line to determine any 

significant differences in their effects, which could not be done during this project due to time 

constraints.  

  In Chapter 5, a novel targeting agent is tested in order to target pancreatic cancer cell 

lines, which could be used for both imaging and drug delivery in the clinical setting.  
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5.0 Targeted drug delivery 

5.1 Introduction 

5.11 Targeted drug delivery 

  Drug delivery has become a popular research area, specifically for anti-cancer drugs, 

with some studies choosing to attach targeting moieties enabling site-specific delivery of 

payloads. In particular, the use of inorganic nanoparticles, such as IONPs which can be 

imaged using MRI, has greatly increased (Na, Song and Hyeon, 2009; Estelrich et al., 2015). 

This allows the delivery of these anticancer drugs to be observed in real-time, tracking the 

progression of the nanoparticles to the tumour tissues. This targeting of a specific tissue, 

particularly in cancer therapy, can result in more efficient delivery systems with systemic 

circulation of toxic moieties reduced. This leads to the reduction of the detrimental side 

effects that can occur when using such therapies. Once the nanoparticles are at their target 

site, these inorganic nanoparticulate systems can then be manipulated either internally or 

externally to release their drug cargo. 

  Yu and co-workers looked into potential therapies for prostate cancer (Yu et al., 

2011). Prostate-specific membrane antigen (PSMA) aptamers were conjugated onto thermally 

cross-linked superparamagnetic IONPs and then loaded with doxorubicin. These 

nanoparticles were tested on two prostate carcinoma cell lines. One cell line was PSMA 

positive and the other negative (LNCaP and PC-3 respectively), as well as in an LNCaP 

xenograft mouse model. They noted that the majority of doxorubicin (98%) was released over 

50 h and that the nanoparticles were target binging both in vivo and in vitro. 

  Nagesh and co-workers attached a PSMA, in this case the human antibody marker 

J591, onto SPIONs as a delivery system of docetaxel for castration-resistant prostate cancer 

(Nagesh et al., 2016). Both a PSMA positive and negative prostate carcinoma cell lines 
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(LNCaP C4-2 and PC-3 respectively) were tested against non-targeted and targeted versions 

of these nanoparticles. Both cell lines were able to both internalise the drug-loaded SPIONs, 

with a clear cytotoxic effect exhibited in each cell line, which the authors attribute to 

increased uptake of docetaxel. When using the targeted nanoparticles, internalisation was only 

seen in the PSMA positive LNCaP C4-2 cell line, hence only caused a cytotoxic effect within 

these cells. Cytotoxicity in these cells, in both the targeting and non-targeting studies, was 

linked to morphological changes in the cells, a clear indicator of apoptosis. 

  Aires et al. looked into the selective delivery of IONPs to CD44-positive cancer cells, 

as CD44 is overexpressed in several cancer cell types, circulating tumour cells and cancer 

stem cells (Aires et al., 2016). IONPs were conjugated with gemcitabine alone or with 

gemcitabine and anti-CD44, then tested these against pancreatic (PANC-1) and breast cancer 

(MDA-MB-231) cell lines, both of which have the CD44 marker, and a non-cancerous breast 

cell line (MCF-10A) as a control. There was deemed to be a standard release of gemcitabine 

intracellularly (96-98%), with a much poorer rate of release extracellularly (3-5%) after 6-8 h. 

Using IONPs as a control, it was also verified that the targeting IONPs were surrounding the 

membranes of the cancerous cells and none were seen surrounding the control cell line. It was 

also confirmed that the targeting moiety allowed for greater antiproliferative activity and had 

no effect on the non-cancerous cell line.  

 In another study, Trabulo et al. used IONPs with gemcitabine attached and IONPs 

with both gemcitabine and anti-CD47 antibodies in an attempt to target pancreatic cancer cell 

lines PANC-1, PANC-215, and PANC-354 (Trabulo et al., 2017). Here, the uptake of the 

nanoparticles into the cell lines, gemcitabine release, and the cytotoxicity of the two 

nanoparticle types were all looked into by the researchers. The release of gemcitabine 

released matched that of the Aires et al. study, with the intracellular release being much 

higher than that extracellularly (96-98% and 3-5% respectively). It was also ascertained that 

the nanoparticles with the anti-CD47 attached were found in a much higher volume around 
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the PANC215 and PANC354 than with the IONP alone. The MNPs alone were seen to have 

little to no impact on cancer cell lines. The gemcitabine attached to the IONPs were found to 

have the same levels of cytotoxicity as free gemcitabine. Further, CD47 antibodies were used 

to try and improve this cytotoxicity, determining that there was no extra effect by using the 

antibodies on the cytotoxic effects. 

  Olarui et al. looked into developing IONPs functionalised with both amine and 

carboxylic acid groups in order to be able to attach both a fluorescent molecule and the 

antibody epithelial cell adhesion molecule respectively to allow for targeting imaging in 

pancreatic cancer (Olariu et al., 2011). It was determined that these IONPs were able to 

successfully target the pancreatic ductal adenocarcinoma cell line PANC-1 in vitro, with 

internalisation of the nanoparticles seen within an hour and internalisation of other 

nanoparticles tested not occurring until 24 h.  

 Carbohydrate-based targeting agents are not a new concept, with many studies 

previously using these as targets for several types of cancer both in vitro and in vivo. Many 

studies have added a sugar moiety onto a drug in order to form a prodrug that could then be 

used for delivery into cells (Lin et al., 2008; Mikuni et al., 2008; Miot-Noirault et al., 2011).  

  Lin et al. developed four novel prodrugs of paclitaxel, two of which contained glucose 

and the other two contained glucuronic acid (Lin et al., 2008). These were tested on NCI-

H838 (lung adenocarcinoma), Hep-3B (hepatocellular carcinoma), A498 (renal cell 

carcinoma), MES-SA (uterine corpus sarcoma), HCT-116 (colon carcinoma), NPC-TW01 

(nasopharyngeal carcinoma), MKN-45 (gastric adenocarcinoma), HUV-EC-C (umbilical 

vein/vascular endothelium) and CHO-K1 (Chinese Hamster Ovary). The prodrugs were able 

to greatly inhibit the growth of HCT-116, MES-SA, NCI-H838, and NPC-TW01. Both of the 

normal cell lines (CHO-K1 and HUV-EC-C), A498, Hep-3B, and MKN-45 were not affected 

by the treatments. As well as this, the two glucose and one of the glucuronic acid treatments 

did not affect the two normal cell lines, but paclitaxel alone did.  
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  Mikuni et al. looked attached sugar moieties onto paclitaxel, docetaxel, and 7-Q-

xylosylpaclitaxel in order to both improve their solubility and to determine if there were any 

targeting effects (Mikuni et al., 2008). Overall, it was determined that galactose added onto 

docetaxel was able to increase the antitumor activity and water solubility of the drug, with this 

determined in vivo by injecting P388 mouse lymphoma cells into male CDF1 mice.  

  Fucose has been identified as a potential targeting agent for pancreatic cancer, as 

fucosyltransferases have increased expression in pancreatic cancer (Yoshida et al., 2012). 

Previous work looked at using fucose as a targeting agent for pancreatic cancer Yoshida and 

co-workers have previously used aminated L-fucose attached onto the surface of liposomes 

(Yoshida et al., 2012). This was tested in vivo in mice with pancreatic ductal adenocarcinoma 

(AsPC-1) tumour-bearing mice, with the growth of the tumours found to be inhibited when 

treated with the targeted cisplatin liposomes.  

  Here, modified fucose (Figure 22) was generated by Dr Gavin Miller’s research group 

at Keele University, attached to the surface of HNPs, and tested on PANC-1 and BxPC-3. 

Computer modelling, completed by Dr Jóhannes Reynisson at Keele University, clearly 

identified that modified fucose was able to properly fit into the active site of the 1,3-

fucosyltransferase (Figure 23). 

 

Figure 23: The structure of the targeting ligand attached to the surface of the HNPs 
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Figure 24: Modified fucose within 1,3-fucosoyltranferase’s catalytic site, with a rendered protein surface, shown 

as a modelled configuration. Hydrophilic and hydrophobic areas are shown using blue and white respectively. 

  This work aimed to test a novel furan-based carbohydrate linker which is hypothesized 

to bind onto the surface of pancreatic cancer cells giving preferential uptake. The fucose 

targeting agents will be irreversibly bound onto the surface of the HNPs via dative covalent 

binding between the thiol in the chain of the fucose and the silver surface of the particles. The 

ability of these targeted particles to undergo preferential uptake into human pancreatic cancer 

cells in vitro will be evaluated. 

5.2 Methods 

5.21 Using modified fucose as a targeting agent 

  The novel fucose targeting agent (10 mg) was dissolved in DI water (100 mL). This 

solution was then used to create solutions with concentrations of 0.001 mg mL-1, 0.01 mg mL-
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1, and 0.02 mg mL-1, allowing for the ratios of 1:1, 5:1, 10:1 and 100:1 of the HNPs to sugar, 

based on the iron concentration. HNPs were diluted to 0.1 mg mL-1 in DI water based on the 

iron concentration determined by ICP-OES analysis. The water was then removed, then 4.5 

mL of each concentration of sugar added into each sample. These were then stirred for 1 h at 

room temperature, after this time the water was removed and the particles redispersed in 4.5 

mL water. It was assumed that all the linker attached due to the low ratios being added onto 

the surface and the wealth of literature based around thiol-silver binding. 

5.22 Cell culture 

5.221 Cellular uptake 

  BxPC-3 and PANC-1 cells were cultured in RPMI and DMEM media respectively, 

with media supplemented with 10% foetal bovine serum and 1% penicillin-streptomycin, with 

1% L-glutamine also added into DMEM. Cells were seeded into 6-well plates at 50,000 

cells/well and left to grow until 70% confluency was reached. 

  Nanoparticle solutions based on the varied Fe:fucose ratios (2.5 mL) were diluted in 

10 mL media giving a final iron concentration of 25 μg mL-1 and sugar concentrations of 0 μg 

mL-1
, 0.5 μg mL-1, 2.5 μg mL-1, 5 μg mL-1 and 25 μg mL-1. The media was removed from the 

cell wells and replaced with 1 mL of the sample solution and incubated for 1 h, 6 h, and 24 h. 

After each time interval, the media was removed, and the cells were washed five times with 1 

mL PBS. The PBS was removed and trypsin (185 µL) was added to each well. The suspended 

cells were diluted with 1 mL fresh media and cells were counted using an Invitrogen 

CountessTM automated cell counter. The number of live cells was determined by adding 20 μL 

of trypan blue solution to 100 μL of the cell suspension, where the live cell count was used for 

quantification purposes. 
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5.222 Quantification of intracellular nanoparticle concentration 

  Cells (100,000) were isolated from the cell suspension. These were centrifuged for 5 

min at 800 rpm using a Hermle Z323 Centrifuge. The supernatant was removed, then 1 mL 

Aqua Regia added to the cell pellets. These were incubated at 90˚C for 1 h, after which the 

solution was diluted in DI water and metal content was determined using ICP-OES as 

described in Chapter 2, Section 2.26. Samples were measured in triplicate and an average 

value recorded. 

5.23 Statistical analysis 

  Any graphs generated were created on Microsoft Excel, with the mean value reported 

and error bars indicating the SD.  

  Statistical tests were run on the IBM SPSS Statistics 24 software, with the statistical 

test or tests run stated in the results and discussion.  

5.3 Results and discussion 

  A novel sugar targeting ligand was synthesised and characterised by the Miller 

research group at Keele University. The structure of the targeting ligand can be seen in Figure 

22. The linker was tethered onto the hybrid nanoparticle surface via dative covalent linkage of 

the thiolated fucose onto the silver surface. The scale at which this work was carried out was 

too small for FTIR characterisation, hence it was assumed that due to the low loading ratios 

used and the wealth of literature surrounding dative covalent binding of thiols onto silver 

surfaces that all the added fucose attached successfully onto the HNPs. Visually, this resulted 

in a more stable hybrid nanoparticulate suspension with reduced magnetic aggregation and 

precipitation indicating that attachment had occurred. Targeting is a very important factor 

when developing new highly toxic formulations using nanotechnologies. The literature has 

consistently shown that once encapsulated in or attached to the surface of a nanoparticle 

platform, drugs are more likely to enter the cells more rapidly and via alternative mechanisms 
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(endocytosis) compared to the free drug. Hence, it is very important to target these therapies 

to their required site of action to not only enhance therapeutic effect but also reduce systemic 

damage and side effects. In order to determine whether the novel fucose moiety provided was 

useful as a targeting agent to pancreatic cancer, the HNPs both with and without fucose were 

incubated with the pancreatic cancer cell lines (BxPC-3 and PANC-1). 

  The results of the in vitro study in PANC-1 cells is shown in Figure 24. The data, 

upon first inspection, appears to show that there was uptake and retention of the HNPs when 

using each different concentration of the sugar linker, but also appears to show that there are 

no differences in the uptake when using different concentrations of the targeting agent and 

naked HNPs. The uptake of the naked HNPs being better than the HNPs coated in the linker. 

As well as this, the error bars for the 6 h and 24 h time points are much wider for the linker 

containing HNPs in comparison to both the control and the naked HNPs. The 1 h time point 

has the most error, with generally large error bars for each category. 

 

Figure 25: How the use of a sugar linker affects the uptake of HNPs into the pancreatic cancer cell line, PANC-

1, with samples taken at time intervals of 1, 6 and 24 h. 

 The statistical analysis for this data was more complicated, with violations for both the 

equality of variances and normality. Several data transforms were attempted to counter this 
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but to no avail. It was decided that the best course of action was to continue with the two-way 

ANOVA using a lower significance of p = 0.01. This was done for the same reasons that were 

listed in Chapter 3, these being that there was no non-parametric alternative available on the 

SPSS software, the two-way ANOVA is relatively robust test, and that it was possible to 

follow up with a Kruskal-Wallis H test to try and gain perspective on the validity of the 

results could also be completed. 

  There was found to be a statistically significant effect of both concentration and time 

on the uptake of the HNPs (p<0.01) but there was found to be no interaction effect between 

the two (p>0.01). When looking at the concentration of the targeting agent, there was found to 

be a statistically significant difference between the control and all other samples (p<0.01). 

There was found to be no statistically significant difference between any other samples 

(p>0.01). When looking at the time, there was found to be a statically significant difference 

between the 1 h & 24 h and 6 h & 24 h time points (p<0.01), with the 1 h and 6 h time points 

found to be not statistically significantly different (p>0.01).  

 The Kruskal-Wallis H test was subsequently run in order to determine any significant 

difference in the impact of time on the HNP uptake and the concentration of the linker of the 

HNP uptake, without being able to determine if there were any joint effects on the uptake. 

Both data sets were not found to be evenly distributed when looking at box plots, so the 

distributions were compared rather than the median values. The output gave a statistically 

significant effect of both the targeting ligand’s concentration and the time on the uptake of the 

HNPs, with the control found to be statistically significantly different all samples except for 

the 5 µg mL-1. Alike the Two-way ANOVA, the 1 h and 6 h time points were not statistically 

significantly different, but both of these time points were found to be statistically significantly 

different to 24 h (p>0.05).  

  For the BxPC-3 data (Figure 25), there was also no evidence that the sugar linker had 

an effect on the uptake and retention of the HNPs, as the naked HNPs appeared to uptake the 
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most nanoparticles at the initial 1 h period, then lose these over the 6 h and 24 h time points. 

For the HNPs with the sugar linker, there was a more obvious increase between the 1 h and 6 

h time points in uptake. There was then a more rapid decrease in the HNPs, decreasing to 

levels below that of the 1 h time point.  

 

Figure 26: How the use of a sugar linker affects the uptake of HNPs into the pancreatic cancer cell line, BxPC-

3, with samples taken at time intervals of 1, 6 and 24 h 

 A Two-way ANOVA with a square root data transform applied was used to determine 

any statistically significant outputs. The data transform was applied in order to ensure equality 

of variance, as indicated by Levene’s test. The transformed data was found to be normal 

according to the Shapiro-Wilk test (p>0.05). The initial results determined that the 

concentration of the linker, time and the two in combination had a statistically significant 

effect on the uptake of the HNPs (p>0.01).  

  Pairwise comparisons were also looked at to determine if there were any significant 

differences in the HNP uptake at each time point between each of the concentrations. For the 

control sample, the 1 h time point was found to be statistically significantly different to both 

the 6 h and 24 h time points. For the 25 µg mL-1, all of the time points were found to be 
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statistically significantly different from each other. For the remaining data (0 µg mL-1, 0.25 

µg mL-1, 2.5 µg mL-1, and 5 µg mL-1), the 24 h point was found to be statistically significantly 

different both the 1 h and 6 h time points (p<0.05). Pairwise comparisons also looked at any 

significant differences in the HNP uptake at each time point between each of the 

concentrations and the control. At all of the time points, the control was found to be 

statistically significantly different to all of the other samples (p<0.001), with the other 

samples only found to be statistically significantly different to the control for each time point 

(p>0.05).  

  Overall, the statistical analysis for both the PANC-1 and BxPC-3 data was able to 

back up what was presented in the data (Figures 23 and 24), meaning that there was no 

significant difference in the uptake of the HNPs when using the targeting linker, and that there 

was no clear difference in the uptake of the HNPs within the 1 h and 6 h time points, but these 

time point both were able to retain more HNPs that the cells at the 24 h time points.  

 Other studies have had more success in generating targeting agents for drug delivery 

applications for several cancerous cell lines, with results demonstrated both in vitro and in 

vivo in one case (Yu et al., 2011).  

  One of the potential reasons that the targeting ligand was unable to successfully force 

cells to uptake and retain the HNPs is possibly due to the chain length. Computational 

modelling completed by Dr Jóhannes Reynisson suggested that the chain length needed to be 

longer in order to better penetrate and “stick” into the cells, allowing the HNPs better uptake 

and retention. The molecular dynamics approach was used to model fucose. This was done 

using the catalytic pocket of the enzyme 1,3-fucosyltransferase (PDB ID: 2NZY resolution 

2.05 Å) (Sun et al., 2007).  

  It was assumed that the sugar moiety was bound in the same way as fucose, as the 

only difference is the addition of the hydrocarbon chain, holding the ring of fucose and the 

protein static. Bond formation to silver can occur due to the thiol pointing towards the 
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aqueous phase.  

  As well as this, the targeting ligands used in these studies have often been tested on 

other cell lines, or have well-defined biological actions, such as antibodies and antigens 

(Dilnawaz et al., 2010; Yu et al., 2011; Aires et al., 2016; Nagesh et al., 2016; Trabulo et al., 

2017), that have receptor sites on the surface of the cells, allowing for the great targeting 

ability seen within these studies.  

5.4 Conclusion 

  The potential of the novel fucose targeting ligand for enhanced uptake in pancreatic 

cells has been fully explored in vitro in two different pancreatic cancer cell lines, with 

computer modelling data used to explain a potential reason as to why this particular targeting 

moiety did not work. Further optimisation using different chain lengths is required in order to 

determine if the sugar used here could be used as a targeting agent for pancreatic cancer, as 

well as using this in vivo, as this is normally a stronger model than using the cell line alone, 

even though not all in vitro and in vivo successes translate in the clinical setting. 

   Chapter 6 details the antibacterial properties of the generated HNPs, with testing on 

three gram-negative bacterial strains used to determine if these HNPs would successfully kill 

intratumoral bacteria.  
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6.0 Antimicrobial studies 

6.1 Introduction 

6.11 Silver as an antibacterial agent 

 Because of the rise in resistance to antibiotics, other antibacterial agents may be 

required when treating pancreatic cancer. The antibacterial properties of AgNPs are well 

known, with silver ions having several modes of action by which they can inhibit bacteria, 

such as affecting DNA replication (Marini et al., 2007), interfering with the permeability of 

bacterial membranes and respiratory chain enzyme inhibition (Lok et al., 2007). 

  Adherence of AgNPs onto the surface of Pseudomonas aeruginosa has also been 

noted, with these nanoparticles then able to enter the bacterial cells and cause more damage 

(Morones et al., 2005). The distribution of silver differs, with 40% only surface binding and 

60% entering the bacteria (Holt and Bard, 2005). The ability of AgNPs to enter cells has also 

been seen in a multidrug-resistant Pseudomonas aeruginosa (Liao et al., 2019). 

  The release of silver ions has also been documented to be a method by which AgNPs 

kill bacteria, with this seen to be the only cause of AgNPs antibacterial effect in one study 

(Xiu et al., 2012). Other studies have seen a synergistic effect between the release of silver 

ions and particle-specific effects, including protein expression not seen when using a source 

of silver ions alone (Yan et al., 2018). The formation of ‘pits’ or pores in the cellular 

membrane have also been seen in studies using both Escherichia coli (Sondi and Salopek, 

2004) and Vibrio cholerae (Gahlawat et al., 2016). This led to an increase in the permeability 

of the cell wall, eventually causing cell death. Free radical production has also been 

implicated as the cause of AgNPs antibacterial efficacy in studies using Escherichia coli (Kim 

et al., 2007) and Pseudomonas aeruginosa (Liao et al., 2019; Yan et al., 2018), leading to 

oxidative stress.  
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  Whether the bacteria are Gram-positive or Gram-negative is another important factor 

in the efficacy of AgNPs, with the majority of research finding that Gram-negative bacteria 

are more susceptible to AgNPs bactericidal effects than gram-positive bacteria (Morones et 

al., 2005; Kim et al., 2007), with this thought to be due to the differences in their cell walls. 

These effects extend to silver and silver products generally (Jung et al., 2008; Otari et al., 

2013; Acharya et al., 2017). In this research, the focus will be on gram-negative bacteria, as 

these were most commonly found in the PDAC tissues, as described in Geller et al. (Geller et 

al., 2017).  

  Here, the HNPs generated were tested against gram-negative bacterial strains from the 

Enterobacteriaceae and Pseudomonadaceae families to determine whether the hybrids have 

an antibacterial effect. 

6.2 Methods 

6.21 Dilutions  

  The solutions created were based on the concentration of the gemcitabine using its 

IC50 value. The concentration of silver was looked at in this case as silver is the component 

that has the antibacterial effect, not iron oxide.  

  Gemcitabine (50 mg) was dissolved in water (10 mL, 5 mg mL-1). 0.1 mL of this was 

then diluted to 10 mL using water to generate a 0.05 mg mL-1 solution. A corresponding 

concentration of HNPs with gemcitabine was subsequently made by diluting 135 µL to 10 

mL, giving a silver concentration of 8.1 µg mL-1. Hence, 54 µL of HNPs (1.5 mg mL-1, silver) 

was made up to 10 mL in order to gain 8.1 µg mL-1 of silver.  

6.22 Silver as an Antibacterial Agent 

  The method here was adapted from the EUCAST disk diffusion method of 

antimicrobial susceptibility testing (EUCAST, 2019), with the preparation of the agar plates, 
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the growth of the bacteria, McFarland standard and swabbing of the bacteria onto the plates 

were all completed by Rebecca Harrison and her laboratory technicians.  

  The bacteria used were either wild-type clinical isolates (PS995433 and ECO995530) 

or were obtained from the National Collection of Type Cultures (ECO12241) in order to have 

a control strain that has known susceptibility to certain antibiotics.   

  Bacteria were initially grown in an incubator at 36˚C for around 8 h. An inoculum 

suspension of a 0.5 McFarland standard was generated for each bacterial strain; wild-type 

Escherichia coli (ECO995530), wild-type Pseudomonas aeruginosa (PS995433), and 

Escherichia coli (ECO12241). The suspensions were then added onto the plate using a cotton 

swab to wipe the bacteria onto the centre of the plate in three different directions in order to 

promote confluent growth. The plates were incubated at 36˚C overnight with the 100 µL of 

HNPs, gemcitabine, and HNPs loaded with gemcitabine loaded onto plates with each bacteria 

type. The plates were then removed from the incubator and the zone of inhibition (diameter, 

mm) measured using callipers. 

  Samples were measured in triplicate and an average value recorded. 

6.23 Statistical Analysis 

  Any graphs generated were created on Microsoft Excel, with the mean value reported 

and error bars indicating the SD.  

  Statistical tests were run on the IBM SPSS Statistics 24 software, with the statistical 

test or tests run stated in the results and discussion.  

6.3 Results and Discussion 

  In order to determine if the HNPs were showed antibacterial activity, testing was 

completed on three strains of bacteria. The bacteria used for this study were chosen for 

several different reasons. Initially, the bacteria have to belong to the families 

Enterobacteriaceae and Pseudomonadaceae, as these were found to be present in the PDAC 
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tissues tested by Geller and co-workers (Geller et al., 2017). Secondly, Escherichia coli and 

Pseudomonas aeruginosa are relatively common and well-known bacteria, meaning that they 

were likely to appear within these tissues. Finally, two wild type strains of Escherichia coli 

and Pseudomonas aeruginosa (ECO995530 and PS995433 respectively) and a control strain 

of Escherichia coli (ECO12241) were used to test for any antibacterial effects. Here, the 

control strain has a well-defined pattern of antimicrobial resistance, whereas the wild-type 

strains do not, so the resistance levels may differ. 

  Figure 26 shows images taken of the plates approximately 16 h after each solution was 

applied, with these being used as the initial run to determine if the volume of the solution used 

was enough to cause inhibition. 

  Because all of the samples were in water, it was difficult to get the usual zone of 

inhibition seen in other studies. It also meant that the procedure had to be adapted. The plates 

are usually placed into the incubator upside-down in order to avoid condensation dripping 

onto the plate and affecting the concentration of the sample. In this case, the plates could not 

be stored upside-down, due to the samples being water-based.  

  In spite of this, the clear lack of growth in the areas of the plate where the nanoparticle 

solution was applied are quite obvious for the hybrids alone and the hybrids in combination 

with gemcitabine. Gemcitabine alone was not seen to have any impact on any of the bacterial 

strains, which was expected due to the nature of this work was to protect gemcitabine from 

being degraded by bacteria. There was also no sign of a synergistic effect between the 

gemcitabine and the hybrids, with the zone of inhibition either remaining the same, as in the 

case of the Pseudomonas aeruginosa or decreasing, as seen with both Escherichia coli 

species. 
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Figure 27: Testing the antibacterial capabilities of gemcitabine (a, b and c), the HNPs (d, e, and f) and the HNPs 

with L-GEM attached (g, h, and i), against a clinical isolate of Escherichia coli (a, d, and g), a control strain of 

Escherichia coli (b, e, and h) and a clinical isolate of Pseudomonas aeruginosa (c, f, and i).  

  Upon initial observation of the zones of inhibition for all of the bacteria, the 

differences appear to be relatively obvious, with the naked HNPs having a greater effect on 

ECO12241 and ECO995530. The HNPs and HNP with gemcitabine seemed to have no 

difference in effect on PS995433. However, Figure 27 shows the error bars for the 

combination treatment were large for both Escherichia coli strains tested, as was the error bar 

on the naked HNPs for ECO995530, hence it could not be said with absolute certainty that the 

results truly differed until statistical analysis of the data was undertaken.  
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Figure 28: The average zone of inhibition found for the HNPs (HNP) and the HNPs with gemcitabine attached 

to the surface (L-GEM + HNP) for wild type Pseudomonas aeruginosa (PS995433), wild-type Escherichia coli 

(ECO99530) and E coli (ECO12241). Gemcitabine is not shown as it did not cause a zone of inhibition in the 

bacteria used.  

  A Kruskal-Wallis H test was used for statistical analysis of the data, as the data was 

found to seriously deviate from normality and had inequality of variance, based on the 

Levene’s test (p<0.001). From this, it was determined that there was not a statistically 

significant difference in the zone of inhibition between the different strains of bacteria 

(p>0.05). There was, however, found to be a statistically significant difference in the zone of 

inhibition depending on the treatment given, where the treatments were gemcitabine alone, 

HNPs alone, or the HNP with the drug attached. Pairwise comparisons were able to determine 

that gemcitabine alone was statistically significantly different to both HNPs (p<0.05) and 

HNPs with gemcitabine (p<0.001). Hence, it was also determined that there was not a 

statistically significant difference in the effects of HNPs and HNPs with gemcitabine on the 

zone of inhibition (p>0.05). The statistical analysis in part reflected in the results shown in 

Figure 26.  

  When looking at the data and the statistical analysis, it is clear that gemcitabine alone 
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had no effect on any of the bacteria tested in this study. As well as this, there was a clear 

effect of both HNPs and the combination treatment on all of the bacteria, with no statistically 

significant difference or observationally obvious difference between the two.  

  A clear issue with this technique is measuring the zone of inhibition by eye, as this is 

not the most accurate way to gain information due to obvious errors that could occur, 

especially between researchers. As well as this, there will be issues related to changing the 

procedure to fit the solutions used, such as the potential for water droplets to decrease the 

concentrations of the samples on the plate and the issue of the solutions being able to spread 

easily across the plate, thereby affecting the results. Future studies could be completed using 

other antibacterial testing techniques, such as the minimum inhibitory concentration (MIC), in 

order to confirm the results obtained here.  

  The use of the disk-diffusion assay has been previously completed to determine the 

antibacterial effect of AgNPs on Escherichia coli strains. A study by Vu et al., in which 8 nm 

AgNPs were tested for their antibacterial efficacy on both Escherichia coli and 

Staphylococcus aureus (Vu et al., 2018), there was an average zone of inhibition of 7.7 mm 

for Escherichia coli, which is lower than the averages obtained in this study for both the 

control and wild-type studies both HNPs (12.3 and 13.7 mm) and HNPs with gemcitabine 

(7.5 mm and 10.7 mm). The strains of Escherichia coli used in this study are not clearly 

stated, so it is harder to compare the results, especially as different strains of Escherichia coli 

have different types of resistance to antibiotics. Another study also measured the zone of 

inhibition for both Pseudomonas aeruginosa and Escherichia coli, finding a zone of 

inhibition of 14.5 mm and 13 mm respectively (Singh et al., 2018). These closely match the 

values obtained for the wild type Pseudomonas aeruginosa using HNPs and gemcitabine 

HNPs (13.8 mm and 15 mm), wild-type Escherichia coli (12.3 mm and 7.5 mm) and the 

control Escherichia coli (13.6 mm and 10.7 mm). Again, different strains may have been used 

so comparisons can be difficult.  
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  Several other studies have been able to also show the success of AgNPs as 

antibacterial agents, with the data presented using several different methods, including 

looking at the MIC (Kim et al., 2007; Liao et al., 2019), the IC50 (Yan et al., 2018), and 

minimal bactericidal concentration (Liao et al., 2019). Kim et al. determined that there was a 

MIC of over 3.3 nM for Escherichia coli, a much lower concentration than the one used in 

this study (Kim et al., 2007). For Pseudomonas aeruginosa, the MIC was found to be 2.285 ± 

1.492 µg mL-1 for the multidrug-resistant strain and 2.596 ± 1.126 µg mL-1 for the drug-

resistant strain, with minimal bactericidal concentration of 3.165 ± 0.994 µg mL-1 and 3.246 ± 

1.056 µg mL-1, respectively when completing an agar dilution test (Liao et al., 2019). Yan et 

al. determined that there was an IC50 of 0.88 µg mL-1 when using AgNPs against 

Pseudomonas aeruginosa (Yan et al., 2018). Although the methods and types of nanoparticles 

differ from the one used here, all of the data together shows the power of silver, especially 

AgNPs, as an antibacterial agent and confirms the results obtained in this study.  

   These results clearly show the potential for these hybrids to be used in order to kill 

intratumoral bacteria, but further studies, including in vivo modelling, would be required 

before application in the clinical setting. 

6.4 Conclusion 

 Overall, there was a clear effect of both HNPs and drug conjugated HNPs on the 

bacterial strains tested, with no effect found when using gemcitabine alone. This was 

expected as several studies have proven the efficacy of silver as an antibacterial agent.  
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7.0 Conclusions and Future Work 

  The synthesis and characterisation of HNPs composed of an iron oxide core and silver 

coatings was successfully completed, with several analytical techniques used to confirm this. 

As mentioned in Chapter 2, the optimisation of the synthesis is required for these hybrids to 

be used clinically. One possible way in which more consistent coating of the hybrids could be 

achieved is through the use of microfluidics, which would allow greater control of the size 

and size distribution of the HNPs, as well as allowing for greater reproducibility.  

  The ability of these HNPs to be used for laser ablation were also explored, with the 

results indicating that it is plausible to use these HNPs as thermal triggers for the release of 

gemcitabine via the Diels-Alder mechanism. There were some issues with this, one being the 

spread of the heat and the other the time it took for the HNPs to heat to the appropriate 

temperature required for release, especially when compared to AuHNPs. Future work may 

involve the use of a laser set at a different wavelength, like the one used here better-suited 

gold due to its surface plasmon resonance. Other issues relate to the silver coating, which was 

a much lower concentration proportionally to that on the AuHNPs, therefore needing further 

optimisation.  

  The drug loading and release of these hybrids have also been tested, as well as the 

cytotoxicity. Drug loading was successful, with over 70% of L-GEM successfully attached to 

the surface of the HNPs. However, there were clear issues with the release of the drug, with 

thermal release at 44˚C unable to release the gemcitabine using the Diels-Alder mechanism 

previously described. The cytotoxicity data was also relatively inconclusive, with 

gemcitabine, HNPs and HNPs loaded with L-GEM all having varied toxic effects on both cell 

lines tested. Due to issues related to the production of L-GEM, it was not possible to repeat 

any of the tests listed here, therefore future work would be to repeat these tests.  

  The ability of the modified fucose to target pancreatic cancer cell lines was attempted, 
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where the results clearly showed that there was no difference in the uptake of the HNPs with 

or without the linker. Modifications to the molecule may be required to get the desired effect.  

  Antibacterial testing of the HNPs was completed in order to determine if these HNPs 

were able to provide a dual therapy within tumour tissues. As expected, gemcitabine alone 

was unable to exhibit an antibacterial effect. Both the HNPs and the HNPs with L-GEM were 

able to cause a zone of inhibition on all of the bacteria tested, with L-GEM not affecting the 

antibacterial efficacy of the HNPs according to statistical testing. Further work would require 

testing in vivo to see if these HNPs would be able to kill bacteria in a more physiologically 

accurate environment.   

  Overall, the results obtained here are relatively mixed, with both positive and negative 

outcomes throughout. The highlights of this work include the successful synthesis of the 

HNPs, their antibacterial efficacy, and the potential success of the targeting ligand, after some 

adjustments to its structure. The majority of this work will need optimisation in order for 

these HNPs to be used within the clinical setting, work that was not possible to complete due 

to the time constraints of a master’s qualification. However, the work here is promising and 

has shown what is possible for the future of pancreatic cancer treatments.   
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