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Abstract

Regime-switching models are widely used in empirical economics and finance

research for their ability to identify and account for the impact of latent

regimes or states on the behaviour of the interested variables. Meanwhile,

empirical evidence often reveals complex non-Gaussian characteristics in the

state-dependent dynamics. We generalize the latent-factor-driven endogenous

regime-switching Gaussian model of Chang, et al., Journal of Econometrics,

2017, 196, 127–143 by allowing the state-dependent conditional distributions

to be non-Gaussian. Our setup is more general and promises substantially

broader relevance and applicability to empirical studies. We provide evidence

to justify our generalization by a simulation study and a real data application.

Our simulation results confirm that when the state-dependent dynamics are

misspecified, the bias of model parameter estimates, the power of the likeli-

hood ratio test against endogenous regime changes, and the quality of the

extracted latent factor all deteriorate quite considerably. In addition, our appli-

cation to the S&P 500 index return data reveals strong evidence in favour of

our non-Gaussian assumption, and the superiority of our model specification

delivers an important risk management implication.
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1 | INTRODUCTION

Since the seminal work of Hamilton (1988, 1989),
regime-switching time series models have been

extensively used in empirical economics and finance
research. These models assume that there is some
unobserved latent factor implicitly driving the evolution
of changing regimes or states, representing varied eco-
nomic or market conditions under which the behaviours
of the concerned economic or financial variables are
investigated. Their intrinsic ability to identify and
account for the impact of changing regimes on the behav-
iour of the time series variables makes regime-switching
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models a powerful and attractive econometric tool for
many empirical applications. See, for example, Hamil-
ton (1988, 1989), Kim (1994), Garcia and Perron (1996),
Bollen, Gray, and Whaley (2000), among others.

Not surprisingly, most of the early studies on regime-
switching models were established under the classic
linear-Gaussian framework. In recent years, however,
more and more researchers have introduced regime-
switching mechanism to more general classes of non-
linear and non-Gaussian models. Most obvious examples
of these models include, but are not limited to, regime-
switching models with fat-tailed error distributions,
regime-switching duration models, regime-switching
continuous-time diffusion models and so on. See
Choi (2009), Goutte and Zou (2013) and Bu, Cheng, and
Hadri (2017) for some recent examples. Conventional
regime-switching models assume that the transition of
the underlying finite state Markov chain is independent
of the evolutionary path of the observed time series vari-
able, which often proves to be unrealistic in many cases.
For example, studies including Diebold, Lee, and
Weinbach (1994), Kim, Piger, and Startz (2008),
Choi (2009), Bu et al. (2017), Chang, Choi, and
Park (2017) and others all reported evidence of endoge-
nous regime changes that we observe widely and fre-
quently for many practical applications.

There are several different ways of modelling endoge-
nous regime changes. For example, Choi (2009) and Bu
et al. (2017) chose to model the state transition probabili-
ties explicitly as a function of the lagged values of the
observed variable. Diebold et al. (1994) considered a Mar-
kov process that is driven by a set of observed variables.
Kim et al. (2008) studied a regime-switching model
driven by an endogenous identically and independently
distributed latent factor with the threshold level deter-
mined by the previous state and possibly lagged values of
the time series. Most recently, Chang et al. (2017) (CCP)
allows the regime changes to be determined by an auto-
regressive latent factor assumed to be correlated with the
previous innovation of the state-dependent process. By
construction, the resulting state transition probabilities
are time-varying and dependent on the lagged values of
the observed time series. Their approach also allows the
users to extract the unobserved latent factor, which can
subsequently be analysed in conjunction with observable
economic variables to better understand the dynamics of
economic trends.

It is important to note that a crucial assumption
underlying the endogenous regime-switching framework
of CCP is the conditional normality of the state-
dependent processes. Although this assumption is suffi-
cient for some empirical studies, it may turn out to be too
restrictive and unrealistic for many other situations. For

example, many financial time series exhibit heavy-tail
characteristics, and for certain data type, for example, the
duration data, the state-dependent conditional distribu-
tions must have non-negative support. In addition, there
is a growing literature on regime-switching continuous-
time processes, which, except for the Ornstein Uhlenbeck
process, generally have non-Gaussian transition densi-
ties. Hence, the applicability of CCP's original setup,
despite its novelty in terms of model interpretability and
the ability to extract the latent factor, can be quite limited
without some necessary extensions.

For this reason, we propose in this paper a general-
ized latent factor-driven endogenous regime-switching
model where the state-dependent processes are allowed
to be non-Gaussian. Our approach is built upon the
framework of CCP, who considered a regime-switching
Gaussian model driven by whether a latent factor is
above or below an unknown threshold, assuming that
the innovations of the state-dependent process and the
latent process are bivariate normal. We extend their
model by allowing the conditional distributions of the
state-dependent processes to be non-Gaussian. Clearly,
our setting lends itself to the applications in much wider
and more realistic situations, especially in the modelling
of highly complicated financial and economic dynamics.

To accommodate non-Gaussian state-dependent con-
ditional distributions, we consider a simple distribution
transformation strategy. Specifically, conditional non-
Gaussian state-dependent random variables are first
transformed, in a one-to-one sense, into standard normal
random innovations by a distribution transformation. We
then assume, as in CCP, that the resulting standard nor-
mal random innovation and the innovation of the latent
factor are jointly normal. This setup, the nonlinear trans-
formation and the dependence structure between the two
innovations, allows us to deviate from the restrictive nor-
mality assumption and at the same time allows us to
adopt the inferential procedures of CCP relatively easily
with some simple modifications. Following closely the
results of CCP, we develop a modified Markov filter for
our system, which leads to a simple Maximum Likeli-
hood (ML) estimation procedure, and a modified proce-
dure for extracting the latent factor. The consistency and
asymptotic normality of the ML estimator for general
regime-switching models follow from the recent work by
Kasahara and Shimotsu (2019). It is not difficult to see
that our setup and inferential procedures reduce to the
case of CCP when the state-dependent processes are lin-
ear with Gaussian innovations. Just as CCP, our
approach is equally intuitive and easy to implement, but
it is more general and more applicable.

To demonstrate the importance of the ability to devi-
ate from the Gaussian assumption on the state-dependent
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conditional distributions and the consequence of poten-
tial misspecifications, we conduct a simulation exercise
based on the same regime-switching volatility model
studied by CCP. Our focus is on the impact of mis-
specification by the normal assumption on the bias of the
model parameter estimates, the power of the Likelihood
Ratio (LR) test against endogenous regime changes, and
the quality in term of Average Mean Squared Error
(AMSE) of the extracted latent factor, when the true
state-dependent conditional distributions are non-Gauss-
ian. We assume that the true data-generating error distri-
bution is the Student-t distribution and examine the
difference in the above statistics between the correctly
specified non-Gaussian models and the incorrectly speci-
fied Gaussian models. Unsurprisingly, we find that such
misspecifications potentially have negative impacts on all
of these criteria. Specifically, across all the scenarios we
considered in our simulation, such misspecifications led
to increased bias on all parameter estimates, reduced
power of the LR test, and increased AMSE of the
extracted latent factor.

We also demonstrate the importance of non-Gaussian
assumptions through our application to the daily S&P
500 index return data. Specifically, we considered the
same regime-switching volatility model as in our simula-
tion with alternative error distributions, namely the nor-
mal distribution and the Student-t distribution. We find
strong evidence in support of endogenous regime
changes, regardless of error specifications. More impor-
tantly, our non-Gaussian models outperform the Gauss-
ian models statistically significantly in the sample in
terms of the log-likelihood and out of the sample in terms
Mean Squared Predictive Error (MSPE) and Gaussian
Quasi-Likelihood (QLIKE) for volatility forecasting. To
investigate the potential economic implication of making
appropriate distributional assumptions on the state-
dependent dynamics in our models, we examine the dif-
ference between the two error specifications in a finan-
cial risk management application. Since our focus is on
the fat-tailedness in financial returns, we compare our
models in terms of Conditional Tail Expectation (CTE)
forecasts. We find that our fat-tailed Student-t model
always produces statistically more extreme CTE forecasts
than does the Gaussian model. This means that the
model with no fat-tailed error distribution significantly
underestimated the tail risks relative to our model with
the more adequate fat-tailed Student-t error specification
and that such under-estimation can be quite substantial
particularly during crisis periods where extreme move-
ments of the market are observed more frequently.

The rest of this paper is organized as follows: In
Section 2, we briefly review the latent factor-driven

regime-switching model of CCP and then generalize it to
accommodate general non-Gaussian state-dependent pro-
cesses. Section 3 presents our simulation study, focusing
on the impacts of misspecification by the normal assump-
tion on the estimation and inference of non-Gaussian
models. In Section 4, we further demonstrate the impor-
tance of our extension by presenting an empirical appli-
cation to the S&P 500 index return series. Some
concluding remarks are provided in Section 5.

2 | LATENT-FACTOR-DRIVEN
ENDOGENOUS REGIME-
SWITCHING MODELS

In this section, we briefly outline the framework devel-
oped by CCP for modelling endogenous regime-switching
conditional Gaussian processes. We then extend it to the
case where the state-dependent processes are general,
that is, non-Gaussian, and discuss model estimation and
inference of the latent factor under the new framework.

2.1 | Conditional Gaussian state-
dependent processes

Conventional two-state regime-switching models typi-
cally assume that the evolution of the unobserved ran-
dom state process (st), taking value 1 or 0 representing
high or low state of the economy, is governed by a sta-
tionary two-state Markov chain with state transition
probability matrix

M =
p00 p01
p10 p11

� �
=

p00 1−p00
1−p11 p11

� �
,

where

p00 =P st =0jst−1 = 0f g

p11 =P st =1jst−1 = 1f g

are the probabilities of the Markov chain remaining in
the same state from t − 1 to t.

Let yt be the observed time series variable we wish to
model. Then, the dynamics of yt conditional on t − 1 and
st is assumed to be governed by a state-dependent process
with unknown parameter vector �π and π for high and
low states, respectively. For notational brevity, we define
the following two specific filtrations for time series (yt)
and state process (st):

BU ET AL. 3



Yt−a,t−b = yt−a,yt−a−1,…,yt−bf g,

St−a,t−b = st−a,st−a−1,…,st−bf g,

for 0 ≤ a < b ≤ t − 1. The usual filtration of yt is then
denoted by ℱt−1 =Yt−1,1 = yt−1,yt−2,…,y1f g.

If the evolution of st is independent of Yt−1,1, then p00
and p11 are constant and the switching of regimes is exog-
enous. However, this assumption often needs to be
relaxed to enrich the dynamics of the model by introduc-
ing endogenous regime switches. Studies including
Choi (2009) and Bu et al. (2017), for instance, specify p00
and p11 as a function of Yt−1,1, so that the probabilities of
regime changes are time-varying and endogenously
influenced by the past realizations of yt. The advantage of
modelling endogeneity in this way is that one can directly
and quite flexibly specify the time-varying transition
probabilities as a function of lagged values of yt. The dis-
advantage, however, is that such endogenous dependence
is usually arbitrary and often does not provide much eco-
nomic intuition or justification as to what is driving the
switching of regimes.

To provide an alternative solution, CCP proposed a
novel and more intuitive approach for modelling
endogenous regime changes. They assume that the
evolution of the state variable st is determined by
whether an unobserved latent factor (wt) is above/
equal or below some unknown threshold level τ.
Formally, they define

st =1 wt≥τf g ð1Þ

where 1{�} is the indicator function and (wt) is a zero-
mean AR(1) process

wt = αwt−1 + υt ð2Þ

with parameter α � (−1, 1] and i.i.d. standard normal
innovations (υt). The advantage of their setup is that
endogenous regime changes can be introduced by all-
owing υt + 1 to be correlated with the innovation term
ut of their state-dependent process. More specifically,
they assume that their state-dependent dynamics is
governed by the following conditional Gaussian
process

yt =m St,t−k,Yt−1,t−k;ϑð Þ+ σ St,t−k,Yt−1,t−k;ϑð Þut ð3Þ

where m St,t−k,Yt−1,t−k;ϑð Þ and σ St,t−k,Yt−1,t−k;ϑð Þ are
the mean and the volatility functions, respectively, with
ϑ= 1−stð Þπ+ st�π . Most importantly, ut and υt+1 are
jointly i.i.d. as

ut
υt+1

� �
= dℕ

0

0

� �
,

1 ρ

ρ 1

� �� �
ð4Þ

with unknown correlation coefficient parameter ρ.
In this framework, α controls the persistency of regime

changes. When jα j < 1, the latent factor (wt) is asymptoti-
cally stationary, and it becomes strictly stationary if in
addition w0=dℕ(0, 1/(1 − α2)). This then implies that the
state process st is also stationary and the unconditional
state probabilities exist. When α = 1, however, (wt)
becomes a unit root process and its transition density is a
function of time. Consequently, the state process st
becomes non-stationary and the unconditional state prob-
abilities do not exist. On the other hand, the parameter ρ
in the joint distribution (4) determines the level of endo-
geneity of regime changes. If ρ 6¼ 0, the state transition
probabilities become time-varying and dependent on the
lagged values of yt. As ρ approaches unity in modulus, the
endogeneity of regime changes driven by (wt) becomes
stronger. When |ρ| = 1, there is perfect endogeneity, and
consequently the current shock ut fully dictates the realiza-
tion of the latent factor wt + 1 determining the state in the
next period. In this case, the state process is actually
degenerate and becomes adapted to ℱt − 1.

CCP derived the endogenous state transition probabil-
ities of the state process st and developed a modified Mar-
kov switching filter to facilitate the ML estimation of
their model. They also derived the endogenous transition
density of the latent factor wt and developed a procedure
for inferring the latent factor conditional on ℱt. Readers
can refer to Section 3 of their paper for a complete under-
standing. In the next section, we propose a generalization
of their framework and provide more general results. As
a special case, their results are readily available from ours
by imposing the restriction that the state-dependent pro-
cess is conditional Gaussian.

2.2 | General state-dependent processes

2.2.1 | The setup

The conditional Gaussian assumption is quite crucial in CCP's
setup, because it allows them tomodel the joint distribution of
(ut, υt + 1) as the bivariate standard normal distribution, which
is convenient for their subsequent technical analysis. How-
ever, as discussed above, the conditional Gaussian assumption
on the state-dependent process is clearly restrictive, preventing
wider applications of theirmodelling strategy tomany realistic
situations. To overcome this limitation,we propose a relatively
simple generalization of their framework to accommodate
general state-dependent processes.
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We assume that the state process st and the latent fac-
tor wt are still defined by (1) and (2), respectively, as in
CCP. Crucially, instead of assuming a conditional Gauss-
ian state-dependent process in (3), we define our state-
dependent process quite flexibly as a general conditional
stochastic process, which we denote as

yt = yt j St,t−k,Yt−1,t−k,ϑ= 1−stð Þπ+ st�πf g ð5Þ

for some known value of k and t = 1, 2, …. Moreover, we
assume that the probability law of yt conditional on
St,t−k,Yt−1,t−k,ϑð Þ is governed by its conditional cumula-
tive distribution function (cdf ) F yt j St,t−k,Yt−1,t−k;ϑð Þ
with continuous probability density function (pdf)
f yt j St,t−k,Yt−1,t−k;ϑð Þ . Most importantly, for all t we
define the standard normal cdf inverse transform of the
conditional cdf of yt as

~ut =Φ−1 F yt j St,t−k,Yt−1,t−k;ϑð Þð Þ ð6Þ

where Φ(�) is the standard normal cdf function. It is
important to note that since yt is Markovian with respect
to St,t−k and Yt−1,t−k , ~ut is i.i.d standard normal random
variable by construction. Consequently, we can further
assume, in the spirit of CCP, that

~ut
υt+1

� �
= dℕ

0

0

� �
,

1 ρ

ρ 1

� �� �
, ð7Þ

which gives rise to the possibility of endogenous regime
switches. This completes the setup of the generalized
framework.

We can see that the inverse cdf transform (6) is the
key to our framework. It allows us to be freed from the
conditional Gaussian restriction, while at the same time
allows us to continue to take advantages of the analytical
tractability of the bivariate normal distribution in (7),
which links the innovations of state-dependent process yt
and latent factor wt + 1. Our setup clearly encompasses
the framework of CCP as a special case when the state-
dependent process is conditional Gaussian. This is
because

~ut =Φ−1 F yt j St,t−k,Yt−1,t−k;ϑð Þð Þ

=Φ−1 Φ
yt−m St,t−k,Yt−1,t−k;ϑð Þ
σ St,t−k,Yt−1,t−k;ϑð Þ

� �� �
= ut:

ð8Þ

In fact, our analytical results provided in the next
section can be quite easily derived by following the logic
in their paper. In the meantime, their results will imme-
diately follow if (8) holds.

2.2.2 | ML estimation and extraction of
latent factor

The ML estimation of the generalized model can proceed
in a similar manner as in CCP. Given n observations {y1,
y2…, yn} of the time series yt, the log-likelihood function
of the model can be written as

ℓ y1,…,ynð Þ= log p y1ð Þ+
Xn
t=2

log p ytjℱt−1ð Þ ð9Þ

Of course, the log-likelihood function includes the
vector of unknown parameters θ � Θ. It is, however,
suppressed for notational brevity. As usual, the ML esti-
mator θ̂ of θ is given by

θ̂=argmax
θ�Θ

ℓ y1,…,ynð Þ

For the model given by (1), (2), and (5)–(7), θ consists
of the state-dependent parameter ϑ, the autoregressive
coefficient α of the latent factor, the threshold level τ, as
well as the endogeneity parameter ρ.

As with most econometric models containing latent
components, ML estimation of our model requires some
filtering procedure to evaluate the conditional density
function p(yt| ℱt − 1) in (9). As discussed by CCP, the con-
ventional Markov switching filter is no longer applicable,
since the state process (st) defined in (1) is not a Markov
chain unless ρ = 0. We consider the same modified Mar-
kov switching filter as in CCP, which consists of the usual
prediction and updating steps. Specifically, the required
conditional density function p(yt| ℱt − 1) can written as

p ytjℱt−1ð Þ=
X
st

� � �
X
st−k

p yt,St,t−kjℱt−1ð Þp St,t−kjℱt−1ð Þ:

For the prediction step, we note that

p St,t−kjℱt−1ð Þ
=

X
st−k−1

p st j St−1,t−k−1,ℱt−1ð Þp St−1,t−k−1 jℱt−1ð Þ

and for the updating step, we have

p St,t−kjℱtð Þ= p St,t−kjyt,ℱt−1ð Þ

=
p ytjSt,t−k,ℱt−1ð Þp St,t−kjℱt−1ð Þ

p ytjℱt−1ð Þ

Note that p ytjSt,t−k,ℱt−1ð Þ= f yt j St,t−k,Yt−1,t−k;ϑð Þ is
known from the parametric specification of the
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state-dependent process. Therefore, the knowledge of
p st j St−1,t−k−1,ℱt−1ð Þ= p st j St−1,t−k−1,Yt−1,t−k−1ð Þ , which is
the endogenous state transition probability, will be suffi-
cient for the implementation of the filter. Following
closely the logic behind the results in CCP, we now pro-
vide details of the required endogenous state transition
probability and summarize them as follows:

Theorem 2.1 Let |ρ| < 1. The bivariate process (st, yt) on
{0, 1} × ℝ is a (k + 1)th order Markov process, whose
transition density with respect to the product of the
counting and Lebesgue measure is given by

p st,yt j St−1,t−k−1,Yt−1,t−k−1ð Þ
= p yt j St,t−k,Yt−1,t−kð Þp st j St−1,t−k−1,Yt−1,t−k−1ð Þ

where p yt j St,t−k,Yt−1,t−kð Þ is the state-dependent transi-
tion density of yt and

p st j St−1,t−k−1,Yt−1,t−k−1ð Þ
= 1−stð Þωρ St−1,t−k−1,Yt−1,t−k−1ð Þ
+ st 1−ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ� �

with transition probability ωρ of the endogenous state
process (st) to low state (st = 0). Let Φp xð Þ=
Φ x=

ffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

p	 

. If |α| < 1, ωρ is given by

ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ

=
1−st−1ð ÞÐ τ ffiffiffiffiffiffiffiffi

1−α2
p

−∞ + st−1
Ð∞
τ
ffiffiffiffiffiffiffiffi
1−α2

p
h i

Φρ τ−ρ~ut−1− αxffiffiffiffiffiffiffiffi
1−α2

p
	 


φ xð Þdx
1−st−1ð ÞΦ τ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 

+ st−1 1−Φðτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

ph i ,

and, if α = 1, for t = 1, ωρ(s0) = Φ(τ) with Pr{s0 = 0} = 1
and Pr{s0 = 1} = 1 respectively when τ > 0 and τ ≤ 0 and,
for t ≥ 2,

ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ

=
1−st−1ð ÞÐ τ= ffiffiffiffiffiffi

t−1
p

−∞ + st−1
Ð∞
τ=

ffiffiffiffiffiffi
t−1

p
h i

Φρ τ−ρ˜ut−1−x
ffiffiffiffiffiffiffiffiffi
t−1

p� �
φ xð Þdx

1−st−1ð ÞΦ τ=
ffiffiffiffiffiffiffiffiffi
t−1

p� �
+ st−1 1−Φðτ= ffiffiffiffiffiffiffiffiffi

t−1
p� � :

Theorem 2.1 fully specifies the joint transition of (st)
and (yt) for the case |ρ| < 1, and Corollary 2.1 below gives
explicit details for the case |ρ| = 1.

Corollary 2.1 If |ρ| = 1, the transition probability ωρ of
the endogenous state process (st) to low state (st = 0)

conditional on previous states and past observed time
series is given as follows: (a) If α = 0,

ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ= 1 if ρ~ut−1 < τ

0 otherwise




(b) If 0 < α < 1,

ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ

= 1−st−1ð Þmin 1,
Φ τ−ρ~ut−1ð Þ

ffiffiffiffiffiffiffiffi
1−α2

p
α

	 


Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 

0
@

1
A

+ st−1max 0,
Φ τ−ρ~ut−1ð Þ

ffiffiffiffiffiffiffiffi
1−α2

p
α

	 

−Φ τ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 


1−Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 

0
@

1
A

(c) If −1 < α < 0,

ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ

= st−1min 1,
1−Φ τ−ρ~ut−1ð Þ

ffiffiffiffiffiffiffiffi
1−α2

p
α

	 


1−Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 

0
@

1
A

+ 1−st−1ð Þmax 0,
Φ τ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 

−Φ τ−ρ~ut−1ð Þ

ffiffiffiffiffiffiffiffi
1−α2

p
α

	 


Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 

0
@

1
A

(d) If α = 1, for t = 1, ωρ(s0, y0) = Φ(τ − ~u0 ) with
P{s0 = 0} = 1 and P{s0 = 1} = 1 respectively when
τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ St−1,t−k−1,Yt−1,t−k−1ð Þ

=

1−st−1 if ρ~ut−1 > 0

Φ τ−ρ~ut−1ð Þ 1ffiffiffiffiffiffiffiffiffi
t−1

p
� �

−st−1Φ τ=
ffiffiffiffiffiffiffiffiffi
t−1

p� �
1−st−1ð ÞΦ τ=

ffiffiffiffiffiffiffiffiffi
t−1

p� �
+ st−1 1−Φ τ=

ffiffiffiffiffiffiffiffiffi
t−1

p� �� � otherwise:

8>>><
>>>:

In addition to ML estimation of the model, CCP
developed a procedure for inferring the latent factor wt

for their model. A similar but slightly modified procedure
can be developed for our general framework. Based on
the modified filter above for the state process st, we can
extract the latent factor through the prediction and
updating steps described above. In the prediction step,
we note that
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p wt,St−1,t−k jℱt−1ð Þ
=

X
st−k−1

p wt j St−1,t−k−1,ℱt−1ð Þp St−1,t−k−1 jℱt−1ð Þ

Then, we may obtain

p wt,St−1,t−k jℱtð Þ= p yt jwt,St−1,t−k,ℱt−1ð Þp wt,St−1,t−k jℱt−1ð Þ
p ytjℱt−1ð Þ

in the updating step. By marginalizing p wt,St−1,t−k jℱtð Þ
we can then get

p wtjℱtð Þ=
X
st−1

� � �
X
st−k

p wt,St−1,t−k jℱtð Þ=
X

St−1,t−k

p wt,St−1,t−k jℱtð Þ

which yields the inferred latent factor as the following fil-
tered latent factor

 wtjℱtð Þ=
ð
wtp wtjℱtð Þdwt ð10Þ

Therefore, we may easily extract the inferred factor,
once the ML estimates of p(wt| ℱt), 1 ≤ t ≤ n, are available.
Note that the knowledge of p wt j St−1,t−k−1,Yt−1,t−k−1ð Þ
will suffice for the implementation of the procedure. The
Corollary 2.2 below gives all the required details.

Corollary 2.2 The transition density of latent factor (wt)
on previous states and past observed time series is
given as follows:

(a) When |α| < 1 and |ρ| < 1,

p wt j st−1 = 1,St−2,t−k−1,Yt−1,t−k−1ð Þ

=
1−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2 + α2ρ2

1−ρ2

q
τ− α wt−ρ~ut−1ð Þ

1−ρ2 + α2ρ2

	 
	 
	 


1−Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 
 ℕ ρ~ut−1,
1−ρ2 + α2ρ2

1−ρ2

� �
,

p wt j st−1 = 0,St−2,t−k−1,Yt−1,t−k−1ð Þ

=
Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2 + α2ρ2

1−ρ2

q
τ− α wt−ρ~ut−1ð Þ

1−ρ2 + α2ρ2

	 
	 


Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 
 ℕ ρ~ut−1,
1−ρ2 + α2ρ2

1−ρ2

� �
:

(b) When |α| < 1 and |ρ| = 1,

p wt j st−1 = 1,St−2,t−k−1,Yt−1,t−k−1ð Þ

=

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p

α
ϕ

wt−ρ~ut−1

α

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p� �

1−Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 
 , if wt ≥ατ+ ρ~ut−1

0 otherwise

8>>>><
>>>>:

p wt j st−1 = 0,St−2,t−k−1,Yt−1,t−k−1ð Þ

=

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p

α
ϕ

wt−ρ~ut−1

α

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p� �

1−Φ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p	 
 , if wt ≤ατ+ ρ~ut−1

0 otherwise

8>>>><
>>>>:

(c) When α = 1 and |ρ| < 1,

p wt j st−1 = 1,St−2,t−k−1,Yt−1,t−k−1ð Þ

=
1−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t− tρ2 + ρ2

1−ρ2

q
τ− wt−ρ~ut−1

t− tρ2 + ρ2

	 
	 
	 

1−Φ τ

ffiffiffiffiffiffiffiffiffi
t−1

p� � ℕ ρ~ut−1,
t− tρ2 + ρ2

t−1

� �
,

p wt j st−1 = 0,St−2,t−k−1,Yt−1,t−k−1ð Þ

=
Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t− tρ2 + ρ2

1−ρ2

q
τ− wt−ρ~ut−1

t− tρ2 + ρ2

	 
	 

1−Φ τ

ffiffiffiffiffiffiffiffiffi
t−1

p� � ℕ ρ~ut−1,
t− tρ2 + ρ2

t−1

� �
:

(d) When α = 1 and |ρ| = 1,

p wt j st−1 = 1,St−2,t−k−1,Yt−1,t−k−1ð Þ

=

1ffiffiffiffiffiffiffiffiffi
t−1

p ϕ
wt−ρ~ut−1

t−1

� �

1−Φ τ
ffiffiffiffiffiffiffiffiffi
t−1

p� � , if wt≥τ+ ρ~ut−1

0 otherwise

8>>><
>>>:

p wt j st−1 = 0,St−2,t−k−1,Yt−1,t−k−1ð Þ

=

1ffiffiffiffiffiffiffiffiffi
t−1

p ϕ
wt−ρ~ut−1

t−1

� �

1−Φ τ
ffiffiffiffiffiffiffiffiffi
t−1

p� � , if wt ≤ τ+ ρ~ut−1

0 otherwise

8>>><
>>>:

3 | SIMULATION

Model misspecifications generally have negative impacts
on parameter estimation and inference of econometric
models. In the current context, we are particularly inter-
ested in the impacts of misspecification in the state-
dependent dynamics on the estimation and inference of
the model. Among many potential deviations from the
Gaussian assumption, the fat-tailedness is by far the most
debated and researched issue in empirical economics and
finance. In particular, fat-tailedness is an important char-
acteristic of financial returns. Correct specification of the
error distributions in the modelling of financial return
series has important implications on the practice of finan-
cial forecasting, portfolio selection, risk management, and
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so on. See, for example, Hansen (1994), Jondeau and
Rockinger (2003), and others. For this reason, our simula-
tion study in this section and our empirical application
in the next section will both focus on the impacts
of ignored fat-tailedness in the error distribution of the
state-dependent process on the estimation and inference of
the latent factor-driven endogenous regime-switching
model.

3.1 | Simulation design

Since our empirical application mainly focuses on the
regime-switching feature in the volatility of the S&P
500 index return series, we consider a regime-switching
volatility model in our simulation. Specifically, it is speci-
fied as

yt = σ stð Þεt, σ stð Þ= 1−stð ÞσL + stσH , ð11Þ

where εt is an i.i.d. error process with unit variance. The
same volatility model was considered by CCP and we will
also use this model in our application. Following CCP,
we set σL = 0.04 representing the low volatility state L
and σH = 0.12 representing the high volatility state H,
and to account for different levels of endogeneity, we
allow ρ to vary from 0 to −1 on an equal distance grid.1

As in CCP, we also consider two pairs of the auto-
regressive coefficient α of the latent factor and the thresh-
old level τ given by (α, τ) = (0.4,0.5), (0.8,0.7). When
ρ = 0, the first scenario corresponds to (pLL, pHH) =
(0.75,0.5), and the second scenario corresponds to (pLL,
pHH) = (0.86,0.72), both implying the same unconditional
state probabilities of (2/3, 1/3). Up to this point, our setup
is identical to that of CCP.

Assuming that εt is i.i.d. standard normal, CCP inves-
tigated the impact of ignored endogeneity on the bias in
the estimation of model parameters. Distinct from theirs,
the focus of our simulation is on the impact of mis-
specified state-dependent dynamics. To achieve this, we
assume that the true data-generating error distribution of
εt is a non-Gaussian fat-tailed distribution. Specifically,
we assume that εt follows the standard student-t distribu-
tion with degree of freedom υ = 5, which is chosen be
close to the estimated values in our empirical application
in the next section. As in CCP, we consider the sample
size n = 500 and 1000 replications. To examine the poten-
tial impact of misspecification, we assume that the mis-
specified model has the standard normal error
distribution as in CCP but other parts of the model are
correctly specified. We estimate both the correctly speci-
fied and the misspecified models from simulated data
and study their differences.

3.2 | Results

We first examine the bias in the estimation of the param-
eters common to both the correctly and the incorrectly
specified models, namely (σL, σH), (α, τ), and ρ. The
results are presented in the upper panel of Tables 1 and 2
for scenarios (α, τ) = (0.4,0.5) and (0.8,0.7), respectively.
First, for both scenarios, the biases for σL and σH are all
positive across all levels of ρ. Importantly, while the
biases under the correct specification are quite close to
zero, those under the incorrect specification are substan-
tially larger. This is expected because under the incorrect
normal specification larger estimates of σL and σH are
needed to compensate for the more frequent extreme
observations generated by the fat-tailed Student-t error
distributions. Second, for the first scenario, the biases for
α under both specifications are negative, whereas for the
second scenario they are positive under the correct speci-
fication but negative under the incorrect specification.
What is important is that in absolute values the biases
under the correct specification are always much smaller
than those under the incorrect specification. Third, for
the first scenario, the biases for τ under both specifica-
tions are negative. For the second scenario, they are all
negative under the normal specification, whereas under
the Student-t specification they are positive when ρ is
close to 0 but gradually become negative when ρ
approaches −1. In absolute values, the correctly specified
models again always have much smaller biases. Finally,
the bias results for ρ are somewhat mixed between the
two error specifications. For both scenarios, the biases for
ρ under the correct specification are actually inferior to
those under the incorrect specification when ρ is close to
0, but the opposite happens when ρ is close to −1. While
the biases for ρ tend to be small under the incorrect nor-
mal specification, they are quite clearly negative for some
values of ρ under the correct student-t specification.

In addition to parameter estimation, testing the pres-
ence of endogenous regime changes and extracting the
unobserved latent factor are two particularly useful infer-
ential tasks in the framework of latent-factor-driven
endogenous regime-switching models. We expect that mis-
specifications in the state-dependent dynamics may have
negative impacts on the performance of the LR test consid-
ered by CCP on the hypothesis ρ = 0 and the accuracy of
the extracted latent factor. We investigate the respective
sizes and powers of the LR test under correct and incorrect
specifications. The LR test statistic is given by

LR=2 ℓ θ̂, α̂, τ̂, ρ̂
� �

−ℓ ~θ,~α,~τ
� �� �

where ℓ denotes the log-likelihood function and the
parameters with tildes and hats denote their ML estimates
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with and without the no endogeneity restriction ρ = 0.
Under the correct specification, θ = (σL, σH, υ), and under
the incorrect specification, θ = (σL, σH). We calculate the
LR statistic from the estimated restricted (exogenous) and
unrestricted (endogenous) models and repeat this for all
the replications. Following CCP, we obtain the sizes of the
test using the critical value from the χ2(1) limiting distribu-
tion and the 5% size-adjusted powers using the empirical
95th percentile of the LRs from data generated under the
null ρ = 0 as the critical value.

The empirical sizes of the LR test for the scenario
(α, τ) = (0.4,0.5) are 0.081 and 0.062, respectively, under
correct and incorrect specifications, and for the scenario
(α, τ) = (0.8,0.7) the numbers are 0.084 and 0.086,

respectively. This suggests that the test slightly over
rejects the null hypothesis and the misspecification con-
sidered in our setting does not appear to have substantial
impact on the size of the test. We then present the size-
adjusted power results from the two scenarios in middle
panel of Tables 1 and 2, respectively. Generally speaking,
the test is reasonably powerful under both specifications,
with the powers increasing quite rapidly as ρ gets away
from 0. However, as we expected, it is important to note
that the size-adjusted power under the correct specifica-
tion is always better than that under the incorrect specifi-
cation, and not surprisingly their difference increases as
the endogeneity level increases. Under the mis-
specification considered in our setting, the LR test has

TABLE 1 Simulation results

(α = 0.4, τ = 0.5)
ρ 0 −0.2 −0.4 −0.6 −0.8 −1

Bias for σH Normal 0.0809 0.0769 0.0739 0.0642 0.0533 0.0405

Student 0.0126 0.0100 0.0077 0.0042 0.0032 0.0040

Bias for σL Normal 0.0208 0.0195 0.0177 0.0138 0.0092 0.0049

Student 0.0023 0.0019 0.0025 0.0018 0.0016 0.0012

Bias for α Normal −0.6027 −0.5962 −0.5925 −0.5699 −0.4928 −0.4443

Student −0.4053 −0.3972 −0.3574 −0.3445 −0.3425 −0.3997

Bias for τ Normal −1.0150 −0.9705 −0.9139 −0.7821 −0.5943 −0.3925

Student −0.2582 −0.2147 −0.2689 −0.2570 −0.2356 −0.2366

Bias for ρ Normal 0.0014 0.0518 0.0845 0.1024 0.0728 0.0259

Student −0.0085 −0.0639 −0.1124 −0.1007 −0.0660 0.0090

Power Normal 0.0500 0.2420 0.7110 0.9510 0.9920 0.9980

Student 0.0500 0.2500 0.8140 0.9910 1.0000 1.0000

AMSE Normal 1.2787 1.3517 1.7995 2.4435 3.4531 4.4744

Student 1.2756 1.2854 1.5403 1.8907 2.5443 3.3271

TABLE 2 Simulation results

(α = 0.8, τ = 0.7)
ρ 0 −0.2 −0.4 −0.6 −0.8 −1

Bias for σH Normal 0.0683 0.0659 0.0641 0.0584 0.0507 0.0448

Student 0.0034 0.0043 0.0034 0.0056 0.0062 0.0070

Bias for σL Normal 0.0152 0.0140 0.0136 0.0122 0.0107 0.0086

Student 0.0018 0.0017 0.0021 0.0028 0.0029 0.0026

Bias for α Normal −0.1837 −0.1583 −0.1452 −0.0936 −0.0435 −0.0358

Student 0.0655 0.0671 0.0811 0.0778 0.0571 0.0018

Bias for τ Normal −0.8258 −0.7594 −0.7242 −0.6342 −0.5016 −0.4120

Student 0.4131 0.3094 0.2053 −0.0328 −0.0921 −0.1339

Bias for ρ Normal 0.0016 0.0148 0.0295 −0.0065 −0.0296 0.0298

Student 0.0058 −0.1505 −0.2496 −0.2555 −0.1613 0.0042

Power Normal 0.0500 0.1880 0.5590 0.8780 0.9690 0.9840

Student 0.0500 0.2600 0.7310 0.9810 1.0000 1.0000

AMSE Normal 2.4500 2.5818 3.2376 4.5288 6.9065 8.6650

Student 2.4437 2.5401 2.9947 3.2362 3.5800 3.8081
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the tendency to under-reject the null hypothesis of no
endogeneity. This means that researchers may reach the
conclusion of no endogenous regime changes more often
than they should due to this type of misspecifications.2

The implication of this should not be underestimated,
because simulation results of CCP confirmed that ignored
endogeneity can lead to quite substantial biases and dete-
riorated efficiency in the estimation of model parameters.

Finally, we examine the impact of misspecification on
the quality of the extracted latent factor. An appealing
advantage of the latent factor-driven regime-switching
model is that once the model has been estimated, the
researcher can extract the latent factor to study, for
instance, its macroeconomic determinants and their joint
dynamics to improve forecasting performance of their
model. See Chang, Kwak, and Qiu (2019) for an example.
Since the true sample path of (wt) for each simulated time
series is known, one natural way of assessing the accu-
racy of the extracted latent factor is to calculate the fol-
lowing Mean Square Error (MSE) for each simulated
series and average them across all the replications. We let
i = 1, 2, …, 1000 be the replication number for each simu-
lation case and define MSE for each replication i as

MSE ið Þ= 1
n

Xn
t=1

wi,t−ŵi,tð Þ2

and the Average MSE (AMSE) across all replications as

AMSE=
1

1000

X1000
i=1

MSE ið Þ

Here, wi,t is true latent factor and ŵi,t is the extracted
value defined in (10) from an estimated model. We do
this for both the correctly specified and the incorrectly
specified models, and report the results in the bottom
panel of Tables 1 and 2. We can clearly see that correctly
specified models always produce smaller AMSE measures
than incorrectly specified models. As the endogeneity
level increases from ρ = 0 to −1, the difference increases
quite rapidly.

In summary, under our simulation setting, we find
that the type of misspecification we consider, namely the
ignored the fat-tailedness, generally leads to larger biases
in the estimation of model parameters, reduced power of
the LR test against endogeneity, and deteriorated accu-
racy of the extracted latent factor. All these may have
some negative impacts on the application of the latent-
factor-driven endogenous regime-switching framework to
empirical economic and financial research, potentially
rendering invalid conclusions. Our empirical application
in the next session reveals some additional evidence.

4 | APPLICATION

4.1 | Data and models

To demonstrate further the benefit of being able to spec-
ify general state-dependent dynamics, we analyse the
daily returns of the S&P 500 index based on essentially
the same regime-switching volatility model studied in
our simulation. We use the daily series of demeaned log
returns (in percentage) of the S&P 500 index from
January 3, 1928 to December 31, 2018 (22,856 observa-
tions). We further divide the full sample into an estima-
tion sample from January 3, 1928 to December 29, 2006
(19,836 observations) and a forecasting sample from
January 3, 2007 to December 31, 2018 (3,020 observa-
tions). We can see from Figure 1 that our data exhibits
quite clear changing volatility levels through different
time periods. Several periods of high volatilities can be
clearly identified, including at the very least the Great
Recession period from 1920s to 1930s, the financial crises
of the late 1990s, and the more recent of crisis between
2007 and 2008, for example. As a relatively simple strat-
egy for illustration purpose, we consider the same
regime-switching volatility model (11) with alternative,
namely the normal and the Student-t, error distribu-
tions.3 Slightly different from our simulation, we now
also allow the degree of freedom parameter in the
Student-t distribution to be regime-dependent, taking
value νL or νH according to the volatility regime.

For comparison purposes, for both error specifica-
tions, we consider three model types in terms of regime-
switching specification. The three types of models are the
single-regime models, the exogenous regime-switching
models (ρ = 0), and the endogenous regime-switching
models (ρ 6¼ 0). Consequently, we have a total of six

FIGURE 1 Daily S&P 500 index returns [Colour figure can be

viewed at wileyonlinelibrary.com]
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competing models to be investigated. All our models are
estimated by ML from our estimation sample.

4.2 | In-sample results

We report our in-sample estimation results in Table 3.
First of all, we observe that for models from the same
switching type, the one with normal errors produces larger
estimates of σH and σL, smaller estimates of α and τ, and a
less negative estimate of ρ than the one with Student-t
errors. This is consistent with the observation from our
simulation, where the true data-generating processes have
Student-t errors. Our initial investigation focuses on the
evidence of endogenous regime-switching effect in the
data. We begin with a comparison of the log-likelihood
values across the three types of models. Our results show
that for a given error distribution the endogenous regime-
switching model always produces the highest log-likeli-
hood, which is followed by the exogenous regime-

switching model, and the single-regime model always has
the lowest log-likelihood. Traditional test statistics cannot
be used for testing whether there is one regime or two
regimes, because the parameters related to the second
regime of the process are not identified under the null
hypothesis of no regime-switching, a feature known as the
Davies' Problem (c.f. Davies, 1977, 1987). Nevertheless,
studies such as Hamilton and Susmel (1994), Gray (1996),
and Choi (2009) argued that at least informally the stan-
dard LR statistic can give some indication of the relative
performance of competing models in terms of their
goodness-of-fit to the data. From the log-likelihood value
reported in Table 3, we can calculate the LRs between the
exogenous regime-switching model and the single-regime
model to be 9764.24 and 3203.84 for the student-t and the
normal error specifications, respectively. Arguably the
introduction of two regimes enormously improves the
goodness-of-fit to the data.

To formally test the statistical significance of the
observed likelihood improvements, we resort to parametric

TABLE 3 Estimation results for daily S&P 500 index returns

Parameter

Normal Student

Single Exogenous Endogenous Single Exogenous Endogenous

σH 2.2585 2.264 1.3488 1.3757

(0.0308) (0.0039) (0.0792) (0.3280)

σL 1.1806 0.7035 0.7032 0.6398 0.5736 0.5768

(0.0055) (0.0048) (0.0182) (0.0023) (0.0446) (0.0570)

νL 2.5485 6.1128 6.1872

(0.0014) (0.2557) (0.4542)

νH 3.6768 3.7185

(0.0966) (0.5910)

α 0.9969 0.9960 0.9997 0.9996

(0.0004) (0.0009) (0.0004) (0.0003)

τ 11.0007 9.8100 23.7776 19.7607

(0.6788) (0.1234) (1.5464) (2.2122)

ρ −0.7216 −0.9828

(0.0025) (0.0350)

pLL 0.9880 time-varying 0.9953 time-varying

pHH 0.9492 time-varying 0.9871 time-varying

log-likelihood −31,438.60 −26,556.48 −26,526.62 −27,623.76 −26,021.84 −25,998.72

LR for single regime 9,764.24 3,203.84

bootstrap p-value 0.000 0.000

LR for ρ = 0 59.72 46.24

bootstrap p-value 0.000 0.000

LR for distribution 7,629.68 1,069.28 1,055.80

bootstrap p-value 0.000 0.000 0.000
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bootstrapping. We simulate 1,000 replications of artificial
data from the estimated single-regimemodel. For each repli-
cation, we estimate models under the null and the alterna-
tive by ML and calculate the LR. From the empirical
distribution of the 1,000 bootstrap LRs, we can find the boot-
strap p-value for the observed LR from the original sample.
Unlike asymptotic tests such as Davies (1987), Hansen (1992,
1996), Garcia (1998), the parametric bootstrap procedure is
easy to implement and relies on the finite sample empirical
distribution rather than large sample approximation. We
report the resulting bootstrap p-values underneath the sam-
ple LR statistics. As expected, our bootstrap p-values for the
above two LRs are both zero, meaning that when the true
data-generating model is the single-regime model, none of
the simulated LRs exceeds the LR from the original sample.
Clearly, this is very strong evidence against the single-regime
model.

Comparing the two regime-switching models, we find
that the estimated endogeneity parameters are −0.7216
and −0.9828 for the two error specifications, respectively,
revealing quite strong levels of endogenous regime
changes. The two LR statistics between the endogenous
and exogenous models are 59.72 and 46.24, respectively,
leading to strong rejections of no endogeneity according
to the limiting distribution. To further test the signifi-
cance of endogenous regime-switching effect in our data,
we again resort to parametric bootstrapping. The
resulting two bootstrap p-values are both zero again, con-
firming statistical significance of the endogeneity. This is
consistent with the empirical findings in CCP for stock
returns and many existing works, including for example
Choi (2009) on short term interest rates, Bu et al. (2017)
on stock market volatilities.

We now compare our estimation results from different
error specifications. First, we observe that for models of the
same switching type, the one with the Student-t error distri-
bution always produces a substantially higher log-likelihood
value than the one with the normal error distribution. This
is an expected in-sample result because the Student-t distri-
bution is more flexible and becomes equivalent to the nor-
mal distribution when the degree of freedom tends to
infinity. Unsurprisingly, the LRs between models with alter-
native error specifications are as high as 7629.68, 1069.28,
and 1055.80, respectively, for the three switching types.
More formally, the respective p-values obtained from para-
metric bootstrap tests on these LRs are all zero, confirming
the significance of the differences between the two error
specifications. Combining the results from our tests on
regime-switching effects and those on error specifications,
we can conclude quite confidently that among the six
models under our consideration, the endogenous regime-
switching model with the Student-t error distribution is by
far the best fitting model for our data.

Endogenous regime-switching models have time-
varying state transition probabilities that are functions of
the lags of the time series variable yt. For the volatility
model in (11), the state transition probabilities are func-
tions of yt − 1 only and hence we can denote them as
PLL(yt − 1) and PHH(yt − 1). Figure 2 plots the estimated
values of PLL(yt − 1) and PHH(yt − 1) across the whole esti-
mation sample period for the two endogenous regime-
switching models together with the estimated constant
transition probabilities PLL and PHH for the two exogenous
regime-switching models. We can see that, consistent
with the results in CCP, the time-varying probabilities are
substantially different from the constant ones almost at
all times, suggesting that ignoring endogeneity in regime
changes can lead to considerable bias in the estimation of
state transition probabilities. Recall that the endogenous
regime-switching effect is significant regardless of the
error specification according to our LR tests above. Basi-
cally, this means that the time variation in the state transi-
tion probabilities presented in Figure 2 is statistically
significant regardless of the error specification.

Meanwhile, we can also observe that the time-varying
state transition probabilities PLL(yt − 1) and PHH(yt − 1) for
models with normal errors are substantially more variable
and often much lower than those for models with Student-t
errors. To understand this observation properly, we plot the
estimated PLL(yt − 1) and PHH(yt − 1) as a function of yt − 1

across its empirical support for models with different errors
in Figure 3. We can see that for yt − 1 > 0, PLL(yt − 1) is very
close to unity for both specifications. When the process is in
state L at time t − 1, a positive shock ut − 1 = yt − 1/σL or
~ut−1 = yt−1=σL combined with a negative ρ leads to a neg-
ative wt, which in turns leads to a high probability of
staying in state L. In contrast, a negative shock leads to a
much lower probability of staying in state L. The opposite
situation applies to PHH(yt− 1). Meanwhile, models with
normal errors have lower PLL(yt− 1) and PHH(yt− 1) than
those with Student-t errors. This means that the model
with normal errors produced more frequent regime
changes than did the model with Student-t errors. A pos-
sible explanation is that data from potentially fat-tailed
distributions have more extreme and more variable
observations than what the normal distribution can pre-
dict. Consequently, misspecified models with Gaussian
errors tend to over-estimate the probabilities of regime
changes to compensate this additional variation and
extreme observations.

4.3 | Out-of-sample results

We now examine the out-of-sample performance, focus-
ing on the two endogenous regime-switching models. As
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a standard way of evaluating volatility forecasting perfor-
mance, we use the squared return as the proxy of the
actual volatility. Various forecasting criteria or loss func-
tions may be considered to assess the predictive accuracy

of volatility models, and the value of loss function may
be affected by the choice of the proxy of actual volatility
heavily. Patton (2011) shows that two popular loss func-
tions, that is, MSPE and Gaussian Quasi-Likelihood

FIGURE 2 Time series of estimated state transition probabilities [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Estimated state transition probabilities as a function of yt − 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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(QLIKE), are more robust to the imperfect volatility prox-
ies. These two loss functions are given by

MSPE=
1
N

XN
i=1

σ2i − σ̂2i
� �2

,

and

QLIKE=
1
N

XN
i=1

logσ̂2i +
σ2i
σ̂2i

� �2

where σ2i and σ̂2i are the proxy actual value and the one-
step-ahead rolling sample volatility forecast, respectively,
and N is the total number of out-of-sample volatility fore-
casts. We find that the MSPE and QLIKE from our
endogenous regime-switching model with Student-t
errors are 27.89 and 0.96, respectively, compared with
28.16 and 0.99 from the model with normal errors. To
formally examine the significance of such differences, we
consider a one-sided DM test of Diebold and Mar-
iano (1995), using the endogenous regime-switching
model with normal errors as the benchmark, on the null
hypothesis that the two models produce equal forecasts.
The results are statistically significant, with p-values
being 0.0471 and 0.0436, indicating statistical significance
at 5% significance level. Based on this evidence, our
endogenous regime-switching model with Student-t
errors has better out-of-sample performance as far as our
forecasting criteria are concerned. Combined with our in-
sample results, we may reach the important conclusion
that the ability to model regime-switching with endoge-
nous regime changes and non-Gaussian state-dependent
conditional distributions can be extremely useful in
empirical econometric modelling.

Finally, we demonstrate the importance and potential
economic implications of making appropriate distribu-
tional assumptions on the state-dependent dynamics in
endogenous regime-switching models. We investigate
this from the perspective of financial risk management.
Since our focus is on the fat-tailedness in financial
returns, we compare our models in terms of a suitable tail
risk measure. To exploit as much information in the tails
of our forecasting distributions as possible, we consider
the CTE, defined as the expected value of the loss given
that the loss falls in the upper tail of the distribution,4 as
our coherent tail risk measure. Artzner, Delbaen, Eber,
and Heath (1999) and others argued that CTE gives better
results than does the quantile measure when comparing
risks, because it utilizes the whole tail of the distribution
beyond the quantile, rather than the single quantile
point. We assume for simplicity that the S&P 500 index is

the single investment asset under our consideration, and
since our models are symmetric, for comparison purpose
it is sufficient to consider CTE based on one of the tails.
As such, for a given confidence level 1 − α where
α � (0, 1), we define our CTE in terms of the daily S&P
500 return X as

CTE αð Þ=E XjX <F−1 αð Þ� �
=

1
α

ðF−1 αð Þ

−∞
xf xð Þdx

where f(x) is the forecast of the probability density func-
tion of the S&P 500 return and F(x) is the corresponding
cumulative distribution function.

To contrast the difference in forecasting CTE under
alternative error distributional assumptions, that is, the
normal distribution and the Student-t distribution, and
focus on the deep tails, we choose the 99% confidence
level or α = 0.01. This amounts to comparing the perfor-
mance of alternative model specifications in forecasting
the top or bottom 1% probability mass in the tails of the
S&P 500 return distribution. We plot in Figure 4 the one-
period-ahead rolling sample CTE forecasts in the left tail
produced by our endogenous regime-switching model
with alternative error specifications as well as the actual
return series in our forecasting sample period.

First, we can clearly see that not surprisingly our CTE
forecasts vary quite considerably over time, closely in line
with the variation of the return itself. Second, the CTE
forecasts produced by the model with Student-t errors are
almost always more extreme than those produced by the
model with normal errors. Their differences are more
substantial in high volatility regimes than in low

FIGURE 4 S&P 500 returns and CTE forecasts [Colour figure

can be viewed at wileyonlinelibrary.com]
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volatility regimes. This means that models with the nor-
mal error specification with no fat tails tend to under-
estimate the tail risks most of the time relative to models
with the more adequate Student-t error specification with
fat tails. This under-estimation can be considerable par-
ticularly during crisis periods where extreme movements
of the market are more frequently. To formally confirm
the significance of the difference in the CTE forecasts
produced by alternative models, we resort again to the
one-sided DM test of Diebold and Mariano (1995), using
the model with normal errors as our benchmark, on the
null hypothesis that the two models produce equal CTE
forecasts. The resulting statistic is as large as 38.62 and
the corresponding p-value is negligibly small. Hence, our
test strongly rejects the null, which means that our fat-
tailed Student-t error specification produced significantly
more extreme CTE forecasts than does the normal error
specification for the S&P 500 returns data. The important
implication from this example is that in the framework
the endogenous regime-switching models, the Gaussian
assumption may significantly under-estimate economic
or financial risks compared to alternative more general
assumptions.

5 | CONCLUSION

We extend the class of latent factor-driven endogenous
regime-switching models of Chang et al. (2017) by all-
owing the state-dependent dynamics to be general. Our
generalization makes this class of models applicable to a
much wider range of realistic situations, where non-
Gaussian state-dependent transitions are considered to be
essential.

Focusing on the potential impacts of fat-tailed distri-
butions, which is a prominent feature of most financial
return series, on the estimation and inference of this class
of models, we conducted a simulation study to examine
the consequences of misspecification. We found that in
addition to the well-anticipated larger biases in the esti-
mation of almost all model parameters, misspecified
state-dependent dynamics also lead to power losses in the
LR test against endogenous regime switches, uniformly
across different levels of true endogeneity, which effec-
tively increases the chance of not detecting crucial time-
variations in the transition probabilities of the estimated
models. Moreover, we found misspecified state-
dependent dynamics may also deteriorate the accuracy of
the extracted unobserved latent factors, which in turn
could undermine the quality and robustness of any sub-
sequent analyses based on it.

To illustrate our proposed approach empirically and
demonstrate further the benefit of allowing the state-

dependent dynamics to be more flexible, we analyse the
daily returns of the S&P 500 equity index based on a
regime-switching volatility model. We found quite strong
evidence of endogenous regime changes and that models
with the fat-tailed student-t errors outperformed those
with Gaussian errors in terms of both in-sample and out-
of-sample performances. Our non-Gaussian model also
produced significantly more extreme tail risk forecasts,
which can have quite important risk management
implications.

ENDNOTES
1 We conducted simulation for different values of ρ between 0 and
−1 on a grid of size 0.1 but chose to report results on a grid of size
0.2 in Tables 1 and 2 below to save space.

2 Clearly, this is true only as far as our simulation design is con-
cerned. We expect that different types or degrees of mis-
specifications may have different levels of impact on the size and
power of the test, which we leave for future research.

3 To keep our analysis relatively focused, we do not account for
potentially emprirical features such as volatility clustering and
asymmetric error distribution. We leave them for future
investigation.

4 CTE is also known as Tail Conditional Expectation (TCE), Condi-
tional Value-at-Risk (CVaR), Tail Value-at-Risk (TVaR), and
Expected Shortfall (ES).
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