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Abbreviations 

 

GULP = General Utility Lattice Programme 

BFGS = The Broyden-Fletcher-Goldfard-Shanno Algorithm 

RFO = The Rational Function Optimiser 

cLN = Congruent Lithium Niobate 

sLN = Stochiometric Lithium Niobate 

EXAFS = Extended X-ray Absorption Fine Structure 

Tc = Curie temperature 

MD = Molecular Dynamics Simulations 

VASP = Vienna Ab initio Simulation Package 

PAW = Projected-augmented Wave 

MP = Monkhorst-pack 

Mt-Ltn = Mott-Littleton Method 
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Abstract 

This investigation has modelled lithium niobate in its congruent form, stoichiometric 

form and paraelectric phase to determine whether the preference of doping schemes 

changes, specifically when the concentration of a dopant is varied. Mott-Littleton 

calculations and the supercell method were used to model defect structures of lithium 

niobate and assess the viability of four doping schemes, with a particular emphasis on the 

dopant Zn2+, however other dopants were used. 

The Mott-Littleton calculations involved the doping of multiple divalent and trivalent 

dopants. The results obtained showed scheme 2 to be the scheme with the lowest solution 

energy across all the dopants. The supercell method was carried out using a stoichiometric 

supercell of 48 Li and 48 Nb sites, with another larger stoichiometric supercell being used 

that contained 162 Li and 162 Nb sites for comparison with the same sized congruent 

supercell. The congruent supercell, however, contained a Li/Nb ratio of 0.963, in order to 

make the cell congruent. The dopants used in both supercells were Zn2+, Ce3+, In3+ and Eu3+. 

The supercells showed the effect of dopant concentration on the scheme preference.  

The paraelectric phase was only modelled using the Mott-Littleton method. The 

same dopants used in the stoichiometric Mott-Littleton modelling were employed. The 

results from the paraelectric phase were then compared to the stoichiometric form’s 

results, which showed no change in the preference of the doping schemes, with scheme 2 

having the lowest solution energy across all divalent and trivalent dopants. 

 Overall, the results showed that the doping scheme preferred is Scheme 2, both for 

divalent and trivalent dopants, which involved doping at the Li site and Nb site, and that the 

effect of increasing the concentration of the dopant had little effect. 
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Chapter 1 - Introduction 

 This investigation studies different models of Lithium Niobate to ascertain the 

preferred doping site, the Li site, the Nb site or a mixture of the two. The results are also 

compared, mainly, to the computational studies of Jackson et al. [1–4], whose doping 

schemes are used in this study, and the experimental studies of Bridges et al. [5–7] The aims 

and objectives are: 

• To model the Mott-Littleton and supercell structures of congruent, stoichiometric 

and paraelectric phases of LiNbO3 with different dopants, using four different 

possible dopant schemes. 

• Investigate the effect of increasing dopant concentration on scheme preference 

using the supercell model. 

• Compare the results to other computational and experimental studies of LiNbO3. 

This thesis will contain five chapters, as listed in the title page, however here is a 

summary of the contents of each section. Chapter 2 will describe the different 

computational methods used, the Mott-Littleton method and the supercell method, in this 

study and their origin. The background to computer modelling will be addressed in section 

2.1, explaining the reasoning behind computer modelling and also its uses. 2.2 will introduce 

the General Utility Lattice Program (GULP), the chosen program the material in this paper is 

modelled on. 2.3 and 2.4 will explain interatomic potentials and lattice energy minimisation, 

respectively, and explain their use in modelling materials. 2.5 will explain Mott-Littleton 

method and 2.6 will explain the supercell method. Section 2.7 discuses the solution energy 

calculations and 2.8 the construction of the python scripts involved in running some of the 

files. 2.9 will finally summarise the chapter. 

 Chapter 3 will involve the data obtained from the modelling of LiNbO3 in its 

congruent and stoichiometric forms. It is split into five sections, each covering a different 

aspect of the data obtained. 3.1 is a background section that explains the uses of LiNbO3 

and the various studies of dopants employed. 3.2 lists the data obtained from the Mott-

Littleton approach, linked to other studies involving LiNbO3, whilst 3.3 and 3.4 deal with the 

modelling of the stoichiometric and congruent phase of the material, respectively. 3.5 

compares the data obtained from the congruent and stoichiometric phases and relates this 

to other studies. 

 Chapter 4 discusses the paraelectric phase, modelled using the Mott-Littleton 

method. The data gathered is then compared to the results from the previous Mott-

Littleton calculation and also with data from Araujo et al. (2007)[3].  



~ 6 ~ 
 

 Chapter 5 will conclude the findings of this study and suggest ideas worthy of further 

investigation. Results obtained from LiNbO3 are summarised and then compared with other 

studies. 
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Chapter 2 - Computer Modelling 

2.1 Background 

Computational chemistry methods have become a useful tool in research. It is said 

that there are three main problems for a “newcomer to the field”, deciphering the code, 

technical problems and quality assessment [8].  “Deciphering the code” relates to the fact 

that you have to learn a new “language” when practising computational chemistry, as the 

methods use all sorts of acronyms and these must be learnt [8]. “Technical problems” can be 

both hardware and software related, as these both change over time, this can be the most 

difficult problem to accomplish as books can become out of date quickly due to the ever 

increasing capability of computers [8]. “Quality assessment” refers to the evaluation of the 

calculation and how accurate the final value is [8]. “Quality assessment” has become the 

“central theme” in computational chemistry, as computer programs have become easier to 

use and now often communicate to users through a graphical interface, meaning that it is 

no longer necessary to have a highly trained theoretician to run sophisticated programs [8]. 

This means that it has become quite easy to run a lot of calculations and get meaningless 

results, as the program does not tell you whether the chosen calculation or method is valid 

for the project you’re investigating [8]. Therefore, experience is needed and a basic 

understanding of the theory is required to calibrate the results, especially if novel 

procedures are being undertaken [8].  

 A “lack of quality assessment” has probably played a part in the perception of 

computational chemistry being seen as an unreliable source of information, as different 

computational methods on the same problem all could give widely different results, due to 

this lack of quality assessment [8]. Therefore, the ability to interpret the data received from 

the method must still be interpreted by a practitioner rather than a computer to understand 

the behaviour of a large group of molecules [8]. A large portion of time in computational 

chemistry is spent on “many-body problems” [8]. A “many-body problem” involves two-

particle system being solved accurately by mathematical methods, generating solutions in 

terms of analytical function [8]. Computational methods cannot solve a problem involving 

more than two particles completely, as systems involving more than one particle cannot be 

solved by analytical methods, approximations can be made and developed to any desired 

degree of accuracy [8].  

Atomistic simulation became popular as computers became more widespread and as 

programs were developed and made available [9]. In the UK, a lot of the work was done by 

the Atomic Energy Authority at Harwell, with a number of computer codes being produced 

from this work, specifically HADES, MIDAS and PLUTO, which led to the development of 

other codes including METAPOCS and CASCADE, to be developed elsewhere [9].  Computer 

modelling has many applications including the prediction of the relative energetics of 
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different polymorphs [10], determination of the mechanical properties of solids and the 

generation of possible atomic arrangements to assist in the solution of crystal structures 

from diffraction techniques [11,12]. The modelling of inorganic and organic materials has 

developed independently in the main, with organic materials making use of interatomic 

potential calculations to utilise the accepted connectivity of covalent systems in an attempt 

to advance the molecular mechanics approach, whereas inorganic material calculations, 

such as oxides and halides, have been founded on a fully ionic description with a shell-

model management of ion polarisation [11]. One program that is suitable to use organic and 

inorganic systems alike is the General Utility Lattice Program (GULP). 

 

2.2 GULP 

The General Utility Lattice Program (GULP) was developed by Julian Gale [9] and the first 

publication reported in 1997 [11]. The main idea behind it was to combine many of the 

services required for solid state simulation, concentrating on “static lattice/lattice dynamical 

methods” into a single package and make it easy to use [9]. GULP can be used for the 

optimisation of structures and the calculation of their properties but also can be used to 

derive interatomic potentials [11]. One such demonstration of this is the creation of a new 

interatomic potential for the ferroelectric and paraelectric phases of LiNbO3 by Jackson and 

Valerio (2005) [4]. In order to do this, GULP was designed to accept numerous structures 

within each input deck [11]. GULP was originally written in FORTRAN 77, but a FORTRAN 90 

version is available, which “makes use of the dynamic energy features” [11] It has been used 

in a variety of different situations [13–17]. One study used GULP to simulate Cd2GeO4 and the 

formation of oxygen defects [17] with another studying a new reactive force field for calcium 

carbonate [14].  

 Gale (2007) [11] states that “the calculation of the energetics of a three-dimensional 

system theoretically involves the evaluation of interactions between all species, be they 

cores, shells or united atom units, within the unit cell and their periodic replicating to 

infinity”, therefore, because this is not possible, assumptions must be made and a “finite 

cut-off” [11] imposed. The components of a lattice energy can be split into two classes: long 

and short-range potentials [11].  
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2.3 Interatomic Potentials 

2.3.1 Long range Potentials 

 Long-range potentials are the “dominant term for many inorganic materials” [11] so it 

is therefore very important to calculate them accurately. In order to calculate the 

electrostatic energy, which depends on 1/r and is slowly convergent, the Ewald summation 

is the preferred tool of choice [18]. The expression for the Ewald summation is shown below: 

𝐸𝑟𝑒𝑐𝑖𝑝 = (
1

2
)

4𝜋

𝑉
∑

(−
𝐺2

4𝜂)

𝐺2
 

𝐺

𝑥 ∑ ∑ 𝑞𝑖𝑞𝑗 exp(−𝑖𝐺𝑟𝑖𝑗)

𝑗𝑖

 

𝐸𝑟𝑒𝑎𝑙 =
1

2
∑ ∑

𝑞𝑖𝑞𝑗𝑒𝑟𝑓𝑐(𝜂1/2𝑟𝑖𝑗)

𝑟𝑖𝑗
𝑗𝑖

 

 

 

 V equals the volume of the unit cell, G represents when K is 2 𝜋 times a reciprocal 

lattice vector, qi is the charge of an ion, qj is the charge of the other ion, rij is rj - ri and i  is 

ion denoted as “I”. The two equations are for the summation of real space, Ereal and 

reciprocal space, Erecip. This is because in the summation the “inverse distance is rewritten 

as its Laplace transform and then split into two rapidly convergent series” [11], which are the 

two summations for real and reciprocal space. The summation has a scaling of N3/2, where N 

is the no of ions, and is achieved when an optimal value of η is chosen [11].  

 The equation below is given in the paper by Jackson and Catlow (1988) [19] and shows 

the optimal way of calculating “η”: 

𝜂𝑜𝑝𝑡 = (
𝑛𝑤𝜋3

𝑉2
)

1/3

 

 

 

“n” is the number of species in the unit cell, which includes shells, and “V” is the unit cell 

volume [11]. This optimal value is based on the criterion of “minimising the total number of 

terms to be evaluated in real and reciprocal space, weighted by the relative computational 

expense for the operations involved, w” [11] is achieved.  

 

Example Equation 1 – Ewald summation [18]. 

Example Equation 2 – Equation for calculating “η”  [19] 
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2.3.2 Short Range Potentials 

 The Buckingham potential is the “predominant short-range potential” for many ionic 

materials [11]. It is made up of a repulsive exponential and an “attractive dispersion between 

pairs of species” [11]. The main problem with this potential is that it “turns over” when “r” 

tends towards zero, with the exponential becoming a constant and “r-6” going toward – 

infinity [8]. This results in incorrectly estimating the “minimisation energy of a structure that 

has very short distance between two atoms” [8]. The equation is show below: 

𝑉 = 𝐴𝑒𝑥𝑝(−𝑟/𝜌) − 𝐶𝑟−6 

 

 

Dick-Overhauser Approach 

 One model used to include dipolar polarizability is via the shell model, first 

introduced by Dick and Overhauser [9]. This shell model is widely used, it involves splitting an 

ion into a core and a shell [9]. The core is made up of the nucleus and inner electrons of the 

ion, therefore representing all the mass, and the shell represents the valence electrons [9]. 

However, this model should not be taken too literally as sometimes the shell can carry a 

positive charge, depending on the fitting process, such as with metal cations [9]. “The 

polarizability of the ion in vacuo is given by” [9]: 

𝛼 =
𝑞𝑠

2

𝑘𝐶𝑆
 

 

 

The core and shell are Coulombically screened from one another with kCS 

representing the harmonic spring force constant coupled to it and qs represents the shell 

charge [9]. Short-range forces act on the shell, whereas the Coulomb potential acts on both, 

therefore the shell the short-range forces act to damp the polarizability by essentially 

increasing the spring constant, this makes the polarizability environment dependent [9].  

 The problem with this approach is that it is “not naturally extensible to higher order 

moments” [9], however attempts have been made to fix this, “such as the spherical and 

elliptical breathing shells” [9].  

 

Example Equation 3 – Equation for calculating energy minimisation [8] 

Example Equation 4 – Equation for the polarizability of the ion in vacuo  [9]  
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Three-Body Interactions 

 Three-body interactions involve the potential representing the repulsion between 

bond pairs or lone pairs [9]. Therefore the form chosen is generally a harmonic one that 

penalises deviation from the expected angle for the coordination environment, such 120o 

for a trigonal planar carbon atom [9]: 

𝑈𝑖𝑗𝑘 =
1

2
𝑘𝑏(𝜃 − 𝜃0)2 

  

 

Uijk is the three-body energy, 𝜃 is the actual angle, 𝜃0 is the equilibrium angle and kb 

is the bond bending force constant [9]. 

2.4 Lattice Energy Minimisation 

 There are multiple methods of lattice energy minimisation. Those that will be 

discussed here are the steepest descent method [8], the conjugate gradient method and the 

Newton-Raphson method. The steepest descent method involves performing a series of 

function evaluations in the negative gradient direction [8]. An approximate minimum can be 

estimated by “interpolation between the calculated points” [8].  This “interpolated point” is 

then used to begin the next line search [8]. This approach will always lower the function 

value and thus “guaranteed to approach a minimum” [8].  

  Another method of lattice energy minimisation is the conjugate gradient method. 

This method tries to improve on the steepest descent method by correcting its “undoing” of 

the previous step [8]. It does this by not performing each line search along the current 

gradient but rather “along a line that is constructed such that it is ‘conjugate’ to the 

previous search direction(s)” [8].  

 The Newton-Raphson method involves expanding the true function to second order 

around the current point x0 
[8]. The most efficient minimisation methods are based on 

Newton-Raphson [11]. The Newton-Raphson method involves the Hessian or some 

approximation to be used, with the minimisation search direction given by [11]: 

𝛥𝑥 = −𝐻−1𝑔 

 

With H being the Hessian matrix and g is the corresponding gradient vector [11]. The 

minimisation method used in GULP uses the exact second matrix to “initialise the Hessian 

for the minimisation variables” [11]. The Broyden-Fletcher-Goldfard-Shanno (BFGS) algorithm 

Example Equation 5 – Equation for the three-body energy [9]  

Example Equation 6 – Newton-Raphson Method minimisation search direction [11]   
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is then used to update the hessian for the minimisation variables [11]. The process works by 

recalculating the Hessian when either the energy decreases by a clear criterion in one step 

or the angle concerning the gradient and search vectors becomes too great, with a line 

search performed to obtain the optimum step length along the search vector [11]. This leads 

to quick convergence within a limited amount of cycles [11] for the majority of systems, 

unless there are particularly soft modes in the Hessian [11]. In these cases, the rational 

function optimiser (RFO) [20] is used and attempts to get rid of imaginary modes from the 

hessian [11] which forces it to be positive definite [11]. The advantage of RFO is that it can 

cause quick convergence in cases where the default minimiser has difficulty to do so [11], 

however the disadvantage is that it’s more expensive per cycle [11] 

 

2.5 Mott-Littleton Method 

 GULP utilises the Mott-Littleton method [21] . The Mott-Littleton method involves the 

two region strategy [9]. A point is defined as the defect centre, which “lies at a point centric 

with the initial defect site”[9] or where there are 2 or more defects the “mid-point of the 

ensemble of point defects.”[9] The surrounding space around this point is then divided into 

two spherical regions, regions 1 and 2a, with region 2b being designated to atoms outside 

these spheres and extends to infinity [9]. A model of the Mott-Littleton method is shown in 

Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 – A diagram of the Mott-Littleton Method (Adapted from Catlow 

(2006) [70]) 
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The size of the regions are specified by the number of ions contained within them or 

their radii [9]. Ions in region 1 are “assumed to be strongly perturbed by the defect and 

therefore are relaxed explicitly with respect to their Cartesian coordinates” [9]. Ions in region 

2, however, are expected to be weakly perturbed and therefore their displacements can be 

approximated in some way, along with the associated energy of relaxation [9].  An important 

stage of the defect calculation is to confirm that the defect energy is adequately converged 

with respect to the region radii [9], as with increasing the radii of region 1 the approximation 

becomes more valid [9]. To achieve convergence, it is advised that the difference between 

the radius of region 1 and the radius of region 2 “should be greater that the short-range 

potential cut-off” [9], however this may not be valid for charged defects [9]. 

 The total energy of the two region system can be expressed as the sum of 

contribution from the energies within the regions and between them [9]: 

𝑈𝑡𝑜𝑡(𝑥, ξ) = 𝑈11(𝑥) + 𝑈12(𝑥, ξ) + 𝑈22(ξ) 

 

 

U11(x) represents the energy of region 1 as a function of the Cartesian coordinates, x, 

U22(ξ) represents the energy of region 2 as a function of the Cartesian displacements, ξ and 

U12(x, ξ) is the energy of interaction between the two regions [9]. However, this stage does 

not distinguish between regions 2a and 2b [9]. The energy of region 2, as it is assumed the 

forces acting on region 2 are small and the atoms response in this region will only be 

harmonic [9], can be calculated as: 

𝑈22(ξ) =
1

2
ξ𝑇𝐻22ξ 

 

 

With H22 equalling the Hessian matrix for region 2. The next equation applies the 

condition that the “displacements in region 2 will be the equilibrium values” [9]: 

(
𝜕𝑈𝑡𝑜𝑡(𝑥, 𝜉)

𝜕𝜉
)

𝑥

= (
𝜕𝑈12(𝑥, 𝜉)

𝜕𝜉
)

𝑥

+ 𝐻22ξ = 0 

 

 

This equation combined with the previous one allows the elimination of the energy 

of region 2 from the total energy without direct route to the Hessian matrix [9]: 

Example Equation 7 – Equation for the sum of contribution from the two regions [9] 

Example Equation 8 – Equation for the energy of region 2 [9] 

Example Equation 9 – Equation for the displacements in region 2 [9] 
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𝑈𝑡𝑜𝑡(𝑥, 𝜉) = 𝑈11(𝑥) + 𝑈12(𝑥, 𝜉) −
1

2
(

𝜕𝑈12(𝑥, 𝜉)

𝜕𝜉
)

𝑥

𝜉 

 

 

Therefore the difficulty of calculating the energy of region 1 in the potential of 

region 2 has been decreased to evaluation the energy of region 1 and “its interaction with 

region 2, without having to evaluate the self-energy of region 2” [9]. In turn, to result to 

partial cancellation of terms, the quantity calculated is the defect energy- “i.e. the 

difference between the energy of the perfect regions 1 and 2, Utot, and the defective case, 

Ud
tot, rather than the individual contributions” [9]:  

𝑈𝑑𝑒𝑓𝑒𝑐𝑡(𝑥, 𝜉) = 𝑈𝑡𝑜𝑡
𝑑 (𝑥, 𝜉) − 𝑈𝑡𝑜𝑡

𝑝 (𝑥, 𝜉) 

 

 

2.6 Supercell Method 

 The supercell method involves using GULP to generate multiple sites and create a 

large unit cell, so that systems can be modelled in more detail. Dopants can be added to the 

supercell and the results are more realistic and maybe reliable than normal defect 

calculations, in that concentration effects and defect-defect interactions are taken into 

account. Investigations that have previously used the supercell method include a study of 

maghemite [22], a study of NaNbO3 for visible-light photocatalysis [23] and an investigation 

into the effects of gallium doping on Li7La3Zr2O12 
[24]. Most supercells prepared have been 

2x2x2 in size [23], however some have increased the size, to 3x3x3 [24] for example, in order 

to have more sites for doping. Other studies have analysed point defects in ZnRh2O4 [25], 

oxygen vacancies in ZnO and SrTiO3 [26] and the role of C substitution on B sites in AlLiB14 [27].  

 

2.7 Solution Energy Calculations 

 The solution energy is the measure of the energetic feasibility of a particular dopant 

configuration. The calculation when using the Mott-Littleton approach uses the energies of 

the defects associated with that particular dopant scheme and lattice energy values.  

Example 1 shows an example of this calculation: 

 

Example Equation 10 – Equation for the elimination of the energy of region 2 [9] 

Example Equation 11 – Equation for the defect energy [9] 
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 The lower the solution energy, the more energetically preferable the dopant 

incorporation and the more likely it is to occur. The calculation of solution energy differs 

slightly when using a supercell. Only the overall formation energy and lattice energies are 

used rather than using vacancy values, like in the Mott-Littleton calculations. The perfect 

cell energy is used as well as the defect formation energy obtained from the defect 

calculation in GULP and other appropriate lattice energies. An example of this is shown in 

Example 2: 

 

 

 

 

 

 

 

 

Solution energy is calculated per dopant being incorporated; therefore the value 

needs to be divided by the number of ions being doped into the structure to get the correct 

value. The different dopant schemes have different equations associated with them. These 

equations are shown in Equations 1-4 below. 

 

 

𝑀𝑂 + 2𝐿𝑖𝐿𝑖
𝑋 → 𝑀𝐿𝑖

• + 𝑉𝐿𝑖
′ + 𝐿𝑖2𝑂 

𝐸𝑠𝑜𝑙 = (𝐸(𝑀𝐿𝑖
• + 𝑉𝐿𝑖

′ ) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂)) − 𝐸𝑙𝑎𝑡𝑡(𝑍𝑛𝑂) 

𝐸𝑠𝑜𝑙 = ((−13.54) + 9.69 + (−33.16)) − (−39.29) 

𝐸𝑠𝑜𝑙 = 2.28 eV 

 

Example 1 – The calculation of the solution energy of Zn Scheme 1 in the Mott-

Littleton approach 

 

𝑍𝑛𝑂 + 2𝐿𝑖𝐿𝑖
𝑋 → 𝑍𝑛𝐿𝑖

• + 𝑉𝐿𝑖
′ + 𝐿𝑖2𝑂 

𝐸𝑠𝑜𝑙 = ቀ𝐸𝑑𝑒𝑓 + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂)ቁ − (𝐸𝑝𝑒𝑟𝑓𝑒𝑐𝑡 + 𝐸𝑙𝑎𝑡𝑡(𝑍𝑛𝑂)) 

𝐸𝑠𝑜𝑙 = ((−28,683.68) + (−33.16)) − ((−28,679.42) + (−39.29)) 

𝐸𝑠𝑜𝑙 = 1.87 eV 

 

Example 2 – The calculation of the solution energy of Zn Scheme 1 in the 

supercell 
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4𝑀𝑂 + 3𝐿𝑖𝐿𝑖
𝑋 + 𝑁𝑏𝑁𝑏

𝑋 → 3𝑀𝐿𝑖
• + 𝑀𝑁𝑏

′′′ + 𝐿𝑖2𝑂 + 𝐿𝑖𝑁𝑏𝑂3 

𝐸𝑠𝑜𝑙 = (𝐸(3𝑀𝐿𝑖
• + 𝑀𝑁𝑏

′′′ ) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖𝑁𝑏𝑂3)) − 4𝐸𝑙𝑎𝑡𝑡(𝑀𝑂) 

Equation 2 – Scheme 2 equation and its accompanying solution 

energy equation  

4𝑀𝑂 + 4𝑁𝑏𝑁𝑏
𝑋 + 3𝐿𝑖𝐿𝑖

𝑋 → 4𝑀𝑁𝑏
′′′ + 3𝑁𝑏𝐿𝑖

•••• + 𝐿𝑖2𝑂 + 𝐿𝑖𝑁𝑏𝑂3 

𝐸𝑠𝑜𝑙 = (𝐸(4𝑀𝑁𝑏
′′′ + 3𝑁𝑏𝐿𝑖

••••) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖𝑁𝑏𝑂3)) − 4𝐸𝑙𝑎𝑡𝑡(𝑀𝑂) 

Equation 3 – Scheme 3 equation and its accompanying solution energy 

equation  

𝑀𝑂 + 2𝐿𝑖𝐿𝑖
𝑋 + 𝑁𝑏𝑁𝑏

𝑋 → 𝑀𝑁𝑏
′′′ + 𝑉𝐿𝑖

′ + 𝑁𝑏𝐿𝑖
•••• + 𝐿𝑖2𝑂 

𝐸𝑠𝑜𝑙 = (𝐸(𝑀𝑁𝑏
′′′ + 𝑉𝐿𝑖

′ + 𝑁𝑏𝐿𝑖
••••) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂)) − 𝐸𝑙𝑎𝑡𝑡(𝑀𝑂) 

Equation 4 – Scheme 4 equation and its accompanying solution 

energy equation  

𝑀𝑂 + 2𝐿𝑖𝐿𝑖
𝑋 → 𝑀𝐿𝑖

• + 𝑉𝐿𝑖
′ + 𝐿𝑖2𝑂 

𝐸𝑠𝑜𝑙 = (𝐸(𝑀𝐿𝑖
• + 𝑉𝐿𝑖

′ ) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂)) − 𝐸𝑙𝑎𝑡𝑡(𝑀𝑂) 

Equation 1 – Scheme 1 equation and its accompanying 

solution energy equation  

𝑀2𝑂3 + 6𝐿𝑖𝐿𝑖
𝑋 → 2𝑀𝐿𝑖

•• + 4𝑉𝐿𝑖
′ + 3𝐿𝑖2𝑂 

𝐸𝑠𝑜𝑙 = (𝐸(2𝑀𝐿𝑖
•• + 4𝑉𝐿𝑖

′ ) + 3𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂)) − 𝐸𝑙𝑎𝑡𝑡(𝑀2𝑂3) 

Equation 5 – Scheme 1 equation for trivalent dopant and 

its accompanying solution energy equation  
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 These equations are then used to yield the solution energy as shown in the examples 

above, with the various numbers of each defect changed accordingly for each scheme. 

 

2.8 Python Scripts 

 Scripts were created using the python programming language to run files on GULP 

overnight, thus increasing productivity. An example of one of the scripts is shown in 

Example 3:  

 

𝑀2𝑂3 + 𝐿𝑖𝐿𝑖
𝑋 + 𝑁𝑏𝑁𝑏

𝑋 → 𝑀𝐿𝑖
•• + 𝑀𝑁𝑏

′′ + 𝐿𝑖𝑁𝑏𝑂3 

𝐸𝑠𝑜𝑙 = (𝐸(𝑀𝐿𝑖
•• + 𝑀𝑁𝑏

′′ ) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖𝑁𝑏𝑂3)) − 𝐸𝑙𝑎𝑡𝑡(𝑀2𝑂3) 

Equation 6 – Scheme 2 equation for trivalent dopant and its 

accompanying solution energy equation  

 

𝑀2𝑂3 + 2𝑁𝑏𝑁𝑏
𝑋 + 𝐿𝑖𝐿𝑖

𝑋 → 2𝑀𝑁𝑏
′′ + 𝑁𝑏𝐿𝑖

•••• + 𝐿𝑖𝑁𝑏𝑂3 

𝐸𝑠𝑜𝑙 = (𝐸(2𝑀𝑁𝑏
′′ + 𝑁𝑏𝐿𝑖

••••) + 𝐸𝑙𝑎𝑡𝑡(𝐿𝑖𝑁𝑏𝑂3)) − 𝐸𝑙𝑎𝑡𝑡(𝑀2𝑂3) 

 

Equation 7 – Scheme 3 equation for trivalent dopant and its 

accompanying solution energy equation  

 

𝑀2𝑂3 + 6𝐿𝑖𝐿𝑖
𝑋 + 2𝑁𝑏𝑁𝑏

𝑋 → 2𝑀𝑁𝑏
′′ + 4𝑉𝐿𝑖

′ + 2𝑁𝑏𝐿𝑖
•••• + 3𝐿𝑖2𝑂 

𝐸𝑠𝑜𝑙 = (𝐸(2𝑀𝑁𝑏
′′ + 4𝑉𝐿𝑖

′ + 2𝑁𝑏𝐿𝑖
••••) + 3𝐸𝑙𝑎𝑡𝑡(𝐿𝑖2𝑂)) − 𝐸𝑙𝑎𝑡𝑡(𝑀2𝑂3) 

Equation 8 – Scheme 4 equation for trivalent dopant and its 

accompanying solution energy equation  

 



~ 18 ~ 
 

 

 Multiple scripts were created to run the different doping schemes for each of the 

different dopants. Python is one of many programming languages and was used here as the 

program GULP was run a Linux computer. Further conversion would have to be done in 

order for the scripts to work on a computer operating Windows or Mac. The creation of 

these scripts meant that files could be run on GULP automatically when the previous one 

finishes, thus saving time.  

 

2.9 Summary 

 This chapter has explained the theory involved in simulating the materials studied in 

this paper. The background for the program GULP has been described and the two methods, 

Mott-Littleton and the supercell method, have been defined. Here, the calculations 

discussed later on in this paper have been explained and examples shown. This chapter has 

set a base for the rest of this paper. The following chapters will use a lot of terminology 

defined in this chapter and discuss defects being modelled in a specific material.  

 

 

 

 

 

 

 

Example 3 – A part of one of the python scripts used, gulpSCM1In1.py 

from subprocess import call 
call(['gulp < linbo3_sLN2_SCM1_cIn1.dat > linbo3_sLN2_SCM1_cIn1.out'], close_fds=True, shell=True) 
gulp1 = open('linbo3_sLN2_SCM1_cIn1.out', 'r') 
for line in gulp1: 
    if "Final energy" in line: 
        print(line) 
        from subprocess import call 
        call(['gulp < linbo3_sLN2_SCM1_cIn6.dat > linbo3_sLN2_SCM1_cIn6.out'], close_fds=True, shell=True) 
 
        gulp6 = open('linbo3_sLN2_SCM1_cIn6.out', 'r') 
        for line6 in gulp6: 
            if "Final energy" in line6: 
                print(line6) 
                from subprocess import call 
                call(['gulp < linbo3_sLN2_SCM1_cIn11.dat > linbo3_sLN2_SCM1_cIn11.out'], close_fds=True, shell=True) 
 



~ 19 ~ 
 

Chapter 3 – LiNbO3 

3.1 Background 

Lithium niobate, LiNbO3, has many applications in the field of optics because of its 

“good electro-optic, acousto-optic, elasto-optic, piezoelectric and nonlinear properties” [2] 

so much so it has often been called the “silicon of nonlinear optics”[28]. It is also popular due 

to its availability and versatility, having had a widespread use[29]. 

Mainly, dopants are used in LiNbO3 to lower its photorefractive response [6]. The 

photorefractive response is the time taken for the materials refractive index to alter when a 

beam of light is incident on it. This is done as doping generally decreases the amount of NbLi 

present in the material, which can cause a change in the materials optical properties [30]. 

When LiNbO3 is illuminated by light, the NbLi defects could ionize and generate 

photoelectrons, altering the refractive index of the material [30]. This is needed as high 

intensity light is used, which causes optical damage to materials with large photorefractive 

response such as LiNbO3, to obtain second harmonic generation, which is used in industry to 

generate“ green 532 nm lasers from a 1064 nm source” [6]. However, it is important to know 

the location of the dopant in the structure, as it is needed to model the mechanisms for 

photorefractive suppression [6]. Congruent, with a Li/Nb ratio of 0.945 [31], is the most 

common form of the material as when LiNbO3 crystals are grown, it can be difficult to 

produce a stoichiometric phase [6]. It is important to know which one is being used as the 

threshold divalent dopant concentration, used to increase optical damage resistance, is 

lower in stoichiometric LiNbO3 (sLN) and higher in congruent LiNbO3 (cLN) [6].  

 Other studies used more than one dopant with LiNbO3, including Er3+/Yb3+ [32,33], with 

a paper adding in Pr3+ to create a triply doped system [34]. A monodoped Ho3+ [35] system was 

also modelled, with Ho3+ being co-doped with Hf4+/ Yb3+ [36], Mg2+/Yb3+[37] and In3+[38]. 

Extended X-ray absorption fine structure  (EXAFS) analysis was conducted on LiNbO3 [7]. The 

paper concluded that Zn was doped at the Li site, which contradicts the site predicted by 

Araujo et al. (2007)[3]. However, the dopant concentrations in the experimental study were 

different than those used in the modelling; therefore the modelling of systems with finite 

dopant concentrations will be done in this paper to garner a better understanding and 

comparison to the experimental data. 

Computer modelling of LiNbO3 has produced a variety of information. One paper 

deemed antisite niobium compensated by lithium vacancies the most appropriate model, 

using data from simulations and experimentation[3]. This same study showed that the 

dopants studied had the lowest solution energy when doped at both the Li and Nb sites[3]. 

This was supported by another paper which confirmed that 3 of the 4 the dopants it tested 

preferred incorporation at both these sites, with In3+ slightly preferring the Nb site[1].  
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Another study doped LiNbO3 with various combinations of dopants, Fe3++Cu+, Ce3++Cu+, 

Ce4++Mn2+, Fe3++Rh3+ and Ru4++Fe3+ [2].  

A recent study doped LiNbO3 with Er3+ and codoped it with In3+/Er3+ in an attempt to 

increase the photorefractive-damage resistance [39].  The paper demonstrated that both the 

electro-optic coefficients, which is the parameter that defines how large an effect is 

observed for a given applied voltage [40], γ13 and γ33, showed little dependence on doping 

concentration of either  Er3+  or In3+ [39].  

Eu has been doped into LiNbO3 [41–46]. One investigation studied the defect structure 

and photorefractive properties of LiNbO3 co-doped with Eu3+, In3+ and Fe3+ [43]. The study 

increased the Li/Nb ratio of LiNbO3 whilst keeping the dopant concentrations the same to 

investigate the effect the dependence of the defect structures on the photorefractive 

properties of the material [43]. Initially, the increase in the Li/Nb ratio caused EuLi and FeLi to 

be repelled by Li ions to Nb sites to form EuNb and FeNb, with In ions still occupying the Li 

sites [43] . A further increase in Li/Nb ratio results in the In2O3 concentration to exceed the 

threshold concentration, with only a small portion of In ions occupying the Li sites, with the 

rest occupying the Nb sites along with Eu and Fe [43]. Another study investigated a Eu3+:Ti4+ 

doped thick film made using the sol-gel method [45]. Ti4+ was added as the Eu3+ doped LN 

film alone could not be used in wave guide devices as its refractive indices were too low [45].  

Another dopant commonly used with LiNbO3 is Ce3+/Ce4+[47–53]. In one study, Ce3+ 

had been added to improve the holographic storage properties of LiNbO3, properties such 

as response time and stability of the holograms [48]. A triply doped system consisting of 

Zn2+:Ce3+:Cu2+:LiNbO3 was investigated and it was found that the light-induced scattering 

ability was improved and the recording time shortened, when compared to just the doubly 

doped system, Ce3+:Cu2+:LiNbO3 
[48]. Another study investigate a double doped system of 

Hf4+:Ce4+:LiNbO3 [50]. This study found that the photorefractive properties of 

Hf4+:Ce4+:LiNbO3 were enhanced compared to those of Ce4+:LiNbO3 [50].  

In3+ was also doped [54–58]. It is an important optical damage resistant dopant that 

“improves the photoconductivity of the crystal and hence the photorefractive sensitivity” 
[43]. Doping In into LiNbO3 can lead to the photo-damage resistance of the material being 

two orders of magnitude higher than that of undoped LiNbO3 [54], with photo-damage 

resistance being important . One study doped In with Mn2+ and Fe3+, as Mn:Fe:LiNbO3 had a 

long recording time and the ratio of signal to noise was low, with the addition of In 

decreasing the recording time and increasing the signal to noise ratio [56]. Another study 

investigated the properties of In3+:Nd3+:LiNbO3 [57]. It found that the In(4.0 mol%):Nd:LiNbO3 

had a much higher optical damage resistance than In(2.0 mol%):Nd:LiNbO3 and Nd:LiNbO3 
[57].   

Zn2+ has been used as a common dopant in LiNbO3 [59–66]. One study doped it into 

LiNbO3 with Ru4+ and Fe3+ as to increase the materials optical damage resistance [59]. The 
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study showed that enhanced non-volatile storage properties were obtained in the crystal 

using the dual-wavelength, with the blue light being used as the recording light, as opposed 

to the two-colour method, with the two-colour method being a process in which the “red 

and blue lasers were used as recording and sensitizing light, respectively”. [59]. Another 

study investigated the properties of Zn:Yb:Er:LiNbO3 with various concentrations of Zn [60]. 

The Zn2+, Yb3+ and Er3+ were suggested to be doped preferentially at the antisite Nb defects, 

with Zn2+ forcing Yb3+ and Er3+ to replace Nb4+ sites when Zn2+ concentration exceeds the 

threshold value of under 6.0 mol% [60]. It also found that the crystal doped with 6.0 mol% 

Zn2+ had the highest optical damage resistance with it being “two orders magnitude higher 

than that of other crystals” investigated [60]. Zn2+ being doped into Fe3+:LiNbO3 has also been 

investigated, as Fe3+:LiNbO3 is regarded as “one of the most important crystals” for use in 

holographic storage media, however its response time is too long and the ability for photo 

damage resistance is too low [61]. The addition of Zn2+ decreases the response time and the 

photo damage resistance is, again, two orders magnitude higher than that of Fe3+:LiNbO3, 

therefore the double-doped Zn2+:Fe3+:LiNbO3 crystal shows itself to be a “very promising 

holographic storage material” [61]. Zn2+ was also found to replace antisite Nb in another 

study, with Zn4+ replacing both Nb4+ and Li+ when the concentration of Zn exceeds its 

threshold value, quoted as 7.0 mol% in this paper, in Zn2+:Er3+:LiNbO3, with the Zn(7.0 

mol%):Fe3+:LiNbO3 having the highest optical damage resistance [62]. A study investigating 

Zn2+:Mn2+:Fe3+:LiNbO3 also found the threshold for Zn2+ was less than 7.0 mol% and found 

that Zn(7.0 mol%):Mn:Fe:LiNbO3 had optical damage resistance about three magnitudes 

higher than that of Mn:Fe:LiNbO3 [65]. Zn2+:Nd3+:LiNbO3 has also been investigated [66]. Again, 

it found that Zn(7.0 mol%):Nd:LiNbO3 had the highest optical damage resistance [66].  

 This chapter will now describe the results of the different structures investigated, 

stoichiometric and congruent. The first simulation was a Mott-Littleton calculation, followed 

by a stoichiometric supercell and then a congruent supercell. The congruent material could 

only be modelled in a supercell bigger than the one used for the stoichiometric material. 

This is because more sites were needed to get the correct ratio of Li to Nb, as well as 

inputting the intrinsic defects required, i.e. a NbLi antisite as well as Li vacancies. As 

mentioned before, there will be focus on the Zn dopant concentration calculations 

specifically, as this result can be compared to those discussed previously in Bridges et al. 

(2012) [7]. 

 

 

 

 

 



~ 22 ~ 
 

3.2 Mott-Littleton Calculations 

 

The interatomic potentials used in these calculations are shown below in Table 1. 

GULP was used to run a perfect cell to see if coordinates changed. Vacancies and 

Interstitials were then calculated, these are shown in Table 2, with the interstitial 

coordinates used taken from Araujo et al. (2007)[3]. Also in Table 2 are the vacancy and 

interstitials calculated by Araujo et al. (2007)[3] for comparison purposes. As shown, the 

results obtained in this study are very similar to that given in Araujo et al. (2007)[3]. 

 

 

 

 

 

 

 

 

 

 

Dopants were then introduced to the system at either the Li or Nb site, with the 

potentials describing the interaction of each dopant with O2- shown in Tables 3-4. The 

energy for each of the defects was recorded and shown in Tables 5-6.  

 

 

 

 

 

 

 

 

Table 2 – Initial data from Mott-Littleton calculations showing the formation energies of basic defects 

compared to values from Araujo et al. (2007)[3] 

 

Atom Vacancy (eV) Araujo et al. (2007)[3] Interstitial 
(eV) 

Araujo et al. (2007)[3] 

Li 9.69 9.81 -7.76 -7.08 

Nb 123.93 127.56 -106.60 -104.12 

O 20.38 18.98 -12.88 -9.47 

 

 A (eV) Ρ (Å) C (eV Å6) 

Li -O 950.00 0.261 0.0 
Nb - O 1425.00 0.365 0.0 
O - O 22764.00 0.149 27.88 

 

Table 1 – Potentials used in the calculations 

M A (eV) Ρ (Å) C (eV Å6) 

Zn 515.70 0.3581 0.0 
Mg 1310.98 0.2997 0.0 
Mn 722.30 0.3464 0.0 
Fe 722.20 0.3399 0.0 
Co 784.42 0.3301 0.0 
Ni 2694.98 0.2670 2.198 
Sr 2309.30 0.3220 0.0 
Cd 876.60 0.3500 0.0 
Ba 1819.70 0.3549 0.0 
Pb 998.94 0.3549 0.0 

 

Table 3 – M2+ - O2- potentials used in the calculations 
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M A (eV) Ρ (Å) C (eV Å6) 

Ce 2803.18 0.3289 27.55 
Pr 2091.95 0.3399 20.34 
Nd 1989.20 0.3430 22.59 
Sm 1950.65 0.3414 21.49 
Eu 1924.71 0.3403 20.59 
Gd 1881.95 0.3399 20.34 
Tb 1664.28 0.3457 20.34 
Dy 1782.15 0.3399 20.34 
Ho 1744.25 0.3399 20.34 
Er 1707.41 0.3389 17.55 

Tm 1635.85 0.3399 20.34 
Yb 1638.25 0.3386 16.57 
Lu 1630.35 0.3385 19.27 

 

Table 4 – M3+ - O2- potentials used in the calculations 

MO Lattice Energy (eV) 

Zn -39.29 
Mg -41.04 
Mn -38.32 
Fe -39.21 
Co -40.00 
Ni -42.16 
Sr -34.50 
Cd -36.53 
Ba -31.92 
Pb -40.35 

 

Table 5 – Lattice energies for the divalent dopant oxides 

M2O3 Lattice Energy (eV) 

Ce -129.32 
Pr -130.04 
Nd -128.89 
Sm -131.79 
Eu -132.59 
Gd -133.32 
Tb -133.53 
Dy -134.38 
Ho -135.23 
Er -136.01 

Tm -136.91 
Yb -137.16 
Lu -137.62 

 
Table 6 – Lattice energies for the trivalent dopant oxides 
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2+       

Dopant Scheme 3 (eV) Ref Scheme 3 (eV) % Scheme 4 (eV) Ref Scheme 4 (eV) % 
Zn 11.54 10.35 11.50 15.41 14.34 6.94 
Mg 11.55 10.51 9.90 15.42 14.50 5.97 
Mn 11.61 10.22 13.60 15.48 14.21 8.20 
Fe 11.55 10.30 12.14 15.42 14.29 7.33 
Co 11.54 10.38 11.18 15.41 14.37 6.75 
Ni 11.57 10.61 9.05 15.44 14.60 5.44 
Sr 12.83 10.78 19.02 16.70 14.77 11.56 
Cd 12.28 10.25 19.80 16.15 14.24 11.83 
Ba 14.42 13.28 8.58 18.29 17.27 5.58 
Pb 10.71 9.73 10.07 14.58 13.72 5.90 

 

Table 7.2 – Solution energies for divalent dopants for schemes 3,4 with values from Araujo et al. 

(2007)[3] for comparison. 

 

The dopant energy was then used to calculate solution energies for each of the 

possible dopant schemes. The solution energies for each scheme and dopant are shown in 

Tables 7.1, 7.2, 8.1 and 8.2. These solution energies are again similar to that of Araujo et al. 

(2007)[3]. The results here seem to confirm that the preferred scheme for doping is Scheme 

2 for both divalent and trivalent dopants, suggesting that there is doping at both the Li site 

and Nb site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2+       

Dopant Scheme 1 (eV) Ref Scheme 1 (eV) % Scheme 2 (eV) Ref Scheme 2 
(eV) 

% 

Zn 2.28 2.41 -5.39 1.69 1.40 20.89 
Mg 2.38 2.33 2.15 1.77 1.38 28.26 
Mn 2.36 2.53 -6.72 1.77 1.46 21.23 
Fe 2.30 2.43 -5.35 1.71 1.41 21.28 
Co 2.20 2.36 -6.78 1.63 1.37 19.16 
Ni 2.51 2.31 8.66 1.87 1.39 34.71 
Sr 3.82 4.01 -4.74 3.17 2.71 16.97 
Cd 2.72 2.96 -8.11 2.21 1.79 23.32 
Ba 6.29 5.64 11.52 5.42 4.56 18.86 
Pb 1.52 1.50 1.33 0.91 0.57 60.53 

 
Table 7.1 – Solution energies for divalent dopants for schemes 1,2 with values from 

Araujo et al. (2007)[3] for comparison. 
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3+       

Dopant Scheme 1 (eV) Ref Scheme 1 (eV) % Scheme 
2 (eV) 

Ref Scheme 2 (eV) % 

Ce 5.83 6.25 -6.72 3.10 2.31 33.98 
Pr 5.75 6.29 -8.59 2.97 2.28 30.26 
Nd 5.29 6.36 -16.90 2.49 2.33 6.65 
Sm 5.98 5.86 1.96 3.21 2.19 46.35 
Eu 5.88 6.48 -9.34 3.12 2.47 26.32 
Gd 5.79 6.40 -9.53 3.05 2.41 26.56 
Tb 5.82 6.43 -9.56 3.05 2.42 25.83 
Dy 5.51 6.14 -10.26 2.78 2.17 28.11 
Ho 5.61 6.26 -10.30 2.89 2.28 26.75 
Er 5.55 6.19 -10.26 2.83 2.23 26.91 

Tm 5.51 6.13 -10.20 2.79 2.19 27.17 
Yb 5.49 6.11 -10.15 2.78 2.18 27.29 
Lu 5.46 5.96 -8.39 2.75 2.04 34.56 

 
Table 8.1 – Solution energies for trivalent dopants for schemes 1,2 with values from Araujo et al. 

(2007)[3] for comparison. 

 
 

3+       

Dopant Scheme 3 (eV) Ref Scheme 3 (eV) % Scheme 4 (eV) Ref Scheme 4 (eV) % 
Ce 8.10 6.35 27.56 15.84 14.33 10.54 
Pr 7.93 6.25 26.88 15.67 14.23 10.12 
Nd 7.43 6.29 18.04 15.17 14.27 6.27 
Sm 8.18 6.52 25.38 15.92 14.50 9.76 
Eu 8.11 6.46 25.46 15.85 14.44 9.73 
Gd 8.05 6.40 25.78 15.79 14.38 9.81 
Tb 8.02 6.39 25.43 15.76 14.37 9.64 
Dy 7.79 6.17 26.26 15.53 14.15 9.75 
Ho 7.91 6.29 25.68 15.65 14.27 9.64 
Er 7.85 6.26 25.32 15.59 14.24 9.45 

Tm 7.80 6.22 25.48 15.55 14.21 9.39 
Yb 7.80 6.22 25.40 15.54 14.20 9.44 
Lu 7.77 6.10 27.38 15.51 14.08 10.16 

 
Table 8.2 – Solution energies for trivalent dopants for schemes 3,4 with values from Araujo et al. (2007)[3] for 

comparison. 
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Graphs 1 and 2 show the solution energy of each dopant scheme plotted against the 

dopant equivalent ionic radii. The order of preference for the schemes stays the same 

throughout the different dopants, 2, 1, 3 and finally 4, which agrees with Araujo et al. 

(2007)[3]. Table 9 shows the atomic radii of the dopants taken from Shannon (1976)[67]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 – The different dopants and their ionic radii (Shannon 

[1976][67]) 

2+   3+   

Dopant Ionic Radii (ρm) Dopant Ionic Radii (ρm) 

Zn 0.74 Ce 1.01 

Mg 0.72 Pr 0.99 

Mn 0.67 Nd 0.98 

Fe 0.61 Sm 0.96 

Co 0.65 Eu 0.95 

Ni 0.69 Gd 0.94 

Sr 1.18 Tb 0.92 

Cd 0.95 Dy 0.91 

Ba 1.35 Ho 0.90 

Pb 1.19 Er 0.89 

  Tm 0.88 

  Yb 0.87 

  Lu 0.86 

 

Graph 1 – Solution energy vs ionic radii for divalent dopants  
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Atom Average Vacancy (eV) MT-LTN Diff % 

Li 9.48 9.69 -2.17 
Nb 121.51 123.93 -1.95 
O 19.59 20.38 -3.88 

 

Table 10 – The initial results from the stoichiometric supercell 

compared to the Mott-Littleton (MT-LTN) values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Stoichiometric Lithium Niobate 

 The first step was to calculate the minimum energy structure of the supercell. The 

lattice energy of this perfect cell was -8,478.53 eV.  This energy was then noted, as it will be 

used in calculations later on.  Multiple vacancy formation energies were then obtained for 

each ion. Tables 10-11 showing the values compared to those obtained previously with the 

Mott-Littleton approach and those obtained by Araujo et al. (2007)[3]. As shown in the 

tables, the values obtained are similar these previous results.  

 

 

 

 

 

 

Graph 2 – Solution energy vs ionic radii for trivalent dopants  
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Atom Average Vacancy (eV) Araujo et al. 
(2007)[3] 

Diff % 

Li 9.48 9.81 -3.36 
Nb 121.51 127.56 -4.74 
O 19.59 18.98 3.21 

 

Table 11 – The initial results from the stoichiometric supercell compared to 

Araujo et al. (2007)[3] 

 The values are similar to those of Araujo et al. (2007)[3] and the values from the 

Mott-Littleton approach, shown in Table 10.  

 

 

 

 

Defect calculations were then run using four different dopants, Zn, Ce, In and Eu, by 

implementing the different schemes mentioned before from Araujo et al. (2007)[3]. First the 

positions of the defects associated with that particular scheme are positioned to achieve the 

lowest possible solution energy. This lowest configuration was then used as a basis to start 

concentration calculations. The ranges for the initial configuration files for each scheme are 

shown below. Table 12 shows the ranges for each of the dopants schemes, with Graphs 3-6 

showing the solution energy against concentration %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M Scheme Min. Sol. Energy (eV) Max. Sol. Energy (eV) 

Zn 1 
2 
3 
4 

1.88 
1.06 
3.02 
5.37 

2.14 
1.54 
7.23 

10.43 

Ce 1 
2 
3 
4 

4.76 
1.90 
3.76 
6.68 

5.22 
2.63 
4.98 
9.98 

In 1 
2 
3 
4 

4.40 
1.69 
3.49 
6.80 

4.80 
2.24 
4.66 
9.78 

Eu 1 
2 
3 
4 

4.90 
2.08 
3.88 
7.01 

5.32 
2.73 
5.07 

10.33 

 

Table 12 – The solution energy range from the different 

variations of defects in each dopant scheme in the 

stoichiometric supercell 
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 Graph 4 – The solution energies vs concentration for the concentration calculations from each Ce 

scheme  
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Graph 3 – The solution energies vs concentration for the concentration calculations from each Zn 

scheme  
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Graph 5 – The solution energies vs concentration for the concentration calculations from each In 

scheme  
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Graph 6 – The solution energies vs concentration for the concentration calculations from each 

Eu scheme  
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All the schemes match the findings from Araujo et al. (2007)[3], with Scheme 2 having 

the lowest solution energy across all dopants and concentrations, which was predicted as 

the Mott-Littleton data showed the same results. Scheme 3 has the next lowest solution 

energy, followed by 1 and finally 4, across all dopants. 100 % dopant concentration only has 

low solution energies in Zn Scheme 1, Ce Scheme 2 and Ce scheme 3. The other schemes 

with 100 % concentration of a dopant, Schemes 3 for In and Eu, have a high solution energy, 

3.63 eV and 4.26 eV respectively, compared to the values mentioned previously for 100 % 

dopant concentration.  

Graphs 7-10 below show the trivalent dopant schemes all together. As predicted by 

Araujo et al. (2007)[3]  the lowest solution energy scheme is Scheme 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 7 – The solution energies vs concentration from each scheme 1 for the trivalent 

dopants  
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Graph 8 – The solution energies vs concentration from each scheme 2 for the trivalent dopants  

Graph 9 – The solution energies vs concentration from each scheme 3 for the trivalent dopants  
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In Graph 7, Scheme 1’s order stays relatively the same. Ce starts off in between In 

and Eu with a solution energy value of 4.76 eV. Ce’s value then becomes lower than that of 

In and Eu at every other concentration. In, however, starts off with the lowest solution 

energy of the three dopants and becomes the highest by around concentration 16.67% and 

stays that way till the maximum possible concentration of 33.33%. Eu starts off having the 

highest solution energy at the first concentration value and drops to in-between In and Ce 

at the maximum concentration of 33.33%.  

 Graph 8 shows Scheme 2 is generally similar to the order in the other schemes, with 

Ce generally having the lowest solution energy. Ce does, however, again not have the 

lowest solution energy at the first concentration value.  

Scheme 3, shown in Graph 9, is a scheme that is of interest. In and Eu both have high 

solution for 100% concentration whereas Ce has a low solution energy of 0.90. The 100 % 

values for In and Eu are both higher than the previous concentration values before them 

suggesting these are maybe anomalies. 

 Finally, Graph 10 shows Scheme 4, which is again the lowest of the others and of 

relatively little interest. The values for Ce and Eu at 16.67 % seem to differ to the pattern 

predicted by the other values, as they are much higher, 7.38 and 7.41 respectively.  

 

Graph 10 – The solution energies vs concentration from each scheme 4 for the trivalent dopants  
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3.4 Congruent Lithium Niobate 

Initial Data 

 Firstly, multiple files were created with the ‘cLN’ intrinsic defects, the NbLi antisite 

and five Li vacancies, in various positions and ran through GULP to see the effect the defects 

have on the energy of the supercell. The range did not vary greatly, -28,679.42 eV to -

28,680.06 eV. The perfect cell energy of the supercell before the congruent defects were 

added was -28,615.04 eV 

The cell, which provided the lowest energy, was then used, -28679.42 eV. This was 

then treated as the perfect cell for the following defect calculations. This value was chosen 

as there was not much difference between the different cells and also because the highest 

value might obtain a lower solution energy. Multiple vacancies at different sites were 

calculated for each Li, Nb and O by removing one to 18 atoms. Table 13 below shows the 

average vacancy for each atom calculated from removing various amounts of each atom 

from the supercell.  

 

Image 1 – Cropped image showing the location of the cLN defects, the location of the Li vacancies 

are shown in white and the Nb at a Li site is shown in yellow. O atoms are shown in red, Li atoms 

in blue and Nb atoms are in green. 
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Atom Average Vacancy 
formation energy (eV) 

Araujo et al. (2007)[3] Diff % 

Li 9.48 9.81 -3.36 
Nb 121.55 127.56 -4.71 
O 20.11 18.98 5.95 

 
Table 13 – The initial results from the congruent supercell compared to Araujo et al. 

(2007)[3] 

Atom Average Vacancy (eV) MT-LTN Diff % 

Li 9.48 9.69 -2.17 
Nb 121.55 123.93 -1.92 
O 20.11 20.38 -1.32 

 

Table 14  – The initial results from the congruent supercell compared to Mott-Littleton 

values 

Atom Average Vacancy (eV) sLN Average Vacancy Diff % 

Li 9.48 9.48 0.00 
Nb 121.55 121.51 0.03 
O 20.11 19.59 2.65 

 
Table 15  – The initial results from the congruent super cell compared to the same values 

from stoichiometric super cell 

 

 

 As shown in the table, the values are similar to that obtained by Araujo et al. 

(2007)[3]. Table 14 shows the average vacancy formation energies compared to those 

obtained using the Mott-Littleton approach.  

The values again are similar, with the vacancy formation energies being lower than 

the Mott-Littleton values. Table 15 shows the vacancy values compared to the previous 

supercell of stoichiometric lithium niobate. 

 These values show that having internal defects already within the supercell structure 

has limited effect on the value of the vacancy formation energies. 

Dopants were then added to the supercell, Zn, Ce, In and Eu, using the schemes 

mentioned previously. Table 16 show the ranges for each dopant. There are some overlaps 

between 3 and 4, however lowest energies are obtained for Scheme 2 throughout.  
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The concentrations of the various defects were then calculated for each of the 

dopants. Graphs 11-14 show each dopant, with solution energy vs concentration %. 

Graph 11 shows all the concentrations of Zn schemes on one plot. Scheme 2 is still 

the preferred scheme for Zn, which is doping at both the Li and Nb sites. It also shows that 

the solution energy for Scheme 3 with around 98 % doped Zn at the Nb site, is higher than 

that of the 65.20 % value from Scheme 2, which is doping at both the Li and Nb site, 1.16 

compared to 0.67. The solution energy for 48.15 % concentration for Scheme 4, 10.89, is an 

outlier, as the file could not be optimised. Scheme 3 looks to leapfrog scheme 1 as the 

second preferred scheme at around the 50 % concentration. 

 

 

 

 

 

 

 

 

M Scheme Min. Sol. Energy (eV) Max. Sol. Energy (eV) 

Zn 1 
2 
3 
4 

1.87 
0.42 
4.05 
5.85 

2.49 
1.69 
7.55 

11.75 

Ce 1 
2 
3 
4 

5.12 
1.83 
4.16 
7.85 

5.55 
3.26 
5.60 

11.23 

In 1 
2 
3 
4 

4.50 
1.27 
3.75 
7.48 

5.02 
2.86 
5.27 

10.86 

Eu 1 
2 
3 
4 

5.22 
1.89 
4.24 
7.84 

5.64 
3.32 
5.67 

11.32 

 

Table 16 – The solution energy range from the different variations of defects in each 

dopant scheme in the congruent super cell 
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The concentrations for Ce doping are shown in Graph 12. The order is as predicted 

with Scheme 2 having the lowest solution energy throughout the concentrations. However, 

there is some cross over between Scheme 1 and 3 around the 17% concentration value. 

Scheme 1 goes from third preference to second preference, as has lower solution energy 

than scheme 3 from 17.28-32.10 % concentration.  Scheme 2 has again a low solution 

energy value of 1.83 for 0.62%, much lower than the other values. 

 

 

 

 

 

 

 

 

Graph 11 – The solution energies vs concentration for the concentration calculations from each Zn 

scheme in the congruent super cell  
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The concentrations for in doping are shown in Graph 13. The order is as predicted, 

with Scheme 2 having the lowest solution energy, and there is no crossing over of any of the 

schemes. Again, Scheme 2 has a low concentration value at 0.62%, similar to that of Ce and 

Zn, before, again, increasing as the concentration values of In increase.  

 

 

 

 

 

 

 

Graph 12 – The solution energies vs concentration for the concentration calculations from each Ce 

scheme in the congruent super cell  
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 Graph 14 shows the concentration values for Eu doping. Once again, the preference for 

Scheme 2 remains the same as concentration increases, with it also having a low solution energy at 

0.62%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 13 – The solution energies vs concentration for the concentration calculations from each In 

scheme in the congruent super cell  
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Graph 14 – The solution energies vs concentration for the concentration calculations from each 

Eu scheme in the congruent super cell  
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Graphs 15-18 overlap the different schemes of the trivalent dopants. Generally, the 

dopant with the lowest solution energy seems to be Ce, followed by Eu and then In. 

However, in every Scheme, In starts off having the lowest solution energy and gradually, by 

the last concentration value, has the highest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

  

 

  

 

 

 

 

 

Graph 15– The solution energies vs concentration for the concentration calculations from each Scheme 1 

of the three trivalent dopants, In, Ce and Eu 
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Graph 16– The solution energies vs concentration for the concentration calculations from each Scheme 2 of 

the three trivalent dopants, In, Ce and Eu 
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Graph 18– The solution energies vs concentration for the concentration calculations from each 

Scheme 4 of the three trivalent dopants, In, Ce and Eu 

Graph 17– The solution energies vs concentration for the concentration calculations from each 

Scheme 3 of the three trivalent dopants, In, Ce and Eu 
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 Scheme 2, shown in Graph 16, has the lowest solution energy across all the 

concentrations, with Ce having the lowest solution energy of the trivalent dopants, followed 

by Eu and finally In. This again confirms the findings in Araujo et al. (2007)[3], that doping 

does indeed occur at the Nb site as well as the Li site. The pattern of having a low solution 

energy at 0.62% then rising is apparent when looking at Graph 16.  

 Overall, the dopants behaved as expected, with Scheme 2 remaining the preferred 

doping scheme, meaning that there is doping at the Nb site as well as the Li site.  The 

comparison chapter later on will compare the results here to stoichiometric LN and see if 

there are any differences in the schemes.  

3.5 sLN vs cLN 

Zn Schemes 

 The following section contains graphs comparing the solution energies of the 

concentration of dopants both in cLN and sLN, both using a supercell containing 162 Li sites 

and 162 Nb sites. The Zn schemes are shown below in Graphs 19-22. Scheme 2 has the 

lowest solution energy across all concentrations in both the stoichiometric and congruent 

phases. The congruent phase starts off with a significantly lower solution energy compared 

to the stoichiometric phase. In Scheme 2, at 1.23% Zn concentration, the solution energy for 

cLN is 0.43 whereas the solution energy at in stoichiometric Zn with the same concentration 

is 1.32. This could indicate that the presence of the defects already present in the perfect 

cell of cLN makes it easier to dope. This difference in the initial solution energy only occurs 

in schemes 1 and 2 and at low concentrations, at 0.62% Zn in Scheme 1 and 1.23% in 

Scheme 2. After these values, the solution energies are the same through to max 

concentration, around 50% in Scheme 1 and 65% in Scheme 2. Schemes 1 and 2 both have 

doping at the Li site, which is where the congruent defects are located, which could be a 

reason for the difference. 
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Graph 20 – The solution energies for scheme 2 Zn concentrations from cLN and sLN 
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Graph 19 – The solution energies for scheme 1 Zn concentrations from cLN and sLN 
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Graph 21 – The solution energies for scheme 3 Zn concentrations from cLN and sLN 
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Graph 22 – The solution energies vs concentration for the concentration calculations from each Zn 

scheme in the congruent super cell  
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Image 3 – cLN Scheme 4 Zn 48.15% concentration. Li = 

Yellow, Nb = Green and Zn = Purple, O atoms have been 

removed. 

Image 2 – sLN Scheme 4 Zn 48.15% concentration. Li = 

Yellow, Nb = Green and Zn = Purple, O atoms have been 

removed. 
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 All the other cLN and sLN schemes for Zn doping mostly match each other. There are 

some concentrations that could only be done in sLN, as more sites were available after the 

removal of the intrinsic cLN defects. 

Ce Schemes 

Below are the schemes for Ce doping in cLN and sLN, Graphs 23-26. Again, agreeing 

with Araujo et al. (2007)[3], Scheme 2 has the lowest solution energy across all the 

concentrations with the first solution energy value for cLN in Scheme 2 being lower than 

that of sLN, 1.83 compared to 2.73 at 0.62% concentration. The solution energy for cLN at 

1.23%, however, is not that much lower than the sLN value, different from Scheme 1 for Zn 

doping where there was a difference in the solution energies initially. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 23 – The solution energies vs concentration for the concentration calculations from scheme 1 

in the doping of Ce in the congruent super cell and stoichiometric super cell 
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Graph 24– The solution energies vs concentration for the concentration calculations from scheme 

2 in the doping of Ce in the congruent super cell and stoichiometric super cell 
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Graph 25 – The solution energies vs concentration for the concentration calculations from scheme 

3 in the doping of Ce in the congruent super cell and stoichiometric super cell 
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 The solution energies in the rest of the schemes appear to match each across all the 

concentrations, apart from the odd anomaly, such as 9.53 at 20.99% in Scheme 3, Graph 25. 

 

In Schemes 

The In doping schemes are shown in Graphs 27-30. Scheme 2 has the lowest solution 

energy across all concentrations. Scheme 2 follows the same pattern as Ce, where the 

solution energy in Scheme 2 for cLN initially starts below that of sLN and rises to match it 

from about 1.85% onwards. Scheme 1 also shows a gap between cLN and sLN solution 

energy values at early concentrations, 4.50 for cLN compared to 4.82 for sLN at 1.23% 

concentration. However, unlike in previous Scheme 1’s the values for cLN stay slightly below 

throughout the concentrations rather than match those for cLN. Schemes 3 and 4 cLN and 

sLN results are similar to each other, showing that the intrinsic defects in cLN have little to 

no effect. They both have high solution energies across all concentrations and are too high 

to affect the order of doping preference.  

 

 

Graph 26 – The solution energies vs concentration for the concentration calculations from 

scheme 4 in the doping of Ce in the congruent super cell and stoichiometric super cell 
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Graph 27 – The solution energies vs concentration for the concentration calculations from scheme 

1 in the doping of In in the congruent super cell and stoichiometric super cell 
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Graph 28 – The solution energies vs concentration for the concentration calculations from scheme 

2 in the doping of In in the congruent super cell and stoichiometric super cell 
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Graph 29 – The solution energies vs concentration for the concentration calculations from scheme 

3 in the doping of In in the congruent super cell and stoichiometric super cell 
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Graph 30 – The solution energies vs concentration for the concentration calculations from scheme 

4 in the doping of In in the congruent super cell and stoichiometric super cell 
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Eu Doping 

Eu doping schemes are shown in Graphs 31-34. Again, like with the other trivalent 

dopants and Zn, Scheme 2 has the lowest solution energies across all the concentrations for 

both cLN and sLN. Similarly in Scheme 2, cLN has a lower solution energy at its initial value, 

0.62% concentration, than that of sLN and rises to match it between 3-13%, where cLN then 

has a slightly lower solution energy for the rest of the concentrations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 31 - The solution energies vs concentration for the concentration calculations from scheme 

1 in the doping of Eu the congruent super cell and stoichiometric super cell 
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Graph 32 – The solution energies vs concentration for the concentration calculations from scheme 

2 in the doping of Eu the congruent super cell and stoichiometric super cell 
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Graph 33 – The solution energies vs concentration for the concentration calculations from scheme 3 

in the doping of Eu the congruent super cell and stoichiometric super cell 
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3.6 Summary 

The Zn results shown in the Mott-Littleton calculations and the supercells support the 

findings in Araujo et al. (2007)[3]. Scheme 2, which was doping at both the Li and Nb site, had the 

lowest solution energy of all the schemes. This was even the case when the concentrations of the 

different dopants were altered and their solution energies calculated across each concentration. This 

suggested preference goes against the preference suggested in Bridges et al. (2016)[6]. In this paper, 

Bridges et al. (2016)[6] suggests there is minimum doping, around 2-3%, at the Nb site and that most 

of the doping occurs at the Li site. This is supported in the paper by EXAFS results garnered from Zn 

doping of LiNbO3. However, Valerio et al. (2016) [5] suggests that through EXAFS simulations that 

there could indeed be doping at the Nb site. The paper uses data from defect calculations to 

simulate the EXAFS data and compares them with the results from Bridges et al.(2016) [6].  

 The results from the doping of the trivalent dopants also support Araujo et al. (2008)[1] as 

the Scheme preference matches the order suggested in the paper. Scheme 2 had the lowest solution 

energy for all three dopants and also remained so when concentration was investigated.  Scheme 2 

was followed by 3, 1 and finally 4. This was different than the preferred scheme of the divalent 

dopants as shown in Araujo et al. (2007)[3], where the preference was for scheme 2 followed 

schemes 1, 3 and 4. 

Graph 34 – The solution energies vs concentration for the concentration calculations from 

scheme 4 in the doping of Eu the congruent super cell and stoichiometric super cell 
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Chapter 4 – LiNbO3: Paraelectric Phase 

 

4.1 Background 

  The paraelectric phase of lithium niobate is discussed here. The structure of LiNbO3 

differs in the paraelectric phase compared to the ferroelectric. In the ferroelectric phase, 

the “Li ions are displaced from the centres” of the triangles formed by O ions and the Nb 

ions [68]. The Nb ions are also “displaced from the centres of the octahedra” [68]. In the 

paraelectric phase, however, the Li ions are located at the centre of the triangles, with the 

Nb ions being located at the centres of the octahedra [68].  

 

 

 

 The Curie temperature, Tc, is the temperature at which the ferroelectric phase 

transitions into the paraelectric phase [68]. Point defects effect the value of Tc, with the 

concentration of the defects being “primarily determined by the extent of doping or by the 

Li/Nb ratio”, particularly the quantity of NbLi [68]. Divalent and trivalent dopants were found 

to increase the value of Tc, but tetravalent dopants decreased Tc [68]. Divalent and trivalent 

dopants increase the amount of NbLi, which is the reason for the increase in the value of Tc 
[30].  

 The phase transition from ferroelectric to paraelectric was modelled by Sanna and 

Schmidt (2012) [69]. This investigation used molecular dynamics (MD) simulations “to model 

the transition” and “understand the mechanisms of the transitions itself” [69]. VASP was used 

to implement the all-electron projector-augmented wave (PAW) method, with a Monkhorst-

Pack (MP) 6x6x6 mesh used to “carry out the integration in the Brillouin zone for the 

simulation of the crystal structure” [69]. A supercell, consisting of a 2x2x2 repetition of the 

unit cell and 2x2x2 MP k-point mesh, was also used to perform the molecular dynamics 

calculations [69]. The results of Sana and Schmidt (2012) [69] suggested that the “paraelectric 

Image 4 – Left is the Mott-Littleton structure and on the right is the paraelectric 

structure. Li = Blue, Nb = Green and O = Red 
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phase must be thought of as a random distribution of Li ions above and below the oxygen 

planes (with a nonzero value of ΔLi for most Li ions) and with an average zero net 

polarization, rather than in the commonly accepted configuration” [69]. 

 Jackson and Valerio (2005) [4] developed a new interatomic potential for the 

ferroelectric and paraelectric phases of LiNbO3 [4]. The new potential was created as new 

data had become available since the original potential was published, so a new potential 

was required that reproduced the findings from the data, with the main motivation behind 

creating this new potential being “able to model the full range of intrinsic and extrinsic 

defects that control most of the important properties of this material” [4].   

 The results gathered from the Mott-Littleton calculations of the paraelectric phase of 

LiNbO3 will now be discussed in this chapter. The results will be compared to the previous 

Mott-Littleton calculations done on stoichiometric LiNbO3, to analyse any changes in the 

preference of the doping schemes and if any changes occur to the solution energies of the 

dopants themselves.  

 

4.2 Results 

 The first results gathered were the intrinsic defects, consisting of vacancies and 

interstitials; Table 17 below shows these results compared to those gathered from the sLN 

Mott-Littleton calculations. 

 

 

 

 

 

 The results are extremely similar to the other Mott-Littleton results. This suggests 

the paraelectric phase has no effect on the energy of the basic defects.  

 Multiple dopant calculations were then done using the same divalent and trivalent 

dopants as used in the previous Mott-Littleton structure. Tables 18 and 19 below show the 

results from the paraelectric phase and the results from the stoichiometric form of LiNbO3. 

 

 

 

Defect Paraelectric Energy (eV) sLN Energy (eV) 

Li Vacancy 9.68 9.69 

Nb Vacancy 123.87 123.93 

O Vacancy 20.38 20.38 

Li Interstitial -7.72 -7.73 

Nb Interstitial -105.40 -106.60 

O interstitial -11.98 -12.88 

 

Table 17 – Paraelectric and stoichiometric energies (eV) for the basic defects 
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 Paraelectric Stoichiometric 

M Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Zn 2.27 1.70 8.44 11.26 2.52 1.73 11.49 15.53 

Mg 2.36 1.77 8.45 11.27 2.62 1.81 11.50 15.54 

Mn 2.35 1.77 8.48 11.30 2.60 1.81 11.56 15.60 

Fe 2.29 1.71 8.44 11.26 2.54 1.75 11.50 15.54 

Co 2.28 1.70 8.43 11.25 2.44 1.67 11.49 15.53 

Ni 2.49 1.86 8.46 11.28 2.75 1.91 11.52 15.56 

Sr 3.80 3.16 9.72 12.54 4.06 3.21 12.78 16.82 

Cd 2.70 2.09 8.74 11.56 2.96 2.25 12.23 16.27 

Ba 6.28 5.42 11.31 14.13 6.53 5.46 14.37 18.41 

Pb 1.53 0.93 7.60 10.42 1.76 0.95 10.66 14.70 

Zn 2.27 1.70 8.44 11.26 2.52 1.73 11.49 15.53 

Mg 2.36 1.77 8.45 11.27 2.62 1.81 11.50 15.54 

Mn 2.35 1.77 8.48 11.30 2.60 1.81 11.56 15.60 

 

Table 18 – Paraelectric and stoichiometric solution energies (eV) for the divalent dopants 

 

 Paraelectric Stoichiometric 

M Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Ce 5.81 3.10 6.03 11.67 6.19 3.05 8.00 16.08 

Pr 5.73 2.97 5.86 11.50 6.11 2.93 7.83 15.91 

Nd 5.26 2.48 5.35 11.00 5.64 2.44 7.32 15.41 

Sm 5.96 3.21 6.10 11.75 6.33 3.16 8.07 16.16 

Eu 5.86 3.12 6.03 11.68 6.24 3.08 8.00 16.09 

Gd 5.77 3.05 5.98 11.62 6.15 3.01 7.95 16.03 

Tb 5.80 3.05 5.94 11.59 6.18 3.00 7.91 16.00 

Dy 5.49 2.78 5.72 11.36 5.87 2.74 7.69 15.77 

Ho 5.60 2.90 5.84 11.49 5.97 2.85 7.80 15.89 

Er 5.53 2.83 5.77 11.42 5.91 2.79 7.74 15.83 

Tm 5.48 2.78 5.73 11.38 5.86 2.74 7.70 15.79 

Yb 5.47 2.78 5.73 11.37 5.85 2.73 7.70 15.78 

Lu 5.43 2.74 5.70 11.34 5.82 2.70 7.67 15.75 

 

Table 19 – Paraelectric and stoichiometric solution energies (eV) for the trivalent dopants 



~ 57 ~ 
 

 Again, these results are similar to one another. The order of preferences for the 

paraelectric phase is again scheme 2, being the most preferred, followed by scheme 1, 3 and 

finally 4.  

 

Divalent 

 Graphs 35-38 below shows the solution energies of the divalent dopant scheme 1 in 

the paraelectric phase compared to that of the stoichiometric form and those gathered 

from Araujo et al (2007) [3], with Table 20 showing the ionic radii of each divalent dopant.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Dopant Ionic Radii 
(ρm) 

Zn 0.74 

Mg 0.72 

Mn 0.67 

Fe 0.61 

Co 0.65 

Ni 0.69 

Sr 1.18 

Cd 0.95 

Ba 1.35 

Pb 1.19 

 
Table 20 – Ionic radii for the divalent dopants from Shannon(1976) [67] 

Graph 35 – Comparison of scheme 1 divalent dopants in the paraelectric phase, the stoichiometric form and values from 

Araujo et al (2007)[3] 
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Graph 36 – Comparison of scheme 2 divalent dopants in the paraelectric phase, the stoichiometric 

form and values from Araujo et al (2007)[3] 
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Graph 37 – Comparison of scheme 3 divalent dopants in the paraelectric phase, the 

stoichiometric form and values from Araujo et al (2007)[3] 
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 The values for the paraelectric appear similar to that of the stoichiometric values. 

However, the only difference is that the paraelectric results appear to have slightly lower 

solution energy across all the dopants. This would be significant if this resulted in the 

solution energy being lower the solution energy of the dopants respective solution energy 

for scheme 2. Solution energy increases with ionic radii, except for Pb where it is lower than 

possibly predicted. 

The paraelectric results are generally lower than the reference data gathered from 

Araujo et al. (2007), apart from in Scheme 1, which has slightly higher solution energies. The 

dopant with the lowest solution energy is Pb in both the reference and paraelectric data.  

 

Trivalent 

 Below in Graphs 39-42, the solution energies for trivalent dopants in the paraelectric 

phase are compared to those of the stoichiometric form and those gathered from Araujo et 

al (2007) [3]. Table 21 shows the ionic radii of the trivalent dopants. 

 

 

Graph 38 – Comparison of scheme 4 divalent dopants in the paraelectric phase, the 

stoichiometric form and values from Araujo et al (2007)[3] 
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Dopant Ionic Radii 
(ρm) 

Ce 1.01 

Pr 0.99 

Nd 0.98 

Sm 0.96 

Eu 0.95 

Gd 0.94 

Tb 0.92 

Dy 0.91 

Ho 0.90 

Er 0.89 

Tm 0.88 

Yb 0.87 

Lu 0.86 

 Table 21 – Ionic radii for the trivalent dopants from Shannon(1976) [67] 

Graph 39 – Comparison of scheme 1 trivalent dopants in the paraelectric phase, stoichiometric 

form and values from Araujo et al (2007)[3] 
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Graph 40 – Comparison of scheme 2 trivalent dopants in the paraelectric phase, stoichiometric 

form and values from Araujo et al (2007)[3] 
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Graph 41 – Comparison of scheme 3 trivalent dopants in the paraelectric phase, stoichiometric 

form and values from Araujo et al (2007)[3] 
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The results again show that across all the dopants, scheme 2 has the lowest solution 

energy of the schemes. The paraelectric results do not differ massively from the 

stoichiometric values in scheme 2. However, in schemes 1, 3 and 4, the values for the 

paraelectric values are noticeably lower. The solution energies for schemes 1 and 3 in the 

paraelectric phase are also closer together than in the stoichiometric form. However, the 

solution energies for scheme 3 never become low enough to change the preference of the 

schemes. Generally, solution energy increases as ionic radii increases, however Dy and Nd 

are both lower than the trend predicts.  

 The paraelectric results are lower than those gathered from Araujo et al. (2007) in 

schemes 1, 3 and 4, however in scheme 2 they are significantly larger than the solution 

energies in Araujo et al. (2007). Sm in both the paraelectric and stoichiometric data sets has 

a higher solution energy than the reference value in scheme 2. In the scheme 1 also, Sm 

from the reference results appears much lower than predicted, as the Sm solution energy in 

scheme 1 from the paraelectric phase and stoichiometric form increases from its previous 

result. Nd also appears to break the pattern, as in the paraelectric and stoichiometric data it 

is lower than the reference value suggests it should be.  

 

Graph 42 – Comparison of scheme 4 trivalent dopants in the paraelectric phase, stoichiometric 

form and values from Araujo et al (2007)[3] 
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Chapter 5 - Conclusions 

 This paper confirms doping is done at the Nb site as well as the Li site, just like is 

shown in previous computational investigations. The investigation of doping in LiNbO3 has 

been done a scale not done before, with two supercell calculations being done as well as a 

paraelectric phase. The aims of this investigation have been met, with the concentration of 

the dopants being shown to have no effect on the scheme preference.  

 For future investigations, further modelling should be done on a bigger supercell, 

focusing on low concentrations, specifically in the range 0-1%. This is because this showed 

the greatest difference between cLN and sLN when the different compared dopant 

concentrations from each Scheme were compared. The inclusion of dopants with a variety 

of more ion sizes could also be researched; to obtain a wider view of the effect ion size has 

on solution energies and site preference. Also, the location of the defects in the congruent 

phase could be analysed using CrystalMaker to ascertain any commonalities in the dopant 

schemes, with some obtaining anomalous results when compared to other results.  
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