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Abstract9

In a recent paper by Borg & Channon [6] it was shown that social10

information alone, decoupled from any within-lifetime learning, can result11

in improved performance on a food foraging task compared to when so-12

cial information is unavailable. Here we assess whether access to social13

information leads to significant behavioral differences both when access to14

social information leads to improved performance on the task, and when it15

does not; do any behaviors resulting from social information use, such as16

movement and increased agent interaction, persist even when the ability to17

discriminate between poisonous and non-poisonous food is no better than18

when social information is unavailable? Using a neuroevolutionary artifi-19

cial life simulation, here we show that social information use can lead to20

the emergence of behaviors that differ from when social information is un-21

available, and that these behaviors act as a promoter of agent interaction.22
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The results presented here suggest that the introduction of social infor-23

mation is sufficient, even when decoupled from within-lifetime learning,24

for the emergence of pro-social behaviors. We believe this work to be the25

first use of an artificial evolutionary system to explore the behavioural26

consequences of social information use in the absence of within-lifetime27

learning.28

Keywords: social information; social behavior; local enhancement;29

agent interaction; behavioral persistence30
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1 Introduction32

The idea that agents may be socially attracted to each other by way of actively33

seeking each other out in order to benefit from the proximity of others, be it34

to avoid predators, breed or cooperatively raise their young, or to discover new35

resources or habitats is a well established one [1, 2]. However, it is difficult to36

establish precisely why and when social information leads to increased social37

interaction and pro-social behavior; social information here being defined as in-38

formation derived from the behaviors, actions, cues or signals of other agents39

[23]. As social information necessarily involves the direct or indirect broad-40

casting of information in to the public domain, it is sometimes known as (or41

conflated with) public information [5]. Here we will use term social information42

when describing any information about an individual which is broadcast in to43

the public domain.44

1.1 General Hypotheses for the emergence of social inter-45

action promoting behavior46

In reviewing social information use, Valone [36] outlines three general hypotheses47

to explain why individuals might prefer to settle near conspecifics (leading to48

what may be described as habitat copying via local enhancement):49

1. Individual fitness is enhanced via the Allee effect [1, 2, 32]; which is defined50

by Stephens et al. [34] as “a positive relationship between any component51

of individual fitness and either numbers or density of conspecifics”. Allee52

observed that individuals were better able to survive and reproduce when53

found in groups, concluding that there is a positive correlation between54

3



population density or group size and individual fitness (known as the Allee55

effect). If this effect holds true we would expect there to be selection pres-56

sure in favor of agents being in close proximity to one another; increased57

use of social information may therefore be as a result of increased social58

interaction due to agent proximity.59

2. Social information based resource discovery results in a reduction in search60

costs, enabling a more efficient use of energy [32, 17]. As social information61

may be used to reduce search costs, and increase the chance of experienc-62

ing new resources which may have been otherwise overlooked, increased63

agent interaction may result from a selective pressure to obtain social in-64

formation rather than increased social information use being a secondary65

consequence of increased agent interaction itself; the Allee effect resulting66

as a consequence of this selective pressure to access social information.67

3. Individuals use the presence of other (established) individuals as an indi-68

cator of the high-quality of a habitat without necessarily requiring them to69

rely on their own (possibly incomplete or poor) evaluation of the habitat70

[35, 39]. Here social information not only reduces the search costs when71

discovering resources, but also enables individuals to derive the quality of72

a unfamiliar resource based on social information about the action, state73

or presence of others. Again, agent interaction and the Allee effect result74

as a consequence of selective pressures in favor of social information use,75

rather than social information use resulting as a consequence of a selec-76

tive pressure in favor of agent interaction. This hypothesis is similar to77

hypothesis 2 (listed above), but differs subtly; hypothesis 2 is associated78

with simply discovering resources, whereas this hypothesis is associated79

with judging the quality of a resource once found. This hypothesis may80

be a direct result of hypothesis 2.81
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1.2 Behavior in the presence of social information82

Here we assess three questions regarding agent behavior in the presence of so-83

cial information. Firstly, we assess whether the well established notion that84

social information leads to behaviors that promote agent interaction is true in85

simple artificial evolutionary systems such as the one used by Borg & Channon86

[6]. Secondly, we assess whether agent private information reliability (or envi-87

ronmental predictability) impacts on agent interaction and social information88

use. Finally, we assess whether any observed social behaviors (i.e. behaviors89

resulting from the use of social information) can be seen to persist even when90

social information use does not lead to an improved task performance - that is91

to say when agents with access to social information no longer perform better92

than agents with no access to social information on a simple food foraging task,93

where performance is measured by the proportion of eating activity dedicated94

to consuming “positive” foods compared to “negative” foods.95

The question of the persistence of what may be described as non-adaptive96

social information use, or social learning, was addressed by Higgs [20] in his97

meme-based simulation study of learning by imitation. One of the many things98

Higgs concluded was that memes (discrete, replicating, units of “culture” [12, 13,99

3, 4]) even when they provided a negative biological fitness, still led to imitation100

evolving. In Higgs’ model individuals had both a biological and a cultural101

fitness. Both of these fitness values were determined by the set of memes held102

by an individual, with reproduction being determined by biological fitness, and103

the chance of being imitated being determined by cultural fitness. In one of104

Higgs’ test cases the biological fitness provided by a meme was the reverse of105

the cultural fitness, resulting in all biologically fit memes being culturally unfit106

and all culturally fit memes being biologically unfit - even in this test case107

imitative learning evolved. This suggests that behavior which increases social108
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interactions may still be adaptive even when task performance is poor.109

Higgs’ [20] result is not necessarily that surprising, as it is more than reason-110

able to expect to see agents with access to social information of any kind seek-111

ing this information out regardless of the contribution this information makes112

to fitness, provided some of the social information could provide an adaptive113

advantage. Bullinaria [10] rationalises this expectation by stating that “If there114

exists a set of memes with a range of positive and negative contributions to the115

overall performance, then not imitating them will leave performance at some116

baseline, while imitating them will result in a range of performance levels above117

and below that baseline. Any selection on the basis of performance will then118

favour those individuals that have imitated the good memes, and hence favour119

higher imitation rates” - therefore we can see why agents may wish to collect120

around sources of information; sometimes that information will be useful, so121

gaining access to it is important. We would therefore expect to see agents at-122

tempting to find sources of information even when obtaining that information123

does not necessarily lead to an improved performance. Agent and social inter-124

action for the purpose of habitat copying is also found to be adaptive in highly125

variable environments [38], though with the potential pitfall of population col-126

lapse during overly conformist social interaction [40, 8]. It has also been noted127

by Rendell et al. [28] that strategies that rely heavily on social learning seem128

to be remarkably successful, even when information obtained from non social129

sources is no more costly than social information. We would therefore expect130

behaviors that maximize access to social information to emerge.131

In the model set-up developed by Borg & Channon [6], which forms the basis132

for this work, there are a large number of possible food resources available to133

agents, resulting in agents often being uncertain about whether any given food134

resource will provide a positive or negative amount of energy. As environments135
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in the Borg & Channon [6] model become more difficult, a strategy whereby all136

food is ignored may evolve, but this strategy would always be outperformed by137

a strategy that sought to minimise uncertainty about available food resources138

in order to discover a positive energy providing resources. Social information,139

especially about the performance or fitness of an agent, may therefore be sought140

in order to allow for decisions on whether to consume any given food resource141

to be influenced by others, thus reducing uncertainty about the safety of a new142

food resource. This kind of social information seeking behavior in order to seek143

out information about new or novel food resources in often seen in Norway rats144

[15, 27], though it is interesting to note that this social behavior is only used145

to develop food preferences and not food aversions; this property of rat social146

behavior has been suggested to be as a result of the high levels of lethality147

associated with poor food choices in rat populations [27], thus resulting in very148

little social information about negative food resources being available to the149

population. We may see a similar scenario in the more difficult environments150

presented here, providing a continued pressure for social behavior under extreme151

environmental difficulty. van Bergen et al. [37] reports that when individually152

learned information is less reliable, nine-spined stickleback fish tend to use social153

rather than individually learned information, this could also be re-phrased as154

social learning is more likely to take place when a task is difficult to individually155

learn. Therefore, it is not unreasonable here to expect agents in populations who156

have access to social information to seek this information out in order to reduce157

the unreliability of their own internal models of the world; it is far easier to158

evolve prestige based social strategies such as “trust older individuals” or “trust159

successful individuals” [19, 25], or conformist social strategies such as “trust160

the majority” [18, 25], than evolve a rule about each possible food resource or161

situation one may experience, especially when it is likely that any given food162
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resource or situation is new to an agent and therefore is yet to be evaluated.163

1.3 Previous work: the EnVar model164

The work discussed here follows on from previous work by Borg & Channon165

[6]. In the Borg & Channon [6] work an artificial life model, called EnVar,166

was created to investigate the evolutionary adaptation to social information167

use without learning. The question posed by Borg & Channon [6] was “does168

the addition of social information enable agents to evolve to perform better169

on a simple food foraging task than when social information is not available”.170

The EnVar model places a population of agents in a 2D simulated environment171

containing a large variety of food/plant resources. Food resources are recognised172

by agents by their color (RGB values), with food grouped in to species of plants173

based on their color. Some of the plant species provided positive energy when174

consumed, other provided negative energy when consumed. The simplest task175

tested involved two food species, with a 1 : 1 ratio of positive to negative176

food species, the most difficult task involved ten food species with a 1 : 9177

ratio of positive to negative food species. A series of different populations with178

access to differing types of social information were tested, with performance179

on the task being measured by the how much time agents spent consuming180

positive food resources compared to the how much time agents spent consuming181

negative food resources. All agents had a limited amount of energy which was182

lost through eating negative food and re-gained through eating positive food.183

Residual amounts of energy were also lost when agents simply did nothing or184

when they were moving, with energy lost due to movement being greater than185

energy lost due to waiting. Agents were replaced when they ran out of energy,186

with the replacement agents being the progeny of two surviving agents from the187

population.188
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Each population of agents was set-up to use one of five social information189

strategies. One of the these strategies involved no social information at all,190

whereas the other four involved social information either about the activity or191

state of other agents. The two social information strategies associated with192

activity were “presence”, where agents could only see whether another agent193

was present or not, and “action”, where agents could see whether another agent194

was eating, waiting, or moving (the only three actions available to agents in the195

model). The two social information strategies associated with agent state were196

“health”, where agents could see the battery level of another agent, and “age”,197

where agents could see how old others agents were.198

As expected, absolute performance on the task dropped with environmental199

difficulty in all cases. However, populations using social information did out-200

perform non social populations on simpler environments, thus demonstrating an201

evolutionary advantage to using social information. In some cases, social infor-202

mation also enabled populations to maintain a positive task performance across203

a wider range of environments; the best social information strategy observed204

was able to perform well (eating more positive food than negative food) up to205

an environment with five negative food species to one positive food species; non206

social populations were only able to achieve a positive task performance until207

an environment with an 1 : 3 ratio of positive to negative food species. Despite208

populations making use of social information generally outperforming non social209

populations, there was no significant difference between social and non social210

population in the more difficult environments that were tested.211

The model used in this work, including the social information strategies212

implemented, exactly matches the Borg & Channon [6] model (more details on213

this model can be found later in the paper). Therefore, all hypotheses should214

be considered in the context of the Borg & Channon [6] model and results.215

9



1.4 Hypotheses216

The large amount of evidence to suggest the persistence of social information217

promoting behaviors in unreliable and challenging environments, and evidence218

from simulations that social learning mechanisms such as imitation provide a219

selective advantage even when the information being obtained is not necessarily220

fitness increasing, along with the well established principle that the desire to221

obtain social information leads to agent interaction, leads us to postulate the222

following hypotheses to be assessed to here.223

1. Social Information should lead to behaviors that result in increased agent224

interaction (i.e. movement to seek to social interactions): We will test this225

hypothesis by comparing the amount of movement undertaken by agents226

from social information using populations with non social agents. If we227

see a significant difference in the amount of movement, we will then assess228

how often agents from social populations spend around other agents. We229

require a significantly larger number of movement actions combined with230

agent interaction to demonstrate not only socially influenced interaction,231

but also behaviors that promote social interactions. Sergio & Newton [31]232

provides evidence that in some cases even simple information such as the233

presence of other individuals (or occupancy) can be a suitable indicator of234

resource quality and therefore enough to lead to agents coalescing around235

a food source, therefore we would expect this hypothesis to hold true in236

all social information strategies presented here; though when the presence237

of another agent is used as a source of social information, some measure of238

resource quality may still be required, as no information about the success239

or state of the agent present on the resource is available to act as a proxy240

for resource quality [36].241

2. Social interaction between agents will be more likely when environments242
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are more unpredictable, and less likely when environments are more pre-243

dictable. In the model environment used here it could be argued that244

the more difficult environments are more predictable. The most difficult245

environment tested here has a ratio of one positive food resource to every246

nine negative food resources, therefore agents have a 90% chance of cor-247

rectly guessing that a food resource will be dangerous. We may therefore248

expect agent social interaction (should it be seen) to be at its highest in249

lower difficulty environments, despite the possibility of non social agents250

also performing well in these environments. From an artificial life and251

evolutionary robotics perspective it would be useful to know under which252

conditions pro-social behaviors, such as agent social interaction and co-253

operative foraging, may emerge.254

3. Behaviors resulting in increased agent interaction will persist (though at255

reduced levels) even when task performance is poor, poor task perfor-256

mance being characterised by agents spending more time eating negative257

food than eating positive food: The adaptive value of social information,258

even when potentially unreliable, should still be high enough to motivate259

agents to seek others out more often than if social information was not260

available. In the more difficult environments tested here we would ex-261

pect social information to be relatively poor, due to the large quantities262

of negative food resources populating the environment. However, it would263

still be beneficial for agents to engage in movement sometimes in order to264

provide potential access to any positive behaviors that may emerge in the265

population. Therefore we would expect behaviors that encourage social266

interaction, i.e. movement, to still appear more often in social populations267

than in non-social ones, in all environments.268

We will also go on to to assess whether social information leads to any significant269
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difference in the application of the other behaviors available to agents here270

when compared to non-social populations, and whether task performance has271

any implications for the application of behavior - we are especially interested to272

assess whether a change in task performance from the predominantly successful273

application of eat actions to the predominately unsuccessful application of eat274

actions is accompanied by any notable transitions in behavior.275

2 Simulation Model and Experimentation276

The experimental set-up matches that used in Borg & Channon [6]. Summary277

tables of the key parameters used can be found in the Appendix section at the278

end of the paper.279

Populations of neuroevolutionary agents (making use of the hybrid neural280

network model known as the shunting model [43, 42, 30, 7, 33, 22]), each popula-281

tion employing a different social information strategy, are tasked with surviving282

in environments of differing difficulties. In order to test our hypotheses we test283

populations of social and non-social agents in a set of increasingly difficult envi-284

ronments; forty populations of each social information strategy being evaluated285

per environment. Environmental difficulty is dictated by the ratio of positive286

food resources to negative food resources. The simplest world used here has an287

equal (1 : 1) ratio of positive food species to negative food species. Tests get288

progressively harder by increasing the number of negative food species, whilst289

maintaining only one positive food species, resulting in the most difficult world290

used here having a 1 : 9 ratio of positive food species to negative food species All291

data presented here relates to the final 25 epochs of evolution (of a total of 100292

epochs) where population behavior and fitness had broadly stabilised (based on293

the results of [6]). An epoch here is defined as 1000 time-steps, with a time-step294

being defined as one full simulation loop.295
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The task world used here is known as EnVar. EnVar is a bounded (non-296

toroidal) 2D environment containing a variety of consumable resources known297

as plants. Plants are recognised by agents simply as an RGB value. Plants are298

divided into a number of species, each with a randomly selected base RGB value.299

Plants are generated within these RGB regions and identified as belonging to300

the nearest species according to euclidean distance in RGB space to a species301

base RGB value. The number of plant species is determined by the test being302

conducted. In the tests conducted here, the number of species ranges from two303

to ten. Each plant species is assigned an energy value, which is transferred to304

agents if the plant of that species is consumed; energy values may be positive or305

negative. Notionally the EnVar world is broken up in to cells, though here each306

cell represents a pixel. Plants in the world take up a number of cells, set here to307

100 pixels/cells, forming a 10x10 block, with each block only being able to be308

eaten a certain number of times before being exhausted (here set to be 200 eating309

events). Once a plant block has been exhausted it is no longer consumable and310

therefore removed from the world to be replaced by a new block from a random311

plant species somewhere else in the world - this maintains a constant number312

of food blocks in the world at any time. Agents are permitted to share space313

with a plant resource but cannot overlap with each other, thus removing the314

possibility of agents piling up on top of one another on valuable food resources315

- this can result in an agent’s path to a food resource being blocked by agents316

already on that resource, though agents cannot intentionally choose to block317

other agents. For all tests here negative food species come with an energy318

value Eneg = −10.0, with positive food species contributing an energy value of319

Epos = 1.0 when consumed. This provides a strong evolutionary pressure to320

avoid eating negative food species. In this work EnVar is set up to create a321

700× 700 pixel sized cell world, containing five hundred 10× 10 pixel blocks of322
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plants.323

2.1 Neuroevolutionary Model324

Agents in the EnVar simulation world are grounded 2D simulated agents, con-325

trolled by a hybrid neural network architecture known as the Shunting Model326

[43, 42]. The shunting model uses two interacting networks to determine agent327

behaviors, here represented as a discrete set of agent actions. The two interact-328

ing networks are known as the Decision Network and the Shunting Network. The329

decision network is simply a feed-forward neural network comprised of an input330

layer, one hidden layer and an output layer. Outputs from the decision network331

(known as Iota values) are used to produce a locally-connected, topologically-332

organised network of neurons known as the shunting network, which simply333

places and organises agent preferences for environmental features and states in334

such a way to allow the agent to hill climb in a shunting space (known as the ac-335

tivity landscape) that directly maps on to their immediate neighborhood. The336

shunting network weights are fixed for all agents, whereas the decision network337

is genetically encoded and is subject to change via evolution.338

2.1.1 The Shunting Network339

The shunting network is a locally-connected, topologically-organised network340

of neurons that was originally used for collision free motion planning in robots341

[43, 42] and has been subsequently applied in a number of 2D and 3D artificial342

life models [30, 7, 33, 22, 6]. Here the shunting network’s topology is simply343

superimposed on to the environment, with each cell in the network topology344

directly relating to a pixel within an agent’s visual field. Using a simplied and345

stable version shunting equation developed by Stanton & Channon [33] (see346

equation 1) values for each cell (which can be interpreted as representing an347
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environmental feature or state, and are initially set by the Iota output I ob-348

tained from the decision network) are propagated across the cells of the network,349

producing an activity landscape with peaks and valleys representing desirable350

and undesirable features in the environment. The result is a landscape which351

allows the agent to follow a route determined by the higher Iota values while352

avoiding undesirable valleys. A mock-up example of an activity landscape with353

a snapshot of the visual field it represents can been seen in Figure 1.354

xnewi = max

minI,min
1

8

∑
jεNi

[xj ]
+
+ Ii,maxI

 (1)

In equation 1 each node in the shunting network corresponds to one pixel355

within an agent’s visual field; xi is the activation of neuron i; Ni in the receptive356

field of i; the function [x]+ is max(0, x); and Ii is the external input to neuron357

i (the Iota value). The maximum Iota value is maxI = 15, with the resulting358

value for xnewi also being capped at a minimum Iota value minI = −15. This359

stops Iota values growing out of control, whilst providing a large enough maxi-360

mum value (and a small enough minimum value) to ensure activity propagation361

across the network. In order to allow propagation to occur within a time-step,362

the shunting equation must be run a number of times, we take this number of363

iterations to be equal to the diameter of the visual field.364

The shunting model implemented here differs in a number of significant ways365

from previous artificial life implementations [30, 7, 33, 22]. In these previous366

implementations agents see their entire environment, have a set number of dis-367

crete environmental features and states to set Iota values for, and are in the368

environment alone to complete a predetermined task. Here agents have a lim-369

ited view of the world, have the possibility of needing to a set an Iota value for370

a plant of any given RGB value, and exist as a population within the environ-371

ment (leading to possible input states where an agent can be seen on a particular372
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plant). In order to accommodate these differences the shunting model here is373

run independently for each pixel in an agent’s visual field, which is set here to374

have a radius of 30 pixels from the center of the agent, with information about375

that pixel being included as part of the agent’s decision network input layer. In376

this way an Iota value is calculated for each unique environmental state within377

an agent’s visual field. This change does not change the resulting behavior of378

the shunting model or activity landscape, just the way in which information is379

passed to the shunting network from the decision network.380

2.1.2 The Decision Network, Neuroevolution and Reproduction381

Evolution in the model is applied only to the decision network. Here, the deci-382

sion network is a feed-forward neural network comprised of seven input nodes,383

and an additional social input node in social information tests, eight hidden384

units, and two output nodes, resulting in 112 - 128 weights. Each network layer385

is fully connected, with floating point weights in the range [−1 : 1] being directly386

encoded from an agent’s genotype. A standard sigmoid activation function is387

used at each hidden and output node, though outputs processed for deriving388

agent actions are then scaled to be within the range [0 : 1] and the Iota out-389

put is scaled linearly to be within the range [minI : maxI]. As the agent is390

expected to produce an Iota value to feed in to the shunting network for each391

unique environmental feature or state within its visual field, inputs into the392

decision network must accommodate both the internal state of the agent, the393

state of their current environment, and the state of the environmental feature394

they are assessing; this leads to there being two sets of input nodes. The first395

set of input nodes are simply plant RGB inputs - if the agent is viewing empty396

space these inputs are set to -1, else they are set to be the normalised RGB of397

the plant being viewed, with RGB values being normalised be within the range398

[0 : 1] by way of linear normalisation. Following these inputs are a series of399
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generic inputs, which are dependent on the agent’s internal state and the cur-400

rent environmental state. These inputs are the agent’s current battery level in401

the normalised range [0 : 1], a moving average of the agent’s battery level over402

the previous 100 time steps, the agent’s current external environmental state403

and a moving average environmental state, which are both set to be +1 and404

do not change in the tests presented here (the model is set-up to accommodate405

external environmental change which is not used here). In social information406

tests agents have an additional input based on the agent being viewed.407

The genotype, which is essentially an array of weights, is subjected to both408

mutation and crossover should a reproduction event take place. The crossover409

mechanism used here is single point crossover, with per locus mutation occurring410

with probability pmut = 1/L, where L is the length of the genotype. Mutation411

is achieved by way of Gaussian random noise, with a value taken from a normal412

distribution with µ = 0, σ = 0.01 being either subtracted or added to the413

floating point value at the loci to be mutated. All weight values are bounded414

in the range [−1 : 1]. Reproduction events take place only in response to a415

death event. Agents can die if they run out of energy, or if they are in the416

lowest 10% of agents ranked by energy at the end of an epoch. The first method417

for removing agents from the population ensures that agents cannot remain in418

the population with no energy, and the second method ensures space is made419

for new agents to be created even if the population as a whole is successful at420

maintaining above zero energy levels, thus maintaining a selection pressure for421

task improvement. Both methods of death are not directly related to task ability422

as it is possible for a good agent to be unlucky and never, or rarely, experience a423

positive food resource, whereas less able agents may have the fortune to be born424

near an abundance of food resources or relatively close to the end of an epoch.425

This method of reproduction maintains a constant population size of 200 agents.426
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The new agent, or child, created to replace the removed agent is the progeny427

of two agents, one of whom is selected in a tournament, the other of which is428

selected randomly from the remaining population. The tournament selection429

mechanism applied here takes two agents from the population, compares their430

current energy levels, and selects the fitter agent (i.e. the agent with the higher431

energy level) as a parent. Like in nature, this isn’t a perfect measure of fitness432

as it is possible the agent is young and therefore has not yet had time to lose433

significant amounts of energy, or the agent could have simply been lucky or434

unlucky with available food sources. However, in general, agents with more435

effective behaviors will on average find themselves with better energy levels than436

agents with less effective behaviors, thus driving evolution toward behaviors437

that are more suited to the task or environment at hand. The second parent438

is selected randomly to ensure the population doesn’t become dominated by439

the progeny of a small sub-set of the population, thus maintaining a level of440

exploration in the genotypic search space. New agents are placed in the world441

within the visual field of one of their parents, selected at random - this does442

place agents within close proximity of each other without the need for agents443

to explore, providing a pressure against the evolution exploratory movement to444

seek out other agents.445

2.2 Agent Actions and Action Energy Costs446

The agents in the model have a set of simple, discrete, actions available to447

them, through the output layer of their decision networks: wait, eat or move.448

The decision network has two outputs, an Iota output to be fed into the shunting449

network and an eat/wait output. The agent first considers the input state at450

its current position - if the agent produces an Iota value above the threshold451

θa = 0.5 it indicates the agent is happy with its current state and position and452
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therefore does not move. The agent’s eat/wait output is then considered; if the453

output produces a value above the threshold θb = 0.5 the agent attempts to eat454

whatever may be at its current position; agents are welcome to try and eat at455

locations where no plant is present, but no benefit for this action is conferred,456

and the eat action is considered to be an unsuccessful eating attempt rather457

than a wait action. If an agent decided to eat at a location containing a plant,458

the plant’s energy is transferred to the agent, this does not necessarily lead to459

the exhaustion of the plant resource. The Iota output is in the range [−1 : 1],460

any values in the range [−θa : θa] are evaluated as neutral and resolve to 0.461

The Iota output is then scaled to be within the range [minI : maxI] for use462

in the shunting network, whereas the eat/wait output is limited to the range463

[0 : 1]. If the eat/wait output gives an output below the expected threshold the464

agent simply waits at its current location. Waiting and eating both reduce an465

agent’s energy by 0.1 energy units (though eating may result in a net energy466

gain), with moving using up 0.2 energy units per time step. Agents will only467

move if their Iota output for their current location is below threshold θa. In468

this case an activity landscape is created based on the Iota outputs for all469

visible environmental features. Agents are born with, and are able to achieve, a470

maximum energy level of 100 units. As epochs here constitute 1000 time steps,471

an agent would be able to survive for a maximum of one epoch, or one thousand472

time steps, by remaining inactive. In order to avoid agents moving around in473

circles, or moving backwards and forwards, in neutral space where there is no474

activity gradient from the activity landscape, consecutive neutral move actions475

maintain the same direction of travel with probability pdir = 0.9.476
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2.3 Social Information Strategies477

The social information strategies explored here, including the no social strategy478

are discussed below:479

No Social: No input node is available to the agent to enable social in-480

formation to be used by the agent’s decision network. Agents proceed with481

no information about other agents. There is very little evidence in nature for482

agents being totally ignorant of the presence of other agents - this strategy was483

simply to be used a baseline to compare the other social information strategies484

against.485

Presence: The social information input node receives an input of +1 if486

another agent is present within the visual field. No other information about the487

agent being viewed is used. This strategy is not dissimilar to the “Inadvertent488

Information” strategy used by agents in the work by Mitri et al. [26], though489

the agents explored in the work presented here do not have a choice about490

whether they express social information or not. In nature the presence of other491

agents has been established as key motivator of where to eat or explore in a492

number of vertebrates [16]. Social facilitation, defined as the mere presence of a493

demonstrator affecting an observing agent’s behavior [21, 29], is an example of494

a social learning strategy observed in nature arising the mere presence of other495

agents.496

Action: An input representing the current action state of the agent being497

viewed. The wait action is input as a value of 0, eat is input as 0.5 and move498

is represented as 1. Amalgamating these action inputs into one input rather499

than two or three categorical inputs, whilst not ideal, was implemented in order500

to ensure the input layer size for all social strategies was equal. Being able to501

observe and interpret the activity or actions of other agents can lead to a variety502

of social learning strategies seen in nature - these strategies include observational503

20



conditioning, social enhancement, response facilitation and contextual imitation504

[21, 29].505

Health: The current energy levels of the agent being viewed are normalised506

to be within the range [0 : 1] and input to the viewing agent’s decision network.507

Health information here is used a possible proxy for the success of agents, though508

a noisy one as high energy levels could indicate that the agent is young (and yet509

to expend any energy) or lucky, alongside indicating that an agent has evolved a510

suite of adaptive behaviors that minimises energy use and maximises successful511

eating events. The social learning strategy “copy successful individuals” is seen512

regularly in nature [25], and is well established in theoretical modeling as viable513

social learning strategy [9].514

Age: The age (in time steps) of agent being viewed is normalised using a515

hyperbolic tangent function of the logarithm of the age, which is then normalised516

to be within the range [0 : 1] (with 1 being asymptotic). Normalising age in this517

way is necessary as agents may live for the entire duration of the simulation,518

and are not selected against based upon their age. See formula (2) where a519

represents agent age in time steps. Using information about the age of other520

agents can result in a “copy older individual” social learning strategy [25], with521

such strategies being observed in mate choice copying in fish [14, 24]. As avoiding522

being removed from the population is also an indication of successful behavior,523

copying individuals can also be seen as another form of the “copy successful524

individuals” strategy.525

inputa = (tanh (log (a)) + 1) /2 (2)

It is worth noting that despite references to social learning, this work contains526

no learning, therefore we would not expect complex social strategies such as527

those seen in nature to emerge here. All references to social learning in nature528
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here are instead supposed to justify why the social information being used here529

may be justified as forming the basis of more complex social learning strategies530

seen in nature.531

3 Results532

3.1 Action Profiles533

Figure 2 shows the median action profiles for each social information strategy534

applied here, an action profile being the proportion of total actions each indi-535

vidual action contributed. The most immediate difference between the social536

information using populations and non social populations from Figure 2 is the537

application of the move action. Whilst all populations show a reduction in move-538

ment (as environmental difficulty increases), with an accompanied increase in539

waiting, non social populations have extremely low levels of movement even in540

environments of lower difficulty when compared to social information popula-541

tions. In social populations movement is applied more frequently than waiting542

in lower difficulty environments. This suggests that the increased performance543

associated with populations that use social information in simpler environments544

seen previously [6] is as a consequence of this greater willingness to move, either545

to find new food resources or to find new sources of social information. As the546

only difference between social and non social populations is the addition of social547

inputs to agent neural networks, movement to seek new sources of information548

is probably closer to the truth; as agents in all populations spend the majority549

of their time in simpler environments eating, any movement motivated by the550

desire to be around other agents would lead to a secondary consequence of being551

around more food resources, enabling agents who are less able to distinguish be-552

tween positive and negative food resources to defer some of their judgments on553
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the likely pay-off of a food resource, and instead rely on the social information554

being provided by the agents they now find themselves around to make more555

informed decisions. However it is not clear from Figure 2 whether or not this556

difference in movement between non social and social populations is significant,557

and whether this additional movement does lead to more opportunities for social558

information use.559

The immediate difference in movement behavior between non social and560

social populations seen in Figure 2 is demonstrated to be significant by way561

of Mann-Whitney U tests between the resulting application of move actions for562

social populations compared to non social populations, this can be seen in Figure563

3. The continued significance in the difference between social and non social564

populations regarding movement is in contrast to the general lack of significance565

in task performance difference between social and non social populations in566

environments past environment 2 (as seen in [6]); these results indicate that the567

introduction of social information leads to behavioral differences that persist568

even when these behaviors do not result in improved task performance.569

Regarding the other actions available to agents; eating (see Figure 4) and570

waiting (see Figure 5), neither show any particular significant differences (where571

p < 0.01) between social and non social population other than in environment572

1 where waiting actions for all social populations are applied significantly less573

than in non social populations (p < 0.01), and eating actions are applied sig-574

nificantly less for social populations using the Presence and Action strategies575

than in non social populations (p < 0.01). This broad lack of any significant576

differences beyond environment 1, between non social and social populations for577

eating and waiting, further demonstrates that movement is the primary driving578

force in the improved task performance seen in earlier environments, especially579

in environment 2 where only movement is significantly different despite previous580
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work [6] showing a significant difference in task performance; though it should581

be noted that in environment 1 social information availability also leads to sig-582

nificantly different eating and waiting behaviors, indicating that some adaptive583

action profile across actions is available to drive improved task performance,584

rather than just a reliance on movement behavior. The fact that in environ-585

ment 1 differences in eat and wait actions result in less eating and waiting taking586

place in social populations in favor of more movement, also indicates that social587

agents are willing to risk higher energy expenditure, and are willing to spend588

less time potentially obtaining energy via eating. This demonstrates that the589

accommodation of social information leads to a more refined, and ultimately590

more effective, eating strategy as a result of an increased willingness to move.591

However, as we can see from the action profile box-plots in Figure 6, the ap-592

plication of eating and waiting actions is drawn from quite a large range in all593

populations, though the interquartile ranges for all actions do indicate some594

level of consistency in the application of actions in environment 1.595

The suggestion here is that the significant improvement in task performance596

seen in social populations over non social populations in less difficult environ-597

ments (as in [6]) is as a direct result of the behavior differences enabled by the598

accommodation of social information. However, this does lead us to something599

of a “Chicken and Egg” situation; did social information use follow as a result600

of good foraging (with good foragers acting as useful sources of social informa-601

tion), or did social information use result in the development of good foraging602

strategies? As no information about plant resources are communicated by so-603

cial agents, with only information about the agents themselves being expressed,604

it would be sensible to assume that the improved task performance seen by605

social populations in simpler environments is caused by agents developing be-606

haviors that cause greater exposure to other agents (and therefore more sources607
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of social information), which then leads to an improve task performance as a608

secondary outcome. The fact movement behavior remains significantly different609

throughout all tests indicates that some behavioral differences persist despite610

them providing no improvement in task performance.611

3.2 Reasons for Moving612

It is apparent from Figure 3 that movement behavior for populations permitted613

to use social information differs significantly from non social populations - this614

is in contrast to both eating actions (see Figure 4) and waiting actions (see615

Figure 5) which only show significant differences between social and non social616

populations in selected environments. Therefore some analysis on why social617

agents move is necessary.618

One possible indication that increased movement is a direct consequence619

of an increased motivation for agents to interact, and arguably the clearest620

demonstration of the Allee effect [1, 2], would be if agents were found to aggre-621

gate/cluster (i.e. herd or shoal). Figure 7 shows the distributions of the size622

of agent clusters for each social strategy compared to non social populations,623

with cluster size simply being the number of other agents an agent has within624

its visual field. Figure 7 demonstrates an increase in cluster size as environ-625

mental difficulty increases, but no clear or significant difference in cluster size626

between social and non social populations is observed. The increase in clus-627

ter size as environmental difficulty increases is explainable as a consequence of628

the increased waiting exhibited by all populations; agents move less in difficult629

environments, resulting in new agents being less likely to move away from the630

parent agents they are placed close to following a reproduction event. The lack631

of significant difference in cluster size would likely be a result of moving agents632

regularly encountering other moving agents due to the density of agents, and633
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agents clustering around good food resources. Therefore, this result is not to-634

tally surprising and thus leads to the conclusion that the increased movement635

seen in social populations does not lead to higher levels of aggregation or clus-636

tering.637

The fact that agents in social populations can actually view other agents638

enables a second level of analysis regarding why social agents might be moti-639

vated to move. When an agent decides to move, as opposed to wait or eat, they640

evaluate their preference for each pixel/cell within their visual field. If a cell641

contains another agent (either alone, or on a food resource) then a social agent642

can register an agent view. Non social populations are blind to other agents, and643

therefore unable to register agent views. Agent views can be positive (result-644

ing in attraction), negative (resulting in repulsion), or neutral (ultimately not645

affecting movement behavior). Should non neutral (positive or negative) agent646

views be registered, we can conclude that social information is being actively647

used by agents when moving.648

Figure 8 shows the distributions of the number of neutral and non neutral649

agent views accumulated by individuals in social populations. It is clear from650

Figure 8 that for most social strategies, in most contexts, the social informa-651

tion provided by the proximity other agents is considered to be of little use, and652

therefore does not affect movement decisions. But it is key to note that for every653

social strategy in all environments (barring environment 9 for Age populations),654

some non neutral agent views are registered. Sometimes social information is655

useful, and is therefore used to influence agent behavior. However, the distribu-656

tion of agent views for populations using Age information (Figure 8(d)) stands657

out; unlike the other social strategies, agent views are split relatively evenly658

between neutral and non neutral activity. This indicates that some forms of659

social information can often be useful, and thus worth seeking out. Consider-660
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ing how each social strategy was operationalized in the model, it is clear why661

information about the age of other individuals might prove to be more useful662

than other types of social information; age is the only unambiguous indicator of663

success explored here. Presence can help agents in simpler environments decide664

whether or not to move over to a food resource, but it is unlikely to promote665

general exploratory movement. Action provides more information, but without666

additional social information it is difficult for agents to determine whether an667

action (especially eating) is being applied by a successful or reliable individual.668

Health is better at indicating success, and therefore a more reliable source of669

information, but is still noisy; young agents are born with full energy levels and670

some agents can just be lucky when eating. Age is unambiguous; older agents671

(especially those who have lived beyond a few epochs) can only have done so672

by being successful at the task. We see that by the most difficult environment,673

information about the age of others is not often accumulated, and is never used674

- this is as a result of the environment being so challenging that agents rarely675

live very long.676

Figure 9 assesses whether the non neutral views accumulated by social pop-677

ulations is perceived to be positive or negative. Whilst being measured on678

drastically different scales across social strategies, we do see a shift from largely679

positive agent views in Presence populations, through to largely negative agent680

views in Health and Age populations, Action populations demonstrate little681

preference either way. Whilst not analysed here, these result do suggest that682

populations with access to more reliable social information (Health and Age)683

are able to be more discerning about whether they wish to move toward another684

agent, whereas populations with only the presence of other agents available to685

them have very little cause to be repulsed (agents cannot directly interpret the686

density of agents in an area, and therefore cannot be disinclined to move to-687
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wards over-saturated resources). But the fact that for social populations, social688

information can not only be non neutral but can also be attractive/positive,689

does provide an explanation for why social populations choose to move more690

often than non social populations, even when this doesn’t necessarily result in691

improved task performance; movement may either be as a result of attractive692

additional stimuli (other agents) or from a motivation to move to seek out other693

other agents, as opposed to just waiting.694

3.3 Behavioral Transitions695

From Figure 10 we can see that that non social populations do not exhibit any696

statistically significant transitions (p < 0.01) between environments in regard to697

movement behavior. However, statistically significant transitions in movement698

behavior between environments can be seen in all social populations. For popu-699

lations using Presence information we see this statistically significant transition700

happen between environments 2 and 3; the transition from primarily eating701

positive food resources to primarily eating negative food resources also occurs702

between environments 2 and 3. The association between a statistically signifi-703

cant transition in movement behavior and the transition to primarily consuming704

negative food resources is also apparent for populations using Action informa-705

tion and populations using Health information - for Health populations it is706

also interesting to note that statistically significant movement behavioral tran-707

sitions occur on both occasions when positive food consumption drops below708

zero. These results demonstrate that movement behavior in social populations709

is strongly driven by agent task performance; when agents can no longer suc-710

cessfully solve the task, social populations are less inclined to explore their711

environment in order to seek out new food resources or new sources of social712

information. In the case of populations using Age social information, the only713
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significant transition associated with movement behavior occurs before the tran-714

sition to non-positive food consumption. The point at which this transition in715

movement behavior occurs does correspond with a large drop in task perfor-716

mance between environments 2 and 3, demonstrating that movement behavior717

is still highly sensitive to task performance in Age social information popula-718

tions.719

From Figure 2, and Figures 4, 3 and 5 we can see that agent behavior720

changes as environments become more difficult. These behavioral changes lead721

to a reduction in movement and eating, and an increase in waiting. The primary722

driving force behind the motivation to eat less, move less and wait more, inde-723

pendent of social information strategy, is that food resources are increasingly724

likely to be negative in their energy provision, and therefore it makes sense for725

agents to spend more time conserving their energy waiting for a positive food726

source to appear near to them or (in the case of social populations) for an agent727

who’s information suggests they can be trusted to move into their visual field.728

However, in most cases the increase or decrease in actions as environments be-729

come more difficult is not necessarily smooth, this being most apparent with730

move actions (Figure 3) which for many social information strategies shows a731

sudden reduction in action rather than a steady degradation. It is not clear732

from earlier figures whether these changes between environments are statisti-733

cally significant nor what is driving these sudden changes when they occur.734

In Borg & Channon [6] it what shown that task performance (the ability735

to eat positive food resources more frequently than negative food resources)736

deteriorates as environments get more difficult - this difficulty being defined737

by the ratio of positive food resources to negative food resources available in738

the environment. The point at which task performance changes from success-739

ful to unsuccessful (the point at which eating actions result in more negative740
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food resources being consumed than positive food resources) varies depending741

on the social information strategy being tested, but occurs in all scenarios. For742

No Social and Presence populations this transition (or zero crossing) occurs743

between environments 2 and 3, Action populations experience this transition744

between environments 3 and 4, and both Health and Age populations experi-745

ence this transition to primarily negative food resource consumption between746

environments 4 and 5 (though Health populations do not permanently cross into747

negative task performance until after environment 6). Here we assess whether748

any statistically significant changes to behavior, or behavior transitions, could749

be associated with these zero crossing events for food type consumption.750

When considering the total proportion of actions agents dedicate to eating,751

as seen in Figure 11, we do not see any significant changes in eating behavior752

that correspond to the point at which task performance transition from predom-753

inantly successful application of the eat action to predominantly unsuccessful754

application of the eat action. Instead, as seen in Figure 4, the median total eat755

action degrades gradually with task performance. It is also worth noting the756

extremely large data ranges seen with the total application of each action in the757

box plot data in Figure 11. The large interquartile ranges especially show that758

all populations, social and non social, are capable of exhibiting very high and759

very low levels of eating activity. This is in stark contrast to movement, which760

we can see from Figure 10 has reasonably small interquartile ranges for all popu-761

lation types across all environments, and if anything becomes more consistent as762

environmental difficulty increases, this being in contrast to the general increase763

in the range of eat action data which generally increases as the environment764

becomes more difficult. Increasingly large data ranges are also seen when we765

consider the wait action (as seen in Figure 12). Any significant transitions seen766

in waiting behavior, in all populations barring Health, do not seem to occur767
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in relation to the transition from positive to negative task performance. These768

results further indicate that social agents are driven to seek out new sources769

of social information, but with the caveat that social interactions are likely to770

result in better task performance; though the fact that social populations move771

more often than non social populations even when task performance is poor772

suggests that social populations still persist in a residual amount of socially773

motivated movement.774

4 Discussion and Conclusion775

In this work we attempted to address three questions. (1) Does social infor-776

mation lead to increased agent interaction? (2) Is agent interaction, and by777

extension social information use, dependent on the environmental predictabil-778

ity? (3) Do social behaviors persist even when task performance is poor?779

Social information transfer is highly prevalent in nature [41], and even the780

simple presence of other agents have been demonstrated to encourage inter-781

esting and novel behaviors in other agents [11], so it is not entirely surprising782

that the results presented in this work provide strong evidence that social in-783

formation can lead to interaction promoting behaviors, namely movement for784

the purpose of increasing the probability of agent interaction. We also see so-785

cial behaviors being favored in the simpler environments tested here. These786

simpler environments did provide agents with a large variety of food resources787

that could be either negative or positive with an equal probability, resulting in788

a task which was reasonably easy to solve but also very difficult for individuals789

to develop a complete set of categorisations for each food resource’s edibility.790

Social behaviors being favored here are likely to be as a result of social informa-791

tion being more reliable than private information. As environments progressed792

in difficulty, private information about the edibility of any given food resource793
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became more reliable, as it was increasingly likely that any given food resource794

was energy reducing and therefore not worth consuming. Any social interac-795

tion in later, more difficult, environments would still have yielded some benefits796

though. In the presence of a food resource in any environment the presence,797

actions, health or age of other local agents could potentially result in a novel798

or new food resource being evaluated correctly. Despite private information799

based on the likelihood of edibility encouraging a conservative policy on eating,800

this new social information could sometimes yield positive results leading to an801

adaptive advantage over agents who eschew social interaction. Here we see a802

continued preference for movement in social information populations compared803

to non social populations, even in more difficult environments where task per-804

formance in both social and non social populations was similar. This continued805

desire to move for the purpose of social interaction was less apparent in later806

environments, with waiting actions being preferred due to the risk of unneces-807

sary or unrewarding energy expenditure in more difficult environments, but still808

significantly different from non social cases.809

The results presented here add additional evidence to the idea that a pres-810

sure for evolution to adapt to accommodate social information, be it via social811

information transfer or imitation, is maintained even when social information812

is either unreliable or risky [20], and therefore suggest that the introduction of813

simple social information is sufficient, even when decoupled from any within-814

lifetime learning processes, for the emergence of pro-social behaviors.815

Following on from this work, and the work of Borg & Channon [6], a num-816

ber of additional tests are required to fully establish how social information817

is affecting agent behavior and to what extent agent behavior is affected by818

parameters such as the cost of movement, cost of stationarity, population den-819

sity, proportion of unfit agents replaced at the end of each epoch, and food820
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density, persistance, and energy. As it currently stands it is difficult to fully821

establish whether agents are attracted to certain actions, older individuals, or822

healthy individuals - the work here simply establishes that the availability of823

social information can elicit changes of behavior, with these behaviors acting as824

promoters of agent interaction.825
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Appendix: Tables of Parameters955

Here a series of tables providing an overview of the parameter settings used in956

this work.957
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A1: EnVar Parameters958

EnVar and Plant Parameters

Parameter Settings/Range

World Size (cells) 700× 700

Number of Plants 500

Plant Size (cells) 10× 10

Negative Plant Species Energy Eneg = −10

Positive Plant Species Energy Epos = 1.0

Eating Events until Plant is exhausted 200

959

A1 justifications and rationale960

Plant size and quantity was set in order for plants to take up approximately961

10% of the world area. During preliminary testing of the system this density962

of plants ensured plants were a frequently encountered feature of environment,963

without being densely packed; agents still often had to search for plants. Further964

exploration of the results presented here in regard to plant density would be965

worthwhile, as it would be expected to have a significant effect on movement966

behavior. The eating events until plant exhaustion parameter was set to equal967

population size - increasing or decreasing this variable would be expected to968

affect the proportion of time agents spent eating.969

A2: Simulation and Population Parameters970

Simulation and Population Parameters

Parameter Settings/Range

Simulation length (epochs) 100

Epoch length (timesteps) 1000

Population Size 200

971
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A2 justifications and rationale972

Epoch length was set to be approximately the number of timesteps required for973

an agent to move from one corner of the world to the other. Simulation length974

set based on preliminary testing, both task performance and agent behavior975

was seen to stabilise for all population types and environments by 100 epochs.976

Population size was set in regard to computational time to obtain results - larger977

population sizes had the negative consequence of both longer run times, and978

more densely packed environments. Varying population size would be expected979

to affect movement behavior, as a higher density of agents would reduce the980

need to search for other agents.981

A3: Agent and Evolution Parameters982

Agent and Evolution Parameter

Parameter Settings/Range

Agent size (radius, cells) 2

Visual field (radius, cells) 30

Max/initial battery 100

Stationary energy loss (per timesteps) 0.1

Movement energy loss (per timesteps) 0.2

% of population replaced at epoch 10%

Genotype length L = 112 or L = 128

Mutation rate (per locus) pmut = 1/L

Gaussian random noise (mean) µ = 0

Gaussian random noise (standard deviation) σ = 0.01

Crossover Single point

983
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A3 justifications and rationale984

As agents could not inhabit the same cells as one another, agent size was kept985

small to minimise the need to recalculate agent movement choices. Visual field986

size was set to be as large as possible in regard to computational time to obtain987

results. The creation of activity landscapes was computationally expensive, and988

therefore limited the size of visual fields. Larger visual fields would be expected989

to encourage a higher proportion of movement behavior. Max battery was set990

in relation to stationary energy loss; the current configuration results in an991

agent losing all energy within one epoch should they remain static throughout.992

Movement energy loss was set to be double that of stationary energy loss to993

discourage movement behavior unless selected for. Energy loss could be further994

explored to better understand the dependency of agent behavior on the cost of995

behavior.996

A4: Neural Network (Shunting Model) Parameters997

Neural Network (Shunting Model) Parameters

Parameter Settings/Range

Decision network input units i = 7 or i = 8

Decision network hidden units h = 8

Decision network output units o = 2

Maximum Iota value maxI = 15

Minimum Iota value minI = −15

Negative Iota output thresholds −θa = −0.5

Positive Iota output thresholds +θa = 0.5

Movement threshold θb = 0.5

998
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A4 justifications and rationale999

Hidden layer size was set based on preliminary testing - larger hidden layers1000

didn’t provide noticeably better performance on the task, but did increase com-1001

putational time to obtain results. The consequence of increasing the maximum1002

Iota value (and decreasing the minimum Iota value) would be to allow activity1003

from resource of agents to propagate further within the visual field, therefore1004

objects on the edges of visual fields would have greater influence on agent de-1005

cisions - it is not anticipated that this would cause a large change in agent1006

behavior. The maximum and minimum Iota values set here were found to be1007

sufficient for allowing object activation to influence agent decisions. Adjusting1008

thresholds would be expected to affect the likelihood of agent behaviors being1009

applied. Current thresholds do not bias agent decisions in favor of any of the1010

actions.1011
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Figure 1: Mock-up transition from agent visual field to shunting network activity

landscape. The left-hand grid shows the agent’s visual field with two plant

objects and one other agent occupying the same space as a plant. The right-

hand grid shows an example activity landscape for the visual field. The agent

determines that an agent on a plant is an interesting feature and therefore

assigns it a strong positive Iota value (I), whereas the purple plant is seen

negatively and is therefore assigned a strong negative Iota value. These Iota

values propagate over the activity landscape using equation 1. The central

agent then chooses to move within its immediate Moore neighbourhood to the

cell with highest activity value.
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Figure 2: Median agent action profiles for each social information strategy over

each environment difficulty.
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Figure 3: Median move actions for each social information strategy over all

environments. Data points on the primary y-axis represent the median pro-

portion of the move action. Data points on the secondary y-axis represent the

Z-score value from a Mann-Whitney U test comparing, for each environment,

the median actions for the two social information strategies presented. Z-scores

which indicate statistically significant p values are highlighted on the x-axis.
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Figure 4: Median eat actions for each social information strategy over all envi-

ronments. Data points on the primary y-axis represent the median proportion

of the eat action. Data points on the secondary y-axis represent the Z-score

value from a Mann-Whitney U test comparing, for each environment, the me-

dian actions for the two social information strategies presented. Z-scores which

indicate statistically significant p values are highlighted on the x-axis.
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Figure 5: Median wait actions for each social information strategy over all en-

vironments. Data points on the primary y-axis represent the median proportion

of the wait action. Data points on the secondary y-axis represent the Z-score

value from a Mann-Whitney U test comparing, for each environment, the me-

dian actions for the two social information strategies presented. Z-scores which

indicate statistically significant p values are highlighted on the x-axis.
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Figure 6: Action box-plots for each action, for each social information strategy

in environment 1, where there is a 1:1 ratio of positive to negative food resources.
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Figure 7: Distribution of cluster sizes for each social information strategy against

the no social strategy over each environment difficulty.
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Figure 8: Distribution of neutral vs non neutral agent views for each social

strategy over each environment difficulty.
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Figure 9: Distribution of positive vs negative agent views for each social strategy

over each environment difficulty.
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Figure 10: The median differences between successful and unsuccessful eat ac-

tions is presented on the primary y-axis along with the box plots for the move

action. The Z-score from Mann-Whitney U tests, which compare the action

data for the environment on which a data point falls with the previous envi-

ronment, is presented on the secondary y-axis. These Z-scores indicate which

transitions in action behavior between previous environments are significant.

Z-scores which indicate statistically significant p values are highlighted on the

x-axis.
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Figure 11: The median differences between successful and unsuccessful eat ac-

tions is presented on the primary y-axis along with the box plots for the eat

action. The Z-score from Mann-Whitney U tests, which compare the action

data for the environment on which a data point falls with the previous environ-

ment, is presented on the secondary y-axis. These Z-scores are indicate which

transitions in action behavior between previous environments are significant.

Z-scores which indicate statistically significant p values are highlighted on the

x-axis.
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Figure 12: The median differences between successful and unsuccessful eat ac-

tions is presented on the primary y-axis along with the box plots for the wait

action. The Z-score from Mann-Whitney U tests, which compare the action data

for the environment on which a data point falls with the previous environment,

is presented on the secondary y-axis. These Z-scores are intended to indicate

which transitions in action behavior between previous environments are signif-

icant. Z-scores which indicate statistically significant p values are highlighted

on the x-axis.
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