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Supramolecular aggregation properties of 4-(1-morpholino)-1,8-
naphthalimide based fluorescent materials 

June I. Lovitt,a,d* Tumpa Gorai,a Emanuele Cappello,a Jason M. Delente,a Sebastian T. Barwich,c 

Matthias E. Möbius,c Thorfinnur Gunnlaugssona,d,e* and Chris S. Hawesb* 

Here we report the synthesis of two morpholino-substituted naphthalimide ligands,  N-(3-picolyl)-4-(1-morpholino)-1,8-

naphthalimide L1 and N-benzyl-4-(1-morpholino)-1,8-naphthalimide L2, and study their supramolecular properties in the 

crystalline, solution and gel phases.  These ligands were designed through incorporation of the morpholino group to enhance 

their photophysical and pH-responsive properties following recently reported N-(3-picolyl) naphthalimide metallogels. L1 

was found to form metallogels on reaction with either Mn2+ or Co2+. The gels were found to be thermally and chemically 

responsive to various stimuli including pH. Conversely, L2 showed no reaction or coordination with transition metals, and 

did not gel under analogous conditions to L1. In the solution state, the fluorescence of both L1 and L2 exhibited pH 

responsiveness and counterion-influenced aggregation. The microparticle formation over the pH range was further 

investigated through Dynamic Light Scattering and Scanning Electron Microscopy.  These two ligands illustrate how a 

modular ligand family can  derive structure-function relationships and allow for systematic tuning, thus allowing for the 

future development of luminescent pH responsive soft materials. 

Introduction 

The development of stimuli-responsive materials using functional 
supramolecular constituents is an intriguing area within the 
materials science field.1a, 1b, 1c, 1d, 1e, 1f, 1g Weak noncovalent 
interactions can be fractured and reformed in response to several 
external chemical stimuli such as light, sonication, temperature, 
mechanical force and addition of other chemical components.2a, 2b, 2c 
Chemical changes to local environments yielding fluorometric and 
colorimetric responses have been widely incorporated into sensors 
for signalling in biological media, pH and ions.3a, 3b, 3c, 3d, 3e The ligand 
design can incorporate motifs which behave as fluorescent sensors 
for Lewis acids, including protons and/or metal ions.4a, 4b 
        The 1,8-naphthalimide fluorophore has been consistently 
utilised in supramolecular chemistry as a versatile building block to 
develop diverse libraries of organic ligands and metal-organic 
motifs.5a, 5b, 5c, 5d This framework is an attractive building block due to 
ease of functionalisation and excellent photophysical properties 
which result in a wide range of applications. 6a, 6b In particular, 4-
amino-1,8-naphthalimide derivatives are popular as fluorescent 
probes due to the delocalisation that can occur from the amino 

group into the naphthalimide causing a ‘push-pull’ based internal 
charge transfer (ICT) to occur in a fluorophore-spacer-receptor 
design.7a, 7b The related 4-morpholino-1,8-naphthalimides are mainly 
used as fluorescent probes for biological systems, including in diverse 
applications in cell imaging, trace analyte detection and signalling in 
biological media but the coordination chemistry of these ligands 
remains relatively underexplored.8a, 8b, 8c, 8d 

         The preparation of supramolecular gels and their subset, 
metallogels, using low-molecular-weight-gelators (LMWGs) has been 
successfully demonstrated in various applications such as drug 
delivery, catalysis and photonics, with commercial importance in a 
range of industries.9a, 9b, 9c, 9d, 9e Stimuli responsive behaviour can be 
introduced into LMWGs containing metal binding groups (such as 
pyridine, bipyridine, triazole or carboxylate) or metal ions from 
tuning the underlaying coordination chemistry.10a, 10b, 10c, 10d, 10e A 
wealth of metallogels containing d-block metal ions have been 
reported including a nickel(II) metallogel formed from a bis(3-
pyridylimine) ligand reported by Gloe et al.,11 and a metallogel 
formed from a trimesic amide ligand induced by iron(III)/iron(II) was 
prepared by Huang et al. 12 Another nickel(II) based metallogel 
formed from a triazole ligand by Mitra et al. has illustrated the dual 
function of reversible adsorption of toxic gases and sequestion of 
heavy metal ions, via gel to gel transformations due to the dynamic 
nature of Ni-Ntriazole interactions.9b An alternative design method is 
utilising the donor-acceptor properties of the ligands to form a 
thermally responsive silver(I) gel based on charge-transfer complex 
formation which has been reported by Bhattacharya et al.13a, 13b We 
have previously reported responsive gels based various scaffolds, 
including the 1,3,5-benzenetricarboxyamide (BTA) motif, which itself 
is often functionalised to form supramolecular gelator ligands and 
can form luminescent metallogels through subsequent metalation 
with lanthanide ions.14a, 14b, 14c, 15a, 15b, 15c In another study, we 
generated a series of luminescent lanthanide metallogels from both 
2,6-bis(1,2,3-triazol-4-yl)pyridine (BTP) and pyridine-2,6-
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dicarboxamides (DPA) chelators.16a, 16b More recently, we have 
reported a reversibly formed silver(I) metallogel with a 3-pyridyl 
substituted 1,2,3-triazol-4-ly-picolylinamide (tzpa) ligand.17 
However, despite a multitude of stimuli responsive materials there 
are relatively few examples in the literature of pH responsive 
metallogels through incorporating a fluorescence sensor motif into 
the metallogels design.        
     We have recently reported a series of N-picolyl-1,8-naphthalimide 
derivatives and explored their coordination chemistry with d-block 
metal ions in the solid and solution states as well as exploited the 
structural and chemical properties of these ligands to generate a 
family of robust metallogels.18 The gels were found to be thermally 
and chemically reversible under various stimuli and similar materials 
could be generated by installing a piperidinyl substituent at the 
naphthalimide 4-position, giving intensely coloured gels. However, 
the effect of supramolecular aggregation on the photophysical 
properties of this system could not be measured.  

    Herein, we present a new study into the behaviour of these 3-
picolylimide-substituted naphthalimide derivatives with the 
synthesis of two new fluorophores N-(3-picolyl)-4-(1-morpholino)-
1,8-naphthalimide and N-(benzyl)-4-(1-morpholino)-1,8-
naphthalimide, as shown in Scheme 1, and study their 
supramolecular properties in the crystalline, solution and gel phases. 
The tunability of this system is realised in both the solution and 
gelation phases, showing that this system has future potential in the 
development and application of luminescent pH responsive 
materials.  

Results and Discussion 

Synthesis and Solid-State Characterisation of L1 – L2 

The ligands N-(3-picolyl)-4-(1-morpholino)-1,8-naphthalimide L1 and 

N-(benzyl)-4-(1-morpholino)-1,8-naphthalimide L2 were prepared 

based on modified literature procedures.18 By using morpholino 

substituted naphthalimides we envisaged analogous coordination 

chemistry to that previously observed for the N-(3-picolyl)-1,8-

naphthalimide analogues, involving either monodentate 

coordination through the pyridine nitrogen atom as well as potential 

coordination through the morpholino nitrogen or oxygen atoms to 

softer Lewis acids such as silver(I).19 However, unlike the previous 

systems, the morpholino substituent allows new observations of the 

supramolecular aggregation effect on the photophysical properties 

of the system to be investigated by improving solubility while 

maintaining electron donor capabilities. The tunability of this system 

was examined through substituting the N-position with benzylamine. 

This illustrated a structure-function relationship in the ligand design 

which can be used as a handle for developing the photophysical 

properties of this system.  

Ligands L1 and L2 were prepared in two steps from the 

commercially available 4-nitro-1,8-naphthalic anhydride as shown in 

Scheme 1. Reaction of 3-picolyl amine with 4-nitro-1,8-naphthalic 

anhydride in acetic acid at reflux for 6 hours yielded L1a and L2a in 

85% and 90% yield respectively. These could then be treated with the 

relevant amine giving the products L1 and L2 in yields 65% and 53%. 

All precursors were characterised using conventional techniques, 

and the data were consistent with that previously reported.18 The 

characteristic morpholino resonances were present at 3.91 and 3.23 

ppm for L1 and 4.04 and 3.28 ppm for L2 indicating conversion. The 

high-resolution mass spectrometry (HRMS) analysis of L1 and L2 

showed peaks at m/z= 374.1494 and m/z = 373.1547 respectively 

which corresponded to the protonated molecular ions [M+H]+.  

Single crystals of L1 suitable for X-ray diffraction analysis were 

prepared through dissolution in dilute aqueous AcOH (5 % v/v) and 

standing at room temperature for 7 days. Crystallographic data and 

refinement parameters are summarised in Table S1. The X-ray 

diffraction analysis of colourless needle crystals provided a structural 

model in the chiral monoclinic space group P21. The asymmetric unit 

contained one complete ligand molecule with four fully occupied 

water molecules per ligand molecule. The morpholino group adopts 

a chair conformation with the nitrogen atom resisting full 

planarization with the naphthalimide, being located 0.40 Å from the 

mean plane of its substituent carbon atoms.  Nonetheless, in solution 

it is expected that this group may partially conjugate with the 

naphthalimide ring, lowering its basicity compared to free 

morpholine. The 3-pyridyl substituent attached to the imide nitrogen 

 

Scheme 1: Synthesis and structure of the ligands L1 and L2. Reagents and 
conditions: (i) morpholine, DMF, 140°C 

 

 

Fig. 1: Structure of L1 with heteroatom labelling scheme. Selected hydrogen atoms 
omitted for clarity. 

 

 

Fig. 2: Extended structure of L1 featuring hydrogen bonding and π···π 
stacking interactions between adjacent ligand moieties. Hydrogen atoms 
not involved in hydrogen bonding are omitted for clarity. 

 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

atom faces outwards, with an angle around the methylene group 

(N8-C7-C5) of 112.2(3)°. The orientation of the morpholino group 

results in a complementary hydrogen bonding array between four 

fully occupied water molecules in the asymmetric unit, as illustrated 

in Fig. 2.  

The extended structure of L1 features offset symmetric face-to-

face π···π stacking interactions between adjacent naphthalimide 

rings, the distance between the rings is (C13 to C17) is 3.712 Å. There 

is also an extensive hydrogen bonding network with both ring motifs 

such as 𝑹𝟔
𝟔(𝟏𝟐) as well as chain motifs, 𝑪𝟑

𝟑(𝟏𝟗) and 𝑪𝟐
𝟐(𝟒), between 

the ligand units and the water molecules in each unit cell present.20 

These intermolecular interactions link the  naphthalimide oxygen to 

the water molecules (O19 to O32 is 2.851(4) Å), and pyridyl nitrogen 

atom to the water molecules (N1 to O30 is 2.759(4) Å) between the 

adjacent units. These interactions support the face-to-face π···π 

stacking interactions within sheets and head to tail π···π stacking 

interactions between adjacent sheets of the ligand. This is illustrated 

in Fig. 2 and Fig. S2 (ESI).  

The acentric packing in this structure relates to the steric bulk of 

the morpholino group combined with the stabilising interactions of 

the lattice solvent molecules. Previously, with other substituents 

(such as nitro or halogen groups) we see alternating positions 

between two semi-equivalent naphthalimide 4-positions, which 

often also relates to crystallographic disorder.18, 21 In the extended 

structure of L1, however, all the morpholino substituents stack on 

the same side of the naphthalimide. To limit steric clash between 

adjacent columns, the morpholine substituents are unidirectional 

along b, prohibiting the expected glide symmetry and implying some 

level of long-range ordering in the columnar arrangement of this 

species. The acentric packing also influences the hydrogen bonding 

network which orients parallel to the naphthalimide stacks. While 

only a single crystalline phase could be observed visually, PXRD 

indicated the presence of several additional microcrystalline phases 

within the bulk sample isolated from the mother liquor. We were 

unable to fully ascertain the nature of the additional phase(s), though 

several of the Bragg reflections matched those expected from a small 

quantity of morpholinium acetate (ESI Figs. S7 and S8).  

In order to probe the coordination behaviour of L1, first row 

transition metals were screened such as Co (II) chloride in 

acetonitrile, which subsequently formed a metallogel, Co-L1. The 

chemical properties of the gel were investigated (vide infra),  

including the pH responsiveness. A small quantity of single crystals of 

L1-gel were generated from acid/base additions to the Co-L1 gel. 

Following the addition of HCl (0.1M, 100 μL) and subsequently of 

NaOH (0.1M, 100 μL) and brief sonication, the gel broke into a green 

solution which upon standing for 7 days formed yellow needle 

crystals. The X-ray diffraction analysis provided a structural model of 

L1-gel in the monoclinic P21/c space group. The asymmetric unit 

contained one complete ligand molecule and no solvent molecules. 

The substituents adopt a similar conformation to those described 

above; the morpholino group adopts a chair conformation with an 

equivalent deviation from planarity for the morpholine nitrogen 

atom of 0.40 Å. The N-substituted 3-pyridyl group faces outwards 

and exhibits an equivalent angle about the methylene group of 

112.8(5)° as illustrated in Fig. 3A. 

The extended structure of L1-gel features offset head-to-tail 

π···π stacking interactions between adjacent naphthalimide rings 

with centroid – centroid distance of 3.58 Å  and a perpendicular slip 

distance of 2.17 Å. Additionally, there are edge-to-face C-H···O 

interactions in the b direction between the naphthalimide oxygen 

atoms and the adjacent naphthalimide C-H groups (O10···C14 is 

3.320(6) Å, C14-H14···O10 angle is 137.5(3)°) which forms corrugated 

layers as illustrated in Fig. 3B. The structure of L1-gel is an anhydrate, 

with no water or other guest molecules present in the lattice. The 

role of solvation is apparent here as in the absence of the water 

molecules a very different arrangement is adopted. A 

centrosymmetric packing mode is observed in this structure; 

although each column maintains a directional orientation of the 

morpholine group, adjacent columns along b are inverted with 

respect to one another. This arrangement contrasts greatly from the 

L1 hydrate structure described above and indicates that the acentric 

inter-column ordering may be mediated by the lattice hydrogen 

bonding in the hydrate. These structural changes illustrate the 

influence solvation can have on the packing mode adopted in these 

species and may be consequential for the behaviour of the 

subsequent materials.  

Single crystals suitable for X-ray diffraction analysis of L2a, the 

nitro precursor to L2, were prepared through dissolution in hot ethyl 

acetate and obtained after slow evaporation over 24 hours. The X-

ray diffraction analysis of orange block crystals provided a structural 

model in the orthorhombic Pbca space group. There is one complete 

molecule of L2a in the asymmetric unit and no solvent or guest 

 

Fig. 3: (a) Structure of L1-gel from dissolution of the gel sample. Hydrogen atoms 

are omitted for clarity. (b) Extended structure of L1 featuring offset head-to-tail 

π···π stacking interactions between adjacent naphthalimide rings. Hydrogen atoms 

are omitted for clarity. 

 

 

 

 

Fig. 4: Structure of L2a with heteroatom labelling scheme. All hydrogen 
atoms are omitted for clarity. 
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molecules present, as illustrated in Fig. 4. The extended structure of 

L2a features offset face-to-face π···π stacking interactions between 

adjacent naphthalimide rings in which adjacent naphthalimide ring 

are twisted antiparallel to one another. The mean interplanar 

distance is 3.38 Å with a slip distance of 3.13 Å. Additional C-H···O/N 

interactions provide further stabilisation to the overall architecture 

in the structure. The phase purity was determined through X-ray 

powder diffraction. The measured diffraction pattern of L2a matches 

well with the simulated powder diffraction pattern at 100 K of the 

crystal indicating that the crystallinity of the ligand was retained in 

the bulk structure and that this species crystallises as a single phase, 

as illustrated in Fig. S9, (ESI).  

Single crystals suitable for X-ray diffraction analysis of L2 were 

prepared through dissolution in hot ethyl acetate and obtained after 

slow evaporation over 24 hours. The X-ray diffraction analysis of 

yellow block crystals provided a structural model in the monoclinic 

P21/c space group. There is one complete molecule of L2 in the 

asymmetric unit and no solvent or guest molecules present within 

the lattice as illustrated in Fig. 5. Similarly, to the two phases of L1 

the morpholino group again adopts a chair conformation, though the 

nitrogen atom is slightly more planarized, residing 0.35 Å from the 

mean plane of its carbon substituents. The benzyl substituent at 

the N-position of the naphthalimide exhibits an angle about the 

methylene group (C4-C7-N8) of 113.86(15)° which is 

comparable to that observed in the 3-pyridyl morpholino 

derivative L1.  

The chosen N-substituent influences the structure 

directionality. In the L1 structures, the pyridyl nitrogen atom 

can be further implicated in C-H···N interactions as well as 

interactions with the lattice water molecules in the case of the 

hydrated ligand structure. Whereas the benzyl substituted 

ligands, L2a and L2, favour more C-H···O interactions as well as 

π···π interactions. This is particularly evident when comparing 

the calculated Hirshfeld surfaces and resultant fingerprint plots 

of each molecule (ESI Figs. S5 and S6). The extended structure 

of L2 features offset head-to-tail π···π stacking interactions 

between adjacent naphthalimide rings with a mean interplanar 

distance of 3.23 Å and a slip distance of 4.66 Å between the two 

naphthyl centroids. The large slip distance between the two naphthyl 

centroids indicates that direct interaction is only achieved at the 

periphery of the molecule. There are few significant C-H···π 

interactions that occur between adjacent ligand moieties. In addition 

to the  π···π stacking interactions another C-H···O interaction occurs 

between the naphthalimide oxygen and the adjacent benzyl 

hydrogen atom (O19···C29 is 3.294(3) Å, C28-H28B···O19 angle is 

149.9(19)°) which supports this offset conformation adopted by the 

ligand. This is illustrated in Fig. 6 and Fig. S4. The X-ray powder 

diffraction pattern of L2 matches well with the simulated powder 

diffraction pattern at 100 K of the crystal indicating the presence of 

a single phase and that the crystallinity of the ligand was retained on 

drying, as illustrated in Fig S10, ESI. 

The thermal stabilities of both L1 and L2 were probed through 

thermogravimetric analysis. Both ligands had moderate melting 

points (ca. 170 °C) and maintained stable mass in TGA until above 

this temperature. A rapid single step decomposition of L1 above 280 

°C was then observed, while a two-step decomposition was observed 

for L2 above 200 °C. This further corroborates that both ligands have 

good thermal stabilities (Figs. S12 and S13 ESI). 

Solution Studies of L1 – L2 

A UV-visible absorption study of L1 and L2 was initially carried out in 

acetonitrile following solid state characterisation of these ligands. As 

illustrated in (Fig. S14, ESI), L1 and L2 shows several absorbance 

bands in the UV region with λmax/nm (εmax  × 103/ L·mol-1·cm-1): 255 

nm (16.6 ± 0.2), 400 nm (11.1±0.1)  for L1,  and 400 nm (4.8±0.08) for 

L2. We initially attempted to determine the coordination chemistry 

of L1 and L2 in solution but addition of manganese(II) and cobalt(II) 

chloride in acetonitrile to these solutions led only to minor variations 

in the absolute absorbance intensity corresponding to build up of 

unreacted metal salt, with no significant changes to indicate that 

coordination was occurring at these concentrations.   

As previously mentioned, 4-amino-1,8-naphthalimide derivatives 

are known to be strongly coloured and fluorescent due to the ICT. 

There is a large change in dipole between the ground and excited 

states with an associated reorganization of the solvent sphere, and 

therefore the Stokes shift is solvent polarity dependent. Hence, the 

absorption and emission spectra of L1 and L2 were recorded in 

different solvents with varying polarity including CH3CN, DMSO, THF, 

CH3OH, CH2Cl2, toluene and THF. The UV-Vis absorption spectra of L1 

and L2 in both protic and aprotic solvents showed a high-energy 

transition at 250 nm assigned to the π-π* transition and a low energy 

band at 400 nm assigned to the ICT transition. The fluorescence 

emission spectra of L1 exhibited modest solvatochromism; a red shift 

in the emission maxima is observed upon increasing the solvent 

 

Fig. 5: Structure of L2 with heteroatom labelling scheme. All hydrogen 
atoms are omitted for clarity. 

 

 

Fig. 6: Extended structure of L2 featuring offset head-to-tail π···π stacking 

interactions between adjacent naphthalimide rings. Hydrogen atoms are omitted 

for clarity. 
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polarizability. In addition to this, there is a large difference in 

fluorescence intensity as the solvent polarity increases, in solvents 

such as toluene and DCM there is a high fluorescence intensity, but 

the intensity decreases significantly when the study was repeated 

with CH3OH and DMSO. For example, in toluene (ε = 2.4), L1 

exhibited blue emission at 508 nm, while in CH3CN (ε= 37.5), a 

yellow-green emission at 532 nm was observed. A similar 

solvatochromatic effect is observed for L2; in dichloromethane (ε= 

8.9), L2 exhibited blue emission at 511 nm, while in CH3CN (ε = 37.5), 

a yellow-green emission at 530 nm was observed. The Lippert-

Mataga equation was used to examine the influence of solvent on 

the emission spectra of L1 and L2.22 This is visualised in the Lippert-

Mataga plots, see Figures S15, S16 ESI). We also observed that the 

Stokes shift increased significantly from 5900 cm-1 to 6700 cm-1  and 

5700 cm-1 to 6300 cm-1 across the solvent polarity range for L1 and 

L2 respectively, in addition to the expected spectral broadening, 

consistent with the higher energy cost of solvent sphere 

reorganisation on increasing solvent polarity as illustrated in Tables 

S2 and S3 (ESI) and (Fig. 7 and Fig. S17).  

To investigate potential aggregation-induced emission (AIE) 

behaviour of L1 and L2, the UV-vis absorption spectra and 

fluorescence emission spectra were measured of CH3CN/H2O 

mixtures, with the expectation that increased water fraction would 

induce aggregation. As the percentage of H2O increased, however, 

no enhancement of fluorescence was observed. Instead, this led to a 

reduction in the observed emission intensity (ESI Figs. S18 - S20), 

implying that aggregation is likely not a mechanism for emission 

enhancement in this system, which instead is most emissive as the 

free molecule in solution. A concentration dependent fluorescence 

study of L1 and L2 over the range 1×10-4 M to 1×10-6 M was also 

carried out in both H2O and CH3CN; the normalised spectra remained 

essentially invariant over this range and no significant change to 

band shape was observed, further supporting that this system is not 

prone to AIE behaviour (ESI Figures S21, S22).  

pH Solution Studies of L1 – L2 

Following the study of the fundamental photophysical properties of 

L1 and L2 we next investigated the changes in the photophysical 

properties of the molecules in aqueous solution as a function of pH, 

by carrying out pH titrations from either acidic media to alkaline, or 

 

Fig. 7: (a) Corresponding photograph taken in room light and under UV light, (b)  UV absorption spectra of L1 in solvents of varying polarity (c) Normalised 
fluorescence spectra of L1 in solvents of varying polarity. 

 

 

 

Fig. 8: (a) UV-Vis pH titration of L1 with NaOH(aq) at 0.1 pH unit intervals and an initial HCl(aq) acid spike in 100 mM NaCl(aq) medium. (insert) Normalised absorbance (λmax = 

400nm) of the titration. (b) Fluorescence pH titration of L1 with NaOH(aq) at 0.1 pH unit intervals and an initial HCl(aq) acid spike in 100 mM NaCl(aq) medium. (Insert) Normalised 

absorbance (λmax = 400nm) and fluorescence of the titration (λex = 400nm, λmax = 550nm). 
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from alkaline to acidic media. The photophysical properties of L1 and 

L2 were first investigated as a function of pH in water, in the presence 

of 100 mM NaCl(aq) to maintain constant ionic strength. Initially at pH 

2, L1 is protonated and upon sequential additions of NaOH(aq) 

deprotonation occurs. As can be seen in Fig. 8. there are significant 

absorbance changes observed both in the high energy transitions as 

well as in the ICT band from 380 nm to 450 nm. As the pH increases 

from pH 2 to pH 12, particularly at pH 4.5-5, there is a sharp decrease 

observed in UV absorbance with no corresponding new absorbance 

bands, suggesting the removal of chromophores from solution. A 

sharp increase in fluorescence emission accompanies the change in 

protonation state. As the pyridyl group is electronically isolated from 

the naphthalimide fluorophore, this change in photophysical 

behaviour could relate to aggregation once the cation-cation 

repulsion is removed and the solubility decreases. The increase in 

fluorescence emission could also relate to an aggregation process, 

either through the accessibility of new energy transfer modes, or the 

loss of a non-radiative decay pathway relating to the change in 

protonation state.  Repeating this titration in reverse, starting in 

alkaline conditions at pH 12, L1 is deprotonated and following 

sequential additions of HCl(aq) protonation occurs in Figs. S24, S25 

ESI. A hysteresis is also evident in the absorbance response of L1 to 

pH, as illustrated in Fig. S26, ESI, as the full intensity of the 

absorbance band is not recovered until pH 2.5 in the reverse 

titration. This observation is also consistent with a phase change for 

L1 between the protonated and deprotonated forms, rather than a 

fully solution phase acid-base equilibrium. The effect of counterions 

on the system was also investigated, and the titrations were 

repeated with a HNO3(aq) spike (Figs. S27 – S30 ESI) as well as an initial 

CH3COOH(aq) spike (Fig. S31 – S34, ESI) and hysteresis in the forward 

and reverse titrations was consistently observed. We also noted a 

difference in the onset pHs as a function of counterion, further 

consistent with an aggregation/precipitation process rather than 

simple protonation equilibria.  The counterion titrations were 

repeated in pure H2O media and the same effect was observed as 

previously described (Figs. S35 – S38 for HCl(aq), Figs. S39 – S42 for 

HNO3(aq) and Figs. S43 – S46 for CH3COOH(aq).) The changes occurring 

in the ICT band could also indicate that some aggregation or slight 

dilution effects are being observed. Although photoinduced electron 

transfer (PET)-type behaviour might be expected from this class of 

fluorophore, both the direction of emission enhancement (i.e., 

higher intensity at higher pH) and the electronic isolation of the 

pyridyl nitrogen atom from the fluorophore would seem to disfavour 

such a process.  

To further investigate the effect of the pyridyl group on the pH 

responsiveness of this motif, this study was repeated with the 

analogous benzyl derivative, L2, where one of the two possible 

protonation sites is removed. Initially in acidic conditions with HCl(aq) 

spike at pH 2, L2 has an absorbance λmax at 400 nm and upon 

sequential additions of NaOH(aq), there is a gradual decrease in 

absorbance until pH 5.5. In contrast to L1, above this pH into the 

alkaline region there is the formation of a new ICT band with λmax at 

455 nm which blue-shifts and gradually increases in intensity with 

sequential additions until pH 12 (Fig. S47, ESI). This effect is 

reversible; repeating the titration initially in alkaline conditions at pH 

12, L2 has a λmax at 455nm which gradually decreases in intensity until 

pH 6 and below this pH into the acidic region there is growth of the 

original ICT band with λmax at 400 nm. The fluorescence intensity 

increases with excitation at 450 nm during the formation of this new 

band as the pH is increased (Fig. S48, ESI).  

To investigate the effect of counterions, these titrations were 

repeated with a HNO3(aq) spike (Figs. S49, S50, ESI) as well as an initial 

CH3COOH(aq) spike (Figs. S51, S52, ESI) and the same phenomenon 

was observed. However, with acetic acid the fluorescence intensity 

was invariant in the same pH range. Finally, the L2 counterion 

titrations were repeated in H2O medium and the same effect was 

observed as described above. (Figs. S53, S54 for HCl(aq), Figs. S55, S56 

for HNO3(aq) and Figs. 9 and S57 for CH3COOH, ESI). The counterion 

effect is summarised in Fig. S58, ESI.  There is variation in the 

isosbestic point in the titrations that is also indicative of aggregation. 

From the observations above it does not appear that L1 and L2 are 

undergoing a simple protonation and deprotonation process while 

remaining fully dissolved as there is both a change in the total 

absorbance with pH and a hysteresis with pH, both of which are 

anion-dependent. The degree at which this occurs changes between 

L1 and L2, which suggests it is related to the pyridine functionality 

and not isolated to the morpholine group which is strongly coupled 

to the emission properties of the naphthalimide fluorophore. 

 

Fig. 9: (a) Representative UV-Vis pH titration of L2 with additions of NaOH(aq) at 0.1 pH unit intervals and an initial CH3COOH(aq) acid spike. (b)Representative 
fluorescence pH titration (λex = 400nm) with additions of NaOH(aq) and an initial CH3COOH(aq) acid spike in H2O medium. 
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However, as no solids were observed to form in the cuvette and the 

total absorbance at higher wavelengths was not significantly affected 

by background scattering from the sample this suggests that the 

aggregates remain well dispersed, but also potentially larger than 

1μm. Therefore, this hypothesis was pursued by using Dynamic Light 

Scattering (DLS) and Scanning Electron Microscopy (SEM).  

To examine the formation of aggregates over the pH range, 

samples of L1 and L2 were prepared for DLS measurements and SEM 

at pH 4, 6 and 8 with HCl(aq), HNO3(aq) and HOAc(aq) initial acid spikes. 

The formation of micrometer-scale aggregates in solution was 

indicated as scattering occurred during the DLS measurements for 

both L1 and L2.  However, in the DLS measurements the apparent 

polydispersity index for all samples is high (> 0.4) and therefore it is 

not possible to ascertain accurate size information or draw 

meaningful conclusions on trends of the particle size between 

samples. Following this, SEM was carried out, for the solutions at pH 

4, pH 6 and pH 8 with HCl(aq), HNO3(aq) and HOAc(aq) spikes. The 

samples were deposited onto silicon wafers, evaporated under 

vacuum and subsequent imaging of the dried samples showed the 

presence of aggregates.  In the dried L1 and L2 samples initially 

spiked with HCl(aq) and HNO3(aq) at pH 4 there is the formation of 

branched aggregates  with some ordered morphology and as the pH 

increases to pH 6 there is the formation of a very high density of 

aggregates which lose their structured morphology. Upon a further 

increase to pH8 there is the formation of micrometer-scale 

aggregates which is consistent with the DLS measurements as 

illustrated in Fig. 10 and Fig. S59. In contrast to this, the dried 

CH3COOH(aq) samples for L1 and L2 have a very low number of 

aggregates at pH 4 but more aggregation occurs at pH6 and then the 

presence of micrometre-sized aggregates is observed at pH8. The 

morphology of the dried CH3COOH(aq) samples also differs from HNO3 

and HCl samples as the CH3COOH(aq) samples have a crystalline 

morphology at pH 4 and pH 6 as illustrated in Fig.10, Figs. S59 and 

S60(ESI). This further illustrates the role that the counterions play in 

the deprotonation and protonation events, correlating to the 

spectroscopic findings.  

Metallogel Formation 

From the observations above, it is evident that L1 and L2 are 

likely exhibiting various solution-phase aggregation processes which 

are sensitive to the protonation state. In order to further probe the 

supramolecular assembly characteristics of these systems we 

examined the interaction of L1 and L2 with other Lewis acids, using 

first row transition metal ions as our test case based on successful 

gelation experiments with similar compounds. By incorporating a 

fluorescent sensor motif into the metallogel design a pH responsive 

material could be generated, with potential applications in 

luminescent sensing.   

 In order to probe the coordination behaviour of L1 and L2, a 

range of solvent systems (toluene, hexane, chloroform, 

dichloromethane, ethyl acetate, acetonitrile, acetone, THF, 

methanol and mixtures of these solvents), various first-row 

transition metal ions with different counterions as well as  a variety 

of standard crystallisation techniques were screened but only 

amorphous or microcrystalline powders were generated.  

The reaction of L1 with manganese(II) (1), cobalt(II) (2) and 

nickel(II) (3) as their chloride salts in acetonitrile at 10 mM 

concentration (ca. 1.0 wt%) gave viscous, homogeneous solutions 

which set into clear and homogeneous metallogels in sealed sample 

tubes over a 48 hour period. The green cobalt and pale-yellow 

 

Fig. 10: (a) SEM image of L2 sample spiked with HNO3 at pH4 showing a branching 

morphology of aggregates, (b) SEM image of L2 sample spiked with HNO3 at pH6 

showing a higher density of aggregates (c) SEM image of L2 sample spiked with 

HNO3 at pH8 showing micrometer aggregates. 

 

 

 

 

Fig.11: (left) Co-L1 (gel 2) and Mn-L1 (gel 1) undergoing an inversion test, (right) 

SEM image indicating the fibrous morphology of the xerogel 2.  

 

Co(II) Mn(II)
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manganese gels resist inversion in wide-bore sample tubes 

indefinitely as illustrated in Fig. 11. In comparison, the nickel 

equivalent forms a considerably less robust gel and is unstable to 

inversion over a matter of seconds. This is consistent with what has 

been previously observed for this system. In contrast, reaction of L2 

under analogous conditions with the same metal salts yielded 

amorphous or microcrystalline precipitate, indicating the 

requirement for the strongly coordinating 3-picolyl group in the 

metallogel formation. The reaction of L2 with manganese(II) chloride 

was analysed by powder x-ray diffraction and the pattern matched 

the simulated of the ligand as illustrated in Fig. S10 (ESI). This 

indicated that only unreacted ligand was recovered, and no other 

(crystalline) material was formed.  

The gels were examined by thermogravimetric analysis and 

showed a residual non-volatile mass of between 1.0% and 0.9% after 

desolvation, completed by 100°C as illustrated in Figs. S61 and S62 

(see ESI). These residual masses were consistent with the combined 

masses of the gelator mixture from the original synthesis showing 

the entire solvent content is encapsulated in the continuous gel 

phase. SEM analysis was carried out on the materials after 

desolvation under dynamic vacuum. The resulting xerogels undergo 

compression into nearly homogeneous films during the drying 

process. On closer inspection, a rough texture and densely packed 

fibrous morphology can be observed, conceivably as a remnant of 

the original gel network as illustrated in Fig. 11, Fig. S63 (ESI).  

Chemical Properties  

A series of experiments were carried out to measure the response of 

the gel to external stimuli such as mechanical force, temperature or 

chemical stimuli. Thermoreversibility properties were exhibited by 

each of the gels 1 and 2. At 25°C, the gels are stable and resistant to 

inversion indefinitely. On heating, the gels revert to the sol phase, 

and re-form on standing at room temperature overnight. The gel-sol 

transition temperature Ts-g for each gel was measured by holding the 

set gels in a temperature-controlled bath in glass tubes at 45° 

inclination and slowly heating until the transition to a homogeneous 

free flowing liquid was observed. Gel 2 displayed the lower thermal 

stability, reverting to the liquid phase at 52 - 54°C. Gel 1 however 

retained its form until 74 - 76°C, these values are tabulated with 

measured wt% in Table S4 (ESI).  

 We carried out investigations into the responsiveness of the gels 

to a variety of chemical stimuli; in particular pH responsiveness. The 

pH responsiveness of the cobalt gel 2 was examined by adding an HCl 

spike (100μL, 0.1M) in which the gel broke up and turned pale green, 

as illustrated in Fig. S64. Upon addition of a NaOH spike (100μL, 

0.1M) and brief sonication to disperse the addition evenly, the 

solution turned yellow. Upon heating to 50°C the solution changed 

colour to green, when sonicated again back to yellow indicating a 

thermochromic response of the dissolved species. This study was 

repeated with H2O, after the first 100μL addition, a yellow layer 

diffused through the gel indicating the generation of free ligand and 

[Co(H2O)6] species, similarly on the second 100μL addition of H2O, 

the same observation was made. Heating and cooling lead to a 

thermochromic response through the cycled colour change from 

green to yellow solutions. 

 

Fig.12: Normalised solid-state fluorescence of the L1 metallogels, compared with 

the parent ligand, and the response to pH changes. 

 

 

 

Fig.13: Rheological studies for gel 2 prepared at 1.7 wt% in acetonitrile, showing (a) 

frequency sweep over consecutive cycles (γ = 0.1%), (b) amplitude sweep (ω = 1 rad 

s-1) and (c) recovery test at alternating 0.1% and 500% strain amplitudes. 
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These experiments were repeated with gel 1 and similarly upon 

an HCl spike (100μL, 0.1 M) the gel broke up into a yellow solution 

generating the free ligand and [Mn(H2O)6]2+ species. Subsequent 

addition of an NaOH spike (100μL, 0.1M) was added and the gel 

broke up into a yellow solution. This was repeated with H2O as 

described above and the gel is stable for 4 hours but slowly breaks 

up into a yellow solution upon standing overnight. In contrast to gel 

2, heating and cooling incited no thermochromic response. A similar 

process occurs in solution, but the colour change is not observed due 

to the weak absorbance from the manganese, which is saturated by 

the yellow absorbance from the ligand, unlike in the strongly 

absorbing tetrahedral polychloro-cobaltate ions likely present in 

solution 2 above.    

Following the pH responsiveness of the gels, a metal sequestion 

experiment was carried out. Upon addition of a (100μL, 0.1mmol) 

disodium ethylenediaminetetraacetate dihydrate (EDTA-Na2) 

acetonitrile solution broke up gel 1 into a yellow solution. Following 

this triethylamine (100μL, 0.1mmol) acetonitrile solution was added 

dropwise to the gel forming a green suspension, as illustrated in Fig. 

S65. Upon standing for 7 days single yellow needle crystals were 

formed. The crystals are a second phase of the L1-gel ligand crystals 

described above.  

The fluorescence emission of gels 1 and 2 were measured as well 

as their responses to pH through the addition of a HCl spike (100μL, 

0.1 M), NaOH spike (100μL, 0.1M) and H2O (2x100 μL) spikes to each 

sample. The normalised fluorescence spectra of gels 1 and 2 

indicated a small shift in λmax from 536 nm to 544 nm upon addition 

of HCl and NaOH. Similarly, the fluorescence was invariant with the 

first addition of H2O (100 μL) but a similar shift was observed upon 

the second addition of H2O as illustrated in Fig. 12, Fig. S66 ESI. The 

free ligand emission at pH 2 is very similar to the measured spectra 

for the 200 μL of water with a λmax of 545 nm. However, at pH 12 the 

ligand emission is blue shifted to 536 nm, which is the opposite trend 

to that observed in the gels.   

To investigate the aggregation behaviour of the metallogels, the 

solution state UV-vis and fluorescence spectra were measured of gels 

1 and 2. The normalised spectra were compared to the free ligand 

spectra measured over the range 1×10-4 M to 1×10-6 M (ESI Figs. S67, 

S68) and indicated a small shift in λem from the free ligand in H2O (520 

nm) to the gel (527 nm) to the free ligand in CH3CN (533 nm). No 

change was observed in the band shape compared to the free ligand. 

Additionally, Fourier Transform infrared (FTIR) spectroscopy was also 

used to probe the dried xerogels of 1 and 2 and compared to the free 

ligand L1. In both cases there was a small shift of approx. 8 cm-1 in 

the carbonyl C=O stretching band from 1694 cm-1 to 1686 cm-1. In gel 

1, there was also the formation of a weak band at 1739 cm-1 observed 

as illustrated in Figs. S69, S70, though no other notable changes to 

the ligand absorbances were observed. 

To measure the effect of the metal ion on the aggregation of L1, 

the UV-vis and fluorescence emission spectra was measured of 

sequential 0.2 eq. additions of cobalt(II) or manganese(II) to L1  until 

1 eq. was reached (as illustrated in Figs. S71, S72). On comparison of 

this normalised spectra to the free ligand L1 as well as spectra of gels 

1 and 2 no significant changes were observed (Figs. S69, S70).  FTIR 

spectra were also measured of dried samples of the M:L mixtures, as 

illustrated in the overlaid spectra (Figs. S73, S74) no significant 

changes were observed and the spectra remained largely similar to 

that of the free ligand.  

Rheological Studies  

Rheological studies (strain and frequency sweeps and recovery tests 

were performed on the most robust gels 1 and 2 (Mn-L1) and (Co-L1) 

to quantitatively study the mechanical properties of the metallogels. 

Each material studied was prepared using identical procedures to 

maintain equivalent ligand fractions for each sample. The gels were 

illustrated to possess viscoelastic properties often associated with 

supramolecular gel-phase materials.  

The frequency sweep for gel 2 showed the G′ prime value (1520 

Pa) which is 1300 Pa higher than the G′′ value (220 Pa), which is 

characteristic of gel behaviour. Similarly, the frequency sweep for gel 

1 showed the G′ value (1400 Pa) which is 1200 Pa higher than the G′′ 

value (200Pa), which is also characteristic of gel behaviour. Following 

this, to test the strength of the gel, strain tests were carried out.  At 

low strain amplitudes, the storage modulus, G′ and the loss modulus 

G′′, of the gel remains constant until the onset of liquid-like 

behaviour. For gel 2, the intersection of the G′ and G′′ curves 

occurred at 172 Pa with 25% strain amplitude. For gel 1, the 

intersection of the G′ and G′′ curves occurred at 130 Pa with 40% 

strain amplitude. The values of G′ and G′′ for gels 1 and 2 did not vary 

significantly with frequency under a frequency sweep in the range 

0.1 – 100 rad/s, Fig. 13, Fig. S75 (ESI).  

The recovery properties of the gels were tested in an oscillatory 

recovery test, by imposing alternating strain amplitudes of 500 % and 

0.1 % at constant 1 Hz oscillation frequency. Each of the gels 

displayed transitions from liquid-like (G′′ > G′) to solid-like (G′ > G′′) 

behaviour within ca. 100 s. While the gels do not fully recover, the 

gels recover 80% of the original low-strain values of the storage and 

the loss moduli.   

Conclusions  

We have prepared and structurally characterised two new 4-(N-

morpholinyl)-1,8-naphthalimide ligands and reported on their 

solution and gelation chemistry in response to pH and the presence 

of d-block metal ions. The solid-state characterisation of the L1 and 

L2 illustrated both the influence of solvent and substituent on the 

structure directionality. In the solution state L1 was observed to 

undergo a pH and anion-dependent aggregation process which 

contributes to a sharp increase in fluorescence emission, and a 

hysteresis effect. This indicates that the change in the absorption and 

fluorescence is not only associated with a simple protonation and 

deprotonation process but also the additional effect of 

supramolecular organization, which led to the formation of 

microparticles. The tunability of this system was examined through 

substituting the N-position with benzyl amine and in the solution 

state L2 also undergoes an aggregation process. The formation of 

aggregates over the pH range was investigated further by using DLS 

and SEM measurements which demonstrated the presence of 

micrometre-scale aggregates in solution. Following this, the 

supramolecular assembly characteristics of these systems were 

investigated by examining the interaction of L1 and L2 with other 
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Lewis acids. By using first row divalent transition metals as our test 

basis, two metallogels were generated from L1 and the gels response 

to various physical and chemical stimuli, including pH, metal 

sequestion and thermal responsiveness were examined.  The ligands 

presented here illustrate a structure-function relationship in the 

ligand design which can be used as a handle for developing the 

unique variation in photophysical properties of this system, which 

provides a future role in the design of pH responsive supramolecular 

materials.  
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