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Introduction
As exercise intensity increases, carbohydrates 
(CHO) increasingly become the primary fuel 
source for ATP production (van Loon et al., 
2001). Consequently, glycogen depletion is 
strongly correlated with the onset of fatigue 
and thus,  deter iorated performance 
(Ørtenblad et al., 2013), which highlights the 
importance of this substrate for optimal 
exercise performance. As a result, it has 
traditionally been recommended that athletes 
maintain high CHO availability before, during 
and after bouts of exercise during training and 
competition, in order to sufficiently meet the 
demands of exercise volume and intensity 

(Bartlett et al., 2015).
However, recent research has reported that 
training with low CHO availability may 
stimulate the mechanisms that bring about 
muscle adaptations more efficiently (Drust and 
Morton, 2009; Philp et al., 2012). As such, this 
method, commonly referred to as 'train low', 
has gathered significant interest in recent 
years from researchers and athletes alike 
(Burke, 2007; Jeukendrup, 2017). However, it 
has also sparked an extensive debate as to the 
optimal strategy to bring about these benefits, 
with consensus yet to be made. Thus, 
rationalising an up-to-date, comprehensive 
review of this area to determine the current
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understanding,  propose unexplored areas 
requiring future investigation and clarify the 
current recommendations for athletes.

Evidence of improved physiological adapta-
tions such as heightened cell signalling and 
gene expression related to mitochondrial 
biogenesis, activity of enzymes related to 
aerobic metabolism and lipolysis has come to 
light in train low investigations, suggesting 
suitability for athletes. However, its effect on 
performance is debated, with some studies 
showing ergogenic effects (Hansen et al., 
2005; Marquet et al., 2016a, 2016b), and 
others finding no such benefits (Yeo et al., 
2008; Morton et al., 2009; Hulston et al., 
2010). The uncertainty regarding the 
ergogenic effects of this technique may be 
owed to the potential for maladaptations, as 
reduced training intensity (Yeo et al., 2008; 
Hulston et al., 2010), attenuated glycogen 
utilisation (Peters et al., 2001; Stellingwerff et 
al., 2006), heightened protein oxidation 
(Howarth et al., 2010) and worsened immunity 
(Gleeson et al., 2001) have all been reported.

The muscle glycogen content required to 
deliver optimal physiological adaptations from 
low CHO training generally ranged from 100-
300 mmol/kg dry weight (dw) before 
commencing exercise in previous train low 
experiments that measured glycogen levels, 
according to Impey et al. (2018). This review 
deemed that starting training with ~ < 350 
mmol/kg dw muscle glycogen concentration 
constituted low CHO availability, though some 
investigations did not quantify pre- and/or 
post-exercise glycogen concentration. 
Methods to instigate low CHO availability 
include a low CHO diet (Gleeson et al., 2004), 
training twice daily with no feeding between 
sessions (Hansen et al., 2005; Yeo et al., 2008; 
Cochran et al., 2010; Hulston et al., 2010), no 
CHO during recovery (Pilegaard et al., 2005) 
and training after an overnight fast 
(Wojtaszewski et al., 2003; Bartlett et al., 
2013; Psilander et al., 2013; Lane et al., 2015; 
Marquet et al., 2016a, 2016b). 

This strategy has been argued to require a 
'periodised' training schedule (Jeukendrup, 
2017), in which selected training sessions are 

undertaken with low CHO availability, with a 
subsequent increase in CHO in order to support 
performance in high-intensity sessions, as well 
as during competition (Baar and McGee, 2008). 
Hence, also being termed as 'train low, 
compete high' (Hansen et al., 2005). This is an 
important consideration for elite athletes who 
rely on physical strength, agility and 
endurance for optimal performance in 
competitive activity, which could be 
influenced by inadequately planned nutritional 
adjustments (Laquale, 2009). This is in 
contrast to recreational performers, who 
perform at an inferior level of intensity and 
therefore do not require specific sports 
nutrition (Laquale, 2009).
Due to the lack of consensus regarding the 
ergogenic benefits of 'train low' and how best to 
implement it, it is necessary to elucidate the 
recommendations for athletes in light of the 
current research. Therefore, this review aimed 
to determine whether training with low CHO 
availability brings about physiological 
adaptations and improvements in endurance 
performance.

Physiological Adaptations
Recent research shows that CHO is not only 
utilised as a source of fuel for cell energy 
production, but also as a key regulator of 
several intracellular signalling processes, thus, 
suggesting that CHO can exert a significant 
influence on the physiological adaptations 
experienced from exercise (Baar and McGee, 
2008). Following this discovery, researchers 
have attempted to manipulate CHO feeding to 
elucidate the optimal level of CHO availability 
to br ing about des ired adaptat ions. 
Subsequently, research has examined the 
effect of the ' train low'  strategy on 
physiological adaptations such as cell 
signalling, gene expression, enzyme activity 
and fat oxidation.

Training with low CHO availability can enhance 
muscle cell signalling pathways, as it has been 
shown to initiate increased activity of 5' AMP-
activated protein kinase (AMPK), compared to 
higher levels of CHO availability (Wojtaszewski 
et al., 2003; Cochran et al., 2010; Yeo et al., 
2010; Bartlett et al., 2013; Lane et al., 2015). 
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AMPK is known as the master regulator of 
metabolism, and can be activated by a number 
of conditions, including calorie restriction, and 
most notably, insufficient glycogen availability 
(Cantó and Auwerx, 2009). Activation of this 
particular signalling pathway is generally 
accepted to initiate greater expression of the 
gene peroxisome proliferator-activated 
receptor-γ  coactivator 1-α  (PGC-1α) 
(Thirupathi and De Souza, 2017), which is the 
master regulator of mitochondrial biogenesis. 
Thus, activation of the AMPK-PGC-1α pathway 
may be vital for physiological adaptations to 
aid endurance performance (Cantó and 
Auwerx, 2009).

Correspondingly, research finds that 'train low' 
also increases PGC-1α gene expression in 
comparison to higher levels of CHO availability 
(Bartlett et al., 2013; Psilander et al., 2013), 
although Lane et al. (2015) observed similar 
increases to controls. This heightened PGC-1α 
expression may have caused its translocation 
into  the nucleus,  to  t ranscr ibe key 
transcription factors such as nuclear 
respiratory factor (NRF) 1 and NRF2, 
consequently activating the mitochondrial 
protein known as mitochondrial transcription 
factor A (TFAM) (Wu et al., 1999; Liang and 
Ward, 2006; Safdar et al., 2011). TFAM is 
capable of transcribing and replicating 
m i t o c h o n d r i a l  D N A t o  b r i n g  a b o u t 
mitochondrial biogenesis (Picca and Lezza, 
2015) ,  thus  lead ing  to  increases  in 
mitochondrial mass and therefore the ability of 
cells to undergo aerobic mitochondrial 
respiration (Lin et al., 2005). This may exert an 
ergogenic effect on performance as greater 
aerobic capacity is correlated with greater 
endurance capacity during exercise. This 
heightened PGC-1α gene expression is most 
likely a result of the corresponding increase in 
AMPK activity after 'train low' also observed by 
both Bartlett et al. (2013) and Lane et al. 
(2015), as AMPK tightly regulates the 
expression of PGC-1α (Thirupathi and De 
Souza, 2017). 

'Train low' also influences the activation of 
enzymes involved with oxidative metabolism, 
as significant increases in citrate synthase (CS) 
activity have been observed compared to 
controls in 'train low' trials (Hansen et al., 

2005; Yeo et al., 2008), even though Gejl et al. 
(2014) only found a similar increase to 
controls. Though, this may be explained by 
CHO availability being too high to effect cell 
signalling in Gejl et al. (2014), at 431 
mmol/kg/dw post-exercise in the 'train low' 
group. CS catalyses the conversion of acetyl-
coenzyme A and oxaloacetate into citrate and 
coenzyme A, which is the essential initial stage 
of the tricarboxylic acid (TCA) cycle (Akram, 
2014). The TCA cycle is a key biochemical 
pathway involved in aerobic metabolism, 
therefore, increases in CS activity may 
upregulate the TCA cycle activity, and 
consequently heighten aerobic energy 
contribution, which is directly reflective of 
greater endurance capacity. 

Additionally, improvements in cytochrome c 
oxidase subunit IV (COX IV) enzyme activity 
have been detected after 'train low' 
interventions (Yeo et al., 2008; Bartlett et al., 
2013), although Cochran et al. (2010) observed 
only similar increases in COX IV to controls. 
COX IV is the conclusive enzyme in the electron 
transport chain, where it transfers electrons 
into molecular oxygen (O2), and further 
reduces this to water within the inter-
membrane space of the mitochondria, which 
facilitates the reactions which bring about 
subsequent ATP resynthesis (Hüttemann et al., 
2012). Thus, heightened COX IV activity can 
augment the rate of mitochondrial oxidative 
phosphorylat ion, again indicative of 
heightened endurance potential during 
exercise (Levy and Deutschman, 2007). The 
increased activity of CS and COX IV is most 
likely a result of the initiation of the AMPK 
pathway, and thus, activation of PGC-1α after 
'train low', as PGC-1α is a major regulator of 
both of these enzymes (Benton et al., 2008).

Also,  increased  β-hydroxyacyl-CoA 
dehydrogenase (β-HAD) activity has been 
reported in 'train low' studies (Hansen et al., 
2005; Yeo et al., 2008; Cochran et al., 2010; 
Hulston et al., 2010), but with only Gejl et al. 
(2014) finding a similar increase in β-HAD 
activity to the control trial. β-HAD is a vital 
enzyme in fatty acid metabolism, as it 
catalyses the penultimate stage of fatty acid β-
oxidation, which is the oxidation of 
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straight-chain 3-hydroxyacyl-CoA (Jain et al., 
2012). Hence, an increase in the activity of this 
enzyme may explain the corresponding 
significant increases in lipid oxidation after 
'train low' observed by Yeo et al. (2008) and 
Hulston et al. (2010). This adaptation reduces 
glycogen dependence, conserving substrates 
for later application, which has been suggested 
to prolong the duration of endurance 
performance (Fan et al., 2017). This could also 
suggest that these studies instigated a fat-
adapted state, in which fat oxidation is 
chronically increased, even when higher CHO 
levels are returned (Burke et al., 2017). 
However, research is equivocal regarding fat 
oxidation, as Marquet et al. (2016a, 2016b) 
found no difference in lipolysis between 
glycogen availability levels. This may be due to 
differences in study design, as Marquet et al. 
(2016a, 2016b) utilised training after an 
overnight fast, alongside a periodised, CHO-
matched training schedule, with only low-
intensity sessions undertaken in a low CHO 
state, which may have prevented chronic fat-
adaptation.

Ergogenic Effects 
Desp i te  the  numerous  phys io log ica l 
adaptations observed, studies by Yeo et al. 
(2008) and Hulston et al. (2010) found no 
significant differences in the improvement in 
performance of cycling time trials performed 
with fully replenished CHO between train low 
groups and control groups of well-trained 
cyclists. This may be a result of 'train low' being 
utilised for high-intensity training sessions, in 
which glycogen depletion is a limiting factor of 
performance (van Loon et al., 2001), hence the 
corresponding decline in training intensity 
which was also observed in the low CHO groups 
in both of these studies. Therefore, this may 
actually display some efficacy of 'train low' to 
still improve performance levels from baseline 
despite a greater disruption to high-intensity 
training than controls.

Similarly, recreationally active males also saw 
no significant differences in the improvement 
in performance of high-intensity exercise with 
fully replenished CHO between 'train low' and 
controls in a study by Morton et al. (2009), 
despite also observing improved aerobic 
enzyme activity. The lack of an ergogenic 

effect observed by Morton et al. (2009) may be 
explained by the possibility that the 
performance of the high-intensity exercise 
test adopted to determine ergogenic 
improvement is not aided by the aerobic 
nature of the adaptations exerted via the 'train 
low' strategy. Also, similarly to the protocol of 
Yeo et al. (2008) and Hulston et al. (2010), 
'train low' was utilised for high-intensity 
training sessions (90% Vo  max) (Bacon et al., 2

2013) in which glycogen depletion is a limiting 
factor (van Loon et al., 2001), and thus, may 
have also deteriorated training intensity. 
However, caution must be taken when 
generalising the results of recreational 
performers, as the CHO requirements of elite 
athletes far exceeds those of a recreational 
performer (Tarnopolsky et al., 2005; Laquale, 
2009).

Nonetheless, in untrained individuals, 'train 
low' improved endurance performance of a 
single-leg cycle ergometer-knee extensor 
exercise task to exhaustion after CHO was fully 
replenished (Hansen et al., 2005). Despite this, 
the untrained sample and the simple nature of 
the exercise may inhibit the extrapolation of 
the data to trained athletes, and practical 
sporting contexts, respectively. In answer to 
this, more recent research revealed that a 
periodised, 'train low' intervention improved 
performance of both supramaximal cycling and 
10km running time with replenished CHO 
availability in trained triathletes (Marquet et 
al., 2016a). The same research group also 
observed that the same protocol improved the 
performance of both submaximal and time-
trial cycling with replenished CHO availability 
in trained cyclists (Marquet et al., 2016b), 
despite no increases in fatty acid oxidation 
observed in either study. However, no further 
physiological measures were observed in these 
investigations, alongside no measurement of 
pre- or post-exercise muscle glycogen content 
during 'train' low sessions, thus necessitating 
some speculation as to the mechanisms behind 
these ergogenic effects, and limiting the 
potential for reproduction of the study 
protocol.

The contrast between the results of Marquet et 
al. (2016a, 2016b) and those of Hulston et al.
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(2010), Yeo et al. (2008) and Morton et al. 
(2009) may be due to the periodised training 
schedule by Marquet et al. (2016a, 2016b), 
which only utilised 'train low' during low-
intensity sessions in which training intensity is 
not deteriorated by CHO deficiency. It may also 
be due to the same total volume of CHO being 
consumed between experimental groups (6 
g/kg body mass/day), just consumed at 
different times. This could explain why 
participants in Marquet et al. (2016a, 2016b) 
did not become fat-adapted via increased 
lipolysis. Chronic fat-adaptation in Yeo et al. 
(2008), Morton et al. (2009) and Hulston et al. 
(2010) could have had a deleterious effect on 
their ability to utilise CHO when replenished, 
as fat-adaptation attenuates pyruvate 
dehydrogenase (PDH) activity via pyruvate 
dehydrogenase kinase-4 (PDK4) upregulation. 
In addition, the efficiency of ATP production 
could be impaired, as the metabolism of fats is 
less economic than CHO, consequently 
inflating the O2 cost of ATP resynthesis at a 
given work rate, driving attainment of VO2max 
and premature fatigue (Stellingwerff et al., 
2006; Burke et al., 2017). Hence, this could 
explain why performance improvements were 
no different to controls in Yeo et al. (2008), 
Morton et al. (2009) and Hulston et al. (2010), 
despite the observat ion of  valuable 
physiological adaptations in the 'train low' 
groups.

Limitations of 'Train Low’
'Train low' can reduce exercise intensity due to 
substrate deficiency (Havemann et al., 2006) 
and reduce muscle contraction as a result of 
compromised calcium regulation (Gejl et al., 
2014). Consequently, this may not induce a 
high enough overload to see various 
adaptations occur, and also significantly 
worsen technical and tactical training 
performance (Baar and McGee, 2008). This 
may explain the decline in training intensity 
seen in the 'train low' studies of Yeo et al. 
(2008) and Hulston et al. (2010). However, 
periodisation of 'train low' to solely low-
intensity sessions (Jeukendrup, 2017), CHO 
mouth rinse (Kasper et al., 2016) and caffeine 
supplementation (Silva-Cavalcante et al., 
2013) have been recommended to counteract 
this performance deficit.

Training in this CHO-restricted state also 
increases cortisol production and reduces 
antibody production and lymphocyte 
proliferation, thus potentially leading to a 
transient period of immunosuppression and 
consequent heightened infection risk (Gleeson 
et al., 2001). An illness may enforce an 
involuntary reduction in training frequency, 
and each week of unfinished planned training is 
understood to decrease the probability of 
success by 26% in elite athletes (Raysmith and 
Drew, 2016). Therefore, excessive use of this 
strategy may best be avoided in order to 
p r o te c t  t he  immun i t y  o f  a t h l e t e s . 
Nevertheless, these effects could be 
neutralised via supplementation with 400 to 
2,000 IU/day vitamin D, which has been 
demonstrated to protect against the 
occurrence of respiratory tract infections 
(Charan et al., 2012; Rondanelli et al., 2018), 
as well as 80 to 207 mg/day zinc, which has 
been proven to limit the duration of 
respiratory tract infections following their 
onset (Hemilä, 2017; Rondanelli et al., 2018).
Exercising with low CHO availability increases 
protein metabolism, meaning prolonged 
exercise in this state could cause a reduction in 
skeletal muscle mass (Howarth et al., 2010). As 
maximal muscle force output is heavily reliant 
upon skeletal muscle mass, this process of 
sarcopenia may deteriorate exercise 
performance (Reid and Fielding, 2012). 
Though, this effect could be offset by merely 
increasing protein intake to stimulate greater 
muscle protein synthesis following exercise 
(Burke et al., 2011; Taylor et al., 2013). 

As previously discussed, 'train low' may lead to 
reduced levels of the enzyme PDH when 
p e r f o r m i n g  w i t h  r e p l e n i s h e d  C H O 
(Stellingwerff et al., 2006). This is likely due to 
a corresponding increase in pyruvate 
dehydrogenase kinase-4 (PDK4) activity, as 
observed after training with low CHO 
availability (Peters et al., 2001; Pilegaard et 
al., 2005; Bartlett et al., 2013; Lane et al., 
2015), because activation of this enzyme is 
widely understood to blunt PDH activity. PDH 
catalyses the conversion of pyruvate into 
acetyl-coenzyme A, which is the crucial 
antecedent of the TCA cycle known as the link 
( reaction. Therefore, this PDH downregulation 
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may attenuate the use of glycogen for aerobic 
ATP production, thus necessitating a greater 
reliance on either less efficient fat oxidation or 
metabolite-producing glycolytic metabolism, 
both of which can be detrimental to endurance 
performance (Jeong et al., 2012). However, 
this PDH attenuation could be counteracted by 
s imply ensur ing sufficient dai ly  CHO 
consumption (Stellingwerff et al., 2006), but 
periodising intake throughout the day to avoid 
ingestion near to 'train low' sessions, as in 
Marquet et al. (2016a, 2016b).

Studies have generally failed to blind subjects 
of  intervent ion  group appointment, 
potentially enabling the emergence of placebo 
effects (Impey et al., 2018). For instance, 
participants may have had pre-conceived 
biases about the intervention, potentially 
impacting their effort levels, hence the 
reduction in training intensity in many 'train 
low' investigations (Halson and Martin, 2013). 
Though, blinding of CHO intake may prove 
challenging, particularly during investigations 
utilising a pre- or post-exercise fasting period.
 
The physiological adaptations incurred in the 
previously discussed studies may be a result of 
a potential calorie restriction, rather than CHO 
restriction (Impey et al., 2018). It is widely 
accepted that a negative energy balance 
increases levels of AMP and ADP, which can also 
elicit enhanced AMPK expression (Hardie and 
Sakamoto, 2006). Therefore this could have 
provided the mechanism behind the enhanced 
PGC-1α activity and subsequent desirable 
adaptations. Alternatively, any potential 
calorie restriction may have also reduced body 
mass, which has been argued to benefit 
endurance performance via an improved 
efficiency of movement and enhanced 
thermoregulation, and thus may explain any 
performance gains (O'Connor and Slater, 2011). 
However, until specific studies are undertaken 
to confirm this mechanism, generalisations 
must be taken with caution.

As well as peripheral adaptations such as 
mitochondrial biogenesis, optimal endurance 
performance also requires central adaptations 
such as heart hypertrophy, in order to augment 
cardiac output and thus muscle O2 supply, 

substrate delivery and metabolite clearance 
(Sharma et al., 2000). In order to bring about 
this adaptation, one must exercise at an 
intensity which elevates heart rate and blood 
pressure for prolonged periods, thus increasing 
the physical demand on the heart (Fagard, 
2003). As 'train low' restricts the ability to 
exercise at high intensities (Yeo et al., 2008; 
Hulston et al., 2010), it could be argued that 
the required heart rate isn't reached, or is not 
sustained for long enough to produce cardiac 
hypertrophy (Impey et al., 2018). Therefore, 
to avoid preventing other key adaptations, 
athletes should periodise 'train low' to solely 
low-intensity sessions and/or employ this 
training method in moderation.

Conclusion
Regarding the physiological adaptations 
incurred following exercise (e.g. improved cell 
signalling, greater gene expression and greater 
activation of oxidative enzymes), it is 
evidently advantageous for athletes to train 
with low CHO availability. However, it is still 
contended whether this translates to 
improvements in endurance performance. It 
appears that studies which employ 'train low' 
for higher-intensity sessions or without 
matched total CHO feeding, observe worsened 
training intensity, as well as greater fat-
adaptation, potentially impairing glycogen 
utilisation (Peters et al., 2001) and exercise 
efficiency (Burke et al., 2017). This could 
explain the corresponding absence of 
performance improvements greater than those 
of controls, despite observing other useful 
adaptations (Yeo et al., 2008; Morton et al., 
2009; Hulston et al., 2010). Whereas studies 
which periodised 'train low' to only low-
intensity sessions and employed matched total 
CHO feeding, observed no such decline in 
training intensity, alongside no increase in fat 
oxidation, and significant performance 
enhancements compared to controls (Marquet 
et al., 2016a, 2016b). This may imply that if 
athletes and/or coaches are to utilise the 'train 
low' strategy, they should do so only in low-
intensity sessions, alongside sufficient daily 
CHO intake.
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Athletes should also avoid training too 
intensely and frequently with low CHO 
availability, in order to avoid the risk of the 
p r e v i o u s l y - m e n t i o n e d  p o t e n t i a l 
maladaptations (e.g. immunosuppression and 
disproportionate protein metabolism) 
(Gleeson et al., 2001; Howarth et al., 2010), 
and to ensure that central adaptations are not 
compromised (Impey et al., 2018). Lastly, 
athletes should also implement nutritional 
strategies during 'train low' by ingesting 
caffeine (Silva-Cavalcante et al., 2013) and/or 
utilising CHO mouth rinse (Kasper et al., 2016) 
to offset decreases in exercise intensity, 
consuming added protein to counteract 
heightened protein oxidation (Burke et al., 
2011; Taylor et al., 2013) and supplementing 
with vitamin D and/or zinc to negate 
immunosuppression (Rondanelli et al., 2018).

Although suggestions can be made to prescribe 
the best nutritional practice for athletes, a 
lack of concrete evidence for both the 
ergogenic efficacy, and optimal method of 
delivery of 'train low' remains evident, 
necessitating some speculation. Thus, this 
research field  s t i l l  requi res  further 
investigation before conclusive athlete 
guidelines can be distributed. Future research 
should directly compare the physiological and 
ergogenic effects of training between an 
intervention utilising 'train low' for higher-
intensity  sess ions,  and a per iodised 
intervention only utilising 'train low' for low-
intensity sessions within one comprehensive 
study, to better determine the mechanisms 
behind greater ergogenic improvements 
observed in periodised interventions. Also, 
future investigations should replicate the 
periodised, CHO-matched protocol of Marquet 
et al. (2016a, 2016b), but supplement this with 
further physiological measures such as cell 
signalling, gene expression and enzyme 
activity to better determine the mechanism 
that contributed to the ergogenic effects. 
Lastly, further studies are required to better 
understand how best to periodise 'train low' 
across all training cycles, including broader 
mesocycles such as pre-season and the 
competitive season.
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