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Abstract
Dissolved organic matter (DOM) is a complex mixture of carbon-containing compounds. The low-molecular

weight (LMW) fraction constitutes thousands of different compounds and represents a substantial proportion of
DOM in aquatic ecosystems. The turnover rates of this LMW DOM can be extremely high. Due to the chal-
lenges of measuring this pool at a molecular scale, comparatively little is known of the fate of LMW DOM com-
pounds in lotic systems. This study addresses this knowledge gap, investigating the microbial processing of
LMW DOM across 45 sites representing a range of physicochemical gradients and dominant land covers in the
United Kingdom. Radioisotope tracers representing LMW dissolved organic carbon (DOC) (glucose), dissolved
organic nitrogen (DON) (amino acid mixture), dissolved organic phosphorus (DOP) (glucose-6-phosphate), and
soluble reactive phosphorus (SRP, measured as orthophosphate) were used to measure the microbial uptake of
different DOM compounds in river waters. The amount of DOM biodegradation varied between different com-
ponents (DON ≥ DOC > DOP), with the rate of turnover of all three increasing along a gradient of N and P
enrichment across the range of sites. Conversely, the uptake of SRP decreased along this same gradient. This was
ascribed to preferential utilization of DOP over SRP. Dominant land cover had a significant effect on DOM use
as a resource, due to its control of nutrient enrichment within the catchments. We conclude that nutrient
enrichment of river waters will lead to further DOM removal from the water column, increased microbial
growth, and a decrease in stream oxygen saturation, exacerbating the effects of eutrophication in rivers.

Dissolved organic matter (DOM) is a complex mixture of
chemicals, traditionally defined as organic carbon (C)-
containing compounds that can pass through a 0.45 μm filter
(Thurman 1985; Akkanen et al. 2012). DOM constitutes a key
form in which terrestrially derived C is transported from head-
waters, through the catchment hydrological network and into
the marine environment. It has been estimated that ~ 33% of
terrestrial C is exported to the ocean in this way (Stutter et al.

2018). In addition to C, DOM also contains nitrogen (N) and
phosphorus (P), which are together considered to be the three
major nutrients required by freshwater organisms (Tipping
et al. 2016). DOM therefore represents a key source of nutri-
ents for microorganisms and plants along the aquatic gradient
(Kirchman 2003; Cuss and Guéguen 2015). Further, recent
research has shown that DOM quality and quantity can
change from source to sea suggesting that components of the
DOM pool are abiotically and biotically transformed during
transit (Battin et al. 2008; Massicotte and Frenette 2011;
Ejarque et al. 2017).

DOM is a highly complex mixture composed of tens of
thousands of individual compounds differing in size, charge,
and solubility. Broadly, DOM can be divided into two size cat-
egories, namely those compounds that are of high molecular
weight (HMW; > 1000 Da) and those that are of low
molecular weight (LMW; < 1000 Da) (Cui and Choo 2013).
High-molecular weight DOM, typically lignin and lignin-
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derived breakdown products from woody debris, is considered
to be relatively recalcitrant and not readily degraded by the
microbial biomass (Zhang et al. 2017). Therefore, it is often
present at high concentrations, particularly in peat-rich head-
water catchments. It can, however, have an abiotic function,
reducing light attenuation in the water column due to its
chromophoric properties, shielding the microbial biomass,
and extracellular compounds from UV degradation (Fellman
et al. 2010) and is readily broken down through
photodegradation to release lower MW compounds to the
river ecosystem as the material moves downstream (Cory and
Kling 2018; Bowen et al. 2019). In general, LMW DOM
(e.g., sugars, organic acids) is present in lower amounts
(ca. 20% of the total DOM pool) in rivers draining from natu-
ral and seminatural landscapes, rising in waters draining
through urbanized and intensively farmed agricultural land-
scapes (Yates et al. 2019b) but is often more labile and rapidly
metabolized by the microbial biomass (Dawson et al. 2001).
This makes the measurement of this fraction both important,
as the LMW DOM pool is an important component of in-
stream C, N, and P processing and biotic uptake, as well as
technically challenging (Lutz et al. 2011; Salcher et al. 2013;
Parr et al. 2014). In natural and seminatural systems, individ-
ual LMW DOM compounds (e.g., amino acids) are present at
very low concentrations in freshwaters (1–10 nmol L�1; Marie
et al. 2015; Hor�n�ak et al. 2016). These concentrations are close
to the influx-efflux equilibrium point for microbial transport
systems (i.e., point of zero net flux). It is unclear, however, if
this is a reflection of low rates of LMW DOM input or whether
it is due to high rates of consumption, especially for a wide
range of compound classes and freshwater types.

In contrast, as systems become nutrient enriched through
anthropogenic activity LMW DOM compound concentrations
increase, this will exceed the equilibrium point and stimulate
higher rates of microbial consumption (Sirivedhin and
Gray 2005). The aim of this study was therefore to: (1) com-
pare the rate of microbial uptake of LMW forms of DOC
(sugars), DON (amino acids), and DOP (sugar phosphates) at
different times of the year in 45 individual rivers draining
through landscapes with a range of physicochemical proper-
ties and land covers; (2) determine which physicochemical
parameters best correlated with DOC, DON, and DOP uptake,
and (3) compare the rates of DOP and inorganic P (SRP) use
by the microbial community. The results of the study were
then used to evaluate how DOM and SRP are processed across
catchment-scale gradients of disturbance and nutrient
enrichment.

Materials and methods
Field site and sampling

Samples were collected from 45 rivers across five contra-
sting land covers (arable, grasslands, conifer forests, peatland,
and mixed agricultural) in the Conwy catchment, North

Wales, and the Nadder Catchment, a subcatchment of the
well-researched Hampshire Avon catchment in Southern
England (Jarvie et al. 2005; Pirani et al. 2016; Fig. 1). This was
undertaken alongside regular monitoring of all sites between
February 2015 and December 2016, detailed methods are give
in Yates et al. (2019b). The sites selected encompass a wide
range of chemical and physical gradients and contain a range
of dominant land covers spanning from natural and seminatu-
ral ecosystems to moderately and intensively farmed improved
agricultural grassland with settlements discharging septic tank
and sewage effluent to the rivers (Emmett et al. 2016; Lloyd
et al. 2019; Yates et al. 2019a).

The Conwy catchment (Fig. 1a) covers an area approxi-
mately 580 km2, draining a wide range of land-cover types,
and is underlain by Silurian siltstones, mudstones and slate to
the east and older, more resistant Ordovician rocks to the
west. The lithology has a low permeability and soils are acidic.
Land cover in this part of the catchment comprises the
Migneint, one of the largest areas of upland blanket peat bog
in Wales in its headwaters, together with acid grasslands,
coniferous plantations, and broadleaf forests. The lower half
of the catchment is underlain by Ordovician mudstones, silt-
stones, and sandstone with a lower relief, with acidic to neu-
tral soils supporting lowland improved grassland used for
moderately intensive agricultural production primarily sheep
farming, before entering the Irish Sea (Cooper et al. 2014;
Emmett et al. 2016; Brailsford et al. 2019a). The Nadder catch-
ment covers a larger area (673 km2; Fig. 1b). In its headwaters,
the Nadder is underlain by Gault Clay and Upper Greensand,
supporting intensive cattle production on its neutral to
slightly alkaline clay soils, while the Wylye, its major tribu-
tary, is underlain by Cretaceous Chalk, is heavily influenced
by groundwater recharge, and supports intensive arable pro-
duction on calcareous brown earths (Yates and Johnes 2013;
Yates et al. 2019b). This range of landscape characteristics and
resulting land cover and use provided a gradient of sites rang-
ing from C-rich, highly acidic soils to mineral calcareous soils,
from high natural organic matter (NOM) to low NOM sys-
tems, and from low N and P to high N and P flux in either dis-
solved organic, particulate, or soluble inorganic form. Land
cover similarly varied from woodland to heathland, and acid
grassland to intensively fertilized and manured improved
grassland, and mineral soils supporting arable production with
no crop cover for much of the year. Each would generate a dif-
ferent DOM profile from its contributing sources to the rivers
draining each landscape type (Yates et al. 2019b). Sites for this
suite of experiments were selected to reflect these gradients.
Details on site characteristics are given in the Supporting
Information Table S1.

At each site, 1 L midstream samples were manually col-
lected in acid-washed, high density polyethylene bottles. The
pH, electrical conductivity (EC), and water temperature were
measured at the time of collection. For the laboratory studies,
the samples were kept cool (ca. 4�C) in the dark from the
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point of collection and during transportation to the laboratory
where they were placed in cold storage. Chemical analyses
were conducted, and experiments commenced within 24 h of
sample collection (see Yates et al. 2019b for detailed methods).

Nutrient depletion experiment
To evaluate DOC, DON, DOP, and SRP depletion across the

samples, individual samples were spiked with either: (1) 14C-
labeled glucose; (2) a mixture of 14C-labeled free amino
acids; (3) 14C-labeled glucose-6-phosphate; or (4) 33P-labeled
PO4

3�, respectively. For each treatment, three independent
replicate 25 mL samples from each of the 45 sampling sites
were added to sterile 50 mL polypropylene centrifuge tubes
(Corning, New York, U.S.A.) and spiked with individual radio-
isotope (0.2 mL, 0.2 kBq mL�1

final activity). The radioiso-
topes were added at low concentrations (< 1 nmol L�1) which
would be unlikely to increase the background pool of the

target compound or change its pH (Brailsford et al. 2017).
After sealing with sterile caps, samples were incubated on an
orbital shaker (200 rev min�1) in the dark at 10�C for the dura-
tion of the experiment.

After incubation for 2, 5, 24, 48, 72, 144, or 168 h,
1 mL subsamples were removed, centrifuged to remove
microbial cells (20,817 � g, 5 min), and 0.5 mL superna-
tant added to a plastic 7 mL scintillation vial (Meridian
Biotechnologies, Tadworth., UK). The subsamples were
then acidified with 0.1 mol L�1 HCl (50 μL), vortexed, left
to stand for 3 h and then vortexed again to remove any
dissolved 14CO2 present. The subsample was then mixed
with Optiphase HiSafe 3 scintillation cocktail (4 mL;
PerkinElmer, Waltham, Massachusetts, U.S.A.) and the 14C
or 33P quantified on a Wallac 1404 liquid scintillation
counter with automated quench correction (Wallac EG&G,
Milton Keynes, UK).

Fig. 1. Sampling locations across (a) Conwy and (b) Nadder catchments. Inset shows catchment locations in relation to the UK. Red boundaries repre-
sent catchments with > 50% dominance of a single land cover. Catchment reach structures were determined using ArcGIS Hydrology toolbox (Version
10, Redlands, California, U.S.A.) based upon digital elevation models provided by EDINA Digimap.
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Statistical analysis
The physicochemical parameters used in the analysis

included DOC (mg C L�1), total nitrogen (TN) (mg N L�1),
DON (mg N L�1), NO3-N (mg N L�1), NO2-N (mg N L�1),
NH4-N (mg N L�1), total phosphorus (TP) (mg P L�1), DOP
(mg P L�1), SRP (mg P L�1, measured as PO4-P), pH, and EC
(μS cm�1). All physicochemical parameters were tested for nor-
mality using the Shapiro–Wilk test. Nitrate and DOC were
log10 transformed to pass the normality test. The percentage
depletion at 24 h was used for comparison as this captured the
linear phase of the degradation curve for the majority of sites
and radioisotope tracers used. A one-way ANOVA with Tukey
pairwise comparisons was undertaken for the 24 h depletion
data using Minitab v18.0 with p < 0.05 as the cutoff for statis-
tical significance (Minitab, State College, Pennsylvania,
U.S.A.). Canonical correspondence analysis (CCA) of physico-
chemical parameters for the 45 sites and mean radioisotope
tracer depletion data was conducted using the envfit function
in the Vegan package (R version 4.0.3; Oksanen et al. 2018; R
Core Team 2019). Environmental data were scaled to unit vari-
ance when applying the CCA. To note, the results from the
experiments repeated over the four seasons were averaged
together as season was not found to be a major driver of the
differences between sites during initial analyses and many
sites did not exhibit distinct variation between seasons (Sup-
plementary Document 1). The significance of the ordination
was tested using a permutation test. The coordinates resulting
from the CCA analysis were plotted using the ggplot2 package
(Wickham 2016). Arrow/vector length and position provide
information about the relationship between the environmen-
tal variables and the axes, with arrows parallel to axis orienta-
tion indicating a correlation and the length of the arrow
inferring strength of that correlation. Permutational multivari-
ate analysis of variance (PERMANOVA) was used to test the
effect of land cover type on the dispersal of sites within
the CCA. Prior to this, homogeneity of multivariate disper-
sions throughout the sample was confirmed using a beta
dispersion test.

Results
Physicochemical properties

Significant variation was apparent between the chemistry
of the river waters across the 45 sites (Supporting Information -
Table S1; Yates et al. 2019b). Comparison of the rate of sub-
strate depletion over 24 h across all samples also showed
differences in substrate depletion rate following the series:
glucose ≥ amino acids ≥ glucose-6-phosphate > SRP (p < 0.001;
Table 1; Supporting Information Table S2). In addition, there
were major differences in substrate depletion between land
cover for all three organic substrates (p < 0.001); however, no
difference in SRP depletion was observed across the land
covers (p = 0.613). Overall, rates of substrate depletion were
greatest in catchments draining agricultural land (arable and

grassland in both catchments) in comparison to sites draining
peat moorland and coniferous forest in the Upper Conwy
catchment. Notably, SRP depletion was only greater than DOP
depletion rates in sites draining from the peat moorland and
coniferous forest landscapes where P concentrations are natu-
rally extremely low (Supplementary Document 1).

To identify the major factors associated with the depletion
of isotope from solution, mean rates of initial DOC, DON,
DOP, and SRP depletion were analyzed alongside physico-
chemical parameters of the water (Table 1; Fig. 2; Supporting
Information Tables S1–S3). Two canonical axes (CCA1 and
CCA2) explained 82.5% of the overall variation between the
45 sites (Table 2; Fig. 2). The overall model was statistically sig-
nificant, with the CCA1 axis being a significant driver of dif-
ferences between sites (permutation test, p = 0.001 for both).

Dominant land cover had a significant effect on sample
groupings in CCA analysis; when plotted with coordinates
resulting from the CCA ordination analysis, rivers draining
peatland (HMW DOC rich, N/P depleted) formed a distinct
cluster in the bottom right quadrant (Fig. 2; Table 3). There
was also clustering of some separation between catchments,
with sites from the along the Wylye-Nadder catchment, clus-
tering on the left hand side of the plot. In contrast, the major-
ity of sites located within the River Conwy catchment
clustered in the top right quadrant (Supporting Information -
Table S3). However, improved grassland-influenced rivers (low
DOC, N and P enriched) sites from the Conwy catchment riv-
ers were more closely associated with Wylye-Nadder catch-
ment rivers with a similar level of N and P enrichment,
clustering together on the right of the x-axis (sites 2, 10,
20, 21; Supporting Information Table S3), suggesting that
their behavior in terms of the utilization of DOM as a
resource, is strongly controlled by the level of nutrient enrich-
ment in the catchments.

Discussion
Physicochemical and nutrient controls on processing in
rivers

The results presented in this study indicate that both the
physicochemical character of the river and its catchment, and
its nutrient enrichment status strongly influence how LMW
DOM components are biologically processed in freshwaters.
Rates of DOM depletion observed in this study were highest
in those sites with higher nutrient concentrations, draining
from intensively farmed landscapes, and lowest for systems
with high background DOC from peaty soils with low N and P
concentrations, typically supporting blanket bog, acid grass-
land, and forestry. This finding confirms the findings of previ-
ous studies, including our own, which have shown that
dominant land cover is an important determinand of DOM
quality and stoichiometry in freshwaters, influencing both the
C : N and DOC : DON/DOP ratios (Yates et al. 2019b) and that
physicochemical factors control the rate of biodegradation of
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DOM in rivers (e.g., Guillemette et al. 2013; Sleighter
et al. 2014; Catal�an et al. 2017). Here, both the relative and
absolute pool sizes of DOC, TN, and TP appeared to directly
influence the separation of sites (Table 2; Fig. 2). Those sites
with N and P pools enriched by either inorganic or organic or
both forms of N and P show higher rates of depletion of dosed
DOC, DOC, and DOP than sites with a lower background con-
centration of N and P. In this study, it is also clear that
controlling factors are intertwined. Those sites in our sample
of 45 locations which have lower background N and P

concentrations also have a much higher proportion of HMW
DOM relative to LMW DOM, based on optical measurements
(Yates et al. 2019b). There was also correlation between land
cover, underlying geology, soil acidity, and DOM character at
each site, with mountain and moorland sites underlain by
impermeable geology supporting acid grassland and peat bog
with a higher acidity and higher proportion of HMW DOM
along with very low background N and P concentrations.
Thus, it is impossible in this experimental framework to
entirely attribute the different rates of DOC, DON, and DOP
depletion to any one controlling factor. As has been argued in
many prior studies, multiple physicochemical and biological
controls are exerted on the function of any one biotic group
within the ecosystem, controlling the rate of DOM processing
and uptake by riverine biota. What is clear from these find-
ings, however, is that the nutrient enrichment status of a
waterbody is an additional factor not typically considered in
prior work, which also acts to control the rate of biodegradation

Table 1. Percentage depletion of 14C-labeled DOC, DON, and DOP and 33P-labeled SRP from river water across five major land cover
types after 24 h. Values represent percentage of tracer depleted within 24 h and are presented as means � SEM. The average value
across all the sites is also presented at the foot of the table. Significant differences between land use types are shown with lowercase
superscript letters while differences between substrates are denoted by uppercase superscript letters (p < 0.05).

Land cover

Depletion 24 h (% initial activity added)

DOC DON DOP SRP

Arable 92.7 � 0.9a 75.6 � 0.4a 74.6 � 0.5a 32.9 � 4.7a

Mixed 81.0 � 4.7a 64.6 � 4.6a 63.7 � 3.5a 32.1 � 4.9a

Grassland 78.3 � 2.2a 60.6 � 1.9a 54.4 � 3.1a 21.1 � 5.1a

Conifer forest 37.7 � 3.6b 31.3 � 4.7b 17.6 � 1.5b 43.5 � 5.2a

Peatland 37.0 � 3.9b 38.8 � 3.4b 20.2 � 2.1b 36.2 � 13.2a

Average 74.1 � 3.0A 60.0 � 2.2AB 55.2 � 3.1B 30.7 � 3.5C

Fig. 2. Correlation bi-plot from the CCA for the main river water chemi-
cal variables (total oxidizable nitrogen [TON], nitrate, nitrite, ammonium,
DON, TN, soluble reactive phosphorus [SRP], DOP, TP, DOC, pH, and EC)
and the mean DOC, DON, DOP, and SRP depletion data for each of the
45 rivers sampled across five different land use types (n = 4 per site).

Table 2. Correlation of TON, nitrate, nitrite, ammonium, DON,
TN, SRP, DOP, TP, DOC, pH, and EC with depletion data from 45
sites (n = 4) using CCA.

R2 p value

TON (mg N L�1) 0.73 0.001*

Nitrate (mg N L�1) 0.62 0.001*

Nitrite (mg N L�1) 0.13 0.236

Ammonium (mg N L�1) 0.29 0.032*

DON (mg N L�1) 0.26 0.049*

TN (mg N L�1) 0.65 0.001*

SRP (mg P L�1) 0.68 0.001*

DOP (mg P L�1) 0.11 0.322

TP (mg P L�1) 0.65 0.001*

DOC (mg C L�1) 0.25 0.050

pH 0.56 0.001*

EC (μS cm�1) 0.84 0.001*

*Significant p value (p < 0.05).
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of labile DOM in river systems. We explore this evidence further
below.

Degree of nutrient enrichment as a control of degradation
In this study, the DOC, TN, and TP concentrations in the

rivers sampled were correlated with the rate of microbial deg-
radation of DOC, DON, DOP, and SRP (Table 2). Across the
45 sites, the rate of DOC depletion decreased with increasing
background DOC concentration, although this may have been
a function of the higher proportion of HMW : LMW DOM in
the sites with the highest DOC concentrations. The highest
observed DOC concentrations were in peatland influenced riv-
ers, where TN and TP concentrations were among the lowest
observed (Supporting Information Table S1; Emmett
et al. 2016; Yates et al. 2019b). Of note, the proportion of the
TN and TP that was in the form of DON and DOP (Supporting
Information Table S1) in these sites was the highest, decreas-
ing relative to inorganic N and P as TN and TP concentrations
increased, in line with trends in N speciation reported across
Europe by Durand et al. (2011). In these headwater sites,
where C is abundant, but N and P are scarce, N/P colimitation
is likely to be the main physicochemical factor controlling the
microbial processing of LMW DOM. Here we observed rapid
depletion of our DON and DOP substrates, and argue that this
demonstrates the biotic uptake and metabolism of both as a
nutrient resource in these nutrient-poor sites. For sites subject
to N and P enrichment from human activities in their catch-
ments, we observed an increase in DOC uptake by the micro-
bial biomass, which can be ascribed to the removal of
metabolic constraints associated with N/P limitation on
microbial growth and therefore labile LMW DOC uptake
(Carlson and Ducklow 1996; Creamer et al. 2014; Parr
et al. 2015; Fovet et al. 2020). It has been argued that rivers
transition from being N/P limited to N/C limited along a gra-
dient from source to sea (Jarvie et al. 2018). However, this
would not be a general truth in disturbed river catchments
(farming, urbanization) where the nature and location of dis-
turbance would be the key control on nutrient availability
and stoichiometry at any particular location rather than any
simple measure of distance downstream. Furthermore, it could
be argued that increasing N and P enrichment of rivers
could potentially increase autochthonous DOC, DON, and
DOP synthesis, such that the associated enhancement of
microbial growth and consequent increase in the rates of
DOM degradation (as observed in the current study) can drive

microbial communities toward C limitation (Stanley et al.
2011; Emmett et al. 2016). This has been observed in the cur-
rent study, where labile DOC, DON, and DOP depletion in
our bioassays increased as background N and P concentrations
increased along our gradient of sites, confirming N/P enrich-
ment (Table 2; Supporting Information Table S1). By contrast,
SRP depletion from solution decreased with increasing nutri-
ent concentrations; this was in agreement with our study of a
nutrient-enriched riparian zone where the addition of SRP,
did not lead to an enhancement in microbial activity (repre-
sented by 14C uptake) due to a lack of P limitation, and thus a
lack of demand for additional SRP (de Sosa et al. 2018).

Based on the regression analysis parameters, LMW DOM
depletion followed the trend: DON ≥ DOC > DOP, even in low
nutrient status waters (Table 2). A previous catchment-scale
study of DOM metabolism found that DON (in the form of
amino acids) degraded quickest in rivers draining through
peatland compared to those influenced by other land covers,
which is likely influenced by the N limitation of these ecosys-
tems (Berggren and del Giorgio 2015). In this study and in our
earlier work, we observed that the microbial degradation of
amino acids in oligotrophic peatland rivers was slower than in
mesotrophic grassland rivers, and that this amino acid deple-
tion was quicker than that of glucose, organic acids, and phe-
nolic compounds in both river waters and underlying
sediments (Brailsford et al. 2019a). This supports the findings
set out by Bronk et al. (2007), who suggested that DON can be
an extremely important and bioavailable source of N for both
bacteria and phytoplankton in aquatic ecosystems.

Nutrient stoichiometry and depletion
In recent years, the influence of stoichiometry of the three

major nutrients (C, N, P) has been brought to the forefront of
catchment science, with several studies suggesting that modu-
lating nutrient stoichiometry could be help tackle eutrophica-
tion in freshwaters (Paerl et al. 2016; Stutter et al. 2018;
Rankinen et al. 2019). The influence of nutrient stoichiometry
on DOM processing in these catchments has been addressed
in previous studies (Brailsford et al. 2019b; Yates et al. 2019b).
In these studies and others, C : N ratios of soil have also been
found to be a good predictor of both DOC : DON ratios and
DOM bioavailability (Kroer 1993; Yates et al. 2019b), while
N/P addition has been shown to increase the rate of biodegra-
dation of LMW DOC (Creamer et al. 2014; Brailsford
et al. 2019b), as in this study. Reduction of nutrient loading to
waters ought, therefore, to lead to a reduction in the rate of
consumption of labile and semi-labile DOM in the waterbody
by stream heterotrophs, reducing the nutrient resource avail-
able to support instream biological production.

In terms of N/P quality, a number of studies have previ-
ously demonstrated that although increasing N/P is generally
accompanied by increasing DON/DOP concentrations, a
decrease in the proportion of DON/DOP components is usu-
ally also observed, as the influence of inorganic soluble N and

Table 3. Results from PERMANOVA for the effect of land cover.

df Sum of squares R2 F p value

Land cover 4 0.219 0.374 6 0.002*

Residual 40 0.365 0.626

Total 44 0.583 1.000

*A significant p value. The significance level was set at p < 0.05.
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particulate P increases (Perakis and Hedin 2002; Durand
et al. 2011; Berggren et al. 2015; Yates et al. 2019b). In the cur-
rent study, both DON and DOP degradation were closely
related to TN and TP concentrations across our 45 sites
(Table 2; Supporting Information Tables S1, S2): the higher
the background N and P concentration in the river water, the
higher the rate of both DON and DOP depletion. We therefore
consider that the increased DON/DOP demand at nutrient-
enriched sites could be due to: (1) a demand for labile LMW
DON/DOP (Bronk et al. 2007) to meet both nutrient resource
and energy needs of organisms; (2) all DOM components
(DOC, DON, DOP) flushed downstream from upstream
sources being utilized by microbial communities for their car-
bon content meet their energy needs (Battin et al. 2008);
(3) changes in the way compounds are metabolized according
to differences in nutrient limitation as this varies in both
space and time (Brailsford et al. 2019b).

Limitations and future foci
The current study utilized 14C/33P-labeled tracers to assess

the fate of DOC, DON, DOP, and SRP in river waters from
45 sites covering a range of physicochemical gradients. Apart
from DON, a single radioisotope tracer was used in each case.
Although LMW DOM may represent a fraction of the total
OM in aquatic ecosystems, it is a highly diverse mixture,
including sugars, amino acids, peptides, organic acids, carbox-
ylic acids, and nucleic acids (Dawson et al. 2001). Further
studies are required using mixtures and stoichiometric ratios
of isotopically labeled compounds, in order to provide a more
representative view of the microbial uptake kinetics of labile
LMW DOM in aquatic ecosystems (similar to Brailsford
et al. 2019a). In addition, for DOM compounds only the C
was radiolabeled, therefore the ultimate fate of N in DON and
P in DOP remains unknown.

Conclusions
Comparison of the depletion of DOM components (DOC,

DON, DOP) from solution demonstrated that DOC removal
from solution proportionally increases with increases in DON
and DOP depletion, with DON removal being slightly more
rapid and DOP removal being slightly slower than DOC
removal, respectively. The depletion of all three DOM frac-
tions increases as nutrient enrichment increases, and as the
proportion of HMW DOM decreases along the river enrich-
ment gradient. This study demonstrates that the nutrient
chemistry of waters, which is in turn influenced by land-
cover, can be a predictor of the capacity for DOM processing
in the aquatic environment, with inorganic nutrient enrich-
ment and carbon limitation stimulating an increase in DOC,
DON, and DOP processing by the microbial biomass. By con-
trast, microbial SRP processing decreases with increasing nutri-
ent enrichment, suggesting that DOP is preferred over SRP in
riverine microbial communities, driving many of the adverse

impacts associated with the eutrophication of freshwaters. It is
our opinion that downstream “omics” approaches such as pri-
mary metabolome analysis could provide more insight into
the fate of these compounds following uptake by the aquatic
microbial biomass. Programs aiming to control eutrophication
in freshwater catchments would therefore need to control
both the inorganic and organic N and P loading delivered to
waters from their catchments if they are to be effective in real-
izing improvements in the ecological status of these waters.
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