
Received July 28, 2020, accepted August 6, 2020, date of publication August 13, 2020, date of current version September 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3016211

Preserving Chain-of-Evidence in
Surveillance Videos for Authentication
and Trust-Enabled Sharing
NADIA KANWAL 1,2, (Senior Member, IEEE), MAMOONA NAVEED ASGHAR 1,3,
MOHAMMAD SAMAR ANSARI1,4, (Senior Member, IEEE),
MARTIN FLEURY 5, (Member, IEEE), BRIAN LEE1, MARCO HERBST6,
AND YUANSONG QIAO 1, (Member, IEEE)
1Software Research Institute, Athlone Institute of Technology, Athlone, N37 HD68 Ireland
2Department of Computer Science, Lahore College for Women University, Lahore 54000, Pakistan
3Department of Computer Science & IT, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
4Department of Electronics Engineering, Aligarh Muslim University, Aligarh 202002, India
5School of EAST, University of Suffolk, Ipswich IP4 1QJ, U.K.
6Evercam Pvt., Ltd., Dublin, D01 FW20 Ireland

Corresponding author: Nadia Kanwal (nkanwal@ait.ie)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme through the Marie
Sklodowska-Curie under the Project MF-2018-0058 and Grant 713654, in part by the Science Foundation Ireland (SFI) under Grant SFI
16/RC/3918, and in part by the European Regional Development Fund.

ABSTRACT Surveillance video recording is a powerful method of deterring unlawful activities. A robust
data protection-by-design solution can be helpful in terms of making a captured video immutable, as such
recordings cannot become a piece of evidence until proven to be unaltered. Similarly, video sharing
from closed-circuit television video recording or in social media interaction requires self-authentication
for responsible and reliable data sharing. This article presents a computationally inexpensive method
of preserving a chain-of-evidence in surveillance videos by means of hashing and steganography. The
method conforms to the data protection regulations, which are increasingly adopted by governments, and
is applicable to network edge storage. Encryption keys are stored in a hardware wallet independently of the
video capture device itself, while evidential information is stored steganographically within video frames
themselves, independently of the content. Added protection is provided by hiding information within the
two least-valued of pixel bitplanes, using a newly introduced technique that randomizes the pixel storage
locations on a per video frame and video-capture device basis. Overall, the proposed method has turned out
to not only preserve the integrity of stored video data but also results in minimal degradation of the video
data resulting from steganography. Despite the inclusion of hidden information, video frames will still be
available for common image-processing tasks such as tracking and classification, as their objective video
quality is almost unchanged.

INDEX TERMS Video security, video surveillance, steganography, hashing, information sharing.

I. INTRODUCTION
It is no longer the case that only special places, such as
international airports, are kept under surveillance for secu-
rity and safety purposes. In fact, surveillance is rapidly
becoming a requirement for almost every house, office, and
public place. In those environments smart tracking can be
applied [1], along with the classification of objects within the
video. This development is further fuelled by the availability

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhua Guo .

of low-cost and small-sized surveillance cameras. These
cameras potentially help law-enforcement agencies to uti-
lize the resulting video recordings as proof of a crime or
illicit activity. However, due to equally rapid advances in
the field of image processing, surveillance video data can
be easily tampered with. Examples of tampering include [2]:
regional alteration of intra-frames, through cut-and-paste;
and inter-frame forgery, by the insertion of video frames.
Furthermore, transmission errors also contribute to the alter-
ation of videos, if they are not suitably protected with
forward error correction or other error protection methods.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 153413

https://orcid.org/0000-0002-9732-3126
https://orcid.org/0000-0001-7460-266X
https://orcid.org/0000-0001-7039-9879
https://orcid.org/0000-0002-1543-1589
https://orcid.org/0000-0002-8201-0864


N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

Consequently, such recordings are not directly admissible in
a court of law as an item of evidence until they are proven
to be authentic through forensic analysis [3]. Unfortunately,
applying forensic analysis is not a cheap operation in terms of
time and expense. Thus, an important objective for a Closed
Circuit TeleVision (CCTV) systems is that it should provide a
chain-of-evidence, according to stated rules. In that way,
the videos can prove themselves to be an authentic piece
of information, avoiding or reducing the need for foren-
sic analysis. In other words the videos themselves can
self-authenticate.

A driver towards self-authentication is the need for storage
and analysis of huge amounts of multimedia data, which
has propelled companies towards cloud storage for efficient
access [4]. However, following on from the European
Union’s ratification of the General Data Protection Regu-
lation (GDPR) in May 2018, cloud storage may be unac-
ceptable, due to the potential for unauthorized access to
video data by third parties. Other similar data privacy regu-
lations to GDPR now exist in other countries. GDPR itself
focuses on reversible data protection via encryption [5] as
a data-protection safeguard [6], which encryption is also
employed herein. For example, in [7], a chain-of-evidence
is kept for forensics purposes but a blockchain is employed
to store hashes of information gathered, which may add
to the complexity of the method. On the other hand, this
article presents a multifaceted solution: to the problem
of self-authentication; to the requirements of data protec-
tion regulations; and in respect to non-cloud storage. The
proposed solution works as follows:

1) Every frame holds the hash of its previous two frames
and, therefore, a chain-of-evidence is created.

2) Each video frame is also protected by calculation and
storage of its hash, after the insertion of the hash of
step 1.

3) These two hashes are stored inside each video frame as
hidden information.

4) Information is hidden using a modified version of the
already efficient Least Significant Bit (LSB) steganog-
raphy algorithm. This is achieved by unpredictable
placement of the information, according to a technique
introduced in this article. Information is stored in the
LSBs of the three color component (RGB) values.

5) The technique introduced is capable of generating
random positions for placement of information in each
video frame. Furthermore, it will be shown that the
generation of randomized locations for information
concealment may also be performed in two additional
ways. This can be firstly through identification infor-
mation from the capturing device (e.g. the Medium
Access Control (MAC) address of the camera) and
secondly through the video frame information, as men-
tioned above. This ensures that the identity informa-
tion of the capturing device also plays a role in the
generation of the randomized path for information
storage.

6) The path to the random positions of those pixels that
carry the hidden information is stored in the second
lowest bitplane (second least significant bits in each of
the RGB values).

7) All video frames are encrypted and stored on
the network edge, i.e. close to the video capture
device itself, without being kept in cloud storage or
transmitted over a wide-area network.

8) To further enhance the security, encryption keys are
stored in a hardware wallet, separately from the storage
device holding the actual video.

The strength of the proposed method is that it hides
evidential data inside the video frames themselves. That
is achieved with a limited effect upon the image content,
because the hidden data is negligible in quantity and exists
only in the lowest two bits of pixels. Selecting amodified LSB
steganography makes for video rate insertion of hidden infor-
mation. This rapid insertion rate can be compared with (say)
Bit-plane Complexity Segmentation (BPCS) [8], which needs
to search for noisy blocks within bit-planes before hidden
information can be embedded. Furthermore, the proposed
method makes it easier to maintain, synchronize, and prevent
loss of evidence. Such a chain-of-evidence is desirable not
only in the case of surveillance videos but could also be use-
ful in ascertaining the originality and authenticity of videos
uploaded to social-media sites.

The rest of this article is organized as follows. Section II
establishes the main components of the chain-of-evidence
method. Then Section III describes and analyses that method
in respect to use of steganography. However, the usage
of encryption in the methodology is treated separately in
Section III-E. Following on, Section IV is an evaluation of
the proposed chain-of-evidence method, suitable for GDPR
usage, while Section V summarizes the paper’s contribution.

II. BACKGROUND
As is well known, steganography refers to the hiding of
information (text, audio, image, video) in another carrier
media (usually referred to as the ‘cover’). There are four
essential properties of a good steganographic system [9],
viz. 1) imperceptibility, 2) security, 3) information hiding
capacity, and 4) robustness. There have been several different
approaches to achieve the goal of information hiding in the
cover media. Thus, an effective approach works by manip-
ulating LSBs of the three color channels (Red, Green, Blue
(RGB)), in the light of the fact that the LSBs carry minimal
information. This spatial approach ensures that the overall
visual aesthetic of the image is not significantly altered. Initial
research into LSB steganography concentrated on designing
the system to increase the payload capacity by utilizing most
of the cover-image pixels [10]–[18]. However, steganalysis
techniques soon became strong enough to break such systems
using statistical analysis, which was developed to identify
the regular patterns by which data were stored inside the
cover [19]–[21]. Therefore, there was a need for robust LSB
techniques based on cryptography-steganography, which can

153414 VOLUME 8, 2020



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

evade such steganalysis attacks. The subsequent research into
the Stego Color Cycle (SCC) approach [22],Magic LSB tech-
nique [16], hash-LSB [17] and nearest-centroid clustering
(LSB-M) [18] are comparatively recent such additions to the
field of steganography. In this article, as described in detail in
Section III, after per video frame identification of a starting
pixel or seed, random pixel selection for embedding the data
within LSBs takes place within the neighborhood of the seed.
Relatively few of a cover image’s pixels are chosen for data
hiding, avoiding another problem with early usage of LSB
steganography.

The principal advantage of the LSB technique is the
inherent simplicity of embedding and decoding process, mak-
ing video rate operation possible. However, the decoding of
such stego-images is affected by the levels of noise in the
communication channel. Nonetheless, in the envisaged appli-
cations, surveillance video frames after capture are stored at
the network edge, without transmission over a communica-
tion channel. Data transfer is by portable Universal Serial
Bus (USB) drive (see Section III). Storage at the network
edge is anyway advisable because of the risks arising from
third-party intervention during cloud storage.

For encryption there exists a number of block-based,
symmetric encryption techniques, such as the Blowfish, RC5,
and Advanced Encryption Standard (AES) algorithms [23].
All of the latter algorithms avoid the need for a Public Key
Infrastructure in the case of asymmetric cryptography. Even
so, in terms of computational overhead, their calculations
still involve considerable processing. This is especially so if
real-time operation on resource-constrained edge devices is
required. However, considering the sensitivity of the surveil-
lance data, the AES algorithmwas selected. As AES is a sym-
metric block cipher, so a single key is used for the encryption
and decryption processes.

AES (also known as Rijndael) has been widely deployed as
an encryption standard since 2000 [24]. Indeed, AES is con-
sidered a robust industry standard cipher and, hence, is exten-
sively utilised to provide confidentiality in cyber-physical
systems [25]. Overall, AES is widely employed because
of its: ease of implementation; defences against threats
and attacks; as well as flexibility in the cases of encryp-
tion/decryption modes and keying material. In terms of keys,
AES is a symmetric-key block cipher, which supports either
a 128-bit key for 10 rounds, a 192-bit key for 12 rounds, or a
256-bit key for 14 rounds of operation. Further information
about the operational mode of AES utilized herein can be
found in Section III.E.

AES acts upon a 4 × 4 byte matrix, which is called the
algorithm’s state. After initiation of the algorithm, every
round comprises of four stages/phases: (1) Byte-substitution;
(2) Shift Rows; (3) Mix Columns; and (4) Add Round
Key. Stage 1 provides non-linear substitution by substituting
each byte in the state with a byte from a lookup table
or S-Box. In that way, the substitution part of a clas-
sic substitution-permutation cipher takes place. Permutation
occurs in stage 2 through cyclic left-shifts of the state’s rows.

In stage 3, the four bytes of each column of the state undergo
a linear transformation. Finally, stage 4 derives a sub-key
from the main-key. The sub-key has the same number of
bytes as the state and, hence, can be added to it. Because
addition is defined as an Exclusive-OR (XOR) operation in
stages 3 and 4, again a non-linearity is introduced into the
processing. Likewise, modulo arithmetic in stage four pro-
vides multiplication, again introducing further non-linearity.
Given that substitution provides confusion and stages 2 and
3 supply diffusion, the whole algorithm meets the need to
contain confusion and diffusion in any acceptable cipher.

Turning to the hashing functions used in this article to
detect tampering of video files, these functions work by
extracting a unique fixed-length bit-string from a given mes-
sage (text, image, video). However, by 2015 one of the
principal such functions, Secure Hash Algorithm 1 (SHA-1),
was found by the software industry to be suspect because
of likely collisions, i.e. the same hash produced by different
messages. Therefore, in this article, the SHA-256 hashing
algorithm [26] has been used, as, differing in design from
SHA-1, it is currently thought to be collision free. SHA-256,
operating with 32-byte words is one of the two members of
the SHA-2 family of hash functions, the other being SHA-512
with 512 byte words. There is another later family of hash
functions known as SHA-3. However, industry opinion is
that for software implementations SHA-3 is slower than
the SHA-2 family. To avoid that risk on constrained CCTV
devices processing video rate data, this article’s implemen-
tation retained SHA-256 from the SHA-2 family of hashes.
However, given the ongoing development of attacks, it is
wise to keep the situation under review, with a view to pos-
sible eventual implementation of a SHA-3 hash function. In
general, altering even a single bit of the hash input changes
the output hash completely. For the purposes of the forensic
use of video surveillance, no image processing is permit-
ted, which is why this article retains the use of SHA-256.
However, for the video sharing applications mentioned in
Section I, such multimedia data may go through various
manipulations such as cropping, scaling, enhancement, and
compression. In that case, possible incorporation of one of
the robust image hashes such as [27] is possible.

III. ANALYSIS OF THE METHOD
The following, after providing a system overview, describes
andmotivates the various aspects of themethod, before giving
a detailed step-by-step analysis of the method employed.

A. OVERVIEW
As illustrated in the overview of Fig. 1, a chain-of-evidence
is stored along with the originally captured visual data so
that the authenticity of the video content can be estab-
lished afterwards. Firstly, individual frames are extracted
from the captured surveillance video. Next, salted hashes
are embedded through steganography in each video frame
(see Section III-C). A hash of each video frame is also taken
and embedded through steganography. These latter hashes

VOLUME 8, 2020 153415



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

FIGURE 1. Life cycle from video capture, embedding evidential data and current frame hash, and edge storage to decryption, validation of evidential data
and current frame hash, and onward video transfer.

are needed as a way to verify that the video frames have
not been tampered with. Following encryption with the AES
[23], the video data are stored in close proximity to the video
capture device at the network edge, without transmission
over a network. Symmetric encryption keys are stored in a
hardware wallet, which may be accessed by a combination
of a smart card and a biometric identifier. A sequence of
video frames is first retrieved from storage. After decryption,
each frame’s image data and its embedded salted hashes are
checked by comparison with the additional embedded hash,
after it too has been extracted. A detailed description of this
procedure is given in Section III-F.
Notice that hardware wallets are thought to be [28] the

most secure option for storing the public-private, asymmetric
keys needed in access of cryptocurrencies, though, herein,
symmetric keys are employed. The process is reversed when
a video frame is checked for tampering before transfer in
encrypted form, as required by GDPR.

B. STORAGE OF HASHES
The Secure Hashing Algorithm (SHA)-256 has been used in
this article, as, differing in design from the deprecated SHA-1
(since 2015), it is currently thought to be collision free
(as already mentioned in Section II). In order to create a
chain-of-evidence by means of hashes, a salted hash is first
created by concatenating half of the bytes of the hashes
of each of the previous two video frames, as described by
equation (1). Therefore, each frame will store a salted hash
of data derived from the previous two frames (256 bits in
all). Other optional data such as the camera identity, with the
date and time of video capture, and the Global Positioning
System (GPS) location, could also be included in the salted
hash. However, there is a trade-off according to the amount of
optional data included because, currently, relatively few of a
cover image’s pixels are chosen for data hiding, avoiding the
excessive hidden bits of early usage of LSB steganography
[10].

S# =
1
2
#(Fi−1)+

1
2
#(Fi−2) (1)

Subsequently, the frame’s own hash (256 bits), after the
insertion of the evidential data, is calculated and also inserted.
The essential size of the data to be stored (without optional
data) becomes 512 bits per frame. These data provide authen-
tication or guarantee of the integrity of the stored video
frames, to guard against the possibility of tampering.

In fact, various ways exist to store such data, including: a
metadata stream [29]; using a frame’s subtitles (as available
in current surveillance systems) [30]; or through steganogra-
phy. However, a metadata stream is not used in this article’s
method because storing data in a separate channel may lead
to loss of evidence, misalignment in the retrieval module,
and increasing management costs. Similarly, saving data in
subtitles directly threatens the secrecy of data and, more
importantly, disrupts the actual image content, which may be
important to data controllers when performing a query-based
search. Therefore steganography is selected as a means of
storage, as it avoids the delays of side-channels and the
insecurity of subtitle storage.

C. MODIFIED LSB STEGANOGRAPHY
LSB steganography has the advantage that its impact on the
measured PSNR is reduced compared to some other forms of
steganography [31]. However, even though the cover image
quality is relatively improved, if an attacker suspects that
an image holds steganographic information then extracting
data hidden by LSB-based steganographic is relatively easy.
This is because methods of statistical analysis have been
developed to identify the regular patterns by which data used
to be stored inside a cover [19].

To counter such attacks, herein we introduce random pixel
selection starting from a seed pixel’s neighbourhood, storing
the path to the random pixel locations as steganographic data.
Further, the seed pixel is also now selected using a procedure
dependent on the current video frame and (optionally) the
video capture device identity. The selection of the seed pixel,
the generation of random locations for information storage,
and the actual storage of the information are explained next.
Seed Pixel: The seed pixel refers to a randomly-identified

starting pixel. The seed pixel is the start of the random path

153416 VOLUME 8, 2020



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

FIGURE 2. (a) A randomly identified seed pixel (red) and a random path obtained with the codes listed alongside; (b) codes for random selection of
neighbourhood pixels for a given pixel; (c) storage of the path (red) and the data (blue) bits in the pixel RGB values; and (d) detailed seed pixel selection
process.

containing the pixels identified for data storage. The process
of seed selection, and other pertinent issues are discussed
in Section-III-D. Notice that the red pixel in Fig 2(a) is an
example of a randomly-chosen seed pixel.
Path Selection: Any pixel under consideration (except the

border pixels) has eight ‘neighboring’ pixels. For path selec-
tion, three bits are needed to generate eight different codes
for eight neighbourhoods of a pixel, as shown in Fig. 2(b).
These three bits are stored in the second-from-last LSB
in each of the three color channels for the chosen pixel,
while the last LSB of each color channel represents the
data bit, as shown in Fig. 2(c). In this way, each selected
pixel will store 3 bits of the data, together with the 3-bit
code of the path to the next storage pixel. Notice that the
distance between two randomly-selected pixels is set in this
article’s experiments at five, though this value can also be
customized. Thus, the codes shown in Fig. 2(b) only denote
the directions of the pixels to be selected (not the gap
between them). Only denoting the directions helps to ensure
that no two pixels have overlapping neighbourhoods. It also
avoids any path reversals. A sample random path generated
from a dummy random sequence of codes is also presented
in Fig. 2(a).
Storage: For storage, two bits per color channel of a pixel

are used for data (1 bit) and path (1 bit) storage. This allows
for 6 bits of a given pixel encoded in the standard RGB for-
mat. Thus, the LSB technique is modified to possibly change
the value of pixels in the two lowest bit-planes rather than just
the lowest bit-plane. By comparison, BPCS steganography
also selects bits from differing bit-planes, though it is sensible
to avoid the higher bit planes [8] because of their greater
correlations between neighboring bits. Using this article’s
method, 171 pixels will be required to store 512 bits of data.
These consist of 256 bits of salted hash as evidential data and

256 bits of a frame’s own hash. Also stored is the path to be
followed for the storage and retrieval of hashes.

D. SEED IDENTIFICATION
The process of seed selection to identify the starting point
of the random path is illustrated in Fig. 2(d). A rectangle is
selected from each video frame by setting an offset value from
the edge of the image, as shown in Fig. 2(d). In Section IV
the offset is set to 50 pixels for all video frames for testing
purposes. However, this rectangle size can be varied on a per
capture-device basis and varied for each video frame, bearing
in mind that the MAC address of each device is one way to
start with a unique number from which the rectangle’s sizes
can be generated.

Subsequently, the corner pixels of the image rectangle
inside this border region are then identified. The first two bits
of the each of the RGB components of each of these corner
pixels are concatenated and converted to a denary or ‘‘dec-
imal’’ value. Thereafter, the four decimal values obtained
are averaged to get a single number (rounded to the nearest
integer), which is used to point to the seed pixel in the image.
Because the value of the corner pixels will vary from frame
to frame, this procedure will normally result in different seed
locations within the rectangle on a per video frame basis.
As shown in Fig. 2(d), this average decimal value is referred
to as v1 pixels, and the seed pixel is identified in this article as
v1 pixels horizontally to the right of the center of the image
(the reference point), and then v1 pixels vertically after that.
Notice that, because the value of the corner pixels contains
the location of the storage starting point or seed pixel, these
pixels should not be altered in the steganographic process.

As an example, consider the corner pixel values from
Fig. 2(d). The concatenated binary numbers obtained from
the first 2 bits of the RGB components of each pixel are:

VOLUME 8, 2020 153417



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

Binary: 100000, 000000, 010101, 000011
Equivalent decimal: 32, 0, 21, 3
Average (rounded to an integer): 14, which could be used

for v1 or v2 (if average is large) in Fig. 2(d).
This method of seed location, however, is prone to a pitfall,

in that the average value calculated could turn out to be
too large for a given rectangle, causing the seed pixel to
lie outside the rectangle. To circumvent this issue, the ref-
erence point may be shifted by (Ih/4, Iw/4), as also shown
in Fig. 2(d). Then the seed pixel is located relative to this
new reference, when using larger calculated value, v2. Here,
(Ih, Iw) are the image height and width values respectively
in units of pixels. Should this procedure still result in a
seed location outside the rectangle then the reference point
can be further adjusted in a similar fashion. The procedure
is illustrated by the blue text in Fig. 2(d). Notice that the
maximum value of the calculated value for v1 (or v2) is
64 pixels, which implies that this hazard will only occur for
particularly small rectangles. In fact, setting horizontal and
vertical minima to the rectangle’s size is another way to avoid
the need for recalculation of the reference point.

A random path is started from a seed pixel’s location. That
path is constructed in such a way that if the path reaches
the edge of the image region under consideration, the path
is continued from the opposite edge of the image (as in the
classic PacMan video game). If the random path touches any
corner pixel then it should be modified to avoid changing that
pixel’s value. This is because corner pixels are used to retrieve
the seed pixel’s location.

Fig. 3 shows the pixels in which data are stored, marked
in blue. The two video clips illustrated are (upper) VISOR1,
available from [32], resolution 640 × 480 pixels/frame,
surveillance video captured at 7 fps, and Duval_street_cam,
available from [33], street scene, resolution 946 × 360, cap-
tured at 25 fps. It can be seen that every frame has a dif-
ferent distribution of pixels to store this data. Furthermore,
the limited data are stored uniformly in RGB color channels
and use only two bits per channel for each pixel selected.
Notice also that the proposed approach is specially suitable
for an application to surveillance video. This is because no
image processing is allowed on the data captured and all
modifications of the video data need to be identifiable. Both
requirements serve to ascertain the authenticity of the video.

E. ENCRYPTION PROCEDURE
AES has multiple operational modes available [34]. The
mode used herein is Output Feedback (OFB) mode. One rea-
son for utilizing OFBmode is because the same program code
serves for both encryption and decryption, thus saving on the
coding space within an embedded device. Another reason for
choosing OFBmode is that, consequently, AES then operates
as a stream cipher (rather than a block cipher), in which a
continuous stream of bytes are encrypted. Any modifications
to a plaintext block Pt are reflected in the corresponding
ciphered block Ct , where t = 1, 2, 3, . . . n with n the
number of plaintext blocks. However, other ciphered blocks

remain unaffected. Thus, a significant reason for choosing
OFB mode is that it provides a degree of transmission error
resilience. Moreover, if any modification/error occurs dur-
ing the transmission, that error is not propagated. (Also see
the remark on OFB’s avoidance of padding at the start of
Section IV.) However, OFB lacks self-synchronization, being
independent of the previous ciphertext. Therefore, if synchro-
nization is lost during transmission then a new IV needs to be
established to enforce explicit re-synchronization.

In OFB, supposeXt−1 is an input block from the t−1 stage,
which has been AES encrypted, using key Ke. Then Xt−1 is
againAES encrypted using keyKe to produceXt . After thatXt
and the next plaintext block Pt are XORed together to output
encrypted block Ct . For encryption of the following plaintext
block, AES encryption with Ke is again performed on the Xt
of the previous stage to produce Xt+1, after which XORing is
again performed with the plaintext Pt+1 to output Ct+1 and
so on. Moreover, OFB normally generates different output
Ct for the identical input Pt because the process is initiated
with a random Initialization Vector (IV) [35]. The following
equations (2) and (3) represent the encryption and decryption
processes in OFB mode, respectively.

Ct = Pt XOR Xt (2)

Pt = Ct XOR Xt , (3)

where t = 1, 2, 3, . . . n, for n stages of block encryption, and
Xt = Encrypt(Ke(Xt−1))
Symmetric encryption keys are generated at run-time for

each protected video, by using a pseudo-random function
(PRF). To keep the procedure simple, encryption keys are
generated on a per video sequence basis. They are then
stored separately in a Hardware Wallet as shown in Fig. 1.
Key security can be enhanced by using any standardized
key-management scheme [36]. This would be the case for
real-time key distribution during transmission of CCTV
videos over a network. However, in this article, we only
assume the secure physical transmission of data via a Uni-
versal Serial Bus (USB) connection directly to and solely to
an authorized party. Additionally, an 128-bit key is secure
enough because, for current computing powers, a key space
greater than 2100 is considered resilient to key guessing
or brute force attacks upon keys [37]. It should be men-
tioned that the person responsible for key management in any
well-managed organization should not also be the personwith
the authority to alter data in any way. This is an application
of the well-established security principle of the separation of
roles.

F. DETAILED DESCRIPTION
A detailed description of the steps in the method is provided
next, with video frames indexed by i:

1) Generate the current storage rectangle’s ‘offset’ value
(see Fig 2(d)) by means of a unique identifier of the
video capture device.

2) Create a 256-bit salted hash (S# = Fi−1# + Fi−2#)
from the hashes of the previous two frames. This is a
protection against video-frame insertion forgery.

153418 VOLUME 8, 2020



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

FIGURE 3. Random distribution of pixels selected to store chain-of-evidence using LSB Steganography in video imagery,
with results for two different videos shown (see text). The blue markings of the location paths are only for illustrative
purposes.

VOLUME 8, 2020 153419



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

FIGURE 4. Random distribution of pixels selected to store a chain-of-evidence using LSB steganography in Raspberry Pi
board captured videos [38], [39]. The blue markings of the location paths are only for illustrative purposes.

3) Generate the seed pixel’s position using the four corner
pixels of the current frame’s rectangle.

4) Generate a random sequence of 170 directions starting
from the seed pixel. The pathmust avoid the four corner
pixels used in the calculation of the seed position and
may wraparound if the rectangle’s edge is reached.

5) Embed the evidential data S# in 85 pixels according
to the random sequence of directions in the current

video frame, Fi. The directions to the next pixel in the
path are also stored in each pixel of the current video
frame.

6) Embed zeros in a further 86 pixels’ data bits to act as a
container for a hash of the current frame. The directions
to each pixel in the path are also stored in these further
pixels, with a zero direction to terminate the path.

7) Calculate the hash of the current frame, C#.

153420 VOLUME 8, 2020



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

TABLE 1. Comparison of quality metrics and the features of the proposed algorithm with prior art.

8) Insert C# in Fi’s reserved bits (from Step-6) by
replacing the zeros previously set.

9) Check whether a video session has finished and if not
return to step one.

10) Encrypt a session of video frames bymeans of AES and
storage of the symmetric key (Kp) in a hardware wallet,
along with the corresponding session id.

Asmentioned above in step five, the evidential data, i.e. the
salted hash created from the previous two frames, are steg-
nographically embedded in each frame. It is convenient to
use the two previous frames after the additional hash of each
frame, C#, has been inserted. Otherwise, it would be neces-
sary to remove the additional hashes from the two previous
frames before creation of the salted hash for the current frame.
It is also important to mention that, for the first two frames,
the salted hash is created by generating two AES keys using
a key management module. However, these keys do not need
to be stored or sent to the receiver because they are only
employed to generate a salted hash. That salted hash is stored
in the initial two video frames for their own hash calculation,
i.e. creation of each of their C#.
The retrieval procedure works as follows:
1) Retrieve the symmetric key (Kp) using its corresponding

session id. from the hardware wallet for the video
session. Then decrypt the video frames.

2) For each video frame, re-generate the current storage
rectangle’s offset value (see Fig. 2(d)) by means of a
unique identifier of the video capture device.

3) Re-generate the seed pixel’s position using the four
corner pixels of the current frame’s rectangle.

4) Retrieve the current frame’s hash C#, changing its
storage bits back to zero.

5) Recalculate the hash of the current frame, now
containing the evidential data (in the form of hash S#)
and the zeroized bits reset in the previous step. Call this
new hash C ′#.

6) Attempt amatch between theC ′#with the corresponding
hash, C#, retrieved from steganographic storage in the
current frame. If there is a match, the video frame is
proven, with high certitude, according to the strength
of the hash, to be authentic. In the case of a mismatch,
the video data have been compromised and cannot
be validated. If a frame cannot be validated leave the
procedure, as a chain-of-evidence cannot be established.

7) Check whether the video session’s frames have all been
validated and if not return to step two.

IV. RESULTS
The proposed security system has been developed for
resource-constrained devices and, therefore, has been tested
on a Raspberry Pi-4 board with 4 GB RAM and a 64-GB
Secure Digital (SD) memory-card for data storage. The Pi
was loaded with Python and OpenCV modules to process
the videos, along with the Crypto cipher module for AES
encryption. The AES block size was 64-bits, with AES oper-
ating as a stream cipher in OFB mode. The OFB mode
avoids the overhead of padding and, if USB storage errors
occur, these are not necessarily propagated, allowing partial
stream recovery. (See also earlier comments on OFB mode in
Section III-E.) The key size was 128 bits rather than 256 bits,
in order to reduce the computational overhead.

Pi camera videos were downloaded from a project’s source
pages [39], which were captured with object detection in
mind. The videos were recorded in an indoor multi-space
environment, using six Raspberry Pi 3 model B1s with
the camera module v2.12 [38]. For performance evaluation,
processing time and video quality metrics were determined
for six videos mentioned above and compared with related
methods as shown in Table 1. Previously proposed tech-
niques demonstrated their steganography results on cover
images and therefore, cannot be directly compared with
videos. However, we have averaged the quality measures

VOLUME 8, 2020 153421



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

FIGURE 5. Averaged computational cost of the proposed algorithm over
tested videos.

over 100 frames to be compared with these methods. Magic
LSB uses a more complex method of converting an RGB
image into an equivalent Hue, Saturation, Intensity (HSI)
color space and then rotating the I component at four dif-
ferent angles. Each rotated I component of the image stores
one block of data (divided into four blocks) and then an
RGB image is reconstructed from the HSI image. Although
complex and difficult to break, the scheme is most likely to
be too costly for constrained devices. In fact, that computa-
tional overhead motivated the development of the proposed
technique to modify LSB steganography. Similarly, LSB-M
[18] first identifies the intensity clusters in the image and
then hides data inside those clusters, again a time-complex
process, which is not suitable for video steganography. Other
techniques including a DWT-Haar wavelet-based method
[13], hash-LSB [17] and secret key LSB [14] suffer the same
problems of not being able to run fast enough to match the
video speed.

A. TIMINGS
The timings for the processing of a video stream across
the four main security steps has been measured. The
chain-of-evidence and steganographic processing consumes
relatively less time compared to the encryption/decryption
processes, i.e. 0.01 seconds and 0.02 seconds respectively
(for 100 frames) using the Raspberry Pi-4 board as shown
in Fig. 5. Overall, video processing on the Raspberry Pi-4,
including steganography and encryption, with the previously
given pixel resolution, supported a frame rate of 25 fps, which
is acceptable for surveillance videos.

B. STEGANOGRAPHIC CONDITIONS USING VIDEO
QUALITY METRICS
The effect on the quality of the image of storing of the
path and data information in the original image is typically
represented by the Peak Signal to Noise Ratio (PSNR) [40].
Toward that end, first the Mean Square Error (MSE) is calcu-
lated, which, for a monochrome image, is given by (4). For
RGB images, such as those under consideration in this work,
the expression for MSE changes to (5).

MSEMono =
1
mn

m−1∑
i=0

n−1∑
i=0

[I (i, j)− K (i, j)]2 (4)

MSERGB =
1

3mn

m−1∑
i=0

n−1∑
j=0

2∑
k=0

[I (i, j, k)− K (i, j, k)]2 (5)

Using theMSERGB from (5), the PSNR (in dB) is defined as:

PSNR = 10 · log 10

(
Max2i
MSERGB

)
which can be simplified to:

PSNR = 20 · log 10(Maxi)− 10 · log 10(MSERGB) (6)

where, Maxi is the maximum possible pixel value of the
image.

SSIM (i, j) = [l(i, j)α.c(i, j)β .s(i, j)γ ] (7)

Similarly, the Structural Similarity (SSIM) index [41] is a
metric that estimates the structural similarity between origi-
nal and reconstructed video frames, having a range generally
from 0 to 1 (eq. 7). Values of SSIM nearer to 0 means
less structural similarity between the plaintext and the recon-
structed encrypted video frame, which means higher distor-
tion has occurred. Values nearer to 1 means more structural
similarity. The SSIM formula is based on three comparison
measurements between the samples of i and j (two compared
image windows n*n): luminance (l), contrast (c) and structure
(s). SSIM is then computed as weighted combination of these
three comparative measures.Where α, β, γ are set to 1. These
video quality metrics have been used to evaluate the per-
formance of proposed algorithm for standard steganographic
conditions given below.

A reliable technique for steganography needs to fulfil the
following conditions [42]:
• Invisibility: The data concealed in randomly-selected
pixels of each frame is not visible to the human eye
because it is stored in the two lower bit planes of only
171 pixels and a human eye cannot normally iden-
tify such abnormalities at Pi-camera resolution. Thus,
the Structural Similarity (SSIM) index (output range
0 to 1) is a well-established metric, which measures the
response of the human visual system to changes between
an original and modified image. For a surveillance video
captured by us, the SSIM value is very high for the
proposed method, as can be seen in Fig. 6b, implying
that the original video and the video with data inserted
are very similar. The average SSIM index was 1.00
using the proposed method, confirming that the hidden
evidential data are visually unidentifiable.

• Payload capacity: The payload of the proposed method
is 2 bits per color component per pixel and the data
stored only uses 171 pixels of the whole image, which
is particularly small. Although the payload of Magic
LSB and LSB-M are also small, with the use of only
one bit per pixel. However, due to their complexity
and processing requirements, they are unsuitable for
resource-constrained devices.

• Robustness against statistical attacks: Commonmethods
used to detect steganography are through taking the
SSIM index, the PSNR, and the Mean Squared Error
(MSE). For these metrics, with the proposed method,

153422 VOLUME 8, 2020



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

FIGURE 6. Video quality metrics for the Pi videos. These videos belongs
to publicly-available datasets for object detection at [38]. The box and
whisker plots show average measures for 200 frames per video.

the modified video is always more similar to the original
video in the comparisons.

• Non-suspicious files: The file formats and file sizes
remain the same during storage, whether there is
embedded information or not.

• Steganographic quality: As previously mentioned,
the presence of steganography is commonly detected
by finding changes in video quality, which is demon-
strated in Fig. 6c and 6a. The average PSNR after
steganography is around 88.0 dB, indicating high sim-
ilarity (maximum PSNR = 96.33 dB for 16 bit depth
image ). This high value is attributed to the small amount
of data embedded in the image (1026 bits), also resulting
in an averageMSE of 0.002, implying that it will be very
difficult to detect the presence of steganography by such
video metrics.

C. COMPARATIVE ANALYSIS
The proposed method has been compared with existing
schemes published in the last decade or so for the

TABLE 2. Prominent features of surveillance products and the proposed
solution.

above-mentioned performance metrics and other prominent
features as shown in Table 1. Almost all methods have been
developed and tested for images and, therefore, cannot be
compared directly with our method. However, we took aver-
age PSNR, SSIM and MSE of 200 video frames to compare
with these methods. The results indicate that our method has
significantly better performance as compared to others, with
the highest PSNR and the lowest MSE value. Furthermore,
the SSIM index of near to 1.00 also shows that the hidden data
made no visual change in the image that can be identified by
a naked eye.

Lastly, the proposed solution, including features from [5],
has also been compared with some well-known products in
the marketplace, when it can be seen that the solution is
competitive with these products, as is evident from Table 2.

V. CONCLUSION
Provision of a chain-of-evidence in surveillance videos is not
only a computer security application but a legal requirement
for current surveillance systems, due to the ratification of
the EU’s GDPR and privacy laws in other countries. The
proposed method provides a comprehensive solution by stor-
ing such evidence steganographically embedded alongside
the video content, with overall encryption. Though relatively
simple, the method is not only a GDPR protection-by-design
aimed at surveillance video but is also capable of being
implemented on resource-constrained devices such as the
Raspberry-Pi processor and associated boards. Moreover,
the video data can be marked with unique identification at
source, using salted hashes that can later serve to verify
the originality of the shared video content, when they are
exchanged within social networks. It needs to be pointed out
that the integrity of the physical recording device (camera)
is assumed to be guaranteed in the current paper. In fact,
making a recording device physically tamper-proof is beyond
the scope of this article, though we pinpoint this as an issue
for future research. Future work will also consider the best
mechanism to generate each rectangle’s location from the
video capture device’s unique identifier.

REFERENCES
[1] A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua, ‘‘Computer

vision and deep learning techniques for pedestrian detection and tracking:
A survey,’’ Neurocomputing, vol. 300, pp. 17–33, Jul. 2018.

[2] R. D. Singh and N. Aggarwal, ‘‘Video content authentication techniques:
A comprehensive survey,’’ Multimedia Syst., vol. 24, no. 2, pp. 211–240,
Mar. 2018.

VOLUME 8, 2020 153423



N. Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

[3] K. Sitara and B. M. Mehtre, ‘‘Digital video tampering detection:
An overview of passive techniques,’’ Digit. Invest., vol. 18, pp. 8–22,
Sep. 2016.

[4] D. A. Rodriguez-Silva, L. Adkinson-Orellana, F. J. Gonz’lez-Castano,
I. Armino-Franco, and D. Gonz’lez-Martinez, ‘‘Video surveillance based
on cloud storage,’’ in Proc. IEEE 5th Int. Conf. Cloud Comput., Jun. 2012,
pp. 991–992.

[5] M. N. Asghar, N. Kanwal, B. Lee, M. Fleury, M. Herbst, and Y. Qiao,
‘‘Visual surveillance within the EU general data protection regulation:
A technology perspective,’’ IEEE Access, vol. 7, pp. 111709–111726,
2019.

[6] J. Rajamäki, ‘‘Design science research towards privacy by design in
maritime surveillance ICT systems,’’ Inf. Secur., Int. J., vol. 43, no. 2,
pp. 196–214, 2019.

[7] S. Li, T. Qin, and G. Min, ‘‘Blockchain-based digital forensics investiga-
tion framework in the Internet of Things and social systems,’’ IEEE Trans.
Comput. Social Syst., vol. 6, no. 6, pp. 1433–1441, Dec. 2019.

[8] S. Sun, ‘‘A new information hiding method based on improved BPCS
steganography,’’ Adv. Multimedia, vol. 2015, pp. 1–7, Mar. 2015.

[9] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Watermark-
ing and Steganography. Amsterdam, The Netherlands:Morgan Kaufmann,
2007.

[10] R. Chandramouli and N.Memon, ‘‘Analysis of LSB based image steganog-
raphy techniques,’’ in Proc. Int. Conf. Image Process., vol. 3, Oct. 2001,
pp. 1019–1022.

[11] W. S. Sari, E. H. Rachmawanto, and C. A. Sari, ‘‘A good performance
OTP encryption image based on DCT-DWT steganography,’’ Telkomnika,
vol. 15, no. 4, pp. 1987–1995, 2017.

[12] M. S. Sutaone and M. V. Khandare, ‘‘Image based steganography using
LSB insertion,’’ in Proc. IET Conf. Wireless, Mobile Multimedia Netw.
Stevenage, U.K.: IET, 2008, pp. 146–151.

[13] S. M. M. Karim, M. S. Rahman, and M. I. Hossain, ‘‘A new approach for
LSB based image steganography using secret key,’’ in Proc. 14th Int. Conf.
Comput. Inf. Technol. (ICCIT ), Dec. 2011, pp. 286–291.

[14] S. Saraireh, ‘‘A secure data communication system using cryptography
and steganography,’’ Int. J. Comput. Netw. Commun., vol. 5, no. 3,
p. 125, 2013.

[15] M. R. Islam, A. Siddiqa, M. P. Uddin, A. K. Mandal, and M. D. Hossain,
‘‘An efficient filtering based approach improving LSB image steganogra-
phy using status bit along with AES cryptography,’’ in Proc. Int. Conf.
Informat., Electron. Vis. (ICIEV), May 2014, pp. 1–6.

[16] K. Muhammad, M. Sajjad, I. Mehmood, S. Rho, and S. W. Baik, ‘‘A novel
magic LSB substitutionmethod (M-LSB-SM) usingmulti-level encryption
and achromatic component of an image,’’Multimedia Tools Apps., vol. 75,
no. 22, pp. 14867–14893, 2016.

[17] M.H. Abood, ‘‘An efficient image cryptography using hash-LSB steganog-
raphy with RC4 and pixel shuffling encryption algorithms,’’ in Proc.
Annu. Conf. New Trends Inf. Commun. Technol. Appl. (NTICT), Mar. 2017,
pp. 86–90.

[18] A. Shifa, M. S. Afgan, M. N. Asghar, M. Fleury, I. Memon,
S. Abdullah, and N. Rasheed, ‘‘Joint crypto-stego scheme for enhanced
image protection with nearest-centroid clustering,’’ IEEE Access, vol. 6,
pp. 16189–16206, 2018.

[19] S. Rajendran and M. Doraipandian, ‘‘Chaotic map based random image
steganography using LSB technique,’’ Int. J. Netw. Secur., vol. 19,
pp. 593–598, Jul. 2017.

[20] N. Patel and S. Meena, ‘‘LSB based image steganography using dynamic
key cryptography,’’ in Proc. Int. Conf. Emerg. Trends Commun. Technol.
(ETCT), Nov. 2016, pp. 1–5.

[21] X. Zhou, W. Gong, W. Fu, and L. Jin, ‘‘An improved method for
LSB based color image steganography combined with cryptography,’’ in
Proc. IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci. (ICIS), Jun. 2016,
pp. 1–4.

[22] K. Muhammad, J. Ahmad, N. U. Rehman, Z. Jan, and R. J. Qureshi,
‘‘A secure cyclic steganographic technique for color images using random-
ization,’’ Tech. J. (Taxila), vol. 19, no. 3, pp. 57–64, 2014.

[23] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook For
Students and Practitioners. Berlin, Germany: Springer, 2009, doi:
10.1007/978-3-642-04101-3.

[24] Announcing the Advanced Encryption Standard (AES), Standard, NIST-
FIPS, Federal Information Processing Standards Publication 197.1-51,
2001, p. 3.

[25] C. Saifurrab and S. Mirza, ‘‘AES algorithm using advance key implemen-
tation in MATLAB,’’ Int. Res. J. Eng. Technol., vol. 3, no. 9, pp. 846–850,
2016.

[26] H. Gilbert and H. Handschuh, ‘‘Security analysis of SHA-256 and sisters,’’
in Proc. ACM Symp. Appl. Comput., 2003, pp. 175–193.

[27] Z. Tang, X. Zhang, X. Li, and S. Zhang, ‘‘Robust image hashing with
ring partition and invariant vector distance,’’ IEEE Trans. Inf. Forensics
Security, vol. 11, no. 1, pp. 200–214, Jan. 2016.

[28] H. Rezaeighaleh and C. C. Zou, ‘‘New secure approach to backup cryp-
tocurrencywallets,’’ inProc. IEEEGlobal Commun. Conf. (GLOBECOM),
2019.

[29] Y.-T. Tseng, P. Jurczyk, S. Watson, and M. Dalcin, ‘‘Merged video
streaming, authorization, and metadata requests,’’ U.S. Patent 10 091 192,
Oct. 2, 2018.

[30] D. Stanescu, M. Stratulat, B. Ciubotaru, D. Chiciudean, R. Cioarga,
and M. Micea, ‘‘Embedding data in video stream using steganography,’’
in Proc. 4th Int. Symp. Appl. Comput. Intell. Informat., May 2007,
pp. 241–244.

[31] N. Akhtar, S. Khan, and P. Johri, ‘‘An improved inverted LSB image
steganography,’’ in Proc. Int. Conf. Issues Challenges Intell. Comput.
Techn. (ICICT), Feb. 2014, pp. 749–755.

[32] Visor1. Accessed: May 1, 2020. [Online]. Available: https://aimagelab.
ing.unimore.it/imagelab/ datasets.asp

[33] Dual Street Cam. Accessed: May 1, 2020. [Online]. Available:
https://www.youtube.com/watch?v=lwENY3mCdeg&list=
PLAJCo2LcrwyQ0XOtOqdqI-HmGPzzjLfP0&index=7&t=0s

[34] D. Jayasinghe, R. Ragel, J. A. Ambrose, A. Ignjatovic, and
S. Parameswaran, ‘‘Advanced modes in AES: Are they safe from
power analysis based side channel attacks?’’ in Proc. IEEE 32nd Int. Conf.
Comput. Design (ICCD), Oct. 2014, pp. 173–180.

[35] C. Paar and J. Pelzl, ‘‘The advanced encryption standard (AES),’’ inUnder-
standing Cryptography. Berlin, Germany: Springer, 2010, pp. 87–121.

[36] S. M. Bellovin and R. Housley, ‘‘Guidelines for cryptographic key man-
agement,’’ in Proc. Symp. Res. Secur. Privacy, 2005, pp. 1–7.

[37] J. S. Khan and J. Ahmad, ‘‘Chaos based efficient selective image encryp-
tion,’’Multidimensional Syst. Signal Process., vol. 30, no. 2, pp. 943–961,
Apr. 2019.

[38] R. Marroquin, J. Dubois, and C. Nicolle. (2019). Method and System of
SecuringWearable Equipment. Accessed: Jul. 8, 2020. [Online]. Available:
https://doi.org/10.4121/uuid:c1fb5962-e939-4c51-bfd5-eac6f2935d44

[39] R. Marroquin, J. Dubois, and C. Nicolle, ‘‘WiseNET: An indoor multi-
camera multi-space dataset with contextual information and annotations
for people detection and tracking,’’ Data Brief, vol. 27, Dec. 2019,
Art. no. 104654.

[40] Q. Huynh-Thu and M. Ghanbari, ‘‘The accuracy of PSNR in predicting
video quality for different video scenes and frame rates,’’ Telecommun.
Syst., vol. 49, no. 1, pp. 35–48, Jan. 2012.

[41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[42] M. Douglas, K. Bailey, M. Leeney, and K. Curran, ‘‘An overview of
steganography techniques applied to the protection of biometric data,’’
Multimedia Tools Appl., vol. 77, no. 13, pp. 17333–17373, 2018.

[43] Hikvision Digital Technology Co. Smart Camera. Accessed: May 1, 2020.
[Online]. Available: https://www.hikvision.com/

[44] Swann Communications Pty. Ltd. Smart Video Analytics Camera.
Accessed: May 1, 2020. [Online]. Available: https://www.swann.
com/us/swwhd-intcam

[45] Intelligent Camera, Sony Europe B. V. Accessed: May 1, 2020.
[Online]. Available: https://pro.sony/en_CL/products/ip-cameras/video-
security-g6-intelligent-surveillance

153424 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-642-04101-3

