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Abstract

This paper presents an investigation into the effect of faults on the scalability resilience of cloud-based software
services. The study introduces an experimental framework using the Application-Level Fault Injection (ALFl) to
investigate how the faults at the application level affect the scalability resilience and behaviour of cloud-based
software services. Previous studies on scalability analysis of cloud-based software services provide a baseline of the
scalability behaviour of such services, allowing to conduct in-depth scalability investigation of these services.
Experimental analysis on the EC2 cloud using a real-world cloud-based software service is used to demonstrate the
framework, considering delay latency of software faults with two varied settings and two demand scenarios. The
experimental approach is explained in detail. Here we simulate delay latency injection with two different times, 800
and 1600 ms, and compare the results with the baseline data. The results show that the proposed approach allows
a fair assessment of the fault scenario’s impact on the cloud software service’s scalability resilience. We explain the

cloud-based software services.

use of the methodology to determine the impact of injected faults on the scalability behaviour and resilience of
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Introduction
As cloud-based software services have become more
popular and dependable, evaluating the performance of
such services is more critical than before. Previous
research studies [1, 2] have focused on measuring the
scalability performance of such services to collect the
right measurements and set up specific metrics such as
technical evaluation metrics and infrastructure-monitoring
metrics. These metrics are important to set a baseline for
the scalability performance behaviour of these services.
Performance and scalability assessment by using the
fault injection technique allows evaluation of the impact
of faults on aspects of cloud-based software services that
pertain to the quality, such as performance, scalability,
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and security [3]. However, most studies in the area
focused on injecting the faults on the Infrastructure-as-
a-Service (IaaS) and Platform-as-a-Service (PaaS) level
[4, 5], or introducing a test environment system that
injects faults into hardware devices or VMs levels [6].

Fault injection is a method to test the performance
of software systems [7, 8]. Fault injection can take
place at various times: at runtime, compile-time, or
the loading time of external components [9]. Fault
injection approaches have been used extensively to
characterise the behaviour of systems under faults [4].
Furthermore, Fault injection has been utilized to ana-
lyse the dependability and reliability of cloud-based
software systems [10-12].

Application-level fault injection (ALFI) is one of the
most common techniques to study the application’s
resilience to faults [3]. It has been used to evaluate the
application’s vulnerability [3] based on its application
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responses. Moreover, the ALFI technique is used for
testing the application’s resilience to ascertain how ap-
plications tolerate random instance failures [13], which
is a discipline of experimenting on software systems’
ability to tolerate failures in unexpected conditions that
have been referred to as “chaos engineering” [14]. In this
work, we aim to present the use of scalability perform-
ance measurements and metrics to evaluate the resili-
ence of cloud-based software services, and establish a
corresponding framework for scalability performance
measurements. For this we will be injecting the faults
into the running cloud-based application by using fault
injection tools to emulate potential problems at the
application level to assess how the faults influence the
scalability resilience and behaviour of the cloud-based
software service.

The experimental evaluation of the results shows that
the injected faults impacted the scalability behaviour.
The established scalability resilience framework has
highlighted the impact of those faults on the scalability
and clarified how the ALFI significantly impacted the
scalability resilience and behaviour of the targeted ser-
vices. As a result, the scalability performance of the
cloud services has significantly dropped in terms of qual-
ity (i.e. average response time) and volume (i.e. number
of scaling instances). Incorporating the scalability mea-
surements with application-level fault injection at run-
time allows a clear assessment of the resiliency of the
scalability behaviour of cloud software services and
draws a fair indicator on how the faults will affect the
scalability resilience and behaviour.

The structure for the remainder of the paper is as fol-
lows. First, Section 2 presents related works. Section 3,
presents the scalability performance metrics and demand
scenarios used in this paper. Section 3 discusses the pro-
posed framework using the Application-Level Fault In-
jection for Scalability Resilience. Section 5 presents the
results of an application example. This is proceeded by a
discussion of the study in Section 6, including the impli-
cations, limitations, and importance of the work. The
final section, Section 7, presents the conclusions and fu-
ture directions.

Related works

Technical scalability metrics provide the baseline for
more detailed investigations of cloud-based software ser-
vices” scalability performance. Fault injection at the ap-
plication level would help to evaluate the application’s
response to those artificial faults [3] over the quality as-
pects of cloud-based software services, such as perform-
ance, scalability, and security. Therefore, comparing the
scalability performance of a cloud-based software service
after a fault-injection attack with the performance ana-
lyses with normal workload will indicate the resiliency of
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that software service and how the scalability behaviour
of such application will be impacted in such fault
scenarios.

Technically oriented scalability measurements and
metrics for cloud-based software service are limited. The
work [15] provides an elasticity-driven metric that mea-
sures the sum of over and under-provisioned resources
over the total length of time of service provision as a
technical scalability metric. Even though the work [16]
does not specify or formulate specific metrics of tech-
nical scalability, it does provide a technical measure-
ments approach, which depends on throughput in the
system with and without multiple VMs. A graphical
model approach to evaluate the Software-as-a-Service
(SaaS) performance and scalability is presented in [17].
The performance is evaluated from the system capacity
perspective, which includes the system capacity and load
as measurements for scalability. A case study using a
sample of Java-based program hosted on EC2 has been
reported.

While [18] provides a technical approach to scalability
measurement in terms of throughput and CPU
utilization, it does not present a well-defined metric. In-
stead, the work focuses on presenting performance vari-
ations through experimental analysis, using three public
cloud platforms and two cloud applications, and another
set of comparisons based on three private clouds that
have been built using the three mainstream hypervisors.
The work [19] focuses on building a model that allows
measuring and comparing different delivery configura-
tions in terms of capacity, elasticity, and cost. The work
evaluated the proposed metrics using CloudStore appli-
cation on Amazon EC2. On the other hand, they identi-
fied the scalability in terms of the number of
simultaneously simulated users as a current limitation.
While the work [20] proposed two scalability metrics,
one based on the relationship between the services cap-
acity and its use of resources; while the other is the cost
scalability metric function that based on the services
capacity and its cost, the work used the CloudStore
hosted in EC2 with different configurations in order to
demonstrate the proposed metrics.

In terms of fault injection, related survey studies
[8, 21] show that most of the research is focused on
measuring fault tolerance in cloud computing by
using fault injection. The majority of the studies use
the technique of injecting the fault on IaaS and PaaS
levels [4, 5, 22, 23], testing the resilience specific
types of cloud applications [24], or by introducing a
test environment system that injects faults into hardware
devices or VMs levels [6]. However, there have been some
studies that address the fault injection technique on the
cloud applications level. These studies describe either pro-
totypes or the use of this technique to build fault detection
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and diagnosis models. Herscheid et al. [11] suggested a
draft architecture for “fault injection as a service” within
the OpenStack, the implementation of the service itself is
still under further development. Ye et al. [12] proposed a
fault injection framework for artificial intelligence applica-
tions in container-based clouds, in order to detect the
fault behaviour and interference phenomenon, however,
the work focuses on presenting fault detection models that
can distinguish the injected faults. On the other hand,
Zhang et al. [25] presented a novel fault injection
framework for system calls level, however, the study
aims to evaluate the reliability of applications in rela-
tion to system call invocation errors in production,
and did not specify that the work is focused on
Cloud-based applications.

Scalability performance metrics and demand
scenarios

We follow the approach to measuring and quantifying
the scalability of cloud-based software services and
explaining the metrics based on the measurement ap-
proach, as presented in Al-Said Ahmad and Andras
(2019) [2]. The measurement approach explains both
scalability metrics, volume and quality scaling scalability
of cloud-based software services.

Here, D and D’ are two service demand volumes. D’ is
greater thanD. While I and I' are the corresponding
number of software instances deployed to deliver the
software services, t, and t’, are the corresponding aver-
age response times for the services. Assuming the same
service demand scenarios, we consider a series of in-
creasing demand levels, Dy. The corresponding perform-
ance indicators are t; the service average response times
and I the volume of software instances, and I*; is the
corresponding ideal volume of software instances. We
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can calculate the corresponding ideal volume of software
instances as the following:

I*k = (Dk/Do) '10

The volume metrics () is defined as follows:
A=Y DeDel) - )2 (1)

A= Zk:l..“ n(Dk B Dk_l)
(-2 [Le- Ty + Ter - 2 [ - Trn] ) /2
(2)
n=A/A" (3)

Where [x], represents the value of x if it is positive
and 0 otherwise. This alteration of the calculation avoids
the distortion of the metric caused by the potential over-
provision of services.

The quality metric is defined (7,) as follows:

B = Zk:],...m(Dk -Di-1) - to = (D - Do) - £ (4)

B=3 (Di-Dit)- (te+t1)/2 (5)
e = B'/B (6)

The performance measures consider; the number of
scaling instances, and average response times for cloud-
based software services scalability, to provide a practical
measure of these features of such systems. This is im-
portant to support effective measurement and testing of
the scalability of cloud-based software systems.

Figure 1 illustrates the calculation of the two scalability
performance metrics (quality and volume) [2]. In Fig. 1a,
A* is the area that represents the ideal expectation about
the scalability behaviour, and A is the area that
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curves show the actual scaling behaviour [2; page 5]

Fig. 1 The calculation of the scalability performance metrics: a) the volume scalability metric is n,, which is the ratio between the areas A and A%
b) the quality scalability metric is n,, which is the ratio between the areas B* and. The red lines indicate the ideal scaling behaviour and the blue
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represents the corresponds to the actual volume scaling
of the software services. In Fig. 1b, B* is the area under
that represents the expected ideal behaviour, and B is
the area that illustrates the actual quality scaling behav-
iour of the system (in terms of average response time).
We chose to present the actual scaling behaviour as
nonlinear curves to indicate that the actual scaling of the
software services is likely to respond in a nonlinear man-
ner to changing demand [2].

Two kinds of demand scenarios have been used in this
paper. These demand scenarios follow the patterns rec-
ommended by Fehling et al. [26], which include static,
periodic, once-in-a-lifetime, unpredictable, or continu-
ously changing workload patterns. Any demand scenario
or workload pattern must represent a real customer
workload. So in this paper, we have adopted and
followed those patterns and developed our versions of
these recommended patterns. The first scenario is a
steady increase followed by a steady decrease in the
workload with a set level of the peak. This scenario fol-
lows the static workload pattern, which is suitable for
private cloud-based applications of small and medium-
sized companies; these systems are usually used intern-
ally by employees or a small user group [26]. The second
scenario is a stepped increase and decreases, again with
a set peak level of workload; with this scenario, we

-
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Fig. 2 Demand scenarios: A) steady rise and fall of demand; B)
stepped rise and fall of demand
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schedule to start with 10% of the total demand size, then
increase 10% stepwise over time, followed by a 10%
stepped decrease over time. These kinds of scenarios are
suitable for cloud-based software services that follow
growing and changing demand with peaks. This is im-
portant to show how the scalability of cloud-based soft-
ware services is adjusted automatically to the rate at
which growing or changing happened [26]. These two
demand scenarios are shown in Fig. 2.

Application-level fault injection for scalability
resilience

This paper aims to establish a framework for measuring
the scalability resilience of cloud-based software services
and to investigate the effect of runtime fault injection at
the application level on the scalability behaviour of such
services. An Auto-Scaling service is used to support the
software services to deal with the sudden workload. In
addition, a Load-Balancing service is used to determine
the fault tolerance of software services by ensuring that
the incoming application’s traffic is distributed across
multiple applications instances [27]. Previous studies [2]
investigated the scalability performance of cloud-based
software services, which set a baseline for the scalability
behaviour of these services. In the study reported in this
paper, the use of ALFI provides data to compare the
scalability performance with the baseline performance
following the scalability metrics discussed in [2] and ex-
plained in section 3.

In general, the aim here is not to crash the application
at runtime. Our methodology is focused on measuring
and evaluating the effect of the injected faults on the
cloud-based software services” scalability over a sustained
period. We collect the measurements that have been de-
fined in Section 3, the number of scaling instances and
average response times, to calculate the volume and qual-
ity scalability metrics. This will provide fair comparisons
of the calculated average number of instances and average
response time under normal operation and the behaviour
of the two measurements during fault injection. This will
provide useful behaviour benchmarking about the scalabil-
ity performance that can assess the impact of faults in the
delivery of the cloud-based software service from a scal-
ability resilience perspective. Figure 3 illustrates the gen-
eral set-up of the experimental framework approach.

This framework incorporates four main components:
workload generator, software fault, scalability measures,
and the system under test and its environment. A work-
load generator (such as JMeter or/and Redlinel3) is used
to simulate a realistic workload demand scenario that re-
flects the real usage of services. A set of software faults
should represent a repeatable and generally accepted set
of faults (such as adding latency/bandwidth, HTTP traf-
fic, database traffic, or terminating requests). The
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Fig. 3 Scalability Resilience framework using application-level fault injection

software fault is defined as “An error is that part of the
system state which is liable to lead to subsequent failure:
an error affecting the service is an indication that a fail-
ure occurs or has occurred. The adjudged or hypothesised
cause of an error is a fault.” [28]. Scalability measures
are the indicators that are used to quantify the scalability
of cloud-based software services. Finally, the system
under test and its environment include connecting both
Auto-Scaling and Load-Balancing services to ensure the
scaling provision of services.

Incorporating scalability measurements with application-
level fault injection (ALFI) to measure the resilience of
cloud-based software services is very important. This frame-
work can provide a useful behaviour benchmarking in rela-
tion to the scalability performance that can be used to
assess the impact of the injected faults on the delivery and
the resilience of such service from a scalability perspective.

Application example and results

We follow a two-stage preparation process in order to
use the ALFI approach to validate the framework pro-
posed in section 4 for measuring the scalability resilience
of cloud-based software services. The first stage is pre-
paring the workload scenario, scalability measures, and
the system under test and its environment; the second
stage is preparing the set of the software fault(s) injected
in parallel with the workload on the system under test.
Following the preparatory stages, we execute the experi-
ments and measure the scalability performance.

System set-up stage
An Amazon EC2 instance was configured in order to
host the OrangeHRM (https://www.orangehrm.com/)

service through the AWS management console. Oran-
geHRM is an open-source application built using both
PHP and MySQL. It has been optimized to fit cloud en-
vironment use, and it has influenced its architecture by
offering a scalable human resource (HR) solution [29].
OrangeHRM is considered the most popular HR soft-
ware globally, with more than 4 million current users
across the globe (OrangeHRM.com). In addition, the ap-
plication is based on REST-caching architecture, which
is highly adopted and used by cloud applications and
service providers. The REST architecture allows improv-
ing the performance and scalability of cloud software
services by caching the data and code [30]. That will
help improve the response time of such services by redu-
cing the amount of time required to execute the HTTP
requests [31].

The application instance was connected with auto-
scaling and Load-Balancing services. In addition, the
CloudWatch service was attached to monitor the scaling
parameters. Table 1 shows the parameters of the in-
stance and the Auto-Scaling policies that were used for
the experiments. The auto-Scaling policies adopted in
this paper are the default policies used in AWS when

Table 1 EC2 instance parameters and Auto-Scaling policies

Instance (VM) Parameters

Instance type: t2.micro
vCPUs RAM (GB) CPU Credits/hour Storage (GB)
1 1.0 6 10
Auto-Scaling Policies
Add Instance 80% > = CPU Utilization < + infinity

Remove Instance 30% < = CPU Utilization > — infinity
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creating EC2 virtual machines. Although, in the previous
study [2], a comparison has drawn between two options
of auto-scaling policies (i.e., default AWS and custom
auto-scaling policies). The work concluded that effi-
ciency is increased when used the default auto-scaling
policies offer by AWS [2]. Therefore, we relied on using
the default Auto-Scaling policies offered by AWS. Some
parameters have been considered to connect the auto-
scaling to the software instance on EC2:

e The capacity of the auto-scaling group is used to
determine the maximum number of scaling
instances;

e Launch configuration: is a configuration template
that uses by an auto-scaling group to lunch software
instances at runtime (include the ID of Amazon
Machine Image (AMI); the instance type; a security key
pair; security group(s); and a block device mapping);

e Scaling policies are instructions for making the scale
up and down in response to a workload. In this
paper, we relied on CPU Ultilization; and

e Attach the Load-balancers to the Auto Scaling
group. This will help deal with HTTP and HTTPS
traffic and automatically distribute incoming
application traffic across multiple targets, such as
EC2 instances [27].

We use the Apache JMeter script to simulate the
demand scenarios illustrated in Fig. 2. Furthermore, to
ensure the repeatability of the demand scenarios, Red-
Linel3 services were used. This allows us to deploy the
test scripts easily using our AWS account and repeat the
tests without resetting the test parameters. In addition,
this allows systematic extraction of the data. We used
both Redlinel3 and AWS’ CloudWatch services to col-
lect The scalability measurements data.

Here we report the behaviour of the OrangeHRM in re-
sponse to the HTTP request. The JMeter allows targeting
the system-under-test (SUT) with a basic HTTP/HTTPS
request, parsing HTML web pages for images and other
embedded resources in the application, including applets,
scripts, etc., and sends HTTP retrieval requests [32]. The
service requests consisted of HTTP requests to the main
page of the application by gaining login access using the
following steps from Apache JMeter script:

e Path =/

e Method = GET

e DParameters = username, password, and a login
button

Fault preparation stage
To simulate the injected faults, we used Charles version
454 (https://www.charlesproxy.com/), which is an
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HTTP proxy, an HTTP monitor; a reverse proxy; and a
web traffic simulator, to simulate application delay la-
tency (in milliseconds [ms]). The latency delay simulates
the latency experienced on slower connections, which is
the delay between making an HTTP request(s) from the
application side and receiving the request at the cloud
server-side. In the experiments reported in this paper,
the delay latency times were varied: 800 ms and 1600 ms.
For our purposes, it was sufficient to simulate the la-
tency delay using Charles; also, we found this HTTP
proxy easy to use, free and available. However, it should
be noted that there are some other HTTP proxy alterna-
tives, including James, Fiddler, TinyProxy, and mitm-
proxy, etc.

Here we simulate a delayed latency that is the delay
in time between the request being made and received
at the other end. This is called just before executing
the HTTP request against the targeted cloud-based
software service. This provides an insight into how
calling applications behave when their dependency
goes slow, as requests accumulated causes congestion
at the requests queue. Although this type of fault fo-
cuses on affecting the quality measurement (i.e. re-
sponse time), delay latency can affect the system
capacity (i.e., volume measurement). For instance, the
targeted application requires computation to process
the requests and to receive their response from the
cloud side. This process causes an increase in the
number of HTTP requests being initiated to respond
to the service responses, increasing the possibility of
requesting more service instances (volume) to handle
the number of HTTP requests targeting the software
services. In addition, this type of fault can cause a
termination of service delivery processes, requiring
the re-issue of service requests (i.e., connection timed
out).

In this paper, the delay latency may be set to any
random milliseconds of time. Here the delay simulates
the latency experienced on slower connections
[charlesproxy.com]. The latency delay is the delay be-
tween making any request and the request received on
the server-side. Therefore, each request is subjected to
the same delay, i.e., if we assign 100 requests to hit the
system in 10 s with an 800 milliseconds latency delay, we
expect that each request will be delayed for 800 ms be-
fore reaching the server-side. Due to the latency delay
(i.e., 800 ms or 1600 ms), there are some re-issues of the
same request caused by the delay with the answer from
the server side. These additional re-issues of the requests
cause the clogging of the system. Given that there is a
variation in the response times, there will be a variation
in the number of re-issues of the same requests and a
variation in the cancellations of the re-issues of requests,
when the service delivery arrives.
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Experimental process

An example of the experimental demand pattern at
runtime is illustrated in Fig. 4, and these patterns were
captured after applying the two-stage ALFI experimental
approach. While Fig. 5 represents an example of the
experimental demand pattern at runtime for the baseline
experiments (without fault injection). We note that there
is a delay in terms of starting the user running in real-
time. This is due to the delay between the request being
made and received at the cloud-based software service
side. In this paper’s detailed set of experiments, each fault
injection experiment was conducted ten times (x 10), and
the baseline experiments were performed ten times. Each
demand scenario varies the volume of demand, and we
used experiments with four demand sizes: 100, 200, 400,
and 800 service requests. A total of 160 (fault injection)
experimental were conducted and 80 basline experiments
(without fault), the averages and standard deviations of
the simultaneously scaled number of instances and aver-
age response times over ten experimental runs have been
calculated. We note over the ten runs that the standard
deviations were minimal concerning the averages.

To consider the collected results of any performance in-
dicator as benchmark data, the value of one test should be
obtained and compared with previous tests. Therefore, to
ensure that our test results are statistically significant, all
tests have been repeated ten times. Thus, Table 2 shows
the details and duration of the experiments conducted in
this paper. Each user does twenty iterations, ie., if we
assigned 200 virtual users to hit the system in an x time,
we expect that all 200 will do ten iterations, which means
4000 times. Each experiment took 1.15h (in average) to
complete without considering the management time for
uploading the application into our cloud platform, setting
up both auto-scaling and load-balancing settings, and set-
ting up the fault simulator for each experiment.

The measured scalability results
This section will present the scalability measurements
collected following the scalability resilience technical
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measurements framework discussed in section 4. The
baseline benchmark data was collected from the experi-
ments without fault injection, following the first stage of
the approach. We note that some of the 800 service re-
quests for 800 ms and 1600 ms delay latency experi-
ments crashed due to “connection timed out.” Table 3
shows the successful and failed experiments. Failed ex-
periments are defined as those in which all virtual users
in one test do not complete the test successfully in the
allocated time for each test, or the test ended in the case
of “connection timed out,” i.e., if we assigned 400 virtual
users to hit the system in an x period of time, we expect
that all 400 will successfully finish. Otherwise, it is con-
sidered a failed experiment.

The average number of software instances for each of
the four demand levels (100, 200, 400, and 800) is shown
in Fig. 6. The figure illiterates the comparison between
the baseline, 800 ms, and 1600 ms delay latency experi-
ments for both demand scenarios. The average response
times for the four demand levels are shown in Fig. 7,
which illustrates the comparison between the baseline,
800 ms, and 1600 ms delay latency experiments for both
demand scenarios.

It is noted that the average number of instances for
the 800 ms experiments caused a similar scaling behav-
iour to the baseline, while in the case of the 1600 ms ex-
periments, the behaviour changed by increasing the
number of provisioned instances at the 400 service re-
quests. Thus, in terms of quality, there was not a big
variation in average response times in both cases (800
and 1600 ms). However, in the case of 800 ms, the scal-
ing started increasing significantly from the demand size
of 200. Then once the demand size reached 400, the
average response time stabilized around the same pat-
tern as the baseline. In contrast, the response time
values for the 1600 ms experiment, shown in Fig. 7, in-
creased gradually with bigger variations.

This investigation of scalability is designed to deter-
mine the impact of using other ways to study the per-
formance of cloud software services, such as using the

A

Demand

Time
Fig. 4 Typical experimental demand patterns: OrangeHRM/EC2 — series of stepwise increases and decreases of demand — ALFI
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Fig. 5 Typical experimental demand patterns: OrangeHRM/EC2 — series of stepwise increases and decreases of demand - Baseline (2, page 8)

fault-injection technique. Figure 8 shows the average
number of instances of the 800 and 1600 ms latency in-
jection experiments compared with the ideal scaling be-
haviour in relation to both technical scalability metrics:
volume (7;) and quality (7,) calculation, while Fig. 9 illus-
trates the ideal and average response times of the 800
and 1600 ms latency injection experiments for both de-
mand scenarios. Here, we compare the ideal scaling of

the baseline experiments with the actual scaling behav-
iour of the latency injection experiments.

We note that both 800 and 1600 ms fault injection ex-
periments have drawn similar scalability behaviour in
terms of volume scalability. However, we have noted a
big variation in response times for both scenarios in
terms of quality. This is not surprising, given our inter-
vention (fault injection) is adding time delays, which will

Table 2 Experiments Duration

Scenario Experiment type No. of running users Iteration Duration (sec) Total time (x10)
(in each test)
Steady rise and fall Baseline (without 100 20 100 20,000's
(Demand Scenario 1) fault injection) 200 20 200 400005
400 20 400 80,000 s
800 20 800 160,000 s
800 ms delay latency 100 20 100 20,0005
200 20 200 40,000
400 20 400 80,000 s
800 20 800 160,000's
1600 ms delay latency 100 20 100 20,0005
200 20 200 40,000
400 20 400 80,0005
800 20 800 160,000 s
Stepwise increase and decrease Baseline (without 100 20 10 2000's
(Demand Scenario 2) fault injection) 200 2 2 4000
400 20 40 8000 s
800 20 80 16,000 s
800 ms delay latency 100 20 10 2000's
200 20 20 4000
400 20 40 8000 s
800 20 80 16,000 s
1600 ms delay latency 100 20 10 2000's
200 20 20 4000s
400 20 40 80005
800 20 80 16,000 s
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Table 3 The successful/failed experiments

Scenario Experiment type 100 200 400 800

Steady rise and fall Baseline (without fault injection) Successful Successful Successful Successful

(Demand Scenario 1) 800 ms delay latency Successful Successful Successful 80% Successful (8 out of 10)
1600 ms delay latency Successful Successful Successful 70% Successful (7 out of 10)

Stepwise increase and Baseline (without fault injection) Successful Successful Successful Successful

decrease (Demand Scenario 2) 800 ms delay latency Successful Successful Successful 60% Successful (6 out of 10)
1600 ms delay latency Successful Successful Successful 40% Successful (4 out of 10)

directly affect the average response time of the service.
For example, in Fig. 8A and B for the demand size 100,
over-provision cases have been accrued, while in Fig. 8A,
which illustrates the average number of instances of the
steady rise and fall of demand (the simpler demand sce-
nario), both 800 and 1600 ms draw a similar pattern.
However, in the context of the second scenario (see Fig.
8B) - which is likely to be a more realistic scenario for
many software services — response time (quality) scaling
is changing when we reach 400 demand size for the
1600 ms fault injection experiments.

The values for the scalability metrics n; and n, for the
both baseline and the two fault injection set of experi-
ments that were conducted are shown in Table 4. The
calculated metrics show that the fault injection experi-
ments display over-provisioning behaviour in volume
scaling, with a notably decreased volume performance in
the 1600 ms experiment for both scenarios. This is be-
cause the volume metric values for the fault injection
scaling behaviour is based on the metric that considers
the over-provision (see equation number 2). This is be-
cause part of the volume results are equivalent to over-
provision according to our definition of this (i.e. see Fig.
8A and B for demand size 100).

In terms of quality scalability, the system scales much
better in the baseline context than the fault injection ex-
periments. It was noted that as a result of the variations

in response times for the 1600 ms experiments, the qual-
ity metric (n;) value dropped by 0.5609, a percentage de-
crease of 62% (first scenario), and 0.4121 with a 79%
percentage deceased (second scenario). It was also noted
that by using 1600 ms latency injection, the volume (1)
decreased as expected; however, the quality dropped sig-
nificantly. If the decrease in quality and volume scaling
is taken into account, this shows that the overall per-
formance of the scalability behaviour and resilience has
dropped.

It should be noted that the latency faults cause a nega-
tive impact in terms of quality. In contrast, volume de-
creases between 36% and 49% in relation to the baseline
for the 1600 ms experiments for the first and second sce-
narios, respectively. Furthermore, the quality indicator
shows a significant drop in the performance of the ser-
vices between 62% and 79% in relation to the baseline
for the 1600 ms experiments for the first and second sce-
narios, respectively.

Based on the above percentage drops in terms of scal-
ability metrics values, this helps to provide a clear as-
sessment of the scalability’s resilience. By considering
the baseline as 1, and see how much the values drop
after applying ALFI incorporated with scalability testing.
This will help to define a scalability performance resili-
ence measure. This established a framework for using
ALFI to measure the resiliency of scalability performance

A) —4—Baseline =ll=800 ms 1600 ms

15
14
13
12
11
10

Volume

ORNWAOVON®

Demand Size

demand; B) series of stepwise increases and decreases of demand

Fig. 6 The average number of software instances for the baseline, 800 ms, and 1600 ms delay latency experiments: A) steady rise and fall of

B) —4—Baseline

~f—800 ms 1600 ms

Demand Size
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Fig. 7 The average response times for the baseline, 800 ms, and 1600 ms delay latency experiments: A) steady rise and fall of demand; B) series

——o—Baseline —@—800ms -

1600 ms

&

Response time (Sec)

100 200 400 800

Demand Size

and create a clear way to assess the resilience of scalabil-
ity. The values for the scalability resilience calculated
based on the nl and nt for the baseline and the two fault
injection experiments conducted are shown in Table 5.
The above results of the resilience values show that
the values drop gradually when the injected faults are
stronger (i.e., 1600 ms delay has more impact than 800
ms). As we expected from these faults (i.e., latency
delay), the impact on the quality (i.e., response time) re-
siliency is greater, howerver, we note the decreasing
values of the resilience in scalability in terms of volume
and quality. As noted, the quality resilience has been
dropped 41% and 62% for the first scenario. In the con-
tract, in terms of volume, the resilience dropped by 15%
and 36% for the 800ms and 1600 ms fault scenarios,

respectively. In the context of the second scenario -
which is likely to be a more realistic scenario for many
services — we note that the drop of quality resiliency
around 66% to 79%, and by 19% to 49% for the volume
resiliency; for the 800 ms and 1600 ms fault scenarios re-
spectively in relation to the baseline.

Discussion

This paper presents an experimental analysis of the im-
pact of fault injection on the scalability resilience of
cloud-based software services. The experimental frame-
work based on the use of the ALFI has been explained,
combining four components: workload generator, soft-
ware fault, scalability measures, and the system under
test and its environment. Previous studies on the

32

Volume

~—4— Real 800 ms

— - Baseline Ideal

Real 1600 ms

Demand Size

stepwise increases and decreases of demand

Fig. 8 The average number of software instances for baseline, 800, and 1600 ms experiments. A) steady rise and fall of demand; B) series of

B)

Volume
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Fig. 9 The average response times for baseline, 800, and 1600 ms experiments. A steady rise and fall of demand; B series of stepwise increases

scalability performance of cloud-based software services
provide a baseline for the scalability behaviour of those
services. An example using Amazon EC2 and Oran-
geHRM as a cloud-based software service has been
employed to demonstrate the approach using delay la-
tency injection with two different times, 800 and 1600
ms, and the data has been compared with the baseline
data. This is important to determine whether the fault
injection experiments significantly impact the scalability
resilience of the software service. It should be noted that
the delay latency faults cause a negative impact in terms
of quality. Moreover, while the volume scaling is de-
creased in relation to the baseline, the quality indicator
shows a significant drop in the performance of the ser-
vice in terms of quality. The calculation of the scalability
resilience values clearly indicates the impact of using the
ALFI approach.

In this paper, the fault injection is considered by
injecting delay latency into the software service at run-
time. Other faults (such as adding latency/bandwidth,
HTTP traffic, database traffic, or terminating requests)
at the application level could also be considered to assess
the true impact of faults on the scalability resilience of
cloud-based software services and ascertain the type of
impact on the scalability based on the nature of the fault.

Table 4 Scalability metrics values

As noted in this study, the use of delay latency faults has
affected the quality aspect of the scalability (i.e., response
time) more than the scaling performance in terms of
scaling instances.

This would provide useful behaviour benchmarking in
relation to the scalability performance and resilience that
can be used to assess the impact of faults on the delivery
of the cloud-based software service from the perspective
of scalability. This could help identify likely problems
with the software or the cloud environment that delivers
the cloud-based software service. Expanding the range of
faults provides better benchmark data and a more com-
prehensive picture of cloud-based software services’ scal-
ability resilience under fault scenarios and techniques.

In this work, two demand scenarios were used to dem-
onstrate the effect of demand patterns in the fault injec-
tion approach. In principle, considering a further set of
fault injections incorporated with different scalability
workload scenarios can also be used to pinpoint changes
in such scenarios that might trigger interventions in
terms of system upgrades or maintenance for the system
under test.

The constraints in these results are due to the limited
nature of the experimental investigation presented. First,
the framework was demonstrated using one cloud-based

Scenario Metric
n Ne
Steady rise and fall (Demand Scenario 1) Baseline (without fault injection) 0.5687 0.9041
800 ms delay latency 04830 0.5318
1600 ms delay latency 0.3621 0.3432
Stepwise increase and decrease (Demand Scenario 2) Baseline (without fault injection) 0.5882 0.5201
800 ms delay latency 04730 0.1768
1600 ms delay latency 0.2988 0.1080
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Scenario Metric
n Nt
Steady rise and fall (Demand Scenario 1) Baseline (without fault injection) 1.0000 1.0000
800 ms delay latency 0.8493 0.5882
1600 ms delay latency 0.6367 0.3796
Stepwise increase and decrease (Demand Scenario 2) Baseline (without fault injection) 1.0000 1.0000
800 ms delay latency 0.8041 0.3399
1600 ms delay latency 0.5080 0.2077

software service hosted into one public cloud environ-
ment. Naturally, further developing the experiments to
cover multiple cloud environments and multiple soft-
ware services will provide a better overview of the im-
pact of the fault on the scalability resilience of such
services. Moreover, two demand scenarios and one type
of fault (delay Latency) were used with two settings. In
contrast, a broader range of faults would give us a more
profound understanding of how the approach varies de-
pending on the nature of faults and the scalability de-
mand scenario. Finally, one particular cloud instance’s
specifications and one fault generator were used to dem-
onstrate the framework. Alternative workload and faults
generators might impact the calculated metrics values
due to their implementation details and preferences, al-
though, in principle, it is not expected that these would
significantly impact the reported results.

Conclusions and future directions

In this paper, an experimental framework of using ALFI
to investigate the scalability resilience of cloud-based
software services is presented. The experimental ap-
proach is explained, combining four components: work-
load generator, software fault, scalability measures, and
the system under test and its environment. The frame-
work was demonstrated using OrangeHRM hosted into
EC2 and considering two demand scenarios incorpo-
rated with one type of fault with two settings (800, and
1600 ms delay latency). The results show that the pro-
posed approach allows clear assessment of the impact of
a fault scenario on the cloud service’s scalability per-
formance and resilience.

A major part of the method implemented in the ALFI
approach is derived from the findings of previous studies
[2], which set the baseline for measuring the scalability
of cloud-based software services, which draws compari-
sons with the result of the fault injection experiments to
assess the impact of this methodology. This allows for a
clear assessment of the scalability resilience of cloud-
based software services.

Naturally, future work will consider other cloud envi-
ronments, other workload generators, fault types, and

other cloud software services to obtain a wider range of
scalability and fault measurements of the proposed
framework, extending the practical validity of the work.
An alternative of using commercial cloud infrastructure
such as Amazon or Microsoft Azzure is to use private
cloud infrastructures such as Openstack or Hewlett
Packard Enterprise (HPE), or to use Cloud simulators
(e.g. CloudSim) in order to conduct scalability experi-
ments in combination with a set of experiments on pub-
lic cloud platforms. The latter alternatives may provide
lower cost experimental alternatives compared to com-
mercial cloud services. Moreover, consider further de-
mand patterns incorporated with faults to show how
they impact the scalability resilience of cloud-based soft-
ware services. This could help to establish volume and
quality scalability metrics conditional on fault injection
patterns.
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