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Abstract
In this work, we propose an attention-based deep convolutional neural network (CNN) model as an assistive computer-aided 
tool to classify common types of macular diseases: age-related macular degeneration, diabetic macular edema, diabetic 
retinopathy, choroidal neovascularization, macular hole, and central serous retinopathy from normal macular conditions 
with the help of scans from optical coherence tomography (OCT) imaging. Our proposed architecture unifies refined deep 
pre-trained models using transfer learning with limited training data and a deformation-aware attention mechanism encoding 
crucial morphological variations appearing in the deformation of retinal layers, detachments from the subsequent layers, 
presence of fluid-filled regions, geographic atrophy, scars, cysts, drusen, to achieve superior macular imaging classification 
performance. The proposed attention module facilitates the base network to automatically focus on the salient features aris-
ing due to the macular structural abnormalities while suppressing the irrelevant (or no cues) regions. The superiority of our 
proposed method lies in the fact that it does not require any pre-processing steps such as retinal flattening, denoising, and 
selection of a region of interest making it fully automatic and end-to-end trainable. Additionally, it requires a reduced num-
ber of network model parameters while achieving higher diagnostic performance. Extensive experimental results, analysis 
on four datasets along with the ablation studies show that the proposed architecture achieves state-of-the-art performance.

Keywords  Age-related macular degeneration · Attention mechanism · Choroidal neovascularization · Diabetic macular 
edema · Optical coherence tomography

Introduction

Macula is the main sensory region present near the center 
of retina surrounding the fovea. It is mainly responsible for 
the central vision. The macular health is affected by a num-
ber of diseases, such as age-related macular degeneration 
(AMD) [23], diabetic macular edema (DME) [28], macular 
hole (MH) [41], central serous retinopathy (CSR) [25], etc. 
These diseases, because of their sight-threatening effects and 

high diagnostic complexity have attracted intensive research 
efforts in the last few years [32, 39]. The optical coherence 
tomography (OCT) imaging technique is used to obtain a 
cross-sectional view of retinal layers and captures the tex-
tural and morphological variations [14], making it conveni-
ent for macular disease detection. From the onset and as the 
disease progresses, early diagnosis involves careful visual 
inspection of retinal layers deformation, detachments from 
the subsequent layers, presence of fluids, geographic atrophy 
and drusen. Some sample OCT scans from various classes 
are shown in Fig. 1.

AMD macula emerges with the accumulation of drusen in 
the middle of the retinal pigment epithelium (RPE) and the 
bottom choroid. It causes an irreversible lesion in the retina 
and damages the macular region causing RPE atrophy, the 
detachment of layers along with other abnormalities such 
as choroidal neovascularization (CNV). CNV is detected 
by the formation of new blood vessels in the choroid layer 
and this is a typical cause of wet AMD. On the other hand, 
the leading causes of blindness in adults over the age of 65 
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years is diabetic retinopathy (DR) [37]. Diabetes may lead to 
breakage, leakage or blockage of retinal blood vessels. DME 
can occur in any stage of DR causing various deformations 
to the morphology of retinal layers, such as retinal thick-
ening, microvascular changes, formation of hard exudates 
and focal retinal detachments. The vascular walls malfunc-
tion and liquid starts to accumulate in the region known as 
fluid-filled regions (FFRs) visible as black blobs in the OCT 
scans.. The retinal defects caused by MH vary from small 
hypo-reflective breaks to wide intra-retinal spaces in the 
OCT images. Other symptoms encompass macular edema, 
fluid accumulation, and thickened edges with cavities of 
reduced reflectively [37]. CSR is another common retinal 
pathology which generally affects the middle age people. It 
occurs due to the leakage of fluid into the retina through an 
RPE defect and oftenly is characterized by focal detachments 
of the retina and the RPE layer [25]. On the OCT scans, 
CSR is detected by hypo reflective spaces at the sub-retinal 
and sub-RPE levels along with sub-retinal hyper-reflective 
deposits in some cases.

The main contribution of this paper is a novel fully auto-
matic system for the classification of macular OCT images. 
Here, because of the lack of a large number of macular OCT 
images, we utilize the idea of transfer learning on exist-
ing pre-trained deep CNN models We propose a unified 
framework for integrating fine-tuned pre-trained deep CNN 
model(s) with a novel deformation-aware attention based 
mechanism (MacularNet) for the extraction of improved dis-
criminative features resulting in the superior classification of 

macular OCT images. Our method does not require a sepa-
rate region of interest (RoI) extraction step nor any other 
pre-processing steps such as retinal flattening and/or denois-
ing. The developed attention module facilitates the network 
to focus on the relevant regions automatically, which helps 
to achieve superior performance with reduced number of 
model parameters. The main technological contributions are 
summarized as follows:

–	 Unified learning mechanism incorporating fine-tuned 
deep CNN model architecture with the deformation-
aware attention mechanism to extract inter-class dis-
criminative features, trainable end-to-end with limited 
OCT training data which eliminates the need for pre-pro-
cessing steps and well-suited with multiple deep learned 
network architectures.

–	 Extensive experiments and their ablation studies on four 
datasets. This includes analysis of the proposed architec-
ture without using RoI selection, avoiding denoising and 
flattening steps, selection of deep CNN model with pre-
trained weights, evolution of attention maps over epochs, 
layers and training procedures, effect of attention over 
discriminative properties and reduction in the network 
parameters are performed.

The next subsection discusses some related works. Sec-
tion "Related Works" describes the proposed attention-based 
deep CNN macular OCT classification method. In Sec-
tion "Proposed Method: MacularNet", experimental evalu-
ation and comparative analysis are reported on four OCT 
datasets. Section "Experimental Results" reports the ablation 
study on the proposed network architecture along with the 
attention maps. In section "Ablation Study" we present an 
extensive analysis of the proposed method with the help of 
attention maps. Conclusions and future works are discussed 
in Section "Conclusions and future works".

Related Works

Various works have been reported on macular OCT clas-
sification based on traditional machine learning tech-
niques [17, 22, 39, 47], as well as convolutional neural 
networks [20, 32–34]. Srinivasan et al. classified denoised 
and cropped OCT volumes using histograms of oriented 
gradients (HoG) descriptor [39]. However, the cropped 
images can miss the pathology in the peripheral regions 
and retinal flattening is invalidated for severely distorted 
RPE layer. In [47], linear configuration patterns (LCPs) 
based classification is proposed yielding high accuracy, 
but the motion blurred or shadowed B-scans have not been 
taken into account. The method in [41] employed sparse 
coding and dictionary learning, but it again depends on the 
spatial location-based retinal flattening. These traditional 

Fig. 1   Sample examples of OCT scans of different macular eye dis-
eases. Top row, shows AMD, normal and DME samples from Duke 
dataset [39]. Mid row, shows CNV and drusen deformations from 
UCSD dataset [18]. Bottom row, shows CSR, DR and MH patlogies 
from OCTID dataset [10]
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methods are semi-automatic as well as database specific in 
nature; hence better alternatives are proposed in literature.

In past few years, deep learning methods relying on 
cascaded neural networks [26, 40] have been proposed for 
macular OCT classification which extract relevant diag-
nostic features [29]. In [33] macular OCTs are classified 
into normal, AMD, and DME using an ensemble model 
of multi-scale convolutional mixture of expert (MCME) 
and it required retinal flattening and volume of interest 
generation. In [34], surrogates are generated using the fea-
tures of the macular region of B-scans and then CNN is 
employed to classify these surrogates. An ensemble of four 
improved ResNet50 architectures has been used in [20] 
for the classification of macular lesions. In [7], authors 
have used iterative fusion of CNNs (IFCNN) method for 
the task of retinal OCT image classification. The method 
proposed in [4] introduces a multi-scale deep feature 
fusion (MDFF) based classification approach using CNN. 
Whereas the work in [5] employs a generative adversarial 
network (GAN) for the OCT scan classification purpose 
which additionally addresses the issue of lack of large-
scale dataset. On the other hand, works in [6, 8, 24], incor-
porate attention mechanism for the classification of OCT 
scans. More recently, in [42], authors have proposed a 
light weight CNN for macular disease classification but 
has evaluated it only on one dataset.

In the task of medical image analysis, there is an una-
vailability of huge labelled datasets. Issues of privacy and 
unacceptability result in collecting a limited amount of 
medical data for research purposes [43]. In such scenarios, 
deep CNNs tend to overfit the data. Thus, transfer learning 
is beneficial which overcomes the obstacle of insufficient 
training data [43]. It involves fine-tuning a model trained on 
an uncorrelated dataset with the actual dataset of medical 
images. Transfer learning has been reported to be a better 
alternative for several tasks of biomedical image classifica-
tion [21]. In the specific case of macular OCT classification, 
fine-tuning of existing deep models have been explored in 
the works of [16, 17, 35, 45].

Involving pre-processing steps such as denoising, retinal 
flattening and RoI extraction are the most common problem 
of existing OCT classification methods and which make 
these methods database dependent and time-consuming in 
nature. Although the usage of RoIs yields impressive results, 
the classification process as a whole becomes less automated 
and loses its generality for real-world applications. To over-
come these challenges, we move towards the concept of 
attention-based networks. The attention mechanisms were 
initially introduced in the context of natural language pro-
cessing [3]. Later, in the field of computer vision, attention 
mechanisms have been employed to a range of problems for 
instance, image classification [15], image retrieval [31] and 
action recognition [1].

In the field of biomedical engineering, attention has been 
explored for scan segmentation [2], image and text classifi-
cation [46], and organ localization [48]. For standard medi-
cal image classification, the high importance of local infor-
mation have been exploited in few-research works [8, 30]. 
In these methods, a hard-attention model is employed or 
bounding box labels are available or segmented images were 
utilised to guide the attention. To overcome such manual 
intervention, soft attention-based mechanism is proposed in 
[24, 36], where continuous functions are used to assign the 
attention weights on the input, composing a fully differenti-
able function and can be trained simultaneously with the 
complete architecture using the backpropagation technique.

Proposed Method: MacularNet

Motivation

In large-scale clinical evaluation of OCT scans, there is a 
huge demand for the development of computerized algo-
rithms for detection of the macular eye diseases for better 
scalability and adaptability. The automated analysis of these 
images are not only advantageous for better patient diagno-
sis, but can also provide training to new ophthalmologists. 
Most of the existing methods in literature use database-
specific conventional methods or pre-processing steps as 
reported in subsection 1.1. It is evident from the literature 
review that deep CNN-based model is capable of encoding 
complex spatial information, equivariance to translation and 
automated feature extraction. CNNs have been proven to be 
a useful algorithm for many classification purposes, specifi-
cally for the task of medical image classification [19]. Hence 
we have utilized deep CNNs as the base model(s) for encod-
ing crucial discriminative information. Though the deep 
learning-based models in prior works have reported better 
performance for macular OCT classification, they require 
a large number of model parameters, which we have mini-
mised with our proposed approach of deformation-aware 
attention mechanism.

In our current scenario, there is an unavailability of a 
large macular OCT dataset or any model pre-trained with 
a large number of OCT images. To overcome this defi-
ciency, we take the help of transfer learning technique. It 
serves the purpose of achieving improved classification 
performance with a limited number of training images 
and lesser resources. In the proposed network, a novel 
attention mechanism has been developed to extract local 
deformation-aware features (as shown in Fig. 1) and clas-
sify them into AMD, DME, CNV, macular hole, CSR, DR, 
and normal macular eye conditions. This helps in eliminat-
ing the need for RoI selection, pre-processing steps and 
make the predictions on relevant features. Our proposed 
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architecture consists of two main modules: a refined, fine-
tuned deep learned CNN model(s) and an attention mecha-
nism unified to constitute the MacularNet framework such 
that the entire configuration is end-to-end trainable. The 
architecture is shown in Fig. 2 and empirically formulated 
in (1) for easier interpretability.

Preparing the Deep Network

Let, image I(height × width × number of channels) denotes 
the input data, C(m, n, s) represents the convolutional layer, 
where m is filter size with stride s and n is number of filters. 
M(s) denotes max-pooling layer of stride s, FC(d) represents 
fully connected layer with d number of neurons, F stands for 
flatten layer. N and D(r) show normalization and dropout layer 
with dropout rate of r, respectively. The attention module is 
represented by Att(), which is explained in Eq. (9).

In our network architecture, the number of filters per layer 
increases as we move from first to last convolutional layers as 
shown in Fig. 2a. These filters have a small receptive field of 
3 × 3 . Designing the network in this manner adds more non-
linearity with each block that makes the decision function 
more discriminative in nature and the small receptive fields 
help the model to capture the fine-grain details of input images 
as shown in Fig. 2b. The final features are extracted from the 
“Conv 5_3” layer as it was experimentally observed that this 
layer generates more focused intermediate feature leading to 
superior classification results. The weights of the dense and 
attention layers are randomly initialized and are triggered by 
ReLU function. This randomization enables the model to learn 
the difference in feature space between the face image dataset 
and OCT B-scans and improve the generality of the network. 
The neurons in output layer are activated by softmax function, 
given by:

where q is the number of neurons and x is the input to the 
layer. The entire network is trained using backpropagation 
[13], given by (3), with learning rate � and momentum �.

(1)

ΦM ≡ I(224 × 224 × 3) ⟶ 2 × C(3, 64, 1) ⟶ M(2, 2)

⟶ 2 × C(3, 128, 1)

⟶ M(2, 2) ⟶ 3 × C(3, 256, 1) ⟶ M(2, 2)

⟶ 3 × C(3, 512, 1)

⟶ M(2, 2) ⟶ 3 × C(3, 512, 1)

⟶ R({14, 14, 512} ⇒ {196, 512})

⟶ Att({196, 512};{196, 512};{196, 512)})

⟶ R({196, 32} ⇒ {14, 14, 32})

⟶ N ⟶ F ⟶ FC(512) ⟶ D(0.5)

⟶ FC(512) ⟶ D(0.5) ⟶ FC(3)

(2)�(x)j =
exj

∑q

i=1
exi

, for j = 1, 2, 3… , q,

(3)
Δ�

�

(T) = 𝜇Δ�
�
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(T−1)

i
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�
�
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where �
�
 represents a weight vector and ∇Li(y, ŷ) denotes 

the gradient of the objective function summed over all the 
samples of the current minibatch i at every epoch T. The 
objective function is given by (4). Δ� is the change in the 
weight vector and is initialized with 0. We utilized the cat-
egorical cross-entropy (CCE) as the loss function given by:

where M is the number of classes, yu,t is the target label and 
ŷu,t is the score of CNN for each output neuron t summed 
over all the classes, for each sample u. The CNN score can 
be represented as ŷu,h = 𝜎(�) , where � is the input vector 
to the output layer, activated by the softmax function, �(x) , 
given by (2). The learning rate � is made adaptive such 
that for every 10 epochs it reduces by a factor of 0.1, if the 
decrease in loss function is less than 0.001.

Deformation‑Aware Attention Mechanism for OCT 
Classification

Each scan of the OCT volumes is 2-D imaging of reti-
nal layers along with the background. For relevant feature 
extraction and superior classification, diagnostic systems 
need to focus on the region of retina that includes major 
variations of morphological structures, for example, the 
deformation variations between the disease classes (AMD, 
DME, CNV, and normal). Because of these macular dis-
eases, deformation occurs in the retinal layers (as shown 
in Fig. 1). They grow abnormally and detach from the 
subsequent layers, fluid-filled regions (as black blobs), 
geographic atrophy, CNV and drusen appear in OCT 
images. In the literature, researchers [16, 32, 33, 39], have 
introduced an RoI extraction step prior to feature genera-
tion. Although the obtained results are satisfactory, the 
algorithm as a whole looses its generality and increases 
the likelihood of ignoring the pathological symptoms 
which may occur outside the peripheral region. Hence, 
we hypothesize to develop an attention-based model that 
would be a better alternative to focus on these regions 
of deformations, encoding their morphological variations 
contributing more towards the final classification.

We anticipate that the inclusion of attention modules 
into a refined fine-tuned CNN improves the classification 
performance as well as decreases the required number 
of model parameters in the network architecture. For an 
attention module, the context vectors, �

�
 are generated 

based on the relevance of the regions of features on the 
classification. These context vectors are the sum of feature 
vectors of the input image, weighted by the attention coef-
ficients, given by:

(4)L(yu, ŷu,t) = −
1

M

M
∑

c=1

yu,tlog(ŷu,t),

where, nv is the number of feature vectors and �
�
 is the ith 

feature vector.
These attention coefficients, ai are calculated as the 

softmax of the predefined alignment score. The score 
is evaluated by using non-linear function on the weight 
matrices to be learned in the deformation-aware attention 
model. Various score functions have been explored in the 
literature, such as, cosine [11], dot-product [44], tanh [3]. 
In our approach, we have used the dot-product transfor-
mation and the coefficients here are calculated over the 
feature maps of convolutional layers.

In our attention mechanism, we perform scaled-dot 
products to compute attention coefficients and the context 
deformation-aware vectors, resulting in imparting more 
importance to the relevant parts, thereby, improving its 
discriminatory abilities. Unlike most of the existing atten-
tion based CNN models [15], the proposed attention mod-
ule focuses only on the spatial features of scans and learns 
the morphological variations. In this work, soft-attention 
based attention module is incorporated to the base model 
in between the “Conv 5_3” and “Normalization” layer 
along with reshape layers, as shown in Fig. 2.

Details of the proposed attention module are shown in 
Fig. 3. In this module, the weights are assigned to each 
region of the feature to generate the context vector, which 
is updated after each epoch with respect to the relevance of 
the region in the classification. The attention layer devel-
oped here takes three same inputs, which are the features 
extracted from the previous layer. The dense layer adds 
additional weights to each input which are then linearly 
transformed. Each of this reshaped feature is then seg-
regated into h number of channels which in this work is 
eight. The scaled dot-product between two input features 
on each of the channels is computed to obtain the align-
ment scores. This score is passed through the softmax 
function to yield attention coefficients. The dot-product 
used here computes the similarity of two inputs, hence 
providing greater emphasis to higher weighted regions of 
the inputs and then all the weights are scaled by the scaling 
factor. The softmax function is used to generate the prob-
abilities of the weights after the dot product to maximize 
the values of attention coefficients of the relevant features 
and translating the resultant in the range of 0 to 1.

The vectors obtained after weighing the inputs of the 
attention module followed by their linear transformation are 
represented as PA , PB and PC ∈ ℝ

D×C×h , where D = 14 × 14 
and C = 512/h and 512 is the number of channels in the fea-
ture maps obtained from Conv 5_3 layer of the base model. 
The alignment score generated here is given as:

(5)�
�
=

nv
∑

i=1

ai�i
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where PxT ∈ ℝ
D×h×C and x ∈ {A, B, C} . The obtained 

score, Q is passed through softmax to yield attention coef-
ficients as shown below:

The attention coefficient calculation on eight different 
channels generates attention coefficients in different feature 
subspaces, encapsulating finer details of the macular OCT 
images. The computed coefficients undergo dot product with 
the third reshaped input to impart the required focus on the 
significant regions, which is represented as:

(6)

Qi,j,k =

∑h−1

l=0
PB
i,j,l

⋅ PCT

i,l,k
√

vk
∈ ℝ

D×C×C.

i = 0, … , D − 1;

j = 0, … , C − 1;

k = 0, … , C − 1.

(7)A = �(Q) ∈ ℝ
D×C×C

The obtained matrix, V ∈ ℝ
D×C×h is reshaped back to two-

dimensional vector. Finally, the output is added to the input 
feature itself resulting in attended feature generation. The the 
attended feature is weighted by the dense final dense layer 
of the attention module to generate a more concise feature 
with additional trainable weights.

The attention module of our network, shown in Fig. 3, 
is described in Eq. (9). The Att(IA;IB;IC) layer of (1) is 
expressed in the equation, where IA, IB and IC are three 
inputs each of size k × l . The tensor dot product between ten-
sors f and g is denoted by Bdot(f, g), vk denotes the scaling 
factor and is derived from number of channels of the output 
of the final convolutional layer, �(x) indicates the softmax 
function, shown in (2). The addition operation between two 
matrices i,  j is performed by Add(i, j). As mentioned ear-
lier, PA, PB and PC are outputs of reshape layers RA, RB and 
RC , respectively, which transform one-channel feature into 
multiple-channel feature subspaces. The variable out is the 
output of the preceding reshape layer which concatenates 
eight channels to obtain a single feature block. The sub-
scripts in reshape and fully connected layers represent the 
layer being added to either Ath or Bth or Cth input path, while 
the absence of subscript denotes that the layer follows the 
prior computation.

Training with MacularNet

The training of MacularNet involves transfer learning 
of deep network and training from scratch for the atten-
tion module. Because of the limited number of train-
ing OCT images, we use the concept of transfer learning 

(8)

Vi,j,k =

C−1
∑

l=0

Ai,j,l ⋅ P
AT

i,l,k
∈ ℝ

D×C×h.

i = 0, … , D − 1;

j = 0, … , C − 1;

k = 0, … , h − 1.

(9)

Φatt ≡

�

IA(196 × 512), IB(196 × 512), IC(196 × 512)
�

⟶

�

FCA(512), FCB(512),

FCC(512)
�

⟶

�

RA({196 × 512}

⇒ {196 × 64 × 8}),RB({196 × 512} ⇒

{196 × 64 × 8}),RC({196 × 512}

⇒ {196 × 64 × 8})
�

⟶

Bdot

�

�

�

Bdot(PB,PC)
√

vk

�

,PA

�

⟶ R({196 × 64 × 8}

⇒ {196 × 512})

⟶ Add(out, IA) ⟶ FC(32)

Fig. 3   Architecture of proposed attention module. I
A
 , I

B
 and I

C
 are 

three inputs to the module. Dense (d) represents dense layers with d 
number of neurons. The numbers in the bracket on the right side of 
arrows denote the output dimensions of respective layers. h denotes 
the number of channels in each layer after transformation. We have 
considered h=8 for our module. The scaling factor, v

k
 = 512. Reshape 

layer shows the dimensions of tensors before and after reshaping. The 
last reshape layer performs concatenation of the 8 channels. Add (i, j) 
performs additions of two matrices, i and j
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by initializing and fine-tuning the deep CNN model with 
pre-trained weights. During the training, all samples are 
assumed to be independent and identically distributed. In 
the proposed network, weights of the first 18 layers are pre-
trained on the VGG-Face descriptor dataset of 2.6 million 
face images [27]. The pre-trained model is then unified with 
the proposed attention model and subsequent dense layers. 
We have performed several experiments with various deep 
networks for the classification of OCT images and the anal-
ysis of the same have been reported in subsection 4.1. It 
is evident from our experimental results that the proposed 
MacularNet architecture is not dependent on any specific 
deep CNN model.

The deformation-aware attention model is built up and 
trained from scratch. All the weights in the attention mod-
ule are randomly initialized and are updated simultaneously 
with the entire network using the back-propagation algo-
rithm given in (3). It can be observed from Eq. (9) that the 
proposed attention layer takes all three inputs from the same 
layer. Hence, the attended feature map as well as the atten-
tion coefficients are derived from the same convolutional 
layer output enabling highly localized deformation-aware 
attention on global features. The transformations represented 
in Eq. (9) capture the finer details of the input scans and 
translates the feature into smaller tensor with relevant details 
acquired while training after each epoch. Applying soft 
attention mechanism eliminates the need for any bounding 
box labels, replaces the non-stochastic hard attention mecha-
nisms’ continuous function to assign the attention weights 
on the entire input image and hence composes an end-to-end 
trainable CNN. Our proposed deformation-aware attention 
module increases the focus of the network on the relevant 
parts of the feature maps and thus eliminates the need for 
RoI selection, retinal flattening, denoising steps and helps in 
the reduction of the number of network model parameters. 
All these efforts result in superiority of our proposed frame-
work over the existing macular OCT classification methods.

Experimental Results

All the OCT images in the dataset are resized to 224 × 224 , 
self-replicated three times and concatenated to generate a 
tensor of dimension 224 × 224 × 3 to match the input dimen-
sions of the pre-trained network. For training purpose, the 
augmented dataset is generated by randomly flipping images 
and translating them by ±40 pixels. This strategy enables 
the network to tackle the problem of translation. Besides, 
it degrades the inconsistency due to a different numbers of 
right and left eyes in the dataset. To counter the effect of 
inclination incurred in the images, some randomly chosen 
image samples are rotated.

Experimental Setup

In this work, the experiments are carried out on four data-
sets: Duke [39], NEH [33], UCSD [18] and OCTID [10]. 
Two evaluation protocols are used over Duke and NEH 
datasets. The first protocol, leave patient(s) out (LPO), is 
followed from [34]. For Duke dataset, the test set is gen-
erated by randomly taken out of each case of one patient 
and the remaining images are segregate into training and 
validation sets with a 4:1 ratio. For NEH dataset, the test 
set contains two volumes of each class and the rest of the 
partition is the same as that of the Duke dataset. For 10 
different randomly selected test cases, the experimental 
process is repeated and the average of these results are 
reported in this section. On the other hand, the second 
protocol is fivefold cross-validation (CV), followed from 
[33] which has been used over the Duke, NEH and OCTID 
datasets. For the third UCSD dataset, the protocol of [8] 
has been followed to make a fair comparison with other 
existing works. Here, the whole UCSD dataset is divided 
into � = 6 subsets. The model is trained on one subset and 
is followed by the testing on the remaining ( � − 1 ) sub-
sets. These training experiments are repeated � times such 
that model is trained by each of the � subset exactly once. 
Finally, the experimental results obtained over all the folds 
are averaged and tabulated.

The models are coded in Python 3.5 using Keras pack-
age with Tensorflow-GPU v1.8.0 backend. They are 
trained using 8 GB NVIDIA GeForce GTX 1080 GPU 
with Cuda v8.0 and cuDNN v6.0 accelerated library on 
the Linux platform. Following parameters have been used 
for training and testing of the models: number of epochs 
= 100 for LPO and 50 for each fold of k-fold CV, batch 
size = 64, decay = 1e − 6 . The categorical cross-entropy 
loss function given in (4) as considered as a loss func-
tion and SGD optimizer is used with momentum = 0.9 to 
update the weights of the network. The adaptive learning 
rate technique is adopted as training progress. For com-
parative study, the number of epochs and batch sizes for 
training have been kept same for the training of all the 
baseline models and MCME architecture [33]. A similar 
data augmentation technique was also followed to maintain 
the consistency with the size of training dataset. For train-
ing of the MCME model the custom loss function method 
used in the original work was replaced with CCE loss here.

The performance of the proposed work is evaluated 
based on the number of True-Positives (TPs), False-
Positives (FPs), False-Negatives (FNs), True-Negatives 
(TNs) for each ith class of multi-class classification. Pri-
marily, the following three performance metrics have been 
used for model evaluation in this study. These metrics are 
defined for ith class which are averaged together to yield 
final results.
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Precision gives the positive prediction value. This value 
provides information on how efficiently our system avoids 
false positives. It can be measured as

Recall, also called sensitivity gives the information about 
how efficiently the model reduces false negatives. This can 
be calculated as

Accuracy is the proximity of measurement results to the true 
value

Results on Dataset 1

Dataset 1 or the Duke dataset [39] is acquired at Duke Uni-
versity, Harvard University and University of Michigan with 
approved protocols from the Institutional Review Board and 
is made freely available to the public for facilitating com-
parison and future studies by other groups. It contains 45 
volumes of OCT acquisitions obtained from 15 subjects of 
each classes: AMD, DME, and normal, comprising of a total 
of 3241 B-scan images. Experimental results using the two 
protocols are reported in Table 1.

Table 1 illustrates the performance obtained for various 
ways of fine-tuning the baseline architecture of VGG-Face 
[27]. The output layer and dense layers of the VGG-Face are 
fine-tuned (in architectures 1 and 2, respectively). In archi-
tecture 3, the features for OCT scans are extracted from the 
“pool5” layer of VGG-Face and then classified using two 
randomly initialized dense layers of 4096 neurons activated 
by ReLU function and an output softmax layer. The dense 
network is trained with the OCT datasets. Furthermore, the 
proposed MacularNet architecture is evaluated without and 
with the attention module (architectures 4 and 5, respec-
tively) to illustrate the importance of the mechanism. Table 1 
also shows the number of model parameters required in each 
case. It can be inferred that the addition of the attention 
module improves the performance and reduces the number 
of model parameters by 3.5 times approximately. Compari-
son of the performance of the proposed network with the 
existing methods [16, 32–34, 47], are reported in Table 2. 
Our method surpasses the results of the current works with-
out using pre-processing or RoI extraction steps.

To demonstrate the benefits of transfer learning, we con-
ducted an experiment to observe the difference in the results 

(10)Precisioni =
TPsi

TPsi + FPsi

(11)Recalli =
TPsi

TPsi + FNsi

(12)Accuracyi =
TPsi

TPsi + FPsi + TNsi + FNsi

for training the network from scratch and transfer learning. 
The parameters of the base network are randomly initial-
ized from the truncated normal distribution with zero mean 
instead of initializing them with the pre-trained weights. 
The model is then trained for 300 epochs where the valida-
tion accuracy converges and obtained results are reported 
in Table 3. The outcomes of both the training strategies on 
two versions of our method are tabulated in Table 3. It can 
be deduced that transfer learning enables the network to per-
form remarkably well on dataset 1 when compared to the 
alternate training strategy.

It is evident from Table 1 that MacularNet produces the 
best results in all categories of dataset 1. The inclusion of 
the attention mechanism plays an important role by improv-
ing the network performance and reducing the required 
number of weights of architecture. In addition to this, the 
comparative results in Table 2 depicts that our method has 
consistently improved performance on this publicly available 
dataset even though the pre-processing steps are eliminated.

Results on Dataset 2

In dataset 2, also known as NEH dataset [32], the OCT vol-
umes are acquired from Noor eye hospital, Tehran, collected 
and made publicly available for the purpose of research on 
maular OCT classification. This dataset contains OCT vol-
umes of 48 AMD patients, 50 DME patients, and 50 Normal 
cases, total comprising of 4230 B-scan images. Recently in 
[8], attention mechanism has been incorporated for macular 
OCT classification constructed by a series of lesion-attention 
modules, convolutional and pooling layers; however, this 
method requires a larger number of model parameters. In 
the case of dataset 2, our network attains state-of-the-art 
results using 5-fold CV evaluation, as illustrated in Table 4. 
To our knowledge, no existing works have been reported on 
this dataset using the LPO protocol. The evaluation of the 
proposed MacularNet on both the datasets using both the 
protocols have been reported separately in Table 5.

The results obtained using both the protocols on this data-
set are mentioned in Tables 1 and 5. It is evident that on 
dataset 2, the proposed method shows superior results when 
compared to the baseline architectures in all categories. It is 
evident from Tables 1, 2 and 4 that our MacularNet architec-
ture performs best in all categories when compared to three 
baseline architectures and other existing works on both the 
datasets using both the protocols. Incorporation of the atten-
tion module has dual advantages of improved classification 
performance and reduced number of model parameters. It 
can be inferred from Table 3 that transfer learning helps 
in improving the performance of the architecture on both 
datasets 1 and 2, using both the protocols.
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Results on Dataset 3

The UCSD dataset [18], referred to as dataset 3, is composed 
of 84484 OCT B-scans, comprising of 8866 drusen, 11598 
DME, 37455 CNV and 26565 normal B-scans acquired from 
4686 patients at the Shiley Eye Institute of the University 
of California San Diego (UCSD), thereby leading to a four-
class classification problem. This is currently the largest and 
most challenging dataset publicly available in the macular 
OCT imaging community, obtained under Creative Com-
mons Attribution 4.0 International license. In the case of 

dataset 3, the evaluation protocol of [8] is followed as men-
tioned earlier. Experimental results are reported in Table 6. 
It is to be noted that for the experiments over this dataset, the 
input size of macular scans were resized to 112 × 112 , which 
reduces the model parameters and requires lesser memory 
for training and testing which becomes important for larger 
datasets. The outcomes of the proposed network, reported 
in Table 6, shows that the proposed method outperforms the 
existing methods of [8, 20], with respect to all three evalu-
ation metrics. In addition to the performance, MacularNet 
requires approximately 16.56 millions weights, which is 

Table 2   Performance comparison of different methods on dataset 1. Here, + denotes motion blurred and shadowed scans not considered and * 
denotes RoI extracted. LPO stands for Leave patient(s) out and CV stands for cross-validation

Methods Accuracy (%) Precision (%) Recall (%)

Wang et al. [47]+ (10-fold CV) 98.00 – 98.00
MCME [33]∗ (5-fold CV) – 98.33 97.78
MacularNet (5-fold CV) 99.94 (+/- 0.12) 99.94 (+/- 0.12) 99.95 (+/- 0.09)
Surrogate assisted [34] (LPO) 88.45 – –
MacularNet (LPO) 97.45 98.27 97.33

Table 3   Network performance 
comparisons on one test case 
of leave patient’s out (LPO) 
protocol using different training 
strategies: transfer learning and 
training from scratch

Performance 
metric (in %)

MacularNet MacularNet without attention

Transfer learning 
(epochs = 100)

Scratch (epochs = 
300)

Transfer learning 
(epochs = 100)

Scratch (epochs = 
300)

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

Accuracy 98.50 97.38 85.77 81.15 95.88 96.34 74.16 86.39
Precision 96.68 97.04 89.61 84.63 95.86 95.53 85.81 87.61
Recall 98.62 97.16 86.94 86.58 96.21 96.81 76.28 90.24

Table 4   Performance 
comparison of different methods 
on dataset 2 using 5-fold CV 
protocol

Methods Accuracy (%) Precision (%) Recall (%) F1-score

RoI Extraction Used:
WCME [32] – 95.21 (+/- 3.2) 94.6 (+/- 3.4) 0.9458
MCME [33] – 99.39 (+/- 1.21) 99.36 (+/- 1.33) 0.9934
No pre-processing:
LACNN [8] – 99.39 (+/- 1.49) 99.33 (+/- 1.49) 0.993
MacularNet 99.79 (+/- 0.37) 99.80 (+/- 0.35) 99.79 (+/- 0.38) 0.997

Table 5   Performance of MacularNet on both the datasets evaluated 
using two protocols

Parameters Dataset 1 Dataset 2

LPO 5-fold CV LPO 5-fold CV

Accuracy (%) 97.45 99.94 94.18 99.79
Precision (%) 98.27 99.94 94.62 99.80
Recall (%) 97.33 99.95 94.69 99.79
F1-score 0.973 0.999 0.941 0.997

Table 6   Comparison of performance of MacularNet on dataset 3 
(UCSD) [18]

Methods Accuracy (%) Precision (%) Recall (%)

LACNN [8] 90.10 (+/-1.40) 86.20 (+/-2.30) 86.80 (+/-1.30)
Multi-ResNet50 

Ensembling 
[20]

90.40 (+/-1.20) 86.70 (+/-1.80) 87.20 (+/-1.40)

MacularNet 92.60 (+/- 
1.48)

90.27 (+/- 
2.67)

88.52 (+/- 1.47)
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considerably lower than most of the existing deep learned 
networks. Some sample examples are shown in Table 1.

Results on Dataset 4

OCTID dataset [10], also referred to as dataset 4, consists of 
5 classes: four macular pathological conditions and a nor-
mal class, obtained under the Creative Commons Attribution 
4.0 International (CC BY 4.0) License. It comprises of 102 
macular hole, 55 AMD, 107 diabetic retinopathy, 102 CSR 
and 206 normal retinal images. The 5-fold CV protocol is 
followed for training and testing of the MacularNet model 
using dataset 4, the results are noted in Table 7. So far, there 
is no reported work in the literature which has employed 
OCTID dataset to validate their classification methods; 
hence it is difficult to make any comparison with other 
methods. Nevertheless, the dataset has important macular 
pathological conditions as classes and our proposed method 
MacularNet obtains satisfactory results.

Ablation Study

Selection and Integration with Other Deep 
Networks

The performance of the proposed MacularNet architecture is 
not dependent on any specific deep learned framework. We 
conducted many experiments with the popular deep learned 
models such as VGG-Face [27], VGG16 [38], and ResNet50 
[12]. By substituting the VGG-Face network with other deep 
networks such as, ResNet50 or VGG16, the performance 
achieved by the network is found to be similar in each case. 
The experimental results are reported in Table 8. It can be 
observed from the table that with ResNet50 and VGG16 as 
the base model, the results obtained in terms of accuracy, 
precision and recall are s to that of VGG-Face using the 

5-fold CV protocol. Hence, we can deduce that the diagnos-
tic accuracy of the MacularNet architecture does not depend 
on the selection of a deep pre-trained network. We have also 
reported the number of parameters required for these models 
for different cases in Table 8. We can notice that the network 
with VGG-Face and VGG16 have lesser parameters than the 
one with ResNet50 as the framework whereas the perfor-
mance of VGG-Face-based network is higher than that of 
VGG-16. Thus, we chose VGG-Face as our base model for 
the MacularNet architecture to optimize the classification 
output and resource requirement.

Evolution of Attention Maps Over Epochs and Layers

The outputs of the intermediate layers of the proposed archi-
tecture are shown in Fig. 4, whereas the attention map of 
Conv 4_3 with respect to training epochs are visualized in 
Fig. 5. The convergence of the attention maps to the RPE 
region of macular B-scans can be observed with respect to 
the training epochs for all three classes. The proposed net-
work prominently focuses on the blue colored regions of the 
feature maps. The deep architecture of MacularNet has been 
initialized with pre-trained weights which gives our model 
a leeway to focus on the uneven layers of the retina within 
the first few epochs. Figure 5a shows the evolution of the 

Table 7   Performance evaluation of MacularNet on dataset 4 
(OCTID) [10]

Accuracy (%) Precision (%) Recall (%) AUC​

93.12 (+/- 8.59) 92.08 (+/- 10.39) 91.09 (+/- 10.91) 98.51

Table 8   Performance of MacularNet with different base pre-trained deep learned networks

Pre-trained Network Model Parameters 
(in millions)

Dataset 1 Dataset 2

Acuuracy (%) Precision (%) Recall (%) Accuarcy (%) Precision (%) Recall (%)

VGG-Face 19 99.94 99.94 99.95 99.79 99.80 99.79
ResNet50 22.6 100 100 100 99.55 99.54 99.54
VGG16 19 99.72 99.79 99.71 98.61 98.74 98.71

Input Conv 2_1 Conv 3_2 Conv 4_3 FC 3

AMD

Normal

DME

Fig. 4   Examples to show the transformation of feature maps with lay-
ers of the network for OCT images from NEH dataset. Names of the 
corresponding layer are mentioned on top of each column of images 
and the class of OCT scan is mentioned on left-hand side. Here, blue 
color denotes the highest attention whereas red denotes the lowest 
attention
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feature maps of Conv 4_3 layer (refer to Fig. 2 for entire 
architecture) after 10, 25, 50 and 100 epochs. Meanwhile, 
Fig. 5b illustrates the feature maps obtained from the FC 3 
layer after 10 and 50 epochs. Figure. 4 depicts the layer-wise 
progression of the network with the help of feature maps on 
NEH dataset. The visualization of the intermediate layers 
shows the localized shift of the attention of the architecture 
from the first to the final layer. It is evident from Figs. 4 
and 5 that the attention coefficients are trained to extract fea-
tures from the region in and around the RPE layer of retina. 
It can be analyzed that attention of the the proposed network 
converges in the relevant regions of the feature maps of input 
images.

Effect of Attention Mechanism Over Discriminative 
Properties

In continuation of our investigation, we study the effects of 
the attention module in the classification task. Fig. 6 dem-
onstrates the impact of the attention mechanism using the 
feature maps of two different layers. Fig. 6 (a) signifies that 
the attention coefficients in the Conv 4_3 layer converge 
towards the RPE layer and its surroundings in the proposed 
network. Furthermore, Fig. 6 (b) displays the feature maps 
for FC 3 layer; where again it is observed that, for all three 
classes, the significant features are given higher priority 
by the attention-based network. In case of AMD affected 
macula, the network without attention pays more considera-
tion to non-relevant region below the RPE layer. Whereas, 
for the attention-based MacularNet, the concentration is in 
the required region. This shows the appropriate convergence 
pattern of the developed network. Hence, the inclusion of 
the attention layer reinforces our proposed method to yield 
noteworthy outcomes without the requirement of any sup-
plementary measures. It can be observed from Table 1 that, 

the inclusion of this module improves the performance of 
the architecture while reducing the number of parameters.

Network Parameters and Computational Complexity

Table 1 shows that the incorporation of attention mechanism 
reduces the required number of model parameters. Macu-
larNet has around 19 million parameters which are approxi-
mately 7 times lesser than baseline VGG network, 3.5 times 
lower than the MacularNet without attention and 1.24 times 
lower than the deep CNN employed in [16] for OCT macu-
lar image classification. The computational complexity of 
the proposed network for training is lower than the baseline 
architectures and the deep CNN of [16]. This is due to the 
reduced number of model parameters as well as reduced 
computational complexity. In terms of floating-point opera-
tions, MacularNet requires 37 million computations of each 
sample, whereas MacularNet without attention and VGG-
Face need 132 and 289 million operations, respectively. 
Likewise, the inception model designed for macular OCT 
classification in [16] requires 47 million similar computa-
tions. Hence, even with the added attention module in the 
proposed model, the complexity is reduced which leads to 
lesser training and testing time. Moreover, with the exclu-
sion of pre-processing steps, the time complexity is further 
reduced. For instance, with the denoising step in [34] the 
total time required for processing of a volume of 97 OCT 
scans is of 10 minutes approximately. Hence, with the 
removal of these steps, the processing time of our method 
is comparatively lower. In the testing phase, each sample of 
input size 224 × 224 × 3 needs a minimal time of 117 �s for 
the proposed model whereas the testing time required for 
the model in [20] is 870 �s (micro seconds) per scan. The 
reduced computational complexity has an added advantage 

Epochs=10 Epochs=50Epochs=25 Epochs=100 Epochs=10 Epochs=50

(a) (b)

Normal

DME

AMD

Fig. 5   a Shows feature maps across different training epochs (10, 
25, 50, 100) for three classes, AMD, DME and normal. The images 
are extracted from the layer Conv 4_3 of the architecture. (b) Shows 
feature maps extracted from FC 3 layer after 10 and 50 epochs. It 
illustrates that the model gradually learns to focus on region in and 
around the RPE layers. Here, blue color denotes the highest attention 
being given while red denotes the lowest attention

Without

Attention

With

Attention

Without

Attention

With

Attention

Normal

DME

AMD

(a) (b)

Fig. 6   a Examples of three class attention maps extracted from layer 
Conv 4_3 of MacularNet and the same without the attention module 
to show the effect of attention mechanism in our architecture. In b 
same analysis is presented for layer FC 3 of the network. Here, blue 
color denotes the highest attention while red denotes the lowest atten-
tion.
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of lesser computational resource requirement during the 
training and testing of the model.

Analysis and Significance of the Proposed 
Approach

Advantages of not Using RoI

Unlike most of the existing works in the literature [16, 32, 
33, 39], our approach eliminates the need for RoI extrac-
tion. The existing RoI extraction stage results in the network 
being dependent on the manual localization of the FFRs or 
irregularities in the RPE and choroid layer below it. It leads 
to the potential problem of correspondence matching in 
representation learning. Although the CNNs are translation 
invariant, the RoI selection step drives the CNN to loose its 
property of matching ridge points with the features from 
entire image. Thus, the inclusion of RoI extraction reduces 
the overall automation and universality of the method. Con-
sequently, we developed a non-RoI extraction-based method 
which uses the deformation-aware attention mechanism to 
focus on important discriminative regions in the macular 
OCT images. The performance of our network even with 
the inclusion of the RoI selection step is similar to one with-
out RoI selection. Thus, we eliminated this stage to avoid 
the problem of correspondence matching and automate the 
entire process without affecting the performance.

Table 9 reports the results for the implementation of the 
MCME model [33] with and without the RoI extraction stage 
using categorical cross-entropy as the objective function. 
It is evident from Table 9 that excluding the RoI cropping 
step weakens the performance of the MCME method. Our 
proposed method procures better results without extracting 
the relevant region manually when compared to the MCME 
results. Moreover, with RoI selection, our approach performs 
very similar to that of without using RoI selection, which 
is 100% accuracy on the dataset 1 and 99.84% accuracy on 
dataset 2 using 5-fold cross-validation protocol as shown 
in Table 9. The incorporation of the attention mechanism 
in the MacularNet removes the requirement RoI selection 
in our method. It enables the network to concentrate on the 

deformations encoding their morphological structure vari-
ations and put less emphasis on the background without 
external assistance.

Avoiding the Preprocessing: Denoising 
and Flattening

In the macular OCT imaging literature, sparse representa-
tion based denoising [34] and BM3D denoising [39, 41], 
have been followed. In our approach, the denoising stage 
has been avoided to save time and resources without affect-
ing the efficacy of the proposed method. Table 10 shows the 
classification accuracy of the MacularNet with and without 
the BM3D denoising step. The experimental results and 
comparisons using both the protocols show that exclusion 
of the denoising step does not affect the performance of our 
proposed framework, which infers that it is robust to the 
noise introduced while capturing OCT scans.

Retinal flattening is performed to flatten the retinal cur-
vature in [32, 33, 39], which eases the detection of the atro-
phies in the RPE layer and the region surrounding it. The 
CNNs are not completely rotation invariant; so the flattening 
assists the network to counter this issue. Our approach learns 
to encode the intricate details around the deformed layers 
of the macula to extract important discriminative informa-
tion as shown in Fig. 5. The proposed network is trained to 
self-locate the RPE layer in accordance with its curvature 
without undergoing any flattening algorithm.

These pre-processing steps are dataset specific and not 
suitable for the generality of the algorithms for real-world 
applications. These stages are not scalable in practice which 
makes it difficult to address affine variations in different 
datasets. MacularNet circumvents these disadvantages of the 

Table 9   Performance comparison (%) of the proposed MacularNet with MCME model [33] with and without the RoI extraction step using 
5-fold cross validation (CV)

Performance Metrics Dataset 1 Dataset 2

MCME MacularNet MCME MacularNet

With RoI Without RoI With RoI Without RoI With RoI Without RoI With RoI Without RoI

Accuracy 99.04 98.40 100 99.94 90.95 87.31 99.84 99.79
Precision 99.04 98.42 100 99.94 91.08 87.93 99.86 99.80
Recall 99.04 98.40 100 99.95 90.96 87.31 99.83 99.79

Table 10   Classification accuracies of MacularNet with and without 
the denoising step on both the datasets (in %)

Datasets With Denoising Without Denoising

5-fold CV LPO 5-fold CV LPO

Dataset 1 99.94 94.89 99.94 97.45
Dataset 2 99.34 93.34 99.79 94.18
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existing techniques, encodes the important regions automati-
cally and achieves better classification performance.

Training from Scratch vs. Fine‑Tuning

The weights of the base model used in our framework are 
pre-trained with millions of respective relevant images 
which allow the model to easily learn the complex, non-
linear and uneven features of an image. Refining and fine-
tuning help to train the model specifically for the macular 
OCT scans. To interpret the benefits of transfer learning in 
our problem, in Figs. 7a & b we visualize the difference in 
attention maps for the fine-tuning and training from scratch. 
In Fig. 7a, it can be observed that after 10 epochs of fine-
tuning, the network learns to concentrate on the relevant 
region. During training the model from scratch, it captures 
the entire macular part of the OCT B-scan. Figure 7b illus-
trates that the feature maps of the fine-tuned network are 
more converged to significant discriminative regions than 
training the network from scratch, even after 100 or 300 
epochs. The validation accuracy while training the model 

from scratch converges in 300 epochs and hence we stopped 
the training further. It can be inferred from these feature 
maps that transfer learning helps the proposed architecture to 
detect the presence of macular pathologies more aptly with 
lesser time and resource requirement while training. It is also 
verified from the experimental results shown in Table 3 that 
transfer learning (fine-tuning) helps in improving the clas-
sification accuracy significantly on both the datasets using 
both the protocols.

Conclusions and Future Works

In this paper, we have addressed the problems of classify-
ing macular OCT images into normal, AMD, DME, and 
CNV. Our proposed approach MacularNet takes advan-
tage of the transfer learning-based deep learned models 
and attention arising from locally deformation-aware fea-
tures with improved discrimination ability for classifying 
macular OCT images. Initialization of a fine-tuned deep 
CNN model coupled with attention mechanism has helped 
to extract discriminative features in macular OCT images. 
The proposed MacularNet has been analyzed carefully with 
the evolution of attention maps over epochs and layers, over 
training procedures and effect of attention over discrimina-
tive properties.

All these efforts have led to improved classification accu-
racy, decrease in the training time, usage of lesser computa-
tional resources and reduction in the number of parameters 
of the base CNN model. Unlike most of the existing works, 
MacularNet does not require any preprocessing steps, such 
as RoI extraction, denoising or retinal flattening. It is well-
suited with multiple deep learning frameworks, end-to-end 
trainable with a reduced number of network parameters, 
making it fully automatic, that facilitates efficient learning 
of relevant local deformation-aware features for classifying 
OCT images. The proposed attention mechanism does not 
require any external assistance such as bounding boxes or 
segmentation maps. Ablation studies with extensive experi-
mental results and analysis on four datasets show that our 
proposed MacularNet approach achieves state-of-the-art 
performance.

In future works, the effectiveness of MacularNet with 
deformation-aware attention-based architecture can be fur-
ther investigated for detection of several other complicated 
macular diseases, such as retinal vein occlusion, retini-
tis pigmentosa and macular telangiectasia [9]. Moreover, 
specific investigation of our proposed MacularNet method 
on macular eye diseases occurring at earlier stages (on 
younger population) might be useful, where the defor-
mations are more subtle and difficult to differentiate and 
evaluation on larger OCT datasets. We anticipate that the 
researchers/practitioners can use the deep CNN based 

(i) Fine Tuning 

(Epochs = 10)

(ii) Training from 

scratch (Epochs = 10)

(i) Fine Tuning

(Epochs = 100)

  (ii) Training from

  scratch (Epochs = 100)

  (iii) Training from

  scratch (Epochs = 300)

(a)

(b)

Normal DME AMD

Fig. 7   Examples to convey the information of variations in attention 
maps for the pre-trained base model of MacularNet and training the 
network from scratch. a shows the maps after 10 epochs and b depicts 
the same maps after 100 epochs in (i) and (ii) and after 300 epochs 
of training from scratch in (iii). It can be interpreted from the images 
that the mechanism of transfer learning is a better alternative for our 
problem. Here, blue color denotes the highest attention while red 
denotes the lowest attention



SN Computer Science           (2022) 3:142 	 Page 15 of 16    142 

SN Computer Science

attention mechanism proposed within the MacularNet 
framework for several other tasks of image classification 
tasks, especially in the field of biomedical engineering, 
such as analysis of x-ray images for chest/limbs, diagno-
sis of osteoarthritis through shape or structure analysis of 
limb joints, and magnetic resonance imaging (MRI) scans 
of organs and tissues.
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